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ABSTRACT 

Road assets condition has a critical impact on road safety and efficiency. Accurate 

and efficient monitoring and management of road assets is a challenge. This research 

is focused on developing a cost efficient mobile surveying system to tackle this 

challenge. The system is equipped with LADARs (LAser Detection And Ranging) 

and a camera as exteroceptive sensors, and other sensors including Inertial 

Measurement Units (IMU), odometer and GPS (Global Positioning System). This 

system can acquire road assets information expeditiously in highly dynamic 

environments, where data collection has previously been inefficient, laborious and 

even dangerous.  

Continuous Position, Velocity and Attitude (PVA) information is obtained by the 

integration of IMU, GPS, camera and odometer. Then PVA information is fused with 

range and remission data from LADARs to achieve multiple functions for road assets 

surveying and management. The functions include road clearance surveying, road 

surface profiling, 3D structure modelling, road boundary detection and road 

roughness measurement. The processing results are presented in a user-friendly 

graphical interface and can be saved as videos for convenient data management.  

Two sets of GUI (graphical user interface) have been developed for data acquisition 

from all the sensors and data processing for the system functions. A Data Acquisition 

GUI is used for sensors control, data acquisition and pre-processing. It has multiple 

functions, including configuring LADARs scan frequency and resolution, displaying 

and recording data and exporting data with the required format. The Data Processing 

GUI includes various algorithms to perform all the data processing and management 

functions.  

The camera in the proposed system provides not only a vision reference, but also 

visual odometry for improving PVA estimation when GPS is unreliable. In order to 

obtain a robust and accurate visual odometry, a new algorithm named PURSAC 

(PURposive SAmple Consensus) has been purposed for model fitting, which 

purposely selects sample sets according to the sensitivity analysis of a model against 

sampling noise and other information. This in turn can improve the accuracy and 
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robustness of fundamental matrix estimation, resulting in a more precise and 

efficient visual odometry.  

A prototype system designed for online data processing has been developed and four 

road tests have been successfully completed. Experimental results on a variety of 

roads have demonstrated the effectiveness of the proposed mobile surveying system. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

With the development of transportation system, bridges, tunnels, urban streets and 

highways become the essential components of modern transportation infrastructure. 

They improve transportation capability, but make road conditions more complex. 

Over-height vehicles are often involved in bridge strike accidents with serious 

consequence. Bridges and tunnels have a certain clearance for each lane and it is 

critical to accurately measure and mark the clearance in order to avoid this kind of 

accident. Moreover, during the service life of bridges and tunnels, deformation and 

road re-pavement could lower the clearance. It is essential for safety to survey road 

clearance accurately and efficiently.  

The condition of the road surface has a direct impact on road safety and 

comfortableness. For intelligent vehicles and an intelligent transportation system, to 

enable autonomous vehicles in urban environments in the future, it is necessary to 

measure the road condition accurately and efficiently. The road surface profile 

includes the road boundary, surface roughness, road deformation, white line (traffic 

lanes division) and marks. In order to achieve satisfactory road surface condition 

assessment and road assets management, it is critical to accurately profile most of the 

road sections, especially in urban area.  

Traditionally, bridge and tunnel clearance and road surface condition are surveyed 

manually with rods and other surveying tools. During the process, surveying 

personnel need to hold rods to measure the height of suspected lowest points, which 

is inefficient and may introduce human errors into the measurements. This method is 

not only labour and time consuming but also creates traffic disruption and is safety 

hazard for workers [1].  

In the past two decades, many automatic road surveying systems were designed 

based on different techniques and sensors [2]-[5], such as Vision sensor, RADAR 

(Radio Detection And Ranging) sensor, LADAR (LAser Detection And Ranging) 

sensor, suspension sensor, and hybrid sensor. They have been applied on road 

mapping, lane & boundary detection and road roughness measurement. With the 
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rapid and recent development of sensors and computers, more and more automatic 

road surveying systems are now able to deliver road asset surveying results in real-

time. Automatic road profiling is a novel way of efficiently collecting critical road 

condition data and performing analysis. Compared with traditional manual surveying, 

automatic surveying and profiling processes have several advantages such as cost 

efficiency, less risk and impact to traffic. As a consequence, a safer and more 

efficient method to measure bridges and tunnels’ clearance and many other aspects 

of road condition is required. This is the motivation of the proposed research.  

Most automatic road surveying systems collect road assets information with a 

moving vehicle. In order to obtain accurate position, velocity and attitude 

information of the vehicle, sensors such as GPS, IMU and Camera are installed onto 

the surveying systems. Although GPS has outstanding precision of localization in 

open space, it becomes unreliable in a signals blocked area, such as in tunnels and 

the city with many tall buildings. IMU is a perfect device to measure a vehicle’s 

velocity, orientation and also gravitational forces, using accelerometers and 

gyroscopes. However, a vital shortcoming of IMU alone is error accumulated [64], 

also known ‘drift’, as time elapses, which indicates that it is accurate only for a short 

time and has to be corrected frequently.  Camera based visual odometry (VO) has 

been demonstrated to be able to provide accurate trajectory estimation, with relative 

position error ranging from 0.1% to 2% [6].  However, camera based VO suffers in 

poor illumination, in which fewer features can be extracted.  In the past decades, 

many integrated navigation systems have been developed for improving accuracy 

and robustness of PVA measurement. The shortcomings of an individual system can 

be overcome by other navigation systems. Most of the systems use inertial 

navigation as the main sub-system, because it is free from external disturbance.  

1.2 Objectives and Scope of the Work 

The objective of research is to develop a mobile surveying system with multi-

functions, such as road-boundary detection, white line detection, clearance surveying, 

road roughness measurement and 3D road surface modelling.  

The proposed system is designed for delivering accurate and efficient road asset 

measurement and management, with real-time processing in a surveying vehicle at 
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normal driving speed. This research also investigates visual odometry using a vision 

sensor (camera). This research is aimed to provide accurate real-time PVA estimation 

in GPS-denied environments, such as tunnels, in which using IMU alone would 

result in inadequate PVA estimation and inaccurate 3D road profiling. Hence, 

combining IMU and vision data together will limit the IMU drift and reduce PVA 

estimation error.  

The scope of the work is focusing on a vehicle-based platform, sensor fusion, and 

data processing. The proposed surveying system developed in this research is 

integrated into an experiment vehicle shown in Figure 3.3. Two LADAR sensors 

(LMS111and LMS400) and an IMU are mounted on an aluminium frame and then 

installed at the back of the vehicle at a proper height (2300mm) for scanning 

perpendicular to the vehicle moving direction. The GPS antenna and the camera are 

mounted on the top of the driver’s cab. Other sensors, data collect hardware and 

power system is placed at the back of the cruise vehicle. 

The work of sensor data fusion consists of sensors position calibration, sensors time 

synchronization and data processing for multi-function realization. The sensors time 

synchronization is one of the most challenging tasks because of a different clock and 

frequency of each sensor. Another major challenge of developing the proposed 

system is to process LADAR range and remission data combined with other sensors’ 

data, in order to obtain an integrated and comprehensive road surveying and 

profiling result. The system can perform road surveying at the designated speed 

therefore it has no impact on normal traffic during the surveying. 

1.3 Contributions 

The major contributions of the thesis are as follows: 

 Designed and developed an automatic road surveying system to collect road 

surface and surroundings data with a test vehicle driving at the road speed 

limit. Data from sensors can be processed on-line with comprehensive 

information recorded, processed and profiled for road assets condition 

analysis and management.   
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 Developed several road surveying and profiling functions, such as road 

boundary detection, clearance measurement for tunnels and bridges, road 

surface markers extraction, white line & traffic lane extraction, 3D model and 

GUI construction and road roughness measurement. They can be utilized in 

varied environments and for different purposes.   

 Research on Visual Odometry has been conducted for PVA estimation. A new 

algorithm named PURSAC has been proposed as a major component of 

Visual Odometry for outlier removal. It has demonstrated better accuracy, 

robustness and efficiency compared with other methods, such as RANSAC 

and MLESAC (maximum likelihood estimation sample consensus).  

1.4 Thesis Outline 

Chapter 2 presents a literature review of road asset surveying on road mapping, lane 

and boundary detection, road roughness measurement and clearance measurement by 

utilizing LADAR based technique and vision based techniques. In addition to this, 

visual odometry is a key component of the system, a literature review of feature 

detection and feature matching and robust estimation methods for outlier removal 

has been described in detail in the second part of this chapter.  

Chapter 3 presents a comprehensive description and analysis of the proposed 

autonomous surveying system, which includes system architecture, system hardware, 

data acquisition software, sensor data and system accuracy analysis. 

Chapter 4 introduces a number of functions developed for the proposed system. 

Road boundary detection and white line & traffic lane extraction are the fundamental 

functions for clearance measurement of tunnels and bridges. Other functions, such as 

road surface markers extraction, 3D model & GUI construction and road roughness 

measurement, are designed as on-line data processing functions to deliver detailed 

information of the road surface and surroundings. The information can be utilized for 

road assets monitoring and management, as well as for problem analysis in the future.  

Chapter 5 presents improved visual odometry, which is applied on the proposed 

system. The frame structure of the proposed approach, detailed algorithm and 

experimental setup are introduced, and test results are discussed. The repeatability 

and efficiency of visual odometry using the proposed PURSAC and other algorithms 



 
 

5 
 

have been compared and analysed. The results indicate that the proposed method 

demonstrates a great improvement on both repeatability and efficiency.  

Chapter 6 concludes the summary of the presented outcomes and the outlook for 

related research, as well as some potential functions, which could supplement this 

proposed system in the future. 

  



 
 

6 
 

CHAPTER 2 LITERATURE REVIEW 

2.1 Road Mapping and Surveying 

Many surveying systems have been developed in the past two decades for road 

mapping, lane and boundary detection, road profile or tunnel and bridge clearance 

measurement. They have been based on either a single sensor, such as a LADAR 

sensor, RADAR sensor, vision sensor and suspension device, or sensor fusion, such 

as LADAR/vision or RADAR/vision fusion. In road lane and boundaries modeling 

and prediction aspects, some methods, such as extended Kalman filtering, have 

performed well in real time processing. A literature review of road mapping, lane and 

boundary detection, road profile and clearance measurement is presented in detail in 

the following parts.  

LADAR is a remote sensing technology that measures the distance between the 

sensor and a target surface, which is obtained by determining the elapsed time 

between the emission of a short duration laser pulse and the arrival of the reflection 

return signal [70]. The LADAR Technique has been widely applied to make high-

resolution maps with applications in geomatics, archaeology, geography, geology, 

seismology, geomorphology, forestry, remote sensing and atmospheric physics [71]. 

It uses near-infrared light to image objects and can be used with various materials 

including non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds 

and even single molecules [71]. In this part of the literature review, the focus is on 

LADARs and their sensor fusions that have been applied to an autonomous vehicle. 

2.1.1 Road Mapping  
Road mapping focuses on creating the geometry of a road by using images or 

LADAR data. The created road mapping can be unitized for localization and road 

asset management. In the past decade, many systems for road mapping have been 

developed based on a vision sensor [7-10], LADAR sensor [11-13] and sensor fusion 

[14-16].      

In systems using a vision sensor alone, standard images are applied; others, such as 

high-resolution satellite imagery, are becoming more and more frequently used as 
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they show advantages of high resolution, large coverage area and high precision on 

localization. Jin [7] proposed an integrated system for automatic road mapping using 

high-resolution multi-spectral satellite imagery. This system has distinguished road 

models for urban areas and suburban areas. In suburban areas, roads are treated as 

curvilinear and homogeneous regions with constant width and final suburban roads 

centrelines are generated by integrated results from detectors by using a path search 

algorithm. In urban areas in the USA, road networks consist of straight lines, which 

form a grid structure.  Jin then uses a spatial signature weighted Hough transform to 

generate a road grid hypothesis. This system using representative test sites indicates 

correctness values that range between 70% and 92%. Olson [8] presented a vision 

based robust and efficient robotic mapping system, especially when dealing with 

large maps or large numbers of observations. The author described an optimization 

algorithm that can rapidly estimate the maximum likelihood map given a set of 

observations. The proposed place recognition algorithm has demonstrated that it can 

robustly handle ambiguous data. Dong [9] introduced an overview of recent 

advances in multi-sensor satellite image fusion in application fields of object 

identification, classification, change detection and manoeuvre targets tracking. Also 

Dong [9] pointed out the most popular and effective image fusion techniques; 

intensity-hue-saturation (IHS), high-pass filtering, principal component analysis 

(PCA), different arithmetic combination (e.g. Brovey transform), multi-resolution 

analysis-based methods (e.g. pyramid algorithm, wavelet transform), and Artificial 

Neural Networks (ANNs).  

A road mapping method proposed by Doucette [10] utilizes high-resolution 

multispectral imagery for road extraction and mapping. Doucette presents a Self-

Supervised Road Classification (SSRC) feedback loop to automate the process of 

training sample selection and refinement for a road class. SSRC demonstrates a 

dramatic improvement in road extraction results by exploiting spectral content. 

Although a vision based sensor for road mapping is inexpensive and can be started 

quickly, it is still very hard to extract a three-dimensional road map by using the 

vision sensor alone. LADAR or sensors fusion-based systems would overcome this 

drawback and provide vivid 3D road maps.  
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In LADAR based systems for road mapping, Kukko [11] developed a mobile 

mapping system and some computing methods for road environment modeling. 

Author used LADAR based mobile mapping system to produce three dimensional 

point clouds from surrounding objects. Two-dimensional point clouds are captured 

from the LADAR sensor while the third dimension is the vehicle moving direction. 

Lin [12] established a mini-UAV-borne LADAR system where an Ibeo Lux scanner 

mounted on a small Align T-Rex 600E helicopter. The bird’s eye mini-UAV-borne 

LADAR system collects point clouds data from air and validates its applicability for 

fine-scale mapping, in terms of tree height estimation, pole detection, road extraction 

and digital terrain model refinement. Another similar system using airborne LADAR 

data to extract digital terrain models, roads and buildings is proposed by Hu [13]. 

The three-dimensional grid road networks are reconstructed using a sequential 

Hough transformation and the building boundaries are detected by segmenting 

LADAR height data. The test results based on many LADAR datasets of varying 

terrain type have demonstrated robustness and effectiveness of the algorithm. Traffic 

neglect of airborne LADAR based system is the most dominant aspect for road 

mapping. However, the airflow has a significant impact on such a small helicopter, 

sometimes causing failure of experiments. For a vehicle LADAR based system, it is 

influenced by road traffic and other vehicles, but airflow has no impact.     

To overcome shortcomings of applying a vision sensor and a LADAR sensor, some 

researchers tried to integrate two types of sensors and deliver more accurate road 

information results with less limitation. Shi [15] developed an automatic road 

mapping system by fusing vehicle-based navigation data, stereo image and laser 

scanning data for collecting, detecting, recognizing and positioning road objects. It 

declares that the system is applicable for generating high-accuracy and high-density 

three dimensional road spatial data more rapidly and less expensively.  Sohn [16] 

presented a new approach for automatic extraction of building footprints in an 

integration of high-resolution satellite imagery and LADAR data. A laser point cloud 

in 3D object space was recognized as an isolated building object and normalized 

difference vegetation indices were driven from satellite imagery. The final 

description of building outlines was achieved by merging convex polygons using the 

binary space-partitioning tree. It states that the correctness of detection can reach up 
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to 90.1% and the overall quality can reach 80.5%. Sensors fusion, overcoming 

shortcoming of individual sensor, is a vital challenge.  

2.1.2 Lane and Boundary Detection 

LADAR based road boundary detection [19] method is popular in recent years, not 

only due to its direct distance measurement, but also its accuracy and robustness. 

Wurm et al [24] proposed a novel laser based road boundary detection algorithm 

with good results, however, only working on simple, flat road boundaries confines its 

usage. Real-time information can be provided by radar data; Yamaguchi et al [21] 

performed the test of a van-mounted radar to detect road markers. It is limited to 

operating at 50 km/h, which could cause traffic congestion and affect other road 

users. A few approaches [5], [11] perform mobile road mapping based on road 

models, which work very well in principle; however, due to the complexity of the 

modern road network, methods above may have robustness issues. W.S. Wijesoma et 

al [2] introduced a method based on extended Kalman filtering for fast detection and 

tracking of road curbs. However, the lack of clearance surveying and road surface 

condition monitoring limits its ability for full-scale assets surveying.  

