
Towards Reliability and Scalability in Feature

Based Simultaneous Localization and Mapping

Gibson Hu

Submitted in fulfillment of the requirement

for the degree of Doctor of Philosophy

2014

The Faculty of Engineering and Information Technology

Centre for Autonomous Systems, University of Technology Sydney

www.uts.edu.au

Supervisor : A/Prof. Shoudong Huang

Co-Supervisor : Dr. Alen Alempijevic

Second Co-Supervisor : Prof. Gamini Dissanayake

Certificate

I, Gibson Hu, declare that this thesis entitled Towards Reliability and Scalability in

Feature Based Simultaneous Localization and Mapping and the work presented in it are

my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

this University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself or jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date: 01/07/2014

i

Production Note:
Signature removed prior to publication.

Acknowledgements

Having come to the end of my PhD candidature, it has been a wonderful experience

working with some of the best and brightest at the Centre for Autonomous Systems, UTS.

Four years has passed by very quickly with much learning and research in the exciting

field of Robotics. The road has been filled with many challenges, from late nights spent

coding to traveling overseas for competition and conferences.

I have been very privileged to work with Associate Professor Shoudong Huang, Dr Alen

Alempijevic and Professor Gamini Dissanayake, who have not only been inspirational but

role models to me. I would also like to thank the post docs, Liang Zhao, Zhang Wang, Jack

Wang, Gavin Paul and the students, Minjie Liu, Lei Shi, Andrew To, Kasra Khosoussi,

Mohammad Norouzi, and Freek De Bruijn.

Finally, I would like to thank my friends and family for their unending support.

ii

Abstract

Simultaneous Localization and Mapping (SLAM) has always been an attractive topic in the vibrant

field of robotics. Feature based representations of the problem can be seen as one of the most

common definitions. In recent years, many SLAM researchers have realized some limitations of

filtering based methods and started to focus more on optimization based SLAM techniques. However,

this raises several questions surrounding convergence reliability and, similar to filtering, algorithm

scalability.

In SLAM, sensor noise and non-linearity often causes the problem to become difficult. Converg-

ing towards the global minimum in a non-linear least squares formulation is by no means easy.

Typically, one would need to start from a good initial estimate, preferably already inside the basin

of attraction of the global minimum. In this thesis, we introduce a technique called Iterative Re-

Weighted Least Squares bootstrapping to achieve a good initial estimate even when the noise is

exceptionally large.

As a robot continues to traverse through its environment the complexity of SLAM tends to scale

badly with the cumulative nature of graph nodes and edges. To solve large SLAM problems within a

reasonable time scale one must also take into consideration elements of accuracy and consistency.

In this thesis, we propose two alternative algorithms to handle complexity, Sparse Map Joining

and Pose Graph Representation. Both of which contain unique advantages for handling the diverse

scenarios within SLAM.

A series of quantitative analyses are performed on a number of challenging datasets, both real and

simulated. In addition to this we perform a comprehensive case study on a specific type of feature

based SLAM problem, RGB-D SLAM. This demonstrates how our technique is capable of avoiding

inaccuracies and failure scenarios that is otherwise common in other RGB-D SLAM algorithms.

