Effect of Dynamic Soil-Pile-Structure Interaction on Seismic Response of Mid-Rise Moment Resisting Frames

By

Aslan Sadeghi Hokmabadi

A thesis submitted in fulfilment of the requirement for the degree of **Doctor of Philosophy**

Faculty of Engineering and Information Technology
University of Technology Sydney (UTS)

June 2014

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree

nor has it been submitted as part of requirements for a degree except as fully

acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Candidate

(Aslan Sadeghi Hokmabadi)

Sydney, June 2014

ii

Sincerely Dedicated to

My Father and Mother

Samad and Sorayyah

ABSTRACT

Seismic behaviour of structures built on soft soils is influenced by the soil properties and the foundation type, where the response is significantly different from the fixed base condition owing to the interaction between the ground and the structure. Soil-Structure Interaction (SSI) reduces the natural frequency of the system and increases the effective damping ratio of the system, for typical soils and foundations, in comparison with the fixed-base structure. This can considerably alter the response of the building frames under the seismic excitation by influencing the structural demand of the building as well as amplifying the lateral deflections and inter storey drifts of the superstructure. This amplification of lateral deformations due to SSI may change the performance level of buildings in the performance based design approach, which should be considered with great rigor accounting for the influence of SSI significantly influenced by the foundation type (i.e. shallow and deep foundation), in order to provide safe and cost effective design against the natural disasters such as earthquake.

In this study, in order to provide a benchmark to verify and calibrate the numerical model as well as experimentally investigate the influence of SSI on the seismic response of buildings, a series of shaking table tests on the soil-foundationstructure models are conducted at the University of Technology Sydney (UTS) structures laboratory. Different foundation types such as shallow foundation, floating pile foundation, end-bearing pile foundation as well as fixed base condition, excluding SSI interaction, are physically modelled. A laminar soil container is designed and constructed to simulate the free field soil response by minimising boundary effects. Simulating the superstructure as a multi-storey frame during the shaking table tests makes experimental data unique. Accordingly, in the current shaking table tests, by adopting the same soil properties, same superstructure, same input motions, and same test setup, a clear comparison is provided between the structural responses for different types of foundations. The experimental results indicate that soil-structure interaction amplifies the lateral deflections and inter-storey drifts of the structures supported by different types of foundations. However, the choice of the foundation type influences the structural performance significantly and should be addressed carefully in investigating the influence of SSI on the superstructure response during shaking excitations.

A fully nonlinear three-dimensional numerical model employing FLAC3D is developed to perform time-history analysis and simulate the performance of the superstructure considering the seismic soil-structure interaction. Hysteretic damping of the soil is implemented to represent the variation of the shear modulus reduction factor and the damping ratio of the soil with the cyclic shear strain. Free field boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the pile and soil elements, are considered. The developed numerical model is verified and validated against the conducted shaking table results. Comparison of the numerical predictions and the experimental data shows a good agreement confirming the reliability of the numerical model. Consequently, the proposed numerical model is a reliable method of simulation which can be employed for further numerical investigations concerning the dynamic soil-structure interaction. Practicing engineers can adopt this verified numerical modelling procedure in the design to consider the effect of SSI.

Furthermore, in order to investigate the different characteristics of SSI and its influence on the seismic response of superstructures, parametric studies with respect to different types of foundations are conducted employing the previously verified threedimensional numerical modelling procedure. A full scale fifteen storey structure (prototype) with four different types of foundations, namely, (i) fixed-base structure representing the situation excluding the soil-structure interaction, (ii) structure supported by a shallow foundation, (iii) structure supported by a pile-raft foundation in soft soil, and (iii) structure supported by a floating (frictional) pile foundation in soft soil, are simulated. According to the results of the numerical investigations, the properties of the in situ soil influence the characteristics of the excitation in terms of peak acceleration and frequency content. Moreover, the reduction ratio of the shear forces of superstructure due to SSI is a function of the foundation type, while the magnitude of this reduction is different for different levels in the superstructure. Accounting for the rocking-dissipation concept, results of this study can help the practicing engineers in selecting the proper foundation type for the structures. The foundation types experiencing considerable amount of rocking during an earthquake, dissipate significant amount of earthquake energy in comparison with the other types of foundations, and this rocking-dissipation in turn results in directing less shear forces to the superstructure and reducing the structural demand of the superstructure.

ACKNOWLEDGMENT

I would like to express my sincere gratitude and appreciation to the individuals who supported me during my PhD studies. This research work could have not been possible without their support and guidance. I would particularly like to thank my principal supervisor, Dr. Behzad Fatahi, who has provided me with intellectual guidance, encouragement, limitless support, and were always available to discuss this work. I greatly appreciate my co-supervisor, Professor Bijan Samali, for his mentorship and unfailing assistance throughout the course of this research. The author gratefully acknowledges the financial support provided by the University of Technology Sydney (International Research Scholarship) and Centre for Built Infrastructure Research (CBIR) of the Faculty of Engineering and Information Technology, UTS.