Although, LADAR has better performance on accuracy and robustness compared 

with vision sensors (camera), the higher cost and lower resolution are important 

concerns for some researchers to turn away from LADAR, and adopt cameras 

instead. M. Hu et al [18] proposed a vision based road recognition algorithm. The 

algorithm is divided into two modules. The first module is to obtain road boundaries 

information when the vehicle starts moving. The second module is to predict 

positions of road edge when the vehicle moves at constant speed by applying 

prediction knowledge. C. Guo [20] presented stereovision-based road boundary 

detection for an intelligent vehicle. Both of the road boundaries are generated using 

Catmull-Rom splines based on the RANSAC algorithm with varying road structure 

models.  

Using mono-vision for lane detection and tracking, Y. Wang et al [23] proposed a B-

snake based lane detection and tracking algorithm without any camera parameters. 

The experimental result shows that the proposed method is robust against noise and 

shadow. H. Lin et al [25] introduced a randomized Hough transform method to 
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detect practically useful road boundaries with straight line segments, but Dynamic 

Programming (DP) has to be utilized to obtain the most likely road boundaries field 

as the first priority. H. Kong et al [26] introduced a new vanishing-point-constrained 

edge detection technique for detecting road boundaries, and it has been successfully 

implemented and tested with 1003 general road images. However, the dependence of 

ambient light affects the functionality in the real world. Surveying road assets at 

night, where illumination conditions are poor, a vision recognition method may not 

be applicable. 

Sensors fusion, such as vision & LADAR fusion [4] [17] and vision & RADAR 

fusion [22], for lane and road boundaries detection becomes a choice to researchers. 

Not only does it overcome the weakness of an individual, but also improves the 

accuracy of road boundaries detection results.  

2.1.3 Road Profile  

Road profile in this section means road surface marker profile and road roughness 

measurement. Road surface marker profile can be achieved by utilizing a laser 

remission value, as the remission value of road surface markers is considerably 

higher than normal ground surface. T. Saitoh et al [27] utilized reflectivity of a laser 

scanner in structured outdoor environments for online road surface analysis. It 

pointed out that the remission value of a laser is much less dependent on brightness 

of colour or ambient lighting than a camera. The accuracy results of this proposed 

analysis can reach 99% in the field and has met the “Tsukuba Challenge” at the 

author’s university. 

In the past few decades, many researches have been done on road roughness 

measurement. The International Roughness Index (IRI) became a standard for road 

roughness measurement and it was established in 1986 by the World Bank [30]. IRI 

is calculated from a measured longitudinal road profile by accumulating the output 

from a quarter-car model and dividing by the profile length to yield a summary 

roughness index with units of slope [29]. Profile of roughness is presented by M. W. 

Sayers [28], which emphasizes the importance of base-length when specifications for 

road quality are formulated, or when profiling accuracy if prescribed. Specifically, 
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the accuracy of high-speed profiling systems should be specified according to base-

length. IRI values can be determined either by applying dynamic motion using 

suspensions or by laser/inertial profile meters. Recently, a one-wheel trailer was 

developed for estimating the road surface profile based on the vehicle dynamics 

motion using suspensions and trajectory control systems [5]. However, it can only 

survey a tiny fraction of a single traffic lane; conditions of the rest of the road are 

unreached.  

2.1.4 Clearance Measurement  

Traditional manual bridges’ and tunnels’ clearance surveying has been considered 

not only labour and time consuming but also a dangerous activity. Hence, some 

researchers and companies turned their interest into this field and developed some 

relative clearance measurement systems. One approach for bridge clearance data 

collection is involved with using one or two high-frequency point laser sensors at the 

rear of a vehicle at the upward and downward direction to acquire clearance along a 

single plumb line [1]. However this approach exhibits a number of limitations. i) 

Bridges and tunnels may be sloped or have striped structure, so that single laser point 

has little chance to detect the lowest point.  ii) The road surface may also be sloped. 

iii) It can only survey a single traffic lane in each run. Another approach [30] applies 

mobile LADAR and imagery to measure the horizontal and vertical clearance of 

overhead and bridge structures. It has demonstrated robustness and effectiveness of 

clearance measurement of each lane for any type of overhead and bridge structure 

while driving normally within the speed limit.   

2.2 Visual Odometry 
In more than thirty years development of VO from 1980, VO was implemented off-

line in the first two decades. In the recent decade, with the rapid development of 

computer processing speed and related algorithms, VO can be achieved in real-time 

processing, which has led VO being applied to Robot indoor navigation and vehicle 

outdoor navigation.  More importantly, it has been demonstrated that VO provides 

more accurate trajectory estimates, with the relative position error ranging from 0.1% 

to 2% compared with wheel odometry [6].  An outlier removal algorithm plays a 

significant role in VO, since a robust algorithm has direct impact on either efficiency 
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or accuracy of systems. In the following, a comprehensive review of outlier removal 

algorithm is presented, which was established thirty years ago.  

RANSAC is still the fundamental algorithm for robust model fitting and outlier 

removal for the past thirty years. The principle steps of RANSAC can be 

summarized as: 1) randomly select a set of samples from all samples; 2) fit a model 

hypotheses with the selected set of samples; 3) compute the distance of all other 

points to this model; 4) construct the inliers set with a distance threshold and 

compare its inliers count to the previous highest one and store the results. Steps 1 to 

4 are repeated until a pre-set threshold of iterations is reached. The set with 

maximum number of inliers is chosen, all these inliers are used for model parameter 

estimation [31].  

Assuming all the samples have the same outlier possibility ε, and ignoring the impact 

of sampling noise, RANSAC follows a random sampling paradigm. Fundamentally 

it is a stochastic algorithm without deterministic guarantees of finding the global 

maximum of the likelihood. A success rate p is the level of confidence of finding a 

consensus subset, which is a function of ε, the number of iterations to be conducted 

N and the number of samples in a subset s [32].  

                                                                                (2.1) 

For the sake of robustness, in many practical implementations N is usually 

multiplied by a factor of ten, which increases computational costs [31]. Without prior 

knowledge of ε, commonly the implementations of RANSAC estimate ε adaptively, 

iteration after iteration.  

In practice, sampling always has noise and ε may be different for each sample. By 

analysing the difference of ε, it has large potential for optimizing sample subsets 

selection and improving model fitting performance. As an example, assuming a 

required success rate p is 99% and a dataset with outlier rate ε = 50%, according to 

(2.1), the number of iterations N is 16 for s = 2 (line fitting), 145 and 587 for s = 5 

and 7 (visual odometry). ε still is 50% for the entire dataset, but ε = 20% for a 

special part of the dataset. If sample subsets are selected only from this part of the 
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dataset, N is just 5, 12 and 20 for s = 2, 5 and 7 respectively. This leads to one of the 

strategies in PURSAC, which will be detailed in the line-fitting example. 

RANSAC estimator[32] and its variants [33-37] are popular methods for eliminating 

outliers and fundamental matrix estimation in computer vision. MLESAC was 

established by Torr and Zisserman [38] and adopts the same sampling strategy as 

RANSAC to generate putative solutions, but chooses the solution to maximize the 

likelihood rather than just the number of inliers. GroupSAC [35] derived by Kai 

recently performed well in dealing with the cases of high outlier ratios. However, 

image segmentation for group sampling increases computational costs. Capel [40] 

proposed a statistical bail-out test for RANSAC that permits the scoring process be 

terminated early and achieves computational savings. Such methods developed on 

the basis of RANSAC. However, they share a common weakness of imprecision. 

This is due to the fact that the tentative features set is randomly chosen from the 

entire data set, which may result in large differences of model estimates in each trial.  

For most model fitting tasks, two types of measurement errors must be considered: 

small errors (noise) and blunders (outlier) [35]. If the sensitivity analysis of a model 

against the noise of selected sample sets can be conducted and/or the patterns of the 

measurement errors can be found, then a method better than random selection can be 

found which can reduce the effect of measurement noise and/or outlier for model 

fitting. This is the fundamental principle of the new paradigm for robust outlier 

removal and model fitting - purposive sample consensus (PURSAC). Although in 

theory PURSAC is just a qualitative guidance, the implementation of it usually needs 

quantitative analysis to design executable rules for purposive sample set selection. 

In this research, PURSAC is detailed with the line-fitting example and then applied 

for visual odometry (VO), which is the process of estimating egomotion of an agent 

(e.g. vehicle, human or robot) using single or multiple cameras attached to it. VO 

operates by incrementally estimating the pose of the agent through examination of 

the changes that movement induces on the images of its onboard cameras [31]. 

Nowadays most VO implementations are feature based, which use salient and 

repeatable features extracted and matched across the captured images. Not only VO, 

but also many other computer vision applications, such as structure from motion and 
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image registration etc. require a more efficient and robust method to be developed 

for eliminating outliers in the matched features and improving the precision and 

consistency of fundamental matrix estimation. 

No matter which feature detection algorithm is used, the matched feature points are 

usually contaminated by outliers (wrong data associations). Possible causes of that 

are image noise, occlusions, blur, changes in viewpoint and illumination for which 

the mathematical model of the feature detector or descriptor does not account. For 

the camera motion to be estimated accurately, it is important that outliers should be 

removed. Outlier removal is the most delicate task in VO [31] and needs further 

development. 

In addition to pairing the features in different images, feature matching also provides 

similarity measures (scores) of the corresponding features. It has been found that 

features with lower matching scores have higher likelihood of being outliers [39]. As 

every pair of matched features has a score associated with them, the scores or the 

ranking of the scores can be used for improving the efficiency of outlier detection.  

Several methods have been proposed considering feature matching scores. Pre-

emptive RANSAC by Nistér is based on pre-emptive scoring of motion hypotheses 

and the framework can be processed for real-time ego-motion estimation[33]. 

PROSAC (Progressive Sample Consensus) developed by Chum and Matas 

demonstrates its capabilities on solving wide-baseline matching problems. Instead of 

random selection, tentative samples are selected from a progressively larger set of 

higher rank features to reduce the computational costs [39]. Uncertainty RANSAC 

[43]incorporates feature uncertainty and shows that this results in a decrease in the 

number of potential outliers, thus enforcing a reduction in the number of iterations. 

In [44], a deterministic RANSAC approach is proposed, which also estimates the 

probability that a match is correct. 

It has also been found that the geometry of the features in images affects the VO 

results remarkably[40,41]. The more evenly features are distributed in images, the 

less sensitive a model is to noise, and the more stable is motion estimation. However, 

no VO literatures have yet reported the utilization of geometry in the process of 

outlier removal.  
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Applied in VO, existing algorithms mentioned above are mainly focused on reducing 

computational costs, but dismiss precision and reliably. Without considering features 

ranking and/or geometry, performance improvement of these algorithms is usually 

limited and unstable. The proposed PURSAC concerns both features’ geometry and 

matching score/ranking in sample sets selection so as to improve fundamental matrix 

estimation. In endeavouring to increase processing speed, the proposed PURSAC 

also improves efficiency and precision, resulting in a robust and reliable VO. 

2.3 PVA information from GPS, IMU and Odometry 

PVA is known as position, velocity and attitude, which is critical information for a 

mobile surveying system. In the last section, a literature review of visual odometry 

for obtaining PVA has been introduced. In this section, a review for other commonly 

used sensors GPS, IMU and odometry is described in detail. The merits and demerits 

of those sensors for localization will be pointed out.  

Global Positioning System (GPS) provides location and time information in all 

weather conditions. In a simple sentence, it tells where you are on the earth. With 

more than 24 GPS satellites in space, if four or more satellites are visible from a 

receiver, its position and velocity information can be quickly measured, without 

attitude information. It is capable of obtaining more accurate position and velocity 

information as more satellites are becoming involved. GPS system established by the 

United States can be used freely around the world by people who have a GPS 

receiver. Initially, the GPS signal is distinguished as Standard Positioning Service 

(SPS) for civilian use and Precise Positioning Service (PPS) for military use. Due to 

safety issues, the American government purposely implemented Selective 

Availability (SA) to degrade the GPS accuracy for civilian users. The accuracy of 

SPS was around 100 meters while the accuracy of PPS was below ten meters. After 

the year 2000, the Clinton government decided to stop the interference of the 

civilian-use GPS signal. Now the accuracy of the civilian-use GPS signal is able to 

reach around 10 meters [62]. However, such accuracy is still unsatisfactory for 

localization of for example aircraft navigation and engineering survey.  

Differential GPS (DGPS) technique solves this problem and improves the accuracy 

of localization. The theory of DGPS is to firstly allocate a GPS receiver for a known 
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point as a reference station, which has already been accurately determined, and 

simultaneously execute GPS surveying between the reference station and the moving 

object.  According to the accuracy of reference station coordinates, distance 

correction from reference station to satellite can be worked out and send out at the 

same time. The moving object receives the GPS signal, and simultaneously receives 

distance correction from the reference station. Based on distance correction, 

accuracy of localization can be improved [63]. 

Inertial Measurement Unit (IMU) is an electronic device that measures an object’s 

velocity, orientation and gravitational forces using accelerometers, gyroscopes and 

magnetometers. IMU is the core of inertial navigation systems, which has been 

widely used in aircraft, watercraft and the military. The data collected from IMU can 

be used for tracking an object’s position using a method called Dead Reckoning. In a 

navigation system, data extracted from IMU to computer is utilized to calculate 

current position based on velocity and time. 

The advantage of using IMUs is that it is a standalone device, which is not able to be 

interrupted externally. However, a vital disadvantage of using IMUs is that they 

suffer from accumulated error [64]. Because, the object’s current position calculated 

from IMUs is continuously being added to the previous calculated position, errors in 

each measurement, although are small, they are still accumulated and getting larger. 

This is also known as ‘drift’. In a word, although IMUs are free from external 

disturbance, their drawback of error accumulation has to be corrected by information 

from other navigation sensors, such as GPS and Odometry.   

Two types of odometry are investigated in this research. The first one is visual 

odometry, which has been introduced in the last section of the Literature Review. 

Another one is wheel odometry that uses data from a rotary encoder to work out the 

travelling distance over time, which has been applied on wheeled robots and vehicles. 

At the current stage, wheel odometry is more often used in the proposed system due 

to its consistency.  

Figure 2.1 shows a vehicle moving from time state T to state T+1. To work out the 

position change and orientation of the vehicle across a given time span (T to T+1), 

linear distance DR and DL has to be calculated in the first place (calculated from the 
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number of ticks from the encoders and the diameter of the wheels) [65]. The 

orientation of the T+1 state is calculated by: 

                                             OT+1 = OT + (DR - DL) / W                                         (2.2) 

The distance between state T and T+1 is: 

                                               DT,T+1 = (DR + DL) / 2                                               (2.3) 

In order to build a map of vehicle travelling, the Cartesian coordinate of state T+1 is 

calculated as [65]: 

                                             XT+1 = XT + DT,T+1cos(OT+1)                                      (2.4) 

                                             YT+1 = YT + DT,T+1sin(OT+1)                                       (2.5) 

 

Figure 2.1: Schematic diagram of vehicle moving in time state T and state T+1 [65] 
Although wheel odometry operates easily, the accuracy of wheel odometry is 

strongly affected by roughness and the slope of the road surface. The worse the road 

conditions the larger error that will be presented. Cheng [66] revealed that when the 

wheeled system travelled on a rock surface, the error of using wheel odometry 

becomes increasingly large as traveling distance increases. It becomes up to 50 times 

larger than the error of using visual odometry on such a surface.        
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By looking at three types of navigation sensors GPS, IMU and Odometry, each of 

them has advantages, but disadvantages are also apparent. Hence, many researchers 

[67-69] turned to investigate sensor fusion in order to supplement the drawback of 

individual sensors. By taking GPS and IMU fusion as an example, Francois [67] 

developed a GPS/IMU based multi-sensor fusion algorithm, which increases the 

reliability of the system by bringing context into consideration. Incorrect data from 

GPS (GPS data is unreliable under some circumstances) is rejected using contextual 

information. Besides, to resolve the problem of an unreliable signal from GPS and 

drift of IMU over time, the author proposed a multi-sensor Kalman Filter directly 

with the acceleration of IMU. This algorithm has potential to add a high number of 

sensors without modifying the structure. This sensor fusion algorithm has presented 

measured reliability and flexibility for localisation of an object.  

In the section, both advantages and disadvantages for PVA acquisition from GPS, 

IMU and Odometry have been reviewed. In the same way as many other researches, 

this study has preferred using multi-sensors fusion for obtaining PVA information. It 

combines all the merits of different sensors to deliver more accurate PVA results.   
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CHAPTER 3 AUTONOMOUS SURVEY SYSTEM 

3.1 Introduction 
This chapter gives a comprehensive description of the proposed autonomous road 

surveying system as well as the reasons for constructing the system in this 

particular way. The proposed system is a unique design for the multi-purposes of 

surveying, including Clearance Surveying, Road Boundary Detection, White line 

Detection, Road Surface Markers Extraction and Road Roughness Measurement. 