iii

Contents

1 Introduction 2

1.0.1 SLAM Applications . 3

1.0.2 Brief History of SLAM . 4

1.1 Motivation . 5

1.2 Contributions . 6

1.3 Publications . 7

1.4 Thesis Outline . 8

2 Preliminaries 9

2.1 Extended Kalman Filtering for SLAM . 9

2.2 Graph Based SLAM . 10

2.2.1 Odometry and Observation Information 11

2.2.2 Linear Least Squares . 13

2.2.3 Non-Linear Least Squares . 15

2.2.4 Weighted Non-Linear Least Squares 19

2.2.5 Least Squares for SLAM . 20

2.3 Front-End and Back-End . 21

2.4 Evaluating a SLAM algorithm . 22

2.4.1 Chi Squared (χ2) . 22

2.4.2 Expected Value of χ2 / Normalized χ2 23

2.4.3 χ2 Ratio . 24

2.4.4 Normalized Estimation Error NEES 24

2.5 Related Works . 26

v

CONTENTS

2.5.1 Improving Reliability . 26

2.5.2 Overcoming Computational Complexity 28

2.6 Summary . 30

3 Reliable Optimization 31

3.1 Introduction . 31

3.2 A General Framework for Reliable Optimization 32

3.2.1 Defining a Sequence . 34

3.2.2 Iterative Re-weighted Least Squares 35

3.2.3 Formulation for IRLS . 36

3.2.4 M-Estimators . 38

3.2.5 Generalized Influence Function . 40

3.2.6 Initial Influence . 42

3.2.7 Stopping Condition for IRLS . 42

3.2.8 Summary of IRLS algorithm . 43

3.3 Evaluation Criteria . 43

3.3.1 Benchmark Solution . 43

3.3.2 Noise Conditions . 43

3.3.3 Monte Carlo Evaluation . 44

3.3.4 Success Rate . 44

3.4 Experiment and Results . 45

3.4.1 IRLS for Feature Based Graphs . 45

3.4.2 IRLS on Pose Graphs . 46

3.4.3 Resulting Maps . 48

3.5 Discussion . 50

3.5.1 Importance of Noise Correlation . 50

3.5.2 Computation Time . 50

3.6 Summary . 51

vi

CONTENTS

4 Sparse Map Joining 52

4.1 Introduction . 52

4.2 Sparse Map Joining . 53

4.2.1 Building Local Maps . 53

4.2.2 Marginalization . 54

4.2.3 Fusing Local Maps . 55

4.2.4 SMJ Algorithm . 58

4.3 3D Sparse Map Joining . 59

4.3.1 Standard 3D Range and Bearing . 59

4.3.2 SMJ for Bundle Adjustment(BA) . 60

4.3.3 Dual-Observation Model Joining . 61

4.4 Evaluation . 63

4.4.1 Consistency using NEES . 63

4.4.2 Accuracy using χ2 Ratio . 67

4.4.3 Computation Time . 69

4.4.4 Resulting Maps . 71

4.4.5 Real Datasets . 72

4.5 Discussion . 74

4.6 Summary . 76

5 Pose Graph Representation 77

5.1 Introduction . 77

5.2 Pose Graphs . 78

5.3 Pose Graph Representation of Feature Based SLAM 79

5.3.1 Obtaining Relative Pose . 79

5.3.2 Information Reuse . 81

5.3.3 Algorithm . 86

5.4 Evaluation . 87

5.4.1 Consistency using NEES . 87

5.4.2 Accuracy using χ2 Ratio . 89

5.4.3 Resulting Maps . 91

5.4.4 Computation Time . 91

vii

CONTENTS

5.4.5 Real Datasets . 94

5.5 Discussion . 95

5.5.1 Further Improving Efficiency . 95

5.5.2 Euler Angle Parameterization . 96

5.5.3 Outliers in Feature Observations . 96

5.6 Summary . 99

6 Case Study: RGB-D SLAM 100

6.1 Introduction . 100

6.1.1 Related Work . 101

6.1.2 Motivation . 102

6.1.3 Chapter Overview . 102

6.2 RGB-D Cameras . 103

6.3 Handling the RGB-D SLAM Front-End . 106

6.3.1 Feature Selection . 106

6.3.2 Feature Matching . 107

6.3.3 Iterative Closest Point (ICP) . 110

6.3.4 RGB Visual Odometry . 111

6.3.5 Initializing a New Pose . 111

6.3.6 Initializing a New Feature . 111

6.3.7 Loop Closing . 112

6.4 RGB-D SLAM . 114

6.4.1 Flow Chart of RGB-D SLAM . 115

6.4.2 Experiments and Results . 116

6.5 Robust RGB-D SLAM . 121

6.5.1 Local Map Building and Joining . 121

6.5.2 Local Map Switching . 121

6.5.3 Flow Chart of Robust RGB-D SLAM 124

6.5.4 Experiment . 125

6.6 Discussion . 129

6.6.1 RGB-D SLAM . 129

6.6.2 Robust RGB-D SLAM . 129

viii

CONTENTS

6.7 Summary . 131

7 Conclusion and Future Work 132

7.1 Summary of Contributions . 133

7.1.1 Reliable Optimization . 133

7.1.2 Sparse Map Joining . 133

7.1.3 Pose Graph Representation . 134

7.1.4 Case Study . 134

7.2 Future Work . 135

7.2.1 Improving the Reliability . 135

7.2.2 Optimal Splitting Strategy . 135

7.2.3 Finding the Optimal Subset of Key Poses 136

7.2.4 Issues in RGB-D SLAM . 136

Appendix 138

A Simulated Datasets . 138

B Reliable Optimization . 141

C Sparse Map Joining . 142

C.1 Batch Optimization (BO) . 142

C.2 Sequential Optimization (SO) . 143

C.3 Divide & Conquer Optimization (DCO) 144