I am appreciative to all my friends and co-workers at CBIR, particularly Mohammadreza Hassani, Saad Mahbube Subhani, and Chij Shrestha, for their invaluable friendships and help. Special thanks to Dr. Seyed Hamid Reza Tabatabaeifar (former PhD candidate at UTS) for his collaboration and kind assistance during the experimental phase of the project. Hamid and I conducted the experimental part of this research together to be used in our theses. Furthermore, I owe my gratitude to the staff of the UTS soils and structures laboratories for their extensive assistance in conducting the laboratory experiments. Particularly, I want to thank Peter Brown, for his commitment and remarkable help in technical matters concerning the experimental shaking table tests.

My appreciation is also extended to Professor Ali Fakher and Senior Engineer Jamal Peymani for their guidance, support, and encouragement to continue my postgraduate studies in Australia.

I wish to take the opportunity to express my heartfelt gratitude to my family for their priceless support and confidence in me without which I would never achieve this moment. To my father for instilling in me the value of learning and providing me the outstanding opportunities to follow my dreams. To my mother for every single day that she did not have me nearby, but encouraged me in my endeavour. To my brothers for their countless support, sacrifices, and friendship throughout all these years, and to my beautiful partner for her patience, love, and support.

LIST OF REFEREED PUBLICATIONS BASED ON THIS RESEARCH

Journal Articles

- 1. **HOKMABADI, A. S.**, FATAHI, B. & SAMALI, B. 2014. Physical modelling of seismic soil-pile-structure interaction for buildings on soft soils. *International Journal of Geomechanics*, (DOI: 10.1061/(ASCE)GM.1943-5622.0000396).
- 2. **HOKMABADI, A. S.**, FATAHI, B. & SAMALI, B. 2014. Seismic Response of Mid-rise Buildings on Shallow and End-bearing Pile Foundations in Soft Soils. *Soils and Foundations*, 54 (3), 345-363.
- 3. **HOKMABADI, A. S.**, FATAHI, B. & SAMALI, B. 2014. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. *Computers & Geotechnics*, 55, 172–186.
- 4. **HOKMABADI, A. S.**, FATAHI, B. & SAMALI, B. 2012. Recording inter-storey drifts of structures in time-history approach for seismic design of building frames. *Australian Journal of Structural Engineering*, 13 (2), 175-179.

Peer-reviewed Conference Papers

- FATAHI, B., HOKMABADI, A. S. & SAMALI, B. 2014. Seismic Performance Based Design for Tall Buildings Considering Soil-Pile-Structure Interaction. International Conference on Geotechnical Engineering, ASCE, Geoshanghai 2014. Shanghai, China, 333-342.
- 6. **HOKMABADI, A. S.**, FATAHI, B. & SAMALI, B. 2013. Seismic Response of Superstructure on Soft Soil Considering Soil-Pile-Structure Interaction. In: DELAGE, P., DESRUES, J., FRANK, R., PUECH, A. & SCHLOSSER, F. (eds.) proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, France, 547-550.
- 7. **HOKMABADI, A. S.**, FATAHI, B., TABATABAIEFAR, H. R. & SAMALI, B. 2012. Effects of soil-pile-structure interaction on seismic response of moment resisting buildings on soft soil. In: ATALAR, C., CINICIOGLU, F., DAS, B. M.,

- SAGLAMER, A. & TOGROL, E. (eds.) proceeding of the third International Conference on New Developments in Soil Mechanics and Geotechnical Engineering. Nicosia, North Cyprus: Near East University Press, 377-384.
- 8. FATAHI, B., TABATABAIEFAR, H. R., **HOKMABADI, A. S.** & SAMALI, B. 2012. Significance of bedrock depth in dynamic soil-structure interaction analysis for moment resisting frames. In: MAUGERI, M. & SOCCODATO, C. (eds.) proceeding of the second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering. Taormina, Italy: Associazione Geotecnica Italiana, 1396-1406.

TABLE OF CONTENTS

ABSTRACT	iv
ACKNOWLEDGMENT	vi
LIST OF REFEREED PUBLICATIONS BASED ON THIS RESEARCH	vii
LIST OF FIGURES	xiii
LIST OF TABLES	xxiv
LIST OF NOTATIONS	xxvi
Chapter 1- INTRODUCTION	1
1.1 General	1
1.2 Significance of This Study	2
1.3 Objectives and Scope of This Study	4
1.4 Organisation of the Thesis	6
Chapter 2- LITERATURE REVIEW	8
2.1 General	8
2.2 Free Field Ground Motion	9
2.3 Concept of the Seismic Soil-Structure Interaction	11
2.4 Dynamic Behaviour of Soils	17
2.4.1 Backbone Curves for Cohesive Soils	20
2.4.2 Backbone Curves for Cohesionless Soils	21
2.5 Lessons Learned from Previous Earthquakes	22
2.5.1 1985 Mexico City Earthquake, Mexico	23
2.5.2 1995 Kobe Earthquake, Japan	25
2.5.3 Recent Earthquakes and Observations	26
2.6 Modelling Techniques to Simulate SSPSI	27
2.6.1 Beam-on-Elastic Foundation Methods (Winkler methods)	27
2.6.2 Elastic Continuum Methods	30