More importantly, the experimental vehicle is designed for people driving at the road 

speed limit and to deliver accurate on-line processing results. The system 

architecture (3.2) introduces all the sensors (IMU, GPS, odometer, LADAR, and 

camera) and indicates how the proposed system works. The system hardware (3.3) 

provides the information of sensors installation and their connection interfaces. The 

tasks performed by data acquisition software are listed in 3.4. The next three sections 

are about sensor’s data, ISF Calibration and Vibration Test & system accuracy 

analysis.   

3.2 System Architecture 

The surveying system is specifically designed for road surface and surroundings 

profiling. From sensors selection to their location and installation, the proposed 

surveying system has significant differences to other systems. The significant 

advantage of the proposed surveying system is that it performs multi-functions, such 

as road clearance measurement, road surface profiling, 3D structure modeling, road 

boundary detection and road roughness measurement, at normal drive speed in urban 

streets. Meanwhile, data collected by sensors has less chance of being blocked by 

other vehicles.  

In order to develop a robust and efficient road surveying system that can provide 

road profiles in all circumstance, multi-sensor integration is the optimal approach. 

The thread in designing the proposed system is to build a versatile, multipurpose 

platform for road surveying. Due to the complexity of multi-sensor measurements, a 

proper sensor fusion framework needs to be developed with accurate surveying 
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procedures, reliable modelling and quality control algorithms. The proposed multi-

sensor integrated mobile surveying system consists of two laser sensors (LADAR), 

GPS, IMU, odometer and camera, as shown in Figure 3.1.  

 
Figure 3.1: Multi-sensors fusion system architecture 

IMU is selected as the reference navigation sensor because it can provide continuous 

PVA data with time-accumulated drift. The odometer can measure vehicle speed and 

mileage. GPS is a time-invariant navigation system with assured position and 

velocity measurement in open space, which can be used to correct the IMU and 

odometer errors. Most importantly, GPS’s accurate clock is used for the sensors’ time 

synchronization. LADAR is the main surveying component of the proposed system. 

Range and remission data are collected by LADAR and fused with other sensors’ 

measurements to perform all the system’s tasks. The camera records the road’s 

characteristics as a visual reference, as well as trajectory from visual odometry 

processing. 

3.2.1 PVA Acquisition 

PVA information plays a significant role in the system. As shown in Figure 3.1, PVA 

is extracted and processed from the fusion of GPS, IMU and Odometry data. GPS 

has been widely applied in navigation, such as aircraft navigation, vehicle navigation, 

weapon navigation, and localization, such as in a vehicle burglary-resisting system 

and automatic drive system. The following is a list of reasons why it is popular to the 

public: 1) 24 hours working, it is able to operate in all kinds of weather; 2) High 

coverage area (98%) of GPS around the World; 3) High accuracy of 3D localization; 
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4) very high efficiency; 5) mobile localization device. However, a significant 

drawback of GPS exists. In some blocked area, such as in tunnels, the GPS signal is 

hard to be received, which brings trouble to users. Besides, when driving on an urban 

road surrounded by tall buildings, the GPS signal becomes unreliable and it changes 

frequently, which causes confusion to users.  

In an open area, INS and GPS fusion are adopted to obtain PVA information. INS 

has a vital drawback of drifting over time. Although the precision of GPS is good in 

an open environment, it is very sensitive to the environment. Hence, GPS/INS fusion 

would overcome drawbacks of each other. In the surveying system, INS provides 

continuous attitude information. By applying Kalman Filter and GPS data, INS 

results are recalculated and drift is minimised at each state.  

 

Figure 3.2: INS & Odometry data fusion PVA result V.S imagery ground truth of a 
tunnel at Moore Park, Sydney 

In an enclosed area, such as an indoor environment or tunnel, GPS signals become 

unreliable, which means GPS/INS fusion is not feasible in such an environment any 

more.  Now, INS/Odometry fusion is a break-through point to deliver PVA results. 

INS provides continuous attitude information and wheel odometry provides 

continuous velocity information. However, errors from wheel odometry are still 

accumulated over time. Besides, the accuracy of wheel odometry suffers from road 
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condition which will bring larger error to PVA results. In Figure 3.2, comparing with 

PVA result of INS & odometry data fusion and imagery ground truth of a tunnel at 

Moore Park, Sydney, the drift does exist. In Chapter 5, visual odometry is introduced 

for the reasons of 1) more accurate PVA results, 2) no reliance on road condition, 

which has a larger potential for integrating with INS.  

3.2.2 Surveying Functions 

The proposed system is designed for multi-functions purposes. Combining PVA 

information and LADARs range & remission data, functions such as road clearance 

surveying, road surface profiling, 3D structure modelling, road boundary detection 

and road roughness measurement can be achieved. These are also the outputs of the 

surveying system as indicated in Figure 3.1.  

To start with the first function, automatic clearance surveying is applied to bridges 

and tunnels, which is aimed to replace traditional manual clearance surveying and 

deliver accurate survey results. Remission values from LADARs are firstly applied 

for white line detection and lane division. Although, a white line has significant 

higher remission value, the remission value of others, such as a sewage cover and 

undried water, are still hard to distinguish from a white line remission value. Hence, 

a fuzzy logic filter is developed for filtering this noise. Then, the road surface and 

ceiling of tunnels or bridges is modelled according to LADARs range data. Finally, 

clearance within each lane is calculated and it is perpendicular to the road surface.  

Road surface profiling is another output for surface marker extraction. It can be used 

for road markers healthiness determination. LADARs remission and range data 

becomes involved in surface marker processing. As the remission value of road 

surface markers is distinguishable, road surface markers can be extracted easily.  

Road boundary detection is a frequent topic in related research and applications. The 

importance of achieving road boundary detection is to distinguish driveway and non-

motor way. LADAR sensor’s range data is used in this part. Most importantly, two 

ends of a road boundary can be used as a significant condition for lane division, 

especially, when white lines are indistinct.   
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Road roughness measurement as a one of output is utilized for road healthiness 

determination. LADARs range data and INS data are applied in this function where 

INS data is used for vehicle vibration compensation. As indicating in Figure 3.1, 

PVA information is obtained from local fusion 1. By combining PVA with other 

output functions, a detailed 3D road assets structure can be successfully profiled.  

3.3 System Hardware 

The hardware component consists of LADAR laser range sensors, IMU sensor, GPS 

sensor, odometer and mechanical support structure. The platform was designed to let 

the LADAR sensors scan the road assets cross-sections. As shown in Figure 3.3, 

both laser sensors are mounted on an aluminum integrated sensors frame (ISF), 

which is then installed at the back of a vehicle at a proper height (2300 mm), for 

scanning perpendicular to the vehicle moving direction. An ‘A’ shape steel is 

connected between the vehicle body and the steel pole at the back of vehicle, in order 

to reduce vibration.  Due to its wider scan angle, the LMS-111 is on the right side of 

the frame, which allows it to scan from the left-lane to right-lane for both the ground 

and overhead objects while driving along the left-lane. Its remission data is also 

collected for lane detection. The LMS-400 is mounted on the front of the ISF, which 

takes the full advantages of its fast scan frequency and accurate range measurement 

to detect smaller objects whilst the vehicle is travelling at high speed.  

Aluminium integrated sensors frame is designed using AutoCAD (APPENDIX D). 

The reason for constructing such frame is to integrate LADARs and IMU into the 

same body which offers greater convenience of system calibration. Furthermore, the 

ISF has been designed for multi-proposals. The current proposal is presented as 

Figure 3.5 indicates and the vehicle drives at the most left lane. Another proposal is 

to rotate LMS111 and LMS400 180 degrees so that the vehicle is able to drive in the 

most right lane and deliver the same surveying results.  

A power source module is embedded at the back of vehicle, which is capable of 

providing charging to all sensors and laptops for a whole day experimental test. A 

plug socket is placed at the back seat of the vehicle, which is connected to the power 

source. Sensors’ power cables are wired along ‘A’ shape steel and gathered together 

to the back seat of vehicle.  Finally, they are all connected to the plug socket. Any 



 
 

24 
 

power disconnection of sensors and laptops due to vibration can be monitored and 

managed immediately.   

 
Figure 3.3: Side view of system hardware 

The camera and odometer are installed on the vehicle directly whilst GPS, IMU and 

odometer’s data fusion provides accurate location, velocity and attitude information 

for geo-referencing LADAR data.  

Sensors applied in the system are connected by different interfaces. LADAR sensors 

are connected via Ethernet, odometer and GPS are connected via RS-232-USB and 

IMU is connected by UART-USB interface. 

3.4 Data Acquisition Software 
This data acquisition software is constructed based on the Java Socket 

Communication. Ethernet other than RS-232 connections were used to prevent data 

losses. The GUI utilises the LMS COLA-B protocol to transmit binary coded 
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messages, and maximises the communication speed [47]. The binary messages are 

then converted into decimal and stored into .mat files. The .mat files (a Matlab 

readable file) can be processed directly in the following Data Processing Algorithm 

(DPA) developed with MATLAB.  

SOPAS is the original software to connect to LMS sensors [46]. However, it has 

limited functionality for scan data plotting and recording [47]. Based on tests results, 

SOPAS takes 67 milliseconds to record each scan data, which is roughly 15 Hz. 

Compared with the 50 Hz scan frequency of LMS-111 and 370 Hz of LMS-400, 

SOPAS’s recording rate is very limited. For this reason, a graphic user interface 

(GUI) for the sensors control and data acquisition was developed as shown in Figure 

3.4. The proposed GUI is designed for controlling sensors and road condition 

monitoring in real-time. All sensors and laptops are connected to a power source 

which is embedded in the experimental vehicle.  

Control console is divided into five segments as red colour indicates in Figure 3.4. It 

performs well in data acquisition, recording and system robustness. Segment I 

provides detailed instruction of how to operate this GUI and all sensors. Segment II 

functions as a tuner for LADARs and IMU frequency adjustment. The default 

frequency of LMS111 and LMS400 is 50Hz with resolution angle 0.5 degree and 

370 Hz with resolution angle 0.25 degree respectively. By pressing the tuner buttons 

from Segment II, the frequency of LMS111 can be adjusted to 25 Hz with resolution 

angle 0.25 degree and the frequency of LMS 400 can be varied from 370Hz to 

500Hz with resolution angle 0.3636 degree. After becoming familiar with GUI 

instruction and sensors frequency tuning, sensors now are able to be connected by 

pressing buttons from Segment III. Input LADARs’ data will be plotted in the middle 

of the GUI in real time. If surveying target is approaching, functions in Segment IV 

can be activated for data recording, while when the surveying task is finished, 

buttons in Segment IV can be used for data collection termination, finally saving 

data in to a text file. For further data analysis, functions in Segment V are managed 

for translating text files to .mat files which will be processed directly in the Data 

Processing Algorithm (DPA) with Matlab.  
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When the experimental vehicle is driving on a road surface, switch on-off commands 

for sensors are controlled by buttons as indicated in Segment III. Besides, LADARs’ 

scan frequency and resolution is able to be adjusted as the speed of the experimental 

vehicle is varied. In the right bottom of Figure 3.4, a small window is designed for 

displaying remission information of the road surface, which aims to monitor white 

lines and road surface markers. Once white lines or surface markers are detected, 

significant ripples will be indicated in the small window and peaks to the centre of 

the screen represent the distance of white lines or surface markers to the LMS sensor. 

In the middle of the GUI, range data from LADARs is plotted in the Cartesian 

coordinate system. Any scene, such as a high way, tunnel or bridge, can be 

distinguished easily by only monitoring the GUI.  

 
Figure 3.4: LMS111 and LMS400 Joint Visual Console 

The function of real-time scan plotting allows the operator to monitor the scan of a 

complex structure and make sure that small objects are not missed. Moreover, the 

travelling speed of the testing vehicle can be optimised by judging from the plot 

result. Lastly, the GUI is designed as a user-friendly interface. People with relatively 

little knowledge can manage it easily.   
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3.5 Sensors’ Data 

3.5.1 Navigation Data 

Navigation data from three sensors (IMU, GPS and odometer) is processed in local 

fusion algorithm 1, for data synchronization and integration. When the system is 

surveying in an open area with reliable GPS satellite signal, location information is 

extracted from the GPS sensor, and used to correct IMU and odometer drift. When 

the system is in weak or GPS denied environments, such as in tunnels or under 

bridges, navigation data can be extracted from IMU and odometer. The navigation 

data is used to derive position and attitude information for each surveyed road assets. 

Provided by IMU sensor, attitude data is used to transform LADAR 2D range data 

into spatial coordinates for 3D modelling. Attitude data includes Euler angles, 6 

degree of freedom (DOF) acceleration data and quaternion. Position data is provided 

by both GPS and odometer if the GPS signals are strong. Under circumstances such 

as tunnel surveying where GPS signals are blocked, position data is provided by 

odometer and IMU trajectory. Position data is important for road 3D modelling, for 

the determinate of the length of road assets. 

3.5.2 LADAR Range and Remission Data 

LADAR range data is measured by two different SICK Laser Measurement System 

(LMS) sensors, LMS-111 and LMS-400. LMS-111 scans at 50 Hz over 270º while 

LMS-400 scans at 370 Hz over 70º as shown in Figure 3.5. Range data is the most 

important data in this system since road surface profiles can be extracted from them. 

Remission here is defined as the capability of a material to reflect the light back. 

Remission data generated by the LMS-111 are acquired together with the range data. 

The road surface profile is extracted based on the remission data. The traffic divide-

line (white line) has a significantly higher remission value than the road surface. As a 

consequence the system can monitor the white lines by judging their remission value. 

Remission data is also used for extracting traffic-lanes so as to determine the 

clearance for each traffic lane.  
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Figure 3.5: Laser sensors configuration 

LMS sensors send range and remission data in binary format, which ensures fast 

transmitting rate. After range and remission data are received by the acquisition 

software, they are converted into .mat format so MATLAB can directly read and 

process them. Data storage accumulation for LMS sensors is different. LMS-111 

sends data at 50Hz and LMS-400 sends data at 370Hz.  Approximate size of one 

minute scan data for LMS-111 is 10MB and LMS-400 is 5MB. 

LMS111 has only three meters scan range, but due to its higher scan frequency and 

more accurate measurement, more detailed structure profiling will be delivered. 

When the system is used for bridges and tunnels clearance surveying, it has an 

upward installation to get accurate clearance measurement. For road roughness 

measurement, LMS111 is rotated 180 degree to look downwards to acquire detailed 

road surface profiling. To make IMU, LMS111 and LMS400 data synchronised, all 

sensor clocks are calibrated with the GPS clock.  
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3.5.3 Image Data 

Image data from a camera mounted on the top of the vehicle’s cab is stored in jpeg-

format and named with each surveyed road assets. General road information, such as 

name, clearance signs and visual conditions is captured in image data with 800×600 

pixels and frame frequencies up to 24Hz.  

The significance of recording image data is to serve as a guideline for the data 

processing algorithm and is used to compare processing results with the real road 

segments. Moreover, images can be also utilised as an input stream for visual 

odometry in order to obtain accurate PVA estimation while combining with IMU.  

Detailed description of imaged based VO is presented in Chapter 6.   

3.6  ISF Calibration 

The ISF was designed in such way that the centres of LMS-111 and LMS-400 are 

460mm apart horizontally and 30mm vertically, and their scan planes are parallel, as 

shown in Figure 3.6. Calibration is necessary for correcting the machine and human 

error during the ISF fabrication and sensors installation.  

Two calibrations were conducted for the assembled ISF, the scan-centre alignment 

and the parallel scan plane calibration. The first calibration was to determinate 

exactly how far the centres were apart from each other. During the process of 

calibration, both LMS sensors are pointing at an object that has a uniform surface at 

a given distance. The scan data are plotted by the data acquisition GUI software 

mentioned earlier. The initial plots suggest that even with the offset (640mm, 30mm) 

added to the system, the plot gap between LMS-111 and LMS-400 is still at (8mm, 

3.5mm). Consequently, the calibration result shows that displacement between LMS-

111 and LMS-400 centres is (648mm, 33.5mm), which will be used in the scan data 

transformation. 
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Figure 3.6: Front and rear view of ISF 

The calibration of the two scan planes’ parallel was conducted after the centre 

alignment. With both LMS sensors mounted on the ISF, LMS-400 is kept to scan 

vertically by adjusting the base according to its visible laser. Then the calibration is 

to adjust the LMS-111 scan plane to be free of lean and at the same orientation as 

LMS-400 scan plane.  

The sensors were set to scan a structure overhead with a straight edge at a range of 

3m. LMS-111 was scanning along the edge to ensure that its scan plane was aligned 

with the edge. Minor adjustment was conducted to keep the distance between the 

edge and the visible line of LMS-400’s laser projection consistent. The same process 

was repeated when the range was changed to 1.5m. The distance measured at the two 

ranges need to be the same; otherwise adjustment was needed to achieve this. All 

these processes ensured that both LMS sensors’ scan planes are parallel. After the 

ISF calibration, an on-road test was conducted for measuring its shock and vibration. 