C.4 Sparse Map Joining Algorithm . 145

D Pose Graph Representation . 146

E Schur Complement . 148

F Transforming between Rotation Matrix and Euler Angles 149

Bibliography 150

ix

List of Tables

3.1 Generalized function evaluation . 41

3.2 Pose/feature IRLS evaluation . 45

3.3 Pose only (Manhattan3500) IRLS evaluation 47

3.4 Pose only (City10000) IRLS evaluation . 47

3.5 IRLS computation time evaluation . 50

4.1 Noise in simulated datasets . 63

4.2 Summary of simulated datasets . 63

4.3 SMJ 2D NEES evaluation . 65

4.4 SMJ 3D NEES evaluation . 66

4.5 SMJ 2D χ2 Ratio evaluation . 68

4.6 SMJ 3D χ2 Ratio evaluation . 68

4.7 SMJ computation time evaluation . 69

4.8 SMJ real data evaluation . 72

5.1 Summary of simulated datasets . 87

5.2 PGR 2D NEES evaluation . 88

5.3 PGR 3D NEES evaluation . 88

5.4 PGR 2D χ2 Ratio evaluation . 90

5.5 PGR 3D χ2 Ratio evaluation . 90

5.6 PGR computation time evaluation . 92

5.7 PGR real data evaluation . 94

5.8 Horn vs. Least Squares . 95

x

LIST OF TABLES

6.1 Feature extraction methods . 106

6.2 Summary of simulated datasets . 117

6.3 RGB-D SLAM results . 117

6.4 RE-RANSAC failure modes . 122

xi

List of Figures

1.1 Home Robots . 3

1.2 Search and Rescue Robot . 4

2.1 Dynamic Bayesian Network . 10

2.2 Gauss-Newton vs Gradient Descent . 16

2.3 Front-End Back-End . 21

3.1 Graduated non-convexity . 33

3.2 Basic Sequence . 34

3.3 Weighted sequence . 36

3.4 Influence functions . 38

3.5 Weight functions . 39

3.6 Generalized function . 41

3.7 Pose feature result . 48

3.8 Pose graph (Manhattan3500) result . 48

3.9 Pose graph (City10000) result . 49

4.1 Local map marginalization . 55

4.2 Map joining . 56

4.3 Batch Optimization . 57

4.4 Sequential Optimization . 57

4.5 Divide & Conquer Optimization . 58

4.6 Dual-observation model joining . 62

4.7 SMJ simulation results . 71

xii

LIST OF FIGURES

4.8 SMJ real data results . 73

5.1 Pose/feature to pose graph . 79

5.2 Compute relative pose . 80

5.3 Single observation method . 82

5.4 Multi observation method . 83

5.5 Ignoring information reuse . 84

5.6 PGR simulation results . 91

5.7 Information matrix sparsity . 93

5.8 PGR real data results . 94

5.9 Outliers in the data . 97

5.10 Robust PGR results . 98

6.1 RGB-D Cameras . 103

6.2 RGB-D camera model . 105

6.3 FABMAP loop closing . 113

6.4 Flow chart for RGB-D SLAM . 115

6.5 Ground truth comparison . 119

6.6 Point cloud overlay . 120

6.7 Flow chart for RGB-D SLAM . 124

6.8 Visual odometry initial estimate . 126

6.9 Images at point of switch . 126

6.10 Optimized graph . 127

6.11 Point cloud overlay . 128

6.12 Point cloud overlay vs. architectural floor plan 128

1 Circle trajectory . 138

2 Loop trajectory . 139

3 Manhattan features trajectory . 139

4 Sphere features trajectory . 140

xiii

Nomenclature

Formatting Style

x̂ Measured

x̄ Estimated

x̃ Actual

Subscript

m features index i, j pose index

t time index

Superscript

M marginalized P pose set

F feature set O odometry set

K pose subset L local map

G global map S sensor

xiv

NOMENCLATURE

Notations

∼ N normally distributed argmin
X

minimizer

[.] vector elements ||.|| Euclidean norm

X∗ the optimum X(0) initial estimate

Variables

G undirected graph V graph vertices

E graph edges E essential matrix

Z measurement vector X state vector

Σ covariance matrix Ω, Λ information matrix

χ2 chi squared value ν degree of freedom

P optimisation problem w weight scalar

F fundamental matrix S scale

K calibration matrix T transformation matrix

Functions

g() pose to pose h() pose to feature

b() generalized model function ρ() m-estimator

Rot() rotation matrix Proj() projection matrix

Horn() Horn’s method ψ() influence function

xv

Abbreviations

SLAM Simultaneous Localisation and Mapping

ML Maximum Likelihood

GN Gauss-Newton

GD Gradient Decent

PDL Powell’s Dog-Leg

LM Levenberg-Marquardt

STD Standard Deviation

SGD Stochastic Gradient Descent

SBA Sparse Bundle Adjustment

iSAM Incremental Smoothing and Mapping

g2o General Graph Optimization

ParallaxBA Parallax Angle Bundle Adjustment

Alg Algorithm

RMSE Root Mean Squared Error

NEES Normalized Estimation Error Squared