2.6.3 Numerical Methods	31
2.7 Effects of SSPSI on Behaviour of Buildings	35
2.8 Building Codes Concerning Seismic Soil-Structure Interaction	39
2.8.1 American Society of Civil Engineers (ASCE 7-10)	40
2.8.2 National Earthquake Hazard Reductions Program (NEHRP)	43
2.8.3 New Zealand and Australian Codes	43
2.9 Previous Experimental Investigations on SSPSI	45
2.10 Summary	51
Chapter 3- NUMERICAL MODELLING	53
3.1 General	53
3.2 Governing Equation of Motion for Soil-Structure Systems	54
3.3 Three-dimensional Finite Difference Software, FLAC3D	55
3.4 Soil Elements	57
3.4.1 Implementation of Soil Backbone Curves in FLAC3D	58
3.5 Pile Elements	60
3.6 Structural Elements	63
3.6.1 Properties of Beam Structural Elements	64
3.7 Interface Elements	66
3.8 Boundary Conditions	70
3.8.1 Quiet (viscous) Boundaries	71
3.8.2 Free Field Boundaries	72
3.8.3 Bedrock Boundary Condition and Size of the Numerical Model	74
3.9 Dynamic Loading	75
3.10 Summary	80
Chapter 4- SHAKING TABLE EXPERIMENTS	82
4.1 General	82
4.2 Prototype Characteristics	83
4.3 Scaling Factors for Shaking Table Tests	86
4.4 Model Components of Shaking Table Tests	89

4.4.1 Model Structure	89
4.4.2 Model Pile Foundation	91
4.4.3 Soil Mix	92
4.4.5 Shaking Events	96
4.4.6 Laminar Soil Container	99
4.5 Instrumentation and Data Acquisition System	. 105
4.6 Shaking Table Tests on the Fixed-base Model Structure	. 107
4.6.1 Damping Ratio of the Model Structure	.112
4.7 Shaking Table Tests on Model Structure supported by Shallow Foundation	.112
4.8 Shaking Table Tests on Model Structure supported by Floating Pile Foundation	on118
4.9 Shaking Table Tests on Model Structure supported by End-bearing Pile	
Foundation	. 123
4.10 Discussion on the Results	. 128
4.11 Shaking Table Tests on Five and Ten Storey Model Structures	. 132
4.11.1 Results and Discussion on the Model Structures with Various Heights	.138
4.12 Summary	. 150
Chapter 5- VERIFICATION OF THE DEVELOPED 3D NUMERICAL MODEL	. 153
5.1 General	. 153
5.2 Numerical Model Setup	. 153
5.3 Results and Discussion	. 167
5.4 Summary	. 175
Chapter 6- INFLUENCE OF FOUNDATION TYPE ON SEISMIC PERFORMANO	CE
OF STRUCTURES	. 177
6.1 General	. 177
6.2 Characteristics of Adopted Soil-Foundation-Structure Systems	. 178
6.2.1 Characteristics of Adopted Superstructure	.178
6.2.2 Characteristics of Adopted Soil and Foundations	.181
6.3 Utilised Parameters for Soil-Pile-Structure Model in FLAC3D	. 183
6.4 Results and Discussion	188

6.4.1 Settlement of Superstructure under Gravity Loads	188
6.4.2 Site Effect and Soil Amplification	191
6.4.3 Influence of SSI on Generated Shear Forces in Superstructure	196
6.4.4 Rocking of the Fifteen Storey Superstructure	200
6.4.5 Lateral Deflection and Inter-storey Drifts of Superstructure	203
6.4.6 Rocking-dissipation due to SSI	210
6.5 Summary	211
Chapter 7- CONCLUSIONS AND RECOMMENDATIONS	214
7.1 Conclusions	214
7.1.1 Conclusions based on the Conducted Experimental Shaking Table Tests.	214
7.1.2 Conclusions based on the 3D Numerical Investigations	216
7.2 Recommendations for Future Works	219
REFERENCES	220