3.7  Vibration Test and System Accuracy Analysis 

Weighing more than 5 kilograms and mounted 2.3m above the ground on a moving 

vehicle, the ISF on a beam may receive serious shock and vibration that has the 

potential to exceed the LMS sensors’ limitation and cause a hazard as a consequence.  

Figure 3.6 shows the ISF and the testing vehicle. The ISF is mounted on a vertical 

steel beam fixed to the tow-bar of a pick-up truck, a horizontal triangle supporting 

frame is added to strengthen the mounting structure as well as to minimize vibration. 

Based on the LMS-111 and LMS-400 manual, the maximum single shock to the 
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sensors is 15g, and vibration is 5g over a frequency range of 50Hz to 150Hz [46, 47]. 

Shock and vibration not only affect the accuracy of the measurement, but also may 

damage the LMS sensors.  

The shock and vibration test was conducted with the LMS sensors unpowered, to see 

if any countermeasure is required to protect the LMS sensors. By doing so, all 

sensors were mounted to the ISF as shown in Figure 3.3, but only the IMU sensor 

was powered during the test. The IMU measured the ISF’s shock and vibration over 

various road surface conditions. The vehicle was driven on the road at 60km/h for 

about 45 minutes.  

IMU data was analyzed and the conclusion was that the maximum shock/vibration 

on either X, Y, Z direction is under 2g, which is well under the specified maximum 

value. 

It is necessary to analysis laser beam diameter expansion against distance. Based on 

the requirements of road clearance surveying, the typical range is 2.0-3.0m for LMS-

400 and 2.0-7.0m for LMS-111. The expansion of the laser beam means the diameter 

of individual measured points is expanding with the measuring distance [46]. From 

the LMS-111 manual, the beam expansion with distance is given by:  

Beam diameter = (distance (mm)*0.015rad) +8mm                             (3.1) 

The diameter at each distance is given in Table 3.1.  

Table 3.1: LMS-111 laser beam expansion 

Distance(mm) 2000 3000 4000 5000 6000 7000 

B-Diameter(mm) 38 53 68 83 98 113 

 

At the designed platform height and speed (65km/h), the distance between LMS-111 

scans at 50Hz is 361.1mm. Meanwhile, with 0.5 degree interval, it ensures that there 

is no gap between the scan points, so that the surveying covers the whole cross 

section of the scan angle.  
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The LMS-400 was configured to choose between two frequencies, 370Hz (default) 

and 500Hz (maximum). At each frequency, the vehicle moving speed shapes the gap 

between each individual scan, as in Table 3.2.  

Table 3.2: LMS-400 gap between scans 

Speed(km/hr) 45 50 55 60 65 70 75 80 

370Hz gap(mm) 33 37 41 45 59 52 56 60 

500Hz gap(mm) 25 27 30 33 36 38 41 44 

 

Optimizing the vehicle speed is also important for the performance of the surveying 

system. While driving along the left (slow) lane, the vehicle should travel at a 

reasonable speed that does not interrupt the traffic, while maintaining a small gap 

between each LMS scan. The testing vehicle was kept at 70km/hr in an 80km/hr 

zone and the gap between each scan was 52 mm. The system was able to detect 

structure details and obtain accurate measurement at this speed. 

Accuracy is vital to any surveying method, including this surveying project. 

Consequently, accuracy is analysed in detail for the method 

 A two-stage accuracy analysis is utilised for the measurement rectification [48]. The 

first stage is the error analysis for the principle of laser range measurement, as shown 

in Figure 3.7.  

       
Figure 3.7: LMS sensors range measurement. 
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Range (r) is given by the laser sensors, and two angles, α and θ are the horizontal and 

vertical angles measured by the IMU. Based on this information, the coordinates of 

P(x, y, z) are given by: 

x = r×sin θ ×sinα 

                                                  y = r×sin θ ×cosα                                                  (3.2) 

z = r×cos θ 

The error of range r is decided by the LMS sensor’s performance. LMS-111 has a 

systematic error of ±30mm, and statistical error of 12mm [46]. LMS-400 has a 

systematic error of ±4mm and statistical error of ±3mm [47]. The error functions are 

                                                                             (3.3)                       

                                                                          (3.4) 

Where ρ is a constant of 206265, and ms= ±3⁄2=±1.5 The accuracy of the coordinate 

is at ±33mm.  

The second stage is the measurement error analysis of the two LMS-sensors installed 

on ISF. The LMS-400 and LMS-111 are mounted 460mm apart in the horizontal 

direction and 30mm apart in the vertical. Even with much attention during the ISF’s 

manufacture, error is still inevitable. The error affecting the combined surveying 

accuracy is given by Q. F. Yu [49]: 

                                               (3.5) 

                                                                                                   (3.6) 

Where  is the known as the systemic error, ei is the unknown system error and δi is 

the random error; r, s, q are the number of errors. The total error based on the 

calculation is ±29.06mm. 

3.8 Summary 

This chapter summarises a novel system used for multi-purposes road surveying.  It 

demonstrated the capability and robustness of a prototype surveying system. The 
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system architecture section presents the thread for the proposed system construction, 

and provides an answer for why the system is constructed in this way. The system 

built with multi-sensors fusion is able to deliver accurate results for road surface and 

surrounding surveying when the experimental vehicle is driven at the speed limit in 

both open and closed environments. 

The functions of selected system hardware are described in detail. Two LADAR 

sensors with two frequencies and different scan range are focused on different 

purposes, the LADAR sensor with small frequency but large scan angle is for 

surrounding profiling whilst the other LADAR sensor is for an intensive scan of 

ceiling or each segment of road surface. The purpose of setting up a GPS in the 

system is to provide accurate PVA data in the open area. However, in some GPS 

denied environments, such as in tunnels, INS and camera fusion is used to work out 

the PVA information as GPS signal becomes unrealisable. The data acquisition 

software for LADAR sensors is developed based on original software SOPAS. The 

graphic user interface (GUI) for the sensors control and data acquisition has multi 

functions, such as configuring LADAR scan frequency, scan resolution and 

recording scan data. The total error of system accuracy analysis is ±29.06mm, which 

demonstrates the accuracy of the selected sensors.  

For different functions, the LADAR sensors installation positions on the frame can 

be varied. For example, the experimental vehicle was designed for driving on the 

most left lane which leaves a left blind area. If researches are willing to alter the 

vehicle to drive on the most right lane and detect road information of its left hand 

side, it can be simply achieved by rotating sensor frame 180 degrees Besides, for 

the function of measuring roughness of road surface, LMS400 with higher frequency 

can be turned downwards, which can deliver more detailed road information for 

roughness analysis, specially driving in high speed conditions. Each function is 

programmed independently from the others, which offers convenience of system 

modification.  
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CHAPTER 4 EXTEROCEPTIVE SENSOR DATA 

PROCESSING 

4.1 Introduction 
In this chapter, the data processing is demonstrated with road surveying results. The 

system is designed for online processing. Algorithm efficiency is the main concern. 

It has been designed with best optimization. Numerous tests have been carried out 

around Sydney and the aim was to verify the effectiveness and robustness of the 

proposed system. Three Dimensional spatial point clouds were collected by unitizing 

LADAR sensors. For road boundary detection, algorithm RANSAC has been applied 

for ground surface model fitting and finally boundary extraction. Remission values 

and range information from LADAR sensors are unitized for white line detection and 

road markers detection. In particular, a fuzzy logic filter is proposed for white line 

noise filtering. Clearance measurement of tunnels and bridges was achieved after 

ground surface and ceiling were modelled. Algorithms of road boundary detection, 

white line & traffic lane extraction, clearance measurement for tunnels and bridges, 

road surface markers extraction, 3D model & GUI construction and road roughness 

measurement are described in detail, and the test results for each section are also 

presented.  

4.2 Road Boundary Detection 

Exteroceptive sensor data in this chapter consists of LADAR range data and LADAR 

remission data. By composing speed in the vehicle moving direction, three 

dimensional point clouds of road surface and surroundings can be fulfilled. In the 

following, all mentioned functions are processed based on collected 3D points clouds 

and algorithms are presented in detail.  

In this section, only range data generated by LMS-111 is utilized for road boundary 

detection. Detecting the road boundary in the first place would be helpful in 

detecting white lines and in constructing the 3D road surface profile afterwards.  
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The algorithm of road boundary detection is divided into three sections. Firstly, a 

polar coordinate system transfers to a Cartesian coordinate system based on LADAR 

sensors scan angle and angle resolution. In urban city, the curb model is classified 

into three cases (Figure 4.1) due to the specific sensors’ installation.   

Secondly RANSAC [32], a model-fitting estimator, is applied for road surface 

extraction. The Road surface is modeled as a linear function and its subset contains 

the most number of inliers. Outliers are treated as curbs or other unimportant 

segments. Curbs are consecutive to the two terminals of road surface, which makes 

curb detection much easier.  

Thirdly, it is worth mentioning that any unusual holes and bumps between 

determined road surface has to be picked out and analyzed. Otherwise, it will result 

in incorrect curb detection. In the following, procedures of algorithm are described in 

detail.    

The LADAR range data includes the scan angle (α), range (r) and remission 

measurements. The x and y value of the corresponding point in Cartesian coordinates 

is transferred as the algorithm1: 

ALGORITHM 1: INDIVIDUAL LASER MEASUREMENT  

1. Work out LMS111 scan angle range:  

Starting from -135 degree to +135 degree, every 0.5 degree interval represents 

one scan point, hence, 541 total features. The scan angle range can be expressed 

as follow: 

α= -0.75×π: π / (180×2):0.75×π; 

2. As the distance (r) of every scan point is known to LMS111 and the 

corresponding scan angle, Polar coordinates can be easily transformed into 

Cartesian coordinates:  

x = r× ; y = r× ; 

Due to the configuration of sensor installation (Figure 3.3) and its scanning angle 

(Figure 3.5), three different curb detection cases were found (Figure 4.1) in the 

outdoor experiments in Sydney.  

)cos( )sin(
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Figure 4.1: Three cases of curb detection, area marked by red were detected by LMS111 

Note the right hand side of Figure 4.1, which shows LMS111 scanning starts from 

left bottom to left upper with a range of 270˚. On the top of Figure 4.1, the sensor 

can only detect partial left boundary. In the middle case, it hardly detects any of the 

left boundaries. In the bottom case, the left curb can be clearly detected. In this 

section, the main focus is on the lower half data with range of 135˚, which includes 

ground surface and curbs features.  

The curb detection algorithm was constructed as following: firstly, two points 

RANSAC method is employed to detect actual ground surface. Each scan of the 

ground surface can be modeled as a linear function, y = k*x + b, where k is the 

gradient of the ground surface and b is the intersection with the vertical axis. As 

range data of ground surface and curbs were the key features that we are interested in, 

a set of 271 out of 541 features were selected and utilized for ground and curbs 

modeling. The outline of Ground Surface Detection is given in Algorithm 2. In this 

case, ground features occupy a great proportion of the selected set. Hence, ground 

surface can always be successfully detected using Algorithm 2. Once ground surface 

features are extracted, the two terminals of ground surface can be used to detect left 

and right curbs.  
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ALGORITHM  2: GROUND SURFACE DETECTION 

1. Initial: let A(271) be a set of N(541) feature correspondences 

2. Repeat 

2.1 Randomly select a sample of 2 points from A 

2.2. Fit a linear model using 2 random points 

2.3. Compute the distance of all other points to this model 

2.4. Count the inliers (i.e.  number of points whose distance from model < 

threshold d ) 

2.5. Store inliers, inliers index and coefficients of model 

2.6. Until maximum number of iterations reached 

3. Choose the coefficients of model and inliers index with the most inliers as a best 

solution of the problem 

However, under some circumstances, such as experimental vehicle driven on a bi-

directional high way, would fail to detect ground surface and curb on a driveway. As 

an example given in Figure 4.2, inliers index of ground surface are discontinued due 

to interruption of a curb (width: 1.04 meter and height: 0.26 meter) in the middle. In 

order to precisely detect ground surface and curb on a driveway, inliers index 

containing discontinued sections have to be picked out and analyzed.  

Continuous utilizing of the two points RANSAC method was used to identify the left 

hand-side curb.  As the left terminal of the ground surface has been explored, all 

features on the left of left terminal can be formed as a new set and initialized in 

Algorithm 2. A special case is shown in the middle of Figure 4.1; left terminal of 

ground surface is the first data of entire set and the left curb is out of scan range.  

Finally, applying a similar technique for left curb detection on right curb detection is 

still effective.  However, a set containing features from the right terminal of ground 

surface to the end of the entire set is much more complicated to detect. Various 

features, such as curbs, pavements, protective barriers and walls may be involved in 

this set. Moreover, the right curb model usually does not have the most inliers to be 

selected as a best solution. Hence, a few constraints are set to resolve the problem: 1) 

Inliers index has to involve the right terminal of ground surface. 2) Inliers index has 

to be consecutive. 3) Certain gradient changes between curb and ground.  
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Figure 4.2: Bi-directional high way divided by a curb. Top figure indicates left side road 
surface (red) and the curb (cyan) in the middle, and bottom one indicates left side road 
surface and curb. 

Although, this algorithm is suitable for most cases of the boundary detection 

problem, some cases will result in failure on right curb detection. For example, 

gradient changes between right curb and ground are not obvious and features of right 

curb are rare (i.e. 2 or 3) while driving on a highway with multi-lanes (equal to or 

greater than three lanes). 

4.3 White Line and Traffic Lane Extraction 

In this section, remission and range data are applied to detect white lines and achieve 

3D surface model.  As mentioned, white line has significantly higher remission value 

than road surface. Hence, sharp ripples can be observed easily when white lines are 

detected (Figure 4.3). Algorithm 3 shows the white line detection algorithm, 

potential white lines (which consist of noise and real white lines) are detected and 

stored applying the first three steps and noise will be filtered in the last step.   

The purpose of white line detection is for firstly traffic lanes division and then 

clearance measurement of each lane for tunnels or bridges. For good road condition, 

road surface is smooth and white lines are distinct, which makes white line detection 

and lanes division much easier. However, for poor road condition, white lines are 

indistinct, which increases difficulties of lane division. In this case, any missed 

segment of white lines has to be predicted based on the previous and later state. Road 
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width calculated from road boundary detection can be one condition for white line 

estimation.  

 

Figure 4.3: Remission value of white lines, horizontal axis is horizontal distance (in meter) 
of feature to sensor and vertical axis is corresponding remission value of feature 

ALGORITHM 3: WHITE LINE DETECTION 

1.1 Search for remission rising position 

if (decAll(i,j)-decAll(i,j-1))>rem_threshold 

Record its remission rising position (rise_pos).  

1.2 Search for remission falling position 

if (decAll(i,j+1)-decAll(i,j))<-1×rem_threshold 

Record its remission falling position (fall_pos). 

1.3 Record potential white line 

if x(i, fall_pos)- x(i, rise_pos)<width_threshold 

Record range data between rising and falling position.  

1.4 Filter noise between white lines 

First remission rising position used as initial point and estimated lane width used 

as a threshold to filter noise between white lines. 

Where rem_threshold: threshold of remission value; 

width_threshold: threshold of white line width. 
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The results of white line detection and overall road boundary detection are shown in 

Figure 4.4 and Figure 4.5. Two figures indicate two lanes and three lanes of ground 

profile respectively. Plots and image capture in Figure 4.4 were collected at off-peak 

time in the Moore Park, Sydney tunnel. Hence, very few cars went through the 

tunnel and none of them blocked the sensors’ view. On the left hand side of Figure 

4.4, note that many small white spots and two sewer covers are detected, which are 

regarded as noise. On the right hand side of Figure 4.4 is the result of applying the 

filter technique which was mentioned in Algorithm 3. The right boundary is higher 

than the left boundary in this case because of sensors installation.   

 

Figure 4.4: White lines on two lanes ground surface. Left: before filtering; Right: after 
filtering 

Plots and image capture in Figure 4.5 were collected at off-peak time in Southern 

Cross Drive, Sydney. Hence, no vehicles blocked the sensors’ view in the duration of 

data collection. It shows a similar case as Figure 4.4. However the difference 

between these two is the left boundary in Figure 4.5 was left undetected, because of 

the sensors installation configuration and sensor’s scan angle range of 270˚. Besides, 

features from the most right lane become sparse as they are far from sensors, which 

increases the difficulty of right curb extraction.  
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Figure 4.5: White lines on three lanes ground surface; Left: Before filtering; Right: After 
filtering 

Figure 4.4 and Figure 4.5 shows two traffic lanes division and three traffic lanes 

division respectively. Due to the sensor’s installation (Figure 3.5) and configuration 

(0.5 degree angle resolution of LMS111), the density of LADAR data from the far 

right hand-side are much smaller than the density of data close to the sensors. It does 

mean that curbs become hard to extract from entire features if there are more than 

three lanes. Although, a traffic road with more than three lanes is not common in 

Australia, a good solution for solving this case is still a high priority.  