LIST OF FIGURES

Figure 2.1 (a) Complete ground response analysis and the resultant vertical wave
propagation near the ground surface; (b) free field ground motion
Figure 2.2 Average normalised response spectrum (5%) for different local site conditions. (Seed et al., 1976)
Figure 2.3 Soil-structure interaction model including SDOF structure and idealised discrete system to represent the supporting soil (after Wolf, 1985)
Figure 2.4 Equivalent soil-structure interaction model (after Wolf, 1985)
Figure 2.5 Equivalent one degree of freedom system (after Wolf, 1985)14
Figure 2.6 Response of the equivalent soil-structure system: (a) maximum structure demand; (b) maximum total displacement of the structure relative to the free field ground motion (after Wolf, 1985)
Figure 2.7 (a) hysteretic stress-strain relationship; (b) backbone curve; (c) typical Modulus reduction curve for soils
Figure 2.8 Relations between G/G_{max} versus cyclic shear strain for cohesive soils (after Sun et al., 1988)
Figure 2.9 Relations between damping versus cyclic shear strain for cohesive soils (after Sun et al., 1988)
Figure 2.10 Relations between G/G_{max} and cyclic shear strain for cohesionless soils (After Seed et al., 1986)
Figure 2.11 Relations between damping ratio and cyclic shear strain for cohesionless soils (After Seed et al., 1986)
Figure 2.12 Ten storey building supported by pile foundation on soft soils during the 1985 Mexico City Earthquake; (a) geotechnical conditions of the site (modified after Meymand, 1998); (b) overturned structure (modified after Mendoza and Romo, 1989)24

Figure 2.13 (a) Collapse of Hanshin Expressway during 1995 Kobe earthquake; (b)
recorded response spectrum during 1995 Kobe earthquake (After Gazetas & Mylonakis,
1998)
Figure 2.14 Modelling a single pile using Beam on elastic foundation method28
Figure 2.15 An element representation of the proposed model based on the subgrade
reaction methods to simulate SSPSI (after Mostafa and El Naggar, 2002)30
Figure 2.16 Components of Soil-structure Interaction problem used in Substructure approach
Figure 2.17 Employed pile foundation configurations to study the seismic soil-pile-
structure interaction by Chu and Truman (2004): (a) 2×2 end-bearing pile foundation;
(b) 3×3 end-bearing pile foundation
Figure 2.18 (a) Maximum response value of shear force for structure with and without
uplift; (b) developed two-dimensional FEM (after Hayashi and Takahashi, 2004) 38
Figure 2.19 Comparison of (a) the free field ground motion, and (b) the simulated
motion employing rigid soil container on shaking table
Figure 2.20 Flexible cylindrical soil container (Meymand, 1998)
Figure 2.21 Schematic view of the laminar soil container developed by Taylor (1997)50
Figure 3.1 Tetrahedron shape elements employed in FLAC3D to discretise the
continuous medium
Figure 3.2 Pile structural elements (pileSELs) in FLAC3D
Figure 3.3 Simulating pile elements in this study for SSPSI analysis
Figure 3.3 Simulating the inelastic behaviour of pile elements
Figure 3.4 Developed twelve degrees-of-freedom beam structural element for the 3D
numerical simulation (after Itasca 2009)
Figure 3.5 Cross-section of the beam structural element cross-section in y-z plane (after
Itasca, 2009)64
Figure 3.6 Elastic-perfectly plastic behaviour of beam structural elements
Figure 3.7 Interface elements adopted in this study: (a) interface elements between the
shallow foundation and the soil element: (b) interface elements at the outer perimeter

and tip of the floating piles and surrounding soil; (c) Interface elements at the oute perimeter of the end-bearing piles and surrounding soil
Figure 3.8 components of the interface constitutive model adopted in this study
Figure 3.9 Preliminary boundary conditions for the static analysis under the gravity loads
Figure 3.10 Simulating boundary conditions for the dynamic analysis of the soil-pile structure interaction system
Figure 3.11 Adopted boundary conditions, main grid, and boundary grid for the dynamic analysis of SSPSI in this study
Figure 3.12 (a) Unfiltered acceleration records of scaled 1940 El Centro earthquake subjected to the 50 Hz low-pass filter; (b) filtered acceleration records of scaled 1940 E Centro earthquake subjected to the 50 Hz low-pass filter
Figure 3.13 (a) Unfiltered frequency content of scaled 1940 El Centro earthquake subjected to the 50 Hz low-pass filter; (b) filtered frequency content of scaled 1940 E Centro earthquake subjected to the 50 Hz low-pass filter
Figure 3.14 (a) time-history velocity record of scaled 1940 El Centro earthquake; (b time-history displacement record of scaled 1940 El Centro earthquake
Figure 3.15 Low frequency velocity wave for baseline correction
Figure 3.16 (a) time-history velocity record of scaled 1940 El Centro earthquake after baseline correction; (b) time-history displacement record of scaled 1940 El Centro earthquake applying baseline correction
Figure 4.1 (a) Prototype fixed-base structure; (b) prototype structure supported by shallow foundation
Figure 4.2 (a) Prototype structure supported by floating (frictional) pile foundation; (b prototype structure supported by end-bearing pile foundation
Figure 4.3 The completed model structure for shaking table tests
Figure 4.4 Soil mix cylindrical test specimen; (b) placing the mixtures into the mould with palette knives.

Figure 4.5 (a) Bender element test setup; (b) schematic graphical signal processing to
measure the shear wave travel time between the sender and receiver bender elements .95
Figure 4.6 Average shear wave velocity for three mixes obtained from bender elementest
Figure 4.7 Utilised earthquake records in this study: (a) 1994 Northridge earthquake (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.8 Scaled shaking events adopted in the shaking table experimental tests: (a scaled 1994 Northridge earthquake; (b) scaled 1995 Kobe earthquake; (c) scaled 1940 El Centro earthquake; (d) scaled 1968 Hachinohe earthquake
Figure 4.9 Exponential sine sweep wave adopted in the shaking table experimental tests
Figure 4.10 3D numerical predictions versus experimental measurements of the maximum lateral deformation of the soil container under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.11 Numerical grid and model components of laminar soil container in FLAC3D
Figure 4.12 Components of the constructed laminar soil container on the shaking table
Figure 4.13 Utilised measuring instruments in the shaking table tests: (a) displacement transducer; (b) accelerometer; (c) strain gauge
Figure 4.14 (a) sensors connection to the data acquisition system; (b) calibration of the sensors prior to the shaking table test
Figure 4.15 Shaking table tests on the fixed-base model structure
Figure 4.16 Recorded maximum lateral deflections of fixed-base fifteen storey mode structure under the influence of scaled 1994 Northridge earthquake
Figure 4.17 Recorded maximum lateral deflections of fixed-base fifteen storey mode structure under the influence of scaled 1995 Kobe earthquake

Figure 4.18 Recorded maximum lateral deflections of fixed-base fifteen storey model structure under the influence of scaled 1940 El Centro earthquake
Figure 4.19 Recorded maximum lateral deflections of fixed-base fifteen storey model structure under the influence of scaled 1968 Hachinohe earthquake
Figure 4.20 Sample experimental time-history displacement results for the fixed-base fifteen storey model structure under the influence of 1940 El Centro earthquake 111
Figure 4.21 Placing the fifteen storey model structure on top of the soil mix for the shaking table tests
Figure 4.22 Shaking table tests setup and connections for model shallow foundation 114
Figure 4.23 Recorded maximum lateral deflections of fifteen storey model structure supported by shallow foundation under the influence of scaled 1994 Northridge earthquake
Figure 4.24 Recorded maximum lateral deflections of fifteen storey model structure supported by shallow foundation under the influence of scaled 1995 Kobe earthquake
Figure 4.25 Recorded maximum lateral deflections of fifteen storey model structure supported by shallow foundation under the influence of scaled 1940 El Centro earthquake
Figure 4.26 Recorded maximum lateral deflections of fifteen storey model structure supported by shallow foundation under the influence of scaled 1968 Hachinohe earthquake
Figure 4.27 Sample experimental time-history displacement results for the fifteen storey model structure supported by shallow foundation under the influence of 1940 El Centro earthquake
Figure 4.28 Sample experimental time-history results of the vertical displacement of the base plate for the fifteen storey model structure supported by shallow foundation under the influence of 1940 El Centro earthquake
Figure 4 29 Connection details for the pile foundation cases

Figure 4.30 Recorded maximum lateral deflections of fifteen storey model structure supported by floating pile foundation under the influence of scaled 1994 Northridge earthquake
Figure 4.31 Recorded maximum lateral deflections of fifteen storey model structure supported by floating pile foundation under the influence of scaled 1995 Kobe earthquake
Figure 4.32 Recorded maximum lateral deflections of fifteen storey model structure supported by floating pile foundation under the influence of scaled 1940 El Centro earthquake
Figure 4.33 Recorded maximum lateral deflections of fifteen storey model structure supported by floating pile foundation under the influence of scaled 1968 Hachinohe earthquake
Figure 4.34 Sample experimental time-history displacement results for the fifteen storey model structure supported by floating pile foundation under the influence of 1940 El Centro earthquake
Figure 4.35 Sample experimental time-history results of the vertical displacement of the base plate for the fifteen storey model structure supported by floating pile foundation under the influence of 1940 El Centro earthquake
Figure 4.36 Various components of the shaking table tests for the structure with pile foundation adopted in this study
Figure 4.37 Recorded maximum lateral deflections of fifteen storey model structure supported by end-bearing pile foundation under the influence of scaled 1994 Northridge earthquake
Figure 4.38 Recorded maximum lateral deflections of fifteen storey model structure supported by end-bearing pile foundation under the influence of scaled 1995 Kobe earthquake
Figure 4.39 Recorded maximum lateral deflections of fifteen storey model structure supported by end-bearing pile foundation under the influence of scaled 1940 El Centro earthquake