Furthermore, although the algorithm of white line detection is perfectly compatible 

with regular traffic lanes division, irregular traffic lanes cause a problem for precise 

white line detection as the width of a traffic lane is unpredictable. An irregular lane 

can be explained as width of lanes change constantly; it happens for example in a 

merging lane. If the experiment is being conducted in this situation, noise between 

white lines is hard to determine. Hence, this case is needed to be taken into account 

in the next step of this research. 

4.4 Road Surface Markers Extraction 

Road surface markers deliver important messages to road users. Their conditions 

deteriorate due to rain fall, sunlight and tyre friction. The road surface markers 

surveying algorithm utilizes LADAR remission and position data to quantify the 

surface markers healthiness.  
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Figure 4.6: Remission data processing result of marker 

Road surface markers have higher remission values than road surface due to the 

reflective materials used to paint them. Therefore Algorithm 3 without the last step 

can be also applied on road surface markers extraction.  

Figure 4.6 and Figure 4.7 illustrate the tests that were carried out for road surface 

markers. Top of Figure 4.6 shows the images of speed limit of 80 km/h; bottom is the 

surveying result of the speed limit sign. Note the white arrow pointing at the shadow 

on the top of Figure 4.6 and black arrow pointing at fading “80” sign on the bottom 

of Figure 4.6. This result demonstrates the ability of the system to survey surface 

markers independently. 

Figure 4.7 shows the detection results of another road marker. “ED ONLY” means 

Eastern Distributor Motorway only. White arrows point out the fading markers on 

the top of Figure 4.7. Fading markers’ remission values are below the threshold 

value that the system defines and detects. The detection results (black arrows) are 

consistent with the visual reference. This quantification method is able to detect 

markers fading at any time of the day, independent to ambient light sources.  
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Figure 4.7: Remission data processing result of marker 

The proposed system also has a built-in function to monitor this road surface 

markers’ abnormality. Once the system detected fading or unclear markers, a flash 

warning signal was given on the data acquisition software along with an audible 

warning. In the meantime, coordinates of the markers’ location are recorded and later 

on will be matched with digital maps. This function is valuable for road authorities 

to achieve efficient road monitoring and management. 

4.5 Clearance Measurement for Tunnels and Bridges 

Road assets clearance surveying is one of the most important aspects of road safety. 

Over-height vehicles are often involved in bridge strike accidents with serious 

consequences. The proposed system can resolve shortcomings of traditional manual 

surveying, such as time consumption, causing traffic disruptions and being subject to 

human errors. 

LMS-111 scans both the overhead structure and the ground. Combined with the IMU 

data, a cross-section plot is built perpendicular to the ground. Both LMS-111 and 

LMS-400 data are plotted in the same coordinate system and interpolation of the data 

is performed if necessary. LMS-111 data is processed for the cross-section build-up 
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and 3D modelling, whilst LMS-400’s more intense scans are used for a detailed 

surveying of the minimum height and lower height structure inspection. Then the 

clearance of each lane in a single cross-section is detected by finding the minimum 

distance between the points of road surface and the corresponding ones of over-head 

structure. The final road clearance of each lane is the minimum one of the values of 

all the cross-sections scanned. To make the clearance surveying reliable and effective, 

only the minimum height presented within the boundary of traffic lanes is extracted.  

Most tunnels in NSW are between 4.4m to 4.6m, and bridges are slightly higher, at 

5.1m to 5.3m [50], [51]. LMS-400 has a maximum range measurement of 3.0m; it 

was designed to scan upward (see Figure 3.3). As the aluminium integrated sensors 

frame (ISF) was mounted at the height of about 2.3m, LMS-400 is able to scan 

objects in details with height up to 5.3m.  

In order to verify the effectiveness and robustness of the clearance measurement 

algorithm, various tests of tunnels, bridges and steel bridges clearance measurement 

have been conducted. There are a few significant differences among the three types 

of infrastructure. For tunnels, it is in a totally closed environment and ceilings are 

constructed in an irregular shape. Boundaries and ceilings of tunnels are 

distinguished by having a wall on both sides. Besides, two directional driveways are 

isolated in tunnels. Hence, the complexity of clearance measurement for tunnels is 

the easiest among the three types of infrastructure. For bridges, it is in semi-closed 

environment and the right hand-side is open (surveying objects on the right hand-

side are out of LMS111’s scan range). The complexity of bridges’ clearance 

measurement is in a median level among the three.  For steel bridges, the complexity 

of steel bridges’ clearance measurement increases and ranked the highest among the 

three. Not only its right hand-side is open, but also the over-head of steel bridges is 

not sealed and is constructed in certain irregular patterns. So far, the algorithm has 

been successfully implemented on these three types of infrastructure. The results will 

appear in Table 4.1.  

An example of an Advanced Protective Barrier (APB) before the entrance of the 

tunnel with marked clearance 4.4m is shown in Figure 4.8. The survey covered both 

the APB and the tunnel. The reason to survey the APB is to check if the clearance of 
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the protective barrier is as the sign indicated, and then to compare it to the actual 

tunnel clearance. 

   
Figure 4.8: Advanced Protective Barrier cross-section 

The cross-section plot in Figure 4.8 shows that the surveyed minimum height of the 

APB is 4.43m, which matches the marked clearance, and this result was consistent 

between the two LMS sensors. Also it should be noted that the actual APB has 

twelve hanging poles; however, only six poles are clearly plotted in the cross section 

scan. The reason is that some poles block the others from the vision of LMS sensors, 

and not all of them are in the same plane that parallels to the scan plane. This 

phenomenon should not impact on the accuracy of APB surveying, as lower poles 

are accurately surveyed. It is noticed that although the width of the road is for two 

lanes, there is no lane separation marks on the road. Therefore the Data Processing 

Algorithm (DPA) GUI treats this road as a single lane. 

Table 4.1: Clearance of three different surveying objects compared with marked clearance 

Surveying 
Objects 

Tunnel 
(Moore Park, 

Sydney) 

Bridge 
(Southern Cross Drive, 

Sydney) 

Steel Bridge 
(Rhodes, Sydney) 

Number of 
Lanes 2 3 3 

 
Marked 

Clearance (m) 
 

Left Right Left Middle Right Left Middle Right 

4.4 4.4 5.1 5.1 5.1 4.6 5.2 4.6 

Measured 
Clearance (m) 

 
4.55 4.53 5.30 5.44 5.49 4.66 5.31 4.87 
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The tunnel detailed surveying result is presented in Figure 4.10 and clearance results 

are summarized in Table 4.1. According to the IMU measurements and wheel 

odometry, the tunnel is descending and then ascending. The measured length of the 

tunnel is 465.23m. There are two lanes in the tunnel, and two individual clearances 

are extracted from the surveying data. The dotted white line in Figure 4.10 represents 

the actual white line in the middle of the road that separates the two traffic lanes.  

Two cross-section plots in the DPA GUI present the two sections in which minimum 

clearance is measured for each lane. Figure 4.10shows the details of cross section 

plot at the clearance point of the right lane on the right, and a photo of the tunnel on 

the top left. A red and blue line in the figure points out the bulge that causes the 

minimum clearance and its relative position on the ground. 

The surveying results show that the minimum clearance of the left lane is 4.55m. It is 

located at the point 19.93m from the entrance and 1.81m from the road left border. 

The minimum clearance of the right lane is 4.53m, and is located at the point 82.60m 

from the entrance and 6.23m from the road left border. 

The surveying results show that the marked clearance of APB with 4.4m is 

consistent with the surveyed result. The tunnel’s clearance is 4.55m on the left lane 

and 4.53m on the right lane. Although the surveyed clearance of the tunnel is slightly 

higher than the sign marked 4.4m, it is safe for vehicles under 4.4m to pass. 

Several bridges were surveyed during the test. A pedestrian bridge over the Southern 

Cross Drive is taken as an example. The measured clearance of the left lane is 5.30m, 

at the point of 7.99m from the beginning of the bridge and 0.88m from the left 

border. For the middle lane, the clearance is 5.44m, at 7.99m from the beginning and 

3.94m from the left border. The clearance of the right lane is 5.49m, at 7.64m from 

the beginning and 7.04m from the left border.  

Note that in the clearance cross-section plot of the pedestrian bridge over two 

directional drive ways, only half of the bridge can be plotted as measurable by the 

LMS111 sensor. This is due to the fact that the LMS111 sensor could only pick up a 

10m range with 13% remission value [46] 
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Comparing the measured clearance (the testing results) and marked clearance 

(clearance marked on signs before entering into tunnels or bridges) for three 

surveying objects, the measured clearance of the tunnel and the steel bridge is in 

better agreement than for that of the bridge. The reason for this disparity could be 

that surveyors take clearance measurement beyond the white line into account. As the 

bridge has an arc shape, the clearance within the white lines would be definitely 

higher than the clearance beyond the white lines. More importantly, it is necessary to 

keep the actual road clearance higher than it is indicated, so as to ensure vehicles up 

to the height-limit drive through safely. 

In the current stage, reasonable clearance measurement results of three types of 

surveying objects have been made.  However, the actual accuracy of clearance 

measurement results is still unknown. Marked clearance sometimes is not identical to 

the actual clearance due to the deformation of infrastructures and other issues. Due to 

time constrains, I have not gotten in touch with the RTA at this stage. Hence, the next 

step of this part of the research is to contact the RTA for verifying the actual 

accuracy of measured clearance results. Finally the current algorithm of clearance 

measurement is capable of working under the particular situation that no vehicle is 

blocking the right hand side of the sensors on the right-hand side of sensors. Any 

area blocked by other vehicles is hard to predict. Hence, another potential 

improvement on this algorithm is to find a possible way of predicting data in a 

blocked area with high accuracy. The significance of this improvement is that it will 

make the proposed system work on both traffic peak time and off-peak time.  

4.6 3D Model and GUI Construction 

The purpose of constructing a 3D model is to provide a genuine view of road assets 

and the reason for constructing a GUI is to integrate all functions into one interface 

to finally present comprehensive surveying results. In the following, the way to 

construct a 3D model and a GUI will be presented in detail.    

After combining the road boundary detection and white line detection algorithm, the 

basic road profile is now available. Roll-pitch-yaw motion data from IMU and 

instant speed data from odometer, which applied on previous road profiling, are used 

to generate 3D road surface model.  
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A rotation matrix is produced based on roll-pitch-yaw information, which gives the 

transformation of scan data [52]: 

            

               

(4.1) 

Where: is yaw;  is pitch;  is roll.   

Each scan data generated by LMS111 can be transferred into a global coordinate 

system.  Figure 4.9 shows the 3D road surface model in a tunnel. An enlarged short 

section of the tunnel is also presented in Figure 4.4.  

However, using IMU alone to obtain attitude would cause inaccurate trajectory of the 

road surface, because the error of IMU will be accumulated over time. To minimize 

the error issue, a visual odometry method will be introduced into the system in the 

next section.  

Road 3D models include name, data of surveying, clearance of traffic lanes and 

conditions of road assets. Road 3D modelling helps the Roads and Traffic Authority 

to construct a database and, integrated with Geographic Information System (GIS), 

to monitor and manage road assets.  

The lowest clearance point of each lane is indicated in the 3D model and presented 

in the GUI. The 3D model delivers the most intuitional profile of surveyed objects, 

and includes lines on the road surface and the location of clearance points. As an 

example of the 3D model is shown in Figure 4.9, image frames are extracted from 

camera and displaced on the top left part of the GUI. The purpose of embedding 

video frames to GUI is firstly to provide video reference for features verification. 

Secondly, video frames can be used for gaining PVA information. Specially, in GPS 

denied environments such as tunnels, visual odometry is a very good solution, 

substituting for the absence of GPS information. In chapter 5, visual odometry of 

gaining PVA will be introduced.  
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Figure 4.9: 3D Road Surface model of a tunnel 

The bottom section of the GUI displays an overview map of the air view and side-

looking view  respectively while a zoom-in air view is processed on the left bottom 

part of the GUI. The reason for arranging a zoom-in air view is to make sure road 

surface condition can be clearly observed. The position of current minimum height 

of each lane is indicated and marked in different colours in both air view plotting and 

side view plotting. It presents real-time spatial view of clearance, which offers 

greater assistance for surveyors to get clearance information in minimum time. 

 In the middle top of the GUI, cross section of clearance measurement is plotted. 

Number of lanes is worked out automatically in the data processing algorithm. At the 

same time, the exact same number of cross section windows is presented for 

displaying clearance measurement results. Any latest minimum height result of 

surveying object is updated automatically in the text editing area where is located 

under the cross section window.  In addition, clearance positioning information is 

also calculated and displayed in the text area.  
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A few buttons on the most right hand-side are developed for operation convenience. 

All well-prepared data (LADARs data, video stream and navigation data) are able to 

be loaded once using Load files button. Any faulty data and format will be alarmed 

and prohibited. On the right hand-side of load files button, a short text content is 

proposed to indicate the loading state whether it is complete or incomplete, and then 

to prevent any improper operation during the incomplete loading state. After data 

loading, types of surveying objects (such as tunnels and high ways) and number of 

lanes is determined automatically according to their characteristics. A radio button is 

embedded in the GUI, which is an optional record button for converting GUI frames 

into a movie. The advantage is that it saves time for the next time review. However, a 

disadvantage is still worth noting, which is the time consumed in data processing. 

The PLAY VIDEO button is designed only for video stream displaying. Video 

frames in the GUI are consistent with LADADs’ data by matching their clock. The 

PLAY/PAUSE button is implemented for presenting road asset animation and results. 

The function of the REST button is to clear all input data information and existing 

GUI frames after the animation is paused. In a word, the proposed GUI is acting as a 

data media player, which is designed with the particular specification and 

requirement developed in this study. 

 

Figure 4.10: Road 3D modelling in GUI, Eastern Distributor Motorway tunnel, Sydney 
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A GUI in Figure 4.10 demonstrates a road asset result in the Eastern Distributor 

Motorway tunnel, Sydney, which integrates functions mentioned above. The 

proposed system is designed for on-line processing. It is able to deliver direct 

profiles and comprehensive road asset results immediately while driving for 

experimental road tests.  

Although the proposed GUI has been developed in a user-friendly interface, there is 

still some room for further improvement in the future, such as adding a play time line 

in the GUI. Users can watch any animation moment which they are interested in by 

selecting the play time.    

4.7 Road Roughness Measurement 

In the road roughness measurement section, the condition of the road surface is a 

major concern. In order to obtain more detailed road surface roughness results, the 

LMS 400 with higher frequency was rotated 180 degree to look downwards and the 

ISF was modified based on the first design.   

Road roughness measurement over longitudinal road profiles is used to determine 

road surface quality. Road Roughness Measurement can be also expressed in terms 

of index like the International Roughness Index (IRI), which quantifies the 

tolerability of road roughness at different speeds [53].  

The IRI is a cumulative measurement of changes in elevation or roughness [54]. It is 

expressed in dimensionless units of mm/km or in/mi. Appendix A and Appendix B 

shows roughness scales from ASTM E1926-08 that correlates IRI (mm/km) values 

with estimations of ride quality.   

The IRI value is calculated based on data from LADAR sensors. Road surface 

profiling using the proposed system to generate a dense point cloud in three 

dimensional spatial coordinates (Figure 4.11) delivers accurate raw data for 

roughness measurement. The scope of this section is the implementation of the IRI 

and its incorporation into the existing mobile surveying system.  
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Figure 4.11: 3D point cloud generated from LADAR sensor 

 Figure 4.12 shows a reference video snap shot, which can be used to verify the 

correctness of 3D point clouds of road asset information.  Some key elements, such 

as rubbish bins, trees and garages can be clearly seen from Figure 4.11, which is 

identical to the elements in Figure 4.12. The only difference between the LADAR 

image and the video image is that the LADAR emission cannot reach behind rubbish 

which leaves a huge blank.  

 
Figure 4.12: Reference video snap shot for 3D models verification 
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While the RTA may require longitudinal profiles generated from wheel paths 

perfectly centred within road lanes (Figure 4.13), more realistic roughness 

measurements may be additionally calculated using arbitrary wheel path lines 

through corners to better simulate realistic driving behaviour using bend radius 

and/or camber information (Figure 4.14). 