Figure 4.40 Recorded maximum lateral deflections of fifteen storey model structure
supported by end-bearing pile foundation under the influence of scaled 1968 Hachinohe
earthquake
Figure 4.41 Sample experimental time-history displacement results for the fifteen storey model structure supported by end-bearing pile foundation under the influence of 1940 El Centro earthquake
Figure 4.42 Sample experimental time-history results of the vertical displacement of the base plate for the fifteen storey model structure supported by end-bearing pile foundation under the influence of 1940 El Centro earthquake
Figure 4.43 Comparing the maximum lateral deflection of the fifteen storey model structure from the shaking table tests for the fixed-base, shallow foundation, floating pile foundation, and end-bearing pile foundation cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.44 (a) Prototype fixed-base five storey building; (b) prototype five storey building supported by end-bearing pile foundation
Figure 4.45 (a) Prototype fixed-base ten storey building; (b) prototype ten storey building supported by end-bearing pile foundation
Figure 4.46 Ten storey fixed-base model structure for shaking table tests
Figure 4.47 Five storey fixed-base model structure for shaking table tests
Figure 4.48 Shaking table tests for the ten storey model structure with end-bearing pile foundation
Figure 4.49 Shaking table tests for the five storey model structure with end-bearing pile foundation
Figure 4.50 Recorded maximum lateral deflection of the five storey model structure from the shaking table tests under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.51 Sample experimental time-history displacement results for the fixed-base five storey model structure under the influence of 1940 El Centro earthquake

Figure 4.52 Recorded maximum lateral deflection of the five storey model structure
from the shaking table tests under the influence of: (a) 1994 Northridge earthquake; (b)
1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.53 Sample experimental time-history displacement results for the fixed-base
ten storey model structure under the influence of 1940 El Centro earthquake143
Figure 4.54 (a) Plan of the pile group foundation for the shaking table tests; (b)
Location of the installed strain gauges on the pile elements
Figure 4.55 Recorded bending moment distribution along the pile number 1 supporting
five storey, ten storey, and fifteen storey model structures under the influence of: (a)
1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake;
(d) 1968 Hachinohe earthquake
Figure 4.56 Recorded maximum lateral deflection of the five storey model structure
from the shaking table tests under the influence of: (a) 1994 Northridge earthquake; (b)
1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 4.57 Recorded maximum lateral deflection of the ten storey model structure
from the shaking table tests under the influence of: (a) 1994 Northridge earthquake; (b)
1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
149
Figure 4.58 Recorded maximum lateral deflection of the fifteen storey model structure
from the shaking table tests under the influence of: (a) 1994 Northridge earthquake; (b)
1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 5.1 Numerical grid and model components of fixed-base fifteen storey model
structure in FLAC3D
Figure 5.2 3D numerical predictions versus experimental measurements of the maximum lateral deformation of the fixed-base fifteen storey model structure under the
influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El
Centro earthquake; (d) 1968 Hachinohe earthquake

Figure 5.3 Numerical grid and model components of the model structure supported by
the shallow foundation in FLAC3D
Figure 5.4 Adopted fitting curve for fine grained soil in this study (after Sun et al. 1998): (a) relations between G/G_{max} and cyclic shear strain; (b) relations between damping ratio and cyclic shear strain
Figure 5.5 3D numerical predictions versus experimental measurements of the maximum lateral deformation of the fifteen storey model structure supported by shallow foundation under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 5.6 Numerical grid and model components in FLAC3D for: (a) structure supported by floating (frictional) pile foundation; (b) structure supported by end-bearing pile foundation
Figure 5.7 3D numerical predictions versus experimental measurements of the maximum lateral deformation of the fifteen storey model structure supported by floating pile foundation under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 5.8 3D numerical predictions versus experimental measurements of the maximum lateral deformation of the fifteen storey model structure supported by endbearing pile foundation under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 5.9 history acceleration records at top of the 15-storey model structure under the influence of 1940 El Centro earthquake for: (a) fixed-base structure; (b) structure supported by shallow foundation; (c) structure supported by floating (frictional) pile foundation; (d) structure supported by end-bearing pile foundation
Figure 5.10 Maximum base shear of the model structure obtained from 3D numerical analysis for: fixed-base structure; structure supported by shallow foundation; and structure supported by floating (frictional) pile foundation
Figure 5.11 Average 3D numerical values of maximum lateral displacements for: (a) fixed-base structure; (b) structure supported by shallow foundation; (c) structure

supported by floating pile foundation; (d) structure supported by end-bearing pile foundation			
Figure 5.12 Average 3D numerical inter-storey drifts for: (a) fixed-base structure; (b) Structure supported by shallow foundation; (c) structure supported by floating pile foundation; (d) structure supported by end-bearing pile foundation			
Figure 5.13 Developed shear stress versus shear strain in the soil medium at Point A for the case of end-bearing pile foundation record at the soil surface bellow the foundation under the influence of El Centro earthquake			
Figure 6.1 Designed concrete sections for the adopted fifteen storey superstructure 181			
Figure 6.2 Adopted interface elements in the 3D numerical simulation for: (a) superstructure supported by shallow foundation; (b) superstructure supported by 18m long floating (frictional) pile foundation; (c) superstructure supported by 9m long pileraft foundation. 186			
Figure 6.3 Numerical grid and model components in FLAC3D for prototype structure supported by floating (frictional) pile foundation			
Figure 6.4 Settlements of the fifteen storey structure supported by: (a) shallow foundation; (b) pile-raft foundation; (c) floating pile foundation under the gravity loads			
Figure 6.5 (a) Bedrock record and the amplified free field soil surface record under the influence of 1994 Northridge earthquake; (b) acceleration response spectrum with 5% damping ratio for the structure			
Figure 6.6 (a) Bedrock record and the amplified free field soil surface record under the influence of 1995 Kobe earthquake; (b) acceleration response spectrum with 5% damping ratio for the structure			
Figure 6.7 (a) Bedrock record and the amplified free field soil surface record under the influence of 1940 El Centro earthquake; (b) acceleration response spectrum with 5% damping ratio for the structure			
Figure 6.8 (a) Bedrock record and the amplified free field soil surface record under the influence of 1968 Hachinohe earthquake; (b) acceleration response spectrum with 5% damping ratio for the structure.			

Figure 6.9 Acceleration response spectrum with 5% damping ratio for the structure
with different foundation types under the influence of: (a) 1940 El Centro earthquake
(b) 1995 Kobe earthquake 196
Figure 6.10 Maximum shear force distribution for the fixed base, shallow foundation floating pile foundation, and pile-raft cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 6.11 Sample of numerical prediction of time-history shear force generation is corner columns for the fixed base model under the influence of 1940 El Centre earthquake on levels 1, 7, and 15.
Figure 6.12 Maximum base shear of the structure for the fixed base, shallow foundation, floating pile foundation, and pile-raft foundation cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 6.13 Sample of numerical prediction of rocking component (rocking angle) for shallow foundation, pile foundation, and pile-raft foundation cases under the influence of 1940 El Centro earthquake
Figure 6.14 Maximum Rocking of the structure for the fixed base, shallow foundation floating pile foundation, and pile raft foundation cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 6.15 Maximum lateral deflection of the structure for the fixed base, shallow foundation, floating pile foundation, and pile-raft cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake
Figure 6.16 Sample of numerical prediction of time-history deflection for the fixed base model under the influence of 1940 El Centro earthquake in levels 1,7, and 15206
Figure 6.17 Maximum inter-storey drifts of the structure for the fixed base, shallow foundation, floating pile foundation, and pile-raft cases under the influence of: (a) 1994 Northridge earthquake; (b) 1995 Kobe earthquake; (c) 1940 El Centro earthquake; (d) 1968 Hachinohe earthquake

LIST OF TABLES

Table 2.1 Values of G/G_0 and V_s/V_{so} considering strain compatibility (ASCE7-10, 2010)
Table 2.2 Past performed shaking table tests on soil-structure systems using various types of soil containers
Table 3.1 Numerical fitting parameters in FLAC3D for implementing soil backbone curves 60
Table 4.1 UTS shaking table specifications 83
Table 4.2 Scaling relations in terms of geometric scaling factor (λ)
Table 4.3 Characteristics of the model pile built from Polyethylene pressure pipe92
Table 4.4 Proportion of different components for the examined mixtures 93
Table 4.5 Properties of the soil mix on the second day of curing 96
Table 4.6 Characteristics of the utilised earthquake base motions
Table 4.7 Characteristics of the fifteen storey model structure 108
Table 4.8 Maximum vertical displacement and rocking angle of the base plate obtained from shaking table tests for the model structure supported by shallow foundation117
Table 4.9 Maximum vertical displacement and rocking angle of the base plate obtained from shaking table tests for the model structure supported by floating pile foundation 122
Table 4.10 Maximum vertical displacement and rocking angle of the base plate obtained from shaking table tests for the model structure supported by end-bearing pile foundation
table tests obtained from shaking table tests
Table 4.12 Maximum rocking angle of the base plate obtained from shaking table tests
Table 4.13 Characteristics of the model structures

Table 4.14 Maximum vertical displacement of the base plate obtained from shaking table tests
Table 4.15 Maximum rocking angle of the base plate obtained from shaking table tests
Table 5.1 Adopted parameters for 3D numerical simulation of the model structure 154
Table 5.2 Properties of the adopted soil properties in 3D numerical simulation
Table 5.3 Properties of the adopted interface elements in 3D numerical simulation160
Table 5.4 Mechanical characteristics of the model piles adopted in the 3D numerical simulation 164
Table 5.5 Maximum vertical displacement of the base plate obtained from 3D Numerical model
Table 5.6 Maximum rocking angle of the base plate obtained from 3D Numerical model 170
Table 6.1 Adopted characteristics of column sections for 3D numerical simulation of the prototype soil-foundation-structure system. 184
Table 6.2 Adopted characteristics of slabs for 3D numerical simulation of the prototype soil-foundation-structure system 184
Table 6.3 Adopted soil parameters for 3D numerical simulation of the prototype soil-
foundation-structure system185
Table 6.4 Properties of the adopted interface elements 186
Table 6.5 Maximum rocking angle of foundations obtained from 3D numerical simulation