 
Figure 4.13: Longitudinal profile lines required by the RTA 

 

Figure 4.14: Different wheel paths through the same road curve give different 
profiles 

The sample FORTRAN program defined in ASTM E1926-08 has been translated 

into Matlab code for ease of code interfacing and integration. The parameters of this 

algorithm are based on ‘golden car’, which takes regard of a reference point for 

calibration [28, 29]. Detailed Matlab code can be seen in Appendix C. The 

effectiveness of translated Matlab code has been successfully verified using the 

sample profile data provided.  
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The current roughness profile algorithm focuses on longitudinal profile data at the 

vehicle wheels position. Extracting any number of profile lines from a 3D dense 

point cloud can be an easy task and the algorithm can be varied without changing 

any structure. The multiple profile lines may be developed as necessary (Figure 4.15). 

 

Figure 4.15: Multiple profile lines for roughness measurement are extracted as necessary 

Tests have been conducted on in various road surfaces, such as asphalt, concrete and 

gravel. The asphalt surveying tests were conducted around a residential loop around 

Jellicoe Park, Pagewood NSW with a perimeter of about 1000m (Figure 4.16). The 

testing vehicle aimed to maintain speeds of 20, 30, 40 and 50 km/h.  

  
Figure 4.16: Site of asphalt survey test, Jellicoe Park, Pagewood NSW 
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The concrete surveying tests were conducted around a small park lot at Heffron Park, 

Maroubra NSW (Figure 4.17) with a perimeter of about 300m. The testing vehicle 

aimed to maintain speeds of 20, 30, and 40 km/h. 

   

 Figure 4.17: Site of concrete survey test, Heffron Park, Maroubra NSW 

The gravel surveying tests were conducted along a four wheel drive access road 

along Warumbul Road, Bundeena NSW with a length of about 1.4km (Figure 4.18). 

The testing vehicle aimed to maintain speeds of 10, 20 and 30km/h.  

   

Figure 4.18: Site of gravel survey test, Warumbul Road, Bundeena NSW 

By only looking at roughness of asphalt, concrete and gravel from images showing 

in Figure 4.16 to Figure 4.18, the first conducted test on asphalt road surface has the 

best road condition, while road condition of concrete surface ranked in the middle 
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and gravel is the worst road surface among three test sites. In the experiment of 

travelling on three test sites, the feeling of travelling on the asphalt surface is steady 

and smooth. However, the experience of travelling on the concrete surface is that the 

vehicle shook occasionally as chasms and cuttings exist. The worst experience was 

travelling on the gravel surface.  Vehicle shook seriously all the way in the gravel 

tests in all the way of gravel tests. Hence, the roughness estimation by looking from 

images is consistent with the experience of travelling on sites. The next step is to 

work out IRI values and quantify the roughness of three types of road surfaces.  

The algorithm provides different IRI roughness scales for different surfaces, such as 

concrete, asphalt, gravel and earth. The scales indicate what types of speeds are 

comfortable for a given road based on a calculated IRI value. Currently, the 

algorithm is applied only on left and right of wheels position. Detailed plotting 

results are attached in Appendix E. Summarized results of IRI values for different 

surface profiling at different speeds are given as follows:   

Table 4.2: IRI values for asphalt surface profiling 

Speed  
(km/h) 

Average 
Sampling 

Interval (m) 
Section 

Length (m) 
IRI Left 
(m/km) 

IRI Right 
(m/km) 

IRI Average 
(m/km) 

20 0.116 100.04 2.36 2.01 2.19 

40 0.157 99.96 4.04 4.52 4.28 

Table 4.3: IRI values for concrete surface profiling 

Speed  
(km/h) 

Average 
Sampling 

Interval (m) 
Section 

Length (m) 
IRI Left 
(m/km) 

IRI Right 
(m/km) 

IRI Average 
(m/km) 

30 0.160 100.03 8.31 8.70 8.51 

40 0.174 100.08 7.31 7.46 7.39 

Table 4.4: IRI values for gravel surface profiling 

Speed  
(km/h) 

Average 
Sampling 

Interval (m) 
Section 

Length (m) 
IRI Left 
(m/km) 

IRI Right 
(m/km) 

IRI Average 
(m/km) 

20 0.084 100.00 30.22 32.66 31.44 

30 0.143 100.00 14.05 14.41 14.23 
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In Table 4.2, quite small average IRI values are calculated at different speeds which 

means people can have a comfortable ride up to more than 90 km/h (Appendix A) on 

this sampling asphalt surface. By contrast, average IRI values are extremely large in 

Table 4.4 as people have a comfortable ride up to a very limited speed (Appendix B) 

on this sampling gravel surface. In Table 4.3, average IRI values on concrete 

sampling surface are approximately two times larger than the average IRI values on 

asphalt surface. People would ride comfortably up to 50-60 km/h in this situation. 

The reason which causes this result is that there are many obvious cuttings between 

single concrete sections.    

4.8 Summary 

This chapter presented a novel method for automatic road clearance surveying, road 

surface profiling, 3D structure modelling, road boundary detection and road 

roughness measurement. It gives road maintainers the power to survey road 

clearance without a hazard to labour and disrupting traffic. With sensors fusion 

technologies and data processing algorithms, 3D models of bridge and tunnel marked 

with the lowest point of each lane are constructed. Even under ambient interference, 

surveying data still can be processed to obtain a road clearance result. Moreover, the 

proposed system is adapted with modular design; new components can be added into 

the system easily. 

The road assets’ clearance is acquired by combining LADAR range and INS attitude 

data. The road surfaces conditions are detected by examining the LADAR range and 

INS acceleration data. Healthiness of road surface markers is determined by 

processing images, LADAR remission and INS data, while road boundary detection 

is completed by advanced filtering algorithm. Road assets 3D model is constructed 

in the GUI for visualization of surveying results and management of database. 

Longitudinal profiles were generated from dense point cloud 3D model data by 

simply extracting points falling beneath the wheel tracks, and averaging their relative 

heights to reduce to a single left and right wheel profile value for each scan line. 

Results of real environment road tests under different conditions have demonstrated 

the capability and robustness of a prototype surveying system. 
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There is much potential that surveying system could be improved. A GPS, IMU and 

Odometer integrated navigation system will provide much better position and 

attitude information to improve the system performance. Cooperation with roads and 

traffic authority is expected to test the system for robustness and feasibility 

evaluation.  
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CHAPTER 5 VISUAL ODOMETRY 

OPTIMIZATION 

5.1 Introduction 
During the past few driving tests in the urban area of Sydney, GPS signal became 

unreliable when the experimental vehicle was driven in some closed areas, such as 

tunnels. Hence, it was decided to introduce visual odometry as a backup method for 

obtaining continuous and accurate PVA information into the proposed system. Visual 

odometry is composed by feature detection, feature matching, robust estimation of 

fundamental matrix and camera pose optimization.  

SURF [55] method has been utilized for feature detection and matching. RANSAC 

has been used for about thirty years as the benchmark method for model fitting in the 

presence of outliers, as well as an estimation method of fundamental matrix. 

It estimates a model that fits the provided data, while simultaneously classifying the 

data into inliers (samples consistent with the relation) and outliers (samples not 

consistent with the relation). It is a simple yet powerful technique that can estimate a 

model using data contaminated by a large fraction of outliers. RANSAC can be 

briefly summarized as a hypothesize-and-verify framework: a minimal subset of 

samples for model fitting is randomly selected from the entire dataset. The subset is 

then used to fit model hypotheses which are evaluated on the entire dataset by 

computing the distance of all other samples to this model and constructing an inliers’ 

set with a threshold. This hypothesize-and-verify loop is repeated until the 

probability of finding a model with better consensus than the current best model falls 

below a predefined threshold.  

The principle steps of RANSAC can be summarized as: 1) randomly select a set of 

samples from all the samples; 2) fit a model hypotheses with the selected set of 

samples; 3) compute the distance of all other points to this model; 4) construct the 

inliers set with a distance threshold, compare its inliers count to the previous highest 

one and store the results. Steps 1 to 4 are repeated until a pre-set threshold of 

iterations is reached. The set with maximum number of inliers is chosen, all these 

inliers are used for model parameter estimation [32]. 
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For generality and simplicity, RANSAC is based on a set of assumptions, which are 

not true in many real situations. This leaves large room for improvement. In this 

section, as part of my contributions in this research, new algorithm named PURSAC 

(PURposive Sample Consensus) for model fitting is introduced, which purposely 

selects sample sets according to the sensitivity analysis of a model against sampling 

noise, and other information that can be used for purposive selection. PURSAC is a 

strategy for sample sets selection, which can be combined with any model fitting 

algorithms that use random sample sets selection. Comparing to RANSAC and 

MLESAC (maximum likelihood estimation sample consensus), PURSAC can detect 

more inliers with much fewer number of iterations and in turn can improve both the 

efficiency and reliability of model fitting. This is very important for applications 

where speed and precision is critical, such as visual odometry (VO). With analysis 

about a model’s sensitivity against sampling noise and the pattern of samples’ 

validity, PURSAC is designed to efficiently handle both sampling noise and outliers 

for model fitting. 

Experimental results with publically available data demonstrate that PURSAC can be 

easily combined with existing model fitting algorithms, and detect more inliers with 

a lesser number of iterations. In visual odometry this in turn can improve the 

accuracy and robustness of fundamental matrix estimation, resulting in a more 

precise and efficient visual odometry result.  

5.2 Justification of PURSAC in Visual Odometry 

In GPS denied environment, visual odometry is utilised as a backup method for 

obtaining continuous and accurate PVA.  The proposed method, PURSAC, is 

developed based on RANSAC which has been used for about thirty years as a 

benchmark method for model fitting in the presence of outliers. As one component in 

Visual Odometry, it plays the significant role of acquiring PVA information. Hence, a 

robust estimation method delivers an accurate PVA result which is beneficial to the 

proposed surveying project. This section presents the justification of the purposed 

estimation method, PURSAC. 

The RANSAC scheme is a fundamentally stochastic algorithm without deterministic 

guarantees of finding the global maximum of the likelihood. It finds the best 
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hypothesis from some particular set of hypotheses, which have been generated 

randomly in the first place. 

A success rate p is defined in RANSAC for a certain level of confidence of finding a 

consensus set, which is a function of the number of iterations to be conducted N, 

sample outlier rate ε and number of samples in a set s [31]. The success rate here in 

(2.1) simply means that a set of samples selected by RANSAC are all from inliers. 

As observed, RANSAC is a probabilistic method and is nondeterministic in that it 

exhibits different solutions on different runs. Its model fitting performance is 

unsatisfactory for many applications, such as VO. In principle, the accuracy and 

efficiency of a model fitting algorithm using random sampling can be improved if 

the random sample set selection can be avoided, which is what PURSAC will 

attempt to achieve.  

Reconsideration is now given to the line-fitting example in the original RANSAC 

paper [32]. As shown in Figure 5.1, two types of measurement errors (noise and 

outlier) exist in the sample points. By randomly selecting a set of samples (two 

points for line fitting) from all the samples, RANSAC can eliminate most if not all 

the outliers after a certain number of iterations. At the same time, however, it also 

likely rejects some inliers and so reduces the accuracy of model fitting. Due to the 

measurement noise, model hypotheses selected by RANSAC with a limited number 

of iterations usually cannot fit a model well, as illustrated in Figure 5.1. It is safe to 

conclude that RANSAC is only effective in removing measurement outliers but is 

inadequate for handling measurement noise.  

 

Figure 5.1: Line fitting results by RANSAC (Line 1), PURSAC (Line 2) and least 
square (Line 3). 
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Two-point form of a linear equation is expressed as (13), where (x1, y1) and (x2, y2) are 

the coordinates of the two points that decide the line model. The slope of the line is 

explicitly given as (y2 − y1)/(x2 − x1).  

                      2 1
1 1

2 1

-- = -
-

y yy y x x
x x                                                 (5.1) 

If the noise terms of the two points position are denoted as (δx1, δy1) and (δx2, δy2), 

and let y2 − y1 written as dy, x2 − x1 as dx, δy2 − δy1 as δy and δx2 − δx1 as δx, then 

the slope of the line can be expressed as 
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y y x x
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(5.2) 

The items δx and δy are solely decided by sampling noise, while dx and dy are 

directly related to the distance of the two points. It can be concluded from (5.2) that 

the smaller the distance of the two points (dx, dy) is, the more the estimated line 

slope will be affected by sampling noise (δx, δy). This can be evidenced by the 

results of a Monte Carlo line fitting test.  

 

Figure 5.2: Monte Carlo test of the distsnce distribution for line fitting with RANSAC. 

Figure 5.2 shows the results of 1,000 line fitting test runs for the distance between 

the final two points selected by RANSAC. The left figure shows that the distance 

between any two points tends to be close; the middle one shows that the distance of 

the final two points selected by RANSAC has a Gaussian distribution. The right 

figure suggests that possibility to be a final point increases as the distance increases. 
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This indicates that the distance between the two points for the best consensus set 

tends to be large, so as to dilute the effects of sampling noise for model fitting. 

Consequently the two sample points should be selected a large distance apart. 

The sample points themselves do not have any information available about their 

validity for line fitting. It is impossible to rank or score the points without any prior 

knowledge about them.  However, it is known that for a line model some of the 

points are inliers and other are outliers, and their validity will be assessed during the 

process of classifying them. This validity information can be used to purposively 

select points afterward that have a higher possibility to be inliers so as to speed up 

the model fitting process.  

Similar to locally optimized RANSAC [60], by observing that a good model tends to 

find a significant fraction of the inliers, an inner iteration is executed. After a very 

small number of iterations k, the set of inliers to the current best model is generated 

with RANSAC or MLESAC. Then the next sample subset is selected only from the 

current inliers and verified against the entire dataset. As the sampling is running on 

current inliers dataset, there is no need for the size of sample subset to be minimal. 

On the contrary, to mitigate sampling noise, the size should be selected to minimize 

the error of the model parameter estimation.  

This local optimization technique has the effect of improving the consensus score 

more rapidly and causes the iteration termination criterion (N in(1)) to be met earlier 

by selecting samples from current inliers set, which has a lower outlier rate than the 

entire dataset has. In addition it can also provide more robust and precise model 

fitting by minimizing the error of model estimation with proper sample size. 

Considering the two observations about samples geometry and validity for the line 

fitting tests, PURSAC is designed to purposely select two points far apart, instead of 

random selection. The first point is randomly selected; then the distances from it to 

all the other points are calculated. The second point is selected according to the 

statistical distribution shown in Figure 5.2. Inner iteration is then applied by 

selecting samples only from the current inliers until reaching iteration termination 

criterion (1). Finally local optimization is implemented and all the inliers are used 

iteratively to compute the final model parameters. 
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Table 5.1 shows the results of 1,000 line fitting test runs with RANSAC and 

PURSAC. Within 100 points, 55 are inliers. The number of iterations N is set to 20, 

which means the success rate p in (2.1) is 99.97%. Fitting_error is a model fitting 

error against the ground truth measured by the area between the two lines. 

Inliers_miss is the number of points that should be counted as inliers but miscounted 

as outliers; similarly with Outliers_miss. STD and mean is the standard deviation 

and mean of the 1,000 runs’ results.                   
Table 5.1: Line Fitting Monte Carlo Test Results 

 

 
Figure 5.3: 1000 runs Monte Carlo test results with PURSAC and RANSAC 

The result shows that under exactly the same condition, PURSAC can achieve better 

performance than RANSAC, with less miscounted inliers and outliers, and is closer 

to a true model. The final line fitting performance is affected by the miscounted 

inliers and outliers. As shown in Table 5.1 and Figure 5.3, all the STDs of PURSAC 

are smaller than those of RANSAC, indicating that PURSAC has better reliability. 

The key idea behind PURSAC is to purposely select sample sets according to the 

sensitivity analysis of a model to be fitted against sampling noise; and also to the 

measures of samples’ possibility to be inliers. It is worth mentioning that the way to 

implement PURSAC is based on the analysis of each model fitting case and it is 

open to find an optimal way for different cases. 
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Line fitting 
Method 

Number of 
inliers  

mean/STD 
Fitting_error 

mean/STD 
Inliers_miss 

mean/STD 
Outliers_miss 

mean/STD 

PURSAC 46.07 / 0.92 117.58 / 7.22 11.69 / 1.80 1.76/1.46 

RANSAC 43.67 / 3.41 122.99 / 22.23 14.53 / 4.19 2.20/1.69 
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5.3 Outline of applying PURSAC to Visual Odometry 
RANSAC and MLESAC has been widely used in computer vision, particularly in 

the areas of recovering epipolar geometry and 3D motion estimation, such as image 

registration, structure from motion and feature based VO. The motion of an agent 

(vehicle, human or robot etc.) can be estimated by incrementally estimating the pose 

of the agent through examination of the movement induced on the images of its on 

board camera(s) [31]. Feature based VO uses salient and repeatable features 

extracted and is matched across the captured images. No matter which algorithm is 

used, the matched features are usually contaminated by outliers (wrong data 

associations). How to efficiently remove the outliers is the most delicate task in VO 

and still has large room for improvement.  

This section introduces how to apply PURSAC to VO. The relations of features 

matching scores to their possibility to be outliers and to their location accuracy in 

images are investigated first. Then the sensitivity analysis of the egomotion model 

against samples noise is conducted. Based on these analyses PURSAC is elaborated 

aiming to design a purposive sample set selection procedure for the fundamental 

matrix estimation, and to improve the results of outlier removal and model fitting 

and in turn the VO performance. 

5.3.1 Feature Measurement Analysis 
First let us analyse the relation between the feature matching score and the features’ 

possibility to be outlier. This has been done previously for SIFT [56] and some other 

descriptors [61]. In all experiments, regardless of the similarity function used, the 

fraction of inliers decreased almost monotonically as a function of the number of 

tentative correspondences [39]. This is verified by the test results of this study for 

169 pairs of images using SURF features [55]. Figure 5.4 shows that the matched 

features with lower ranking have a higher likelihood of being outliers. 

Another test was conducted to evaluate robustness and accuracy of SIFT and SURF 

features’ location and it’s relation to the feature matching scores. Figure 5.5 is a test 

result with SIFT features. The X axis is the feature location accuracy in pixel. Y axis 

is the matching score from SIFT feature matching, which measures the 'confidence' 

of the feature matching being correct. It shows as the confidence increases, so does 
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feature location accuracy (to an extent). This location uncertainty can be treated as 

measurement noise, which has a relation with feature matching score. This result will 

be used in the design of the rule for PURSAC’s purposive sample set selection. 

 
Figure 5.4: Outliers and score ranking test 

 
Figure 5.5: Features’ location accuracy and matching score correspondence. 
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5.3.2 Model Noise Sensitivity Analysis  

The noise sensitivity analysis is to find a strategic way to dilute the effect of 

sampling noise for model fitting; and if possible also to consider the information 

available for statistical analysis of measurement. 

In VO, the fundamental matrix estimation with RANSAC method has the advantage 

of the geometric constraints introduced by a motion model. After feature detection 

and matching procedure, feature correspondences are nominated for subsequent 

fundamental matrix estimation. In RANSAC, the sample data sets are randomly 

chosen from entire feature correspondences. However, the randomly selected feature 

points have a high possibility of being near each other which would cause significant 

uncertainty of model fitting and affect the accuracy of final fundamental matrix 

estimation.  

The fact that the geometry of the features in images affects the VO results 

considerably [40, 41], is the natural relation between measurement noise and the 

model to be fitted in VO. This is the principle approach of the proposed PURSAC. 

The more evenly are features distributed in images, the less is the model sensitive to 

the noise, and the more stable are the VO results.  

5.3.3 PURSAC Rules for Visual Odometry 

Feature based VO requires efficient and robust model fitting. According to the 

statistical analysis of outlier possibility and features’ location accuracy against the 

matching scores, rules for PURSAC implementation are innovated by considering 

both scores ranking and feature geometry.  

a) All the matched features are ranked by their matching scores. The one with 

the highest rank is selected and the features close to it within a threshold ρ are 

excluded in the following samples selection. This process iterates until all the 

matched features are either selected or excluded.  

b) Only the selected features are used for searching the sample set for the 

consensus of model hypothesis but it is verified against the entire dataset. 

Sample subsets are purposely selected according to their ranking until 

reaching an initial iteration number k.  
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c) In the same way as the line fitting case, local optimization is then 

implemented to further increase the speed and certainty of model fitting. By 

improving accuracy and efficiency of fundamental matrix estimation, a 

precise and fast visual odometry can be achieved.  

This set of rules is combined with both standard RANSAC and MLESAC for 

fundamental matrix estimation and visual odometry computation. The threshold ρ is 

set as 10 times the inlier threshold in RANSAC (10x1 pixels), and the initial iteration 

number k is set to 20. 

5.4 Experimental Results 
Málaga 2009 Robotic Dataset Collection PARKING-6L dataset is used for featured 

based VO testing [57]. A section of the dataset is selected from the images captured 

by a camera mounted on a test vehicle, which runs a closed loop in a car park. The 

test runs 100 times to evaluate the precision and consistency of the methods. Test 

results with three PURSAC methods are compared with RANSAC and MLESAC, 

which were implemented in the previous approaches for VO [58] and monocular 

SLAM [59] respectively.  

Table 5.2 is the test results of matched features’ inlier rate detected by different 

methods in 100 runs. Five pairs of images have the inlier rate from less than 50% to 

over 85%. The tests set two different success rates, p1 = 99% and p2 = 99.99%. The 

number of iterations is calculated by (2.1) dynamically. 

The results show that combining with either RANSAC or MLESAC, PURSAC 

achieves much better results than the original algorithms. The inlier rate is higher 

and the standard deviation of the number of detected inliers is much lower, which 

means PURSAC has much better and more consistent sample consensus. It is noted 

that for the images with high inlier rate (Image 58&59), the STD of both RP and MP 

reaches zero, entailing a complete certainty.  

Results show that the two different success rates p do not impact much on the inlier 

rate μ of PURSAC, but do for MLESAC and RANSAC. Even if a higher success rate 

p2 is selected for MLESAC and RANSAC, PURSAC still performs better with a low 

success rate, as the bold data indicated. Therefore, the number of iterations needed 
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for PURSAC (RP and MP) is much lower than the original algorithms, leading to a 

faster process. 

Table 5.2: Image Matching Monte Carlo Test Results 

Image pair  

(Number of 

matches) 

Inlier rate μ & 

number of 

iteration N 

RO (RANSAC 

Original) 

RP (RANSAC 

PURSAC) 

MO (MLESAC 

Original) 

MP (MLESAC 

PURSAC) 

p1 p2 p1 p2 p1 p2 p1 p2 

  Image 2&3 

(357) 

 Mean μ  68.74% 70.03% 75.92% 75.83% 68.10% 69.37% 75.90% 75.93% 

Inliers STD 10.39 9.06 0.98 1.16 12.78 10.30 0.96 1.0714 

Mean N 68.29 116.83 47.66 81.31 79.58 125.68 49.61 85.98 

Image 27 &28 

(390) 

 Mean μ 52.78% 54.32% 58.39% 58.46% 52.72% 54.1% 58.45% 58.36% 

Inliers STD 8.12 6.82 3.12 2.90 10.23 9.27 3.09 3.1527 

Mean N 447.92 689.88 315.82 585.35 475.55 713.77 349.3 610.29 

Image 58 &59 

 (1019) 

 Mean μ 77.03% 78.71% 85.57% 85.57% 77.3% 78.9% 85.57% 85.57% 

Inliers STD 38.96 31.92 0 0 36.85 32.05 0 0 

Mean N 31.72 50.60 21.02 39.05 30.89 51.68 23 39.56 

Image 2&4  

(186) 

 Mean μ 55.22% 56.81% 59.47% 59.70% 55.35% 56.23% 59.78% 59.77% 

Inliers STD 4.97 3.66 2.40 1.72 4.56 5.44 1.53 0.6257 

Mean N 335.70 507.45 230.12 390.37 346.98 582.5 228.08 422.55 

Image 2&6  

(129) 

 Mean μ 44.32% 44.99% 47.16% 47.22% 43.81% 43.95% 47.28% 47.38% 

Inliers STD 1.96 1.87 1.73 1.52 2.25 2.46 1.47 1.6161 

Mean N 1471.0 2567.2 1127.7 2090.6 1640.6 3193.4 1338.5 2615.3 

 

The test results on 103 pair of images for 100 runs are plotted in Figure 5.7. The top 

figure shows the number of matches Nm, the number of liners Nin and inlier rate μ in 

each pair of images. The middle one is the mean difference of Nin detected by MO 

and MP. It indicates that MP can always detect more inliers than MO, especially in 

the case when Nin is low (image number 76). The bottom figure shows the standard 

deviation of Nin for 100 runs. MO has higher STD than MP in all the 103 pairs of 

images. This proves that MP has better consistency than original MLESAC, which is 

also critical for model fitting. 
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Figure 5.6: Test field, trajectory (left) and a sample image for visual odometry 

The red line in the left image of Figure 5.6 is trajectory of the test in a car park. The 

right image is one of the images captured by an on-board camera for the visual 

odometry test.  

 
Figure 5.7: Number of inliers in visual odometry tests 

The trajectories of visual odometry that use MLESAC (MO) and proposed PURSAC 

(MP) are plotted for analysis and comparison. Figure 5.8 shows the trajectories 
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generated by VO that uses MLESAC and PURSAC respectively for 100 runs. The 

left plot shows the trajectories of MLESAC, and the right one shows the trajectories 

for PURSAC. It shows clearly that PURSAC has significantly improved the 

performance of VO.  

The trajectories in Figure 5.8 do not end around the start position, but have a non-

random drift from it. This drift may come from the accumulated error when 

calculating the transformation between the consecutive images. It may infer that this 

drift is from the inaccurate internal parameters calibration of the camera. Future 

work based on this study will be to find the relationship between the accumulated 

error and the error of the camera of intrinsic parameters. 

 
Figure 5.8: The 100 trajectories of VO using MO and MP 

Table 5.3: VO Final Position STD and Number of Iterations 

Methods X STD Y STD Z STD 
Mean 

iterations 

RO (p = 99.99%) 0.2146 2.2201 0.2172 147.51 

RP (p = 99%) 0.0840 0.2524 0.0588 65.87 

MO (p = 99.99%) 0.1837 0.5326 0.1513 151.75 

MP (p = 99%) 0.0625 0.2364 0.0415 67.59 
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The standard deviation of final camera positions with different algorithms is listed in 

Table 5.3. Similar to the results for the number of inliers listed in Table 5.2, 

PURSAC achieves better results than RANSAC and MLESAC with a much smaller 

mean number of iterations as well as much smaller STDs for the coordinates. 

5.5 Summary 

This chapter presents the utilizing visual odometry method to acquire PVA 

information when the GPS signal is unreliable during experiments. The method 

proposed by this study, PURSAC purposely selects samples sets according to the 

sensitivity analysis of a model against sampling noise, and other information that can 

be used for purposive selection. It has three major steps in its implementation. Firstly, 

instead of assuming all the samples have the same probability to be inliers, PURSAC 

seeks their differences and purposively selects sample sets. Secondly, as sampling 

noise always exists, the selection is also according to the sensitivity analysis of a 

model against the noise. The final step is to apply a local optimization for further 

improving its model fitting performance. 

Being a qualitative guidance in principle, PURSAC’s implementation needs 

quantitative analysis to design executable rules for purposive sample consensus. Two 

examples were investigated in this thesis, one is a line fitting simulation and the 

other is a real data test of feature based visual odometry. The performance of the 

proposed PURSAC is much better than that of the original RANSAC and MLESAC 

in the two examples. Considering both the matching scores and the geometry of the 

feature points in feature based visual odometry, PURSAC is efficient in removing 

outliers and improving the fundamental matrix estimation. Furthermore, PURSAC 

can be easily merged into existing model fitting algorithms, and can detect more 

inliers with the same number of iterations. It can improve the accuracy and 

robustness of the removal of outliers, resulting in a more precise and efficient model 

fitting result. 
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CHAPTER 6 CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Conclusions 
This project has combined varied research fields, such as road surveying, sensors 

fusion and computer vision in order to address the challenging topic of real time 

exteroceptive sensor data acquisition and processing for an autonomous system. The 

system investigated is aimed at giving road maintainers the power to survey road 

assets without endangering workers and disrupting traffic. In the past, many 

researchers mainly focused on one aspect of road assets surveying without 

presenting comprehensive road profiling and surveying results. In the meanwhile, the 

recent advances in the resolution of cameras, and LADAR sensors are capable of 

providing more accurate and detailed information of surveying objects. The 

autonomous system is designed based on sensors fusion (camera, LADAR sensors, 

INS, GPS) while LADAR sensors provide dense 3D point clouds of travelling path, 

INS generates roll-pitch-yaw motion data of the testing vehicle and GPS presents 

continuous position information of the testing vehicle. Camera is utilized in 

computer vision for obtaining PVA information, especially in a GPS denied 

environment.  

Chapter 3 describes the proposed autonomous survey system from its basics. Firstly, 

it introduces how the system was constructed and why it was built in such a manner. 

The proposed system not only achieves multi-functions, such as road clearance 

measurement, road surface profiling, 3D structure modeling, road boundary 

detection and road roughness measurement but also operates in a convenient way. 

Most importantly, data collected by sensors has less chance of being blocked by 

other vehicles in a complex driving environment.  Secondly, hardware consist of two 

LADAR sensors, one IMU, one GPS and one camera, which are mounted on the 

designed aluminum integrated sensors frame and then installed at the back of a 

vehicle at a proper height (2300 mm). The feasibility and stability of the manner of 

sensors installation has been developed after many driving tests. Thirdly, a real-time 

acquisition software for receiving and recording data from LADAR sensors and IMU 
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has been introduced. In the driving tests, the acquisition software revealed excellent 

performance on stability which is reflected by no missing data from sensors and no 

functional faults occurring. Lastly, an indoor system accuracy of he LADAR sensors 

was conducted and the total error of system accuracy analysis is ±29.056mm, which 

demonstrates the accuracy of the selected sensors. 

In Chapter 4, the sensor data processing is presented in the sequence of the following 

functions: road boundary detection, white line & Traffic Lane Extraction, Clearance 

Measurement for Tunnels and Bridges, Road Surface Markers Extraction, 3D Model 

& GUI Construction and Road Roughness Measurement. All algorithms were 

developed based on range and remission data from LADAR sensors, and PVA 

information from INS and GPS.  Under ambient interference, surveying data still can 

be processed to obtain road assets results. Moreover, the proposed system is 

constructed with modular design and new components can be added into it easily.  

The accuracy result of bridges and tunnels clearance ranged from 1% - 7% while the 

accuracy of clearance measurement between the experimental vehicle drive lane has 

the smallest value ranging 1%-3% and the accuracy gets larger as the lane is further 

away from the   experimental vehicle.  The reason causing this is that point clouds of 

LADAR sensor becomes sparse when the object is far away from LADAR sensors, 

which increases the difficulty of surveying objects’ modelling and finally leads to 

error.  Besides, marked clearance for bridges and tunnels is usually lower than the 

actual clearance.  Hence, the clearance results are still acceptable.  

In Chapter 5, visual odometry optimization is presented. During the out-door 

experiments testing the system, a serious problem has been found as there is no GPS 

signal in tunnels which means no PVA information can be obtained. Hence, visual 

odometry became one method for obtaining PVA information. A novel estimation 

method named PURSAC for model fitting in the presence of outliers has been 

integrated very successfully into visual odometry. The key idea behind PURSAC is 

to purposely select sample sets according to the sensitivity analysis of a model to be 

fitted against sampling noise, and also to the measures of samples’ possibility to be 

inliers. PURSAC is compared with two estimation methods, one is the benchmark 

RANSAC, the other is its variant MLESAC. PURSAC processes faster than 

RANSAC and MLESAC under the same conditions.  Besides, the number of inliers 
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in visual odometry tests using PURSAC are much larger than the number with the 

use of MLESAC; in the meanwhile the inlier STD of PURSAC is stabilized (Figure 

5.7). Lastly, in the repeatability test, PURSAC achieves better results than RANSAC 

and MLESAC with much smaller mean number of iterations and STD (table 9). 

From all points of view, PURSAC has presented more accurate and efficient results 

than RANSAC and MLESAC. PURSAC as a part of visual odometry has played a 

significant role in this entire survey system.   

6.2 Recommendations and Future Work 
Although significant progress has been made on this survey project, it still has a few 

limitations. For example, the proposed system cannot function properly under 

extreme weather conditions, changing lane or sudden acceleration/braking. Incorrect 

or inaccurate measurements may be acquired under such circumstances.  