LIST OF NOTATIONS

A	Area
A_{loop}	Area of the hysteresis loop
a	foundation width
c	damping coefficient of the structure
C	cohesion
[<i>C</i>]	damping matrix
C_h	horizontal damping coefficient of the subsoil
$c_{ heta}$	rocking damping coefficient of the subsoil
C_s	seismic design coefficient of the fixed-based structure
\widetilde{C}_s	seismic design coefficient of the flexible-based structure
D	dilation angle
E	modulus of elasticity (Young modulus)
E_s	soil subgrade reaction
f	natural frequency of fixed base structure
\widetilde{f}	natural frequency of soil-structure system
f_c'	specified compressive strength
f_{m}	natural frequency of the model
f_p	natural frequency of the prototype
F_s	shear force
F_n	normal force
F_x	unbalanced forces in x direction from the free-field grid
F_y	unbalanced forces in y direction from the free-field grid
F_z	unbalanced forces in z direction from the free-field grid
F_{x}^{ff}	free-field grid point forces in x direction
F_{y}^{ff}	free-field grid point forces in y direction
F_{z}^{ff}	free-field grid point forces in z direction
$\{F_v\}$	force vector
G	shear modulus of the soil
G_{θ}	shear modulus of the soil at small strains
G_{max}	largest value of the shear modulus

 G_{sec} secant shear modulus

 G_{tan} tangent shear modulus

g gravity

h height of the structure

lateral displacement at the top of the structure due to rotation of the

 $h\theta$ base

I moment of inertia

 $I_{\rm c}$ flexural rigidity of the building columns

 $I_{\rm x}$ second moment of inertia with respect to x-axis

 $I_{\rm y}$ second moment of inertia with respect to y-axis

 I_z second moment of inertia with respect to z-axis

J polar moment of inertia

 I_r moment of inertia for rocking motion

k stiffness of the structure

 k_s shear spring stiffness

 k_n normal spring stiffness

 k_v lateral stiffness of foundation

 k_{θ} rocking stiffness of foundation

 k_h horizontal stiffness coefficient of the subsoil

 \bar{k} stiffness of a fixed-base structure

K bulk modulus

[K] stiffness matrix

 K_h horizontal stiffness coefficient of the subsoil

 K_r rocking stiffness coefficient of the subsoil

 $k_{\rm x}$ lateral stiffness of the subsoil foundation

L effective contact length

m mass of the structure

[M] mass matrix

 M_p plastic moment capacity

 M_0 overturning moment

 $M_{\rm s}$ secant modulus

 M_t tangent modulus

 P_x axial load on pile

r radius of the foundation base

S slider

S_u	shear strength
S_p	performance factor
S_u	soil shear strength
S_{DS}	design earthquake motion
T	natural period of fixed-base structure
\widetilde{T}	natural period of soil-structure system
T_s	tensile strength
и	lateral displacement at the top of the structure due to structural distortion
u_n	incremental relative displacement vector in normal direction
u_s	incremental relative displacement vector in shear direction
u_0	lateral displacement at the top of structure due to translation of the base
u_t	total displacement of the base
u_g	horizontal seismic excitation
\widetilde{u}^{g}	effective input motion
{ <i>u</i> }	nodal displacement
$\{\dot{u}\}$	nodal velocity
$\{\ddot{u}\}$	nodal acceleration
V	base shear of fixed base structure
\widetilde{V}	base shear of the structure in soil-structure system
ΔV	decrease in the base shear due to SSI
V_p	compression wave velocity of the soil
V_s	shear wave velocity of the soil
V_{s0}	shear wave velocity of the soil at small strains
W_D	dissipated energy in one hysteresis loop
W_S	maximum strain energy
\overline{W}	effective seismic weight of structure
У	lateral deformation of pile at point x
Δz_{min}	smallest width of the adjacent zone in the normal direction
γ	shear strain
γ_{ref}	numerical fitting parameter
δ	maximum lateral deflection of fixed base structure
$\widetilde{\delta}$	maximum lateral deflection of the structure in soil-structure system

- Δt time-step
- ΔS_{ν} mean vertical zone size at boundary grid point
- η material viscosity
- θ foundation rotation
- λ geometric scaling factor
- λ_p density scaling factor
- λ_{ε} strain scaling factor
- υ Poisson's ratio
- v_x^m x-velocity of the grid point in the main grid
- v_v^m y-velocity of the grid point in the main grid
- v_z^m z-velocity of the grid point in the main grid
- v_x^{ff} x-velocity of the grid point in the free-field grid
- v_y^f y-velocity of the grid point in the free-field grid
- v_z^{ff} z-velocity of the grid point in the free-field grid
- ξ equivalent viscous damping ratio
- $\tilde{\xi}$ effective damping ratio
- ξ_g hysteretic material damping of the soil
- ρ soil density
- σ_y yield stress
- σ_{xx}^{ff} mean horizontal free-field stress at the grid point
- σ_{xy}^{ff} mean free-field shear stress at the grid point
- ϕ friction angle
- $\tilde{\omega}$ effective natural frequency
- ω_0 natural frequency of the fixed base structure
- τ shear stress
- $\bar{\tau}$ normalised shear stress