In the future, an integrated navigation will be investigated in order to generate more 

accurate PVA and improve the system performance. To further verify the accuracy of 

clearance of tunnels and bridges, actual clearance measurement information should 

be acquired from the RTA (now called the Roads and Maritime Services). In the 

future, cooperation with the roads and traffic authority is expected to test the system 

for robustness and feasibility evaluation. Besides, irregular lanes extraction is 

scheduled for the next step in this work. Width of irregular lanes varies over time and 

it is very difficult to calculate through remission data as noise on the road surface 

does affect the result. Furthermore, the system is not capable of working in traffic 

peak-time as many cars blocked the sensor’s view. Hence, finding a way of 

predicting a blocked area is necessary in the future work.  
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APPENDIX A: IRI Roughness Scales for 

Asphalt/Concrete 
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APPENDIX B: IRI Roughness Scales for 

Gravel/Earth 
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APPENDIX C: Matlab Implementation of the IRI 

Algorithm 

clearall% clear variables from memory 
clc 
% Import profile data (xiangluo) 
% % get wheel tracking (xiangluo) 
pre_str = 'grv1-30'; % change filename prefix 
x_str = strcat(pre_str,'_x.mat'); 
y_str = strcat(pre_str,'_y.mat'); 
z_str = strcat(pre_str,'_z.mat'); 
load(x_str); % get x_after (after transformation), horizontal 
load(y_str); % get y_after, displacement 
load(z_str); % get z_after, vertical 
[row, ~]=size(x_after); 
x_wheel = size(row,2); % col one is left wheel, col two is right wheel 
y_wheel = size(row,2); 
z_wheel = size(row,2); 
% get average of wheel tracking, left wheel ranges from 238-253, right from 310-324 
fori = 1:row 
x_wheel(i,1)=mean(x_after(i,238:253)); % mean of left wheel tracking 
x_wheel(i,2)=mean(x_after(i,310:324)); % mean of right wheel tracking 
y_wheel(i,1)=y_after(i,round((253-238)/2)+238); 
y_wheel(i,2)=y_after(i,round((324-310)/2)+310); 
z_wheel(i,1)=mean(z_after(i,238:253)); 
z_wheel(i,2)=mean(z_after(i,310:324)); 
end 
[~,pos]=min(abs(y_wheel(:,1)-100)); % only need 100 meters 
figure(1); 
plot3(x_wheel(1:pos,:),y_wheel(1:pos,:),z_wheel(1:pos,:),'.'); 
axisequal; 
 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung, Xiang Luo 
% Date: June 2012 
% ====================================================================== 
% NREC = 0; 
% Import profile data 
z_wheel = z_wheel.*1000; % unit in mm 
PROFL = z_wheel(1:pos,1); % profile of left wheel in z(vertical) direction 

PROFR = z_wheel(1:pos,2); % profile of right wheel in z(vertical) direction 
% Determine the spacing between scan lines to work out the total length of 
% profile sample. 
NPTS = length(PROFL); 
DELT = mean(y_wheel(2:pos,1)- y_wheel(1:pos-1,1)); % Average spacing between scan 
lines 
% Determine section length of the profile data 
SECLEN = double(NPTS-1)*DELT; 
% Determine whether input profile is pre-smoothed. 
presmoothed = false; % Change setting as necessary 
ifpresmoothed 
BASE = 0.0; 
else 
BASE = 0.250; 
end 
UNITSC = 1.0; 
% Call functions to calculate the International Roughness Index 
NSAMP = NPTS; 
[PROFL, AVIRIL, ~] = iri(PROFL, NSAMP, DELT, BASE, UNITSC); 
NSAMP = NPTS; 
[PROFR, AVIRIR, NSAMP] = iri(PROFR, NSAMP, DELT, BASE, UNITSC); 
AVEIRI = (AVIRIL + AVIRIR)/2.0; 
% Plot profile data. 
figure(2); 
plot(y_wheel(1:NSAMP,1),PROFL); 
xlabel('Distance (m)'); 
ylabel('Relative Elevation (mm)'); 
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title('Left Wheel Path Profile'); 
figure(3); 
plot(y_wheel(1:NSAMP,2),PROFR); 
xlabel('Distance (m)'); 
ylabel('Relative Elevation (mm)'); 
title('Right Wheel Path Profile'); 
% Display International Roughness Index calculations. 
disp('INPUT PROFILE DATA'); 
fprintf('Input file name : '); 
disp(z_str); 
fprintf('Number of samples : %d\n',NPTS); 
fprintf('Sampling interval : %4.3f m\n',DELT); 
ifpresmoothed 
fprintf('Input profile pre-smoothed : Yes\n\n'); 
else 
fprintf('Input profile pre-smoothed : No\n\n'); 
end 
disp('INTERNATIONAL ROUGHNESS INDEX (IRI)'); 
fprintf('IRI, left wheel track = %6.2f m/km\n', AVIRIL); 
fprintf('IRI, right wheel track = %6.2f m/km\n', AVIRIR); 
fprintf('IRI, average = %6.2f m/km\n', AVEIRI); 
fprintf('Section length = %6.2f metres\n', SECLEN); 

% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung, Xiang Luo 
% Date: June 2012 
% ====================================================================== 
% Function iri: Filter a longitudinal road profile and calculate IRI. 
% Input: 
% PROF: Array of profile height values 
% NSAMP: Number of values in input PROF 
% DX: Average spacing between scan points 
% BASE: Distance covered by moving average (m) 
% = 0.250 for unfiltered profile input 
% = 0.000 for pre-smoothed profile input (e.g. K.J.Law data) 
% UNITSC: Product of two scale factors (default=1) 
% (1) metres per unit of profile height; and 
% (2) IRI unites of slope 
% Output: 
% PROF: Array of filtered profile values; length <= original PROF 
% AVEIRI: Average International Roughness Index (IRI) 
function[PROF, AVEIRI, NSAMP] = iri(PROF, NSAMP, DX, BASE, UNITSC) 
XIN = [0 0 0 0]; 
% Set parameters and arrays. 
[AMAT, BMAT, CMAT] = setabc(653.0, 63.3, 6.0, 0.15); 
[ST, PR] = setstm(DX/(80.0/3.6), AMAT, BMAT); 
ibase = max(floor(BASE/DX + 0.5), 1); 
sfpi = UNITSC/(DX*ibase); 
% Initialise simulation variables based on profile start. 
i11 = min(floor(11.0/DX + 0.5) + 1, NSAMP); 
XIN(1) = UNITSC*(PROF(i11) - PROF(1))/(DX*i11); 
XIN(2) = 0.0; 
XIN(3) = XIN(1); 
XIN(4) = 0.0; 
% Convert to averaged slope profile, with IRI units. 
NSAMP = NSAMP - ibase; 
fori=1:NSAMP 
PROF(i) = sfpi*(PROF(i + ibase) - PROF(i)); 
end 
PROF = PROF(1:NSAMP); 
% Filter profile. 
PROF = stfilt(PROF, NSAMP, ST, PR, CMAT, XIN); 
% Compute IRI from filtered profile. 
AVEIRI = 0.0; 
fori=1:NSAMP 
AVEIRI = AVEIRI + abs(PROF(i)); 
end 
AVEIRI = AVEIRI/NSAMP; 
end% function iri 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
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% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
% ====================================================================== 
% Function setabc: Set the A, B and C matrices for the 1/4 car model. 
% Input: 
% K1: Kt/Ms = normalisedtyre spring rate (1/s/s) 
% K2: Ks/Ms = normalised suspension spring rate (1/s/s) 
% C: C/Ms = normalised suspension damper rate (1/s) 
% MU: Mu/Ms = normalisedunsprung mass 
% Output: 
% AMAT: 4x4 A matrix 
% BMAT: 4x1 B matrix 
% CMAT: 4x1 C matrix 
% Typical Usage: [AMAT, BMAT, CMAT] = setabc(653.0, 63.3, 6.0, 0.15); 
function[AMAT, BMAT, CMAT] = setabc(K1, K2, C, MU) 
AMAT = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
BMAT = [0 0 0 0]; 
CMAT = [0 0 0 0]; 
% Put 1/4 car model parameters into the A matrix. 
AMAT(1,2) = 1.0; 
AMAT(3,4) = 1.0; 
AMAT(2,1) = -K2; 
AMAT(2,2) = -C; 
AMAT(2,3) = K2; 
AMAT(2,4) = C; 
AMAT(4,1) = K2/MU; 
AMAT(4,2) = C/MU; 
AMAT(4,3) = -(K1+K2)/MU; 
AMAT(4,4) = -C/MU; 
% Set the B matrix for road input through tyre spring. 
BMAT(4) = K1/MU; 
% Set the C matrix to use suspension motion as output. 
CMAT(1) = -1.0; 
CMAT(3) = 1.0; 
end% function setabc 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
% ====================================================================== 
% Function setstm: Compute ST & PR matrices. 
% Input: 
% dt: Time step (sec) 
% A: 4x4 A matrix 
% B: 4x1 B matrix 
% Output: 
% ST: 4x4 state transition matrix 
% PR: 4x1 partial response vector 
function[ST, PR] = setstm(dt, A, B) 
A1 = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
A2 = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
ST = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
TEMP = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
PR = [0 0 0 0]; 
% Initialise A1 & ST matrices 
forj=1:4 
A1(j,j) = 1.0; 
ST(j,j) = 1.0; 
end 
% Calculate the state transition matrix ST = exp(dt*A) with a Taylor 
% series. A1 is the previous term in the series, A2 is the next one. 
iter = 0; 
while(more) 
iter = iter + 1.0; 
more = false; 
forj=1:4 
fori=1:4 
A2(i,j) = 0; 
fork=1:4 
A2(i,j) = A2(i,j) + A1(i,k)*A(k,j); 
end 
end 
end 
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forj=1:4 
fori=1:4 
A1(i,j) = A2(i,j)*dt/iter; 
if((ST(i,j) + A1(i,j)) ~= ST(i,j)) 
more = true; 
end 
ST(i,j) = ST(i,j) + A1(i,j); 
end 
end 
end 
% Calculate particular response matrix: PR = A**-1*(ST-I)*B 
% A = invert(A, 4); 
A = inv(A); % native MATLAB matrix inversion function for speed 
fori=1:4 
PR(i) = 0.0; 
fork=1:4 
PR(i) = PR(i) - A(i,k)*B(k); 
end 
end 
forj=1:4 
fori=1:4 
TEMP(j,i) = 0.0; 
fork=1:4 
TEMP(j,i) = TEMP(j,i) + A(j,k)*ST(k,i); 
end 
end 
fork=1:4 
PR(j) = PR(j) + TEMP(j,k)*B(k); 
end 
end 
end% function setstm 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
% ====================================================================== 
% Function stfilt: Filter profile using matrices ST & PR 
% Input: 
% PROF: Input profile 
% NSAMP: Number of data values in array PROF 
% ST: 4x4 state transition matrix 
% PR: 4x1 partial response matrix 
% C: 4x1 output definition values 
% XIN: Initial values of filtered variables 
% Output: 
% PROF: Filtered profile. Overwrites input profile. 
functionPROF = stfilt(PROF, NSAMP, ST, PR, C, XIN) 
X = [0 0 0 0]; 
XN = [0 0 0 0]; 

% Initialise simulation variables. 
fori=1:4 
X(i) = XIN(i); 
end 
% Filter profile using the state transition algorithm. 
fori=1:NSAMP 
forj=1:4 
XN(j) = PR(j)*PROF(i); 
fork=1:4 
XN(j) = XN(j) + X(k)*ST(j,k); 
end 
end 
forj=1:4 
X(j) = XN(j); 
end 
PROF(i) = X(1)*C(1) + X(2)*C(2) + X(3)*C(3) + X(4)*C(4); 
end 
end% function stfilt 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
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% ====================================================================== 
% Function invert: Returns the inverse of NxN matrix Y1. 
% Algorithm adapted from ASTM E1926-08 and "Numerical Recipes in 
% Fortran 77". 
% http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f2-3. 
% pdf 
% Input: 
% Y1: Input matrix 
% N: Dimension of NxN matrix 
% Output: 
% Y1: The inverse of input matrix Y1 
functionY1 = invert(Y1, N) 
A = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
YINV = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
fori=1:N 
forj=1:N 
A(i,j) = Y1(i,j); 
end 
end 
fori=1:N 
forj=1:N 
YINV(i,j) = 0.0; 
end 
YINV(i,i) = 1.0; 
end 
% LU matrix decomposition 
[A, INDX] = ludcmp(A); % modified ludcmp function 
% LU matrix back substitution 
YINV = lubksb(A, INDX, YINV); % modified lubksb function 
fori=1:N 
forj=1:N 
Y1(i,j) = YINV(i,j); 
end 
end 
end% function invert 

% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
% ====================================================================== 
% Function ludcmp: LU matrix decomposition 
% Algorithm adapted from ASTM E1926-08 and "Numerical Recipes in 
% Fortran 77". 
% http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f2-3. 
% pdf 
% Input: 
% A: 4x4 A matrix 
% Output: 
% A: 4x4 A matrix 
% INDX: 4x1 matrix 
function[A, INDX] = ludcmp(A) 
NMAX = 100; 
VV = zeros(1,NMAX); 
TINY=1.0e-20; 
N=4; 
INDX = zeros(1,N); 
IMAX = 0; 
D=1.0; 
fori=1:N 
AAMAX = 0.0; 
forj=1:N 
ifabs(A(i,j)) > AAMAX 
AAMAX = abs(A(i,j)); 
end 
end 
ifAAMAX == 0.0 
warning('Singular matrix'); 
pause; 
end 
VV(i) = 1.0/AAMAX; 
end 
forj=1:N 
fori=1:(j-1) 
sum = A(i,j); 
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fork=1:(i-1) 
sum = sum - A(i,k)*A(k,j); 
end 
A(i,j) = sum; 
end 
AAMAX = 0.0; 
fori=j:N 
sum = A(i,j); 
fork=1:(j-1) 
sum = sum - A(i,k)*A(k,j); 
end 
A(i,j) = sum; 
dum = VV(i)*abs(sum); 
ifdum>= AAMAX 
IMAX = i; 
AAMAX = dum; 
end 
end 
ifj ~= IMAX 
fork=1:N 
dum = A(IMAX,k); 
A(IMAX,k) = A(j,k); 
A(j,k) = dum; 
end 
D = -D; 
VV(IMAX) = VV(j); 
end 
INDX(j) = IMAX; 
ifA(j,j) == 0.0 
A(j,j) = TINY; 
end 
ifj ~= N 
dum = 1.0/A(j,j); 
fori=(j+1):N 
A(i,j) = A(i,j)*dum; 
end 
end 
end 
end% function ludcmp 
% ====================================================================== 
% This MATLAB code has been manually ported from the Fortran subroutines 
% defined in ASTM E1926-08. 
% Authors: Jonathan Tung 
% Date: June 2012 
% ====================================================================== 
% Function lubksb: LU matrix back substitution 
% Algorithm adapted from ASTM E1926-08 and "Numerical Recipes in 
% Fortran 77". 
% http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f2-3. 
% pdf 
% Input: 
% A: 4x4 A matrix 
% INDX: 4x1 matrix 
% B: 4x1 B matrix 
% Output: 
% B: 4x1 B matrix 
functionB = lubksb(A, INDX, B) 
N = 4; 
forcol=1:N 
II = 0; 
fori=1:N 
LL = INDX(i); 
sum = B(LL,col); 
B(LL,col) = B(i,col); 
ifII ~= 0 
forj=II:(i-1) 
sum = sum - A(i,j)*B(j,col); 
end 
elseifsum ~= 0 
II = i; 
end 
B(i,col) = sum; 
end 
fori=N:-1:1 
sum = B(i,col); 
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ifi< N 
forj=(i+1):N 
sum = sum - A(i,j)*B(j,col); 
end 
end 
B(i,col) = sum/A(i,i); 
end 
end 
end% function lubksb - LU back substitution 
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APPENDIX D: Design of Integrated Sensors Frame 

 

Figure D1: Integrated Sensors Frame front view 

 

Figure D2: Integrated Sensors Frame top view 
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Figure D3: Integrated Sensors Frame isometric view 
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APPENDIX E: IRI values of asphalt, concrete and 

gravel at different speeds 

 
Figure E1: Left and right wheel path profiles for asphalt at 20km/h 

 
Figure E2: Calculated IRI values for asphalt at 20km/h 

 

Figure E3: Left and right wheel path profiles for asphalt at 30km/h 

 
Figure E4: Calculated IRI values for asphalt at 30km/h 



 
 

97 
 

 
Figure E5: Left and right wheel path profiles for asphalt at 40km/h 

 
Figure E6: Calculated IRI values for asphalt at 40km/h 

 

 
Figure E7: Left and right wheel path profiles for concrete at 30km/h 

 

Figure E8: Calculated IRI values for concrete at 30km/h 
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Figure E9: Left and right wheel path profiles for concrete at 40km/h 

 

Figure E10: Calculated IRI values for concrete at 40km/h 

 
Figure E11: Left and right wheel path profiles for gravel at 20km/h 

 
Figure E12: Calculated IRI values for gravel at 20km/h 
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Figure E13: Left and right wheel path profiles for gravel at 30km/h 

 
Figure E14: Calculated IRI values for gravel at 30km/h 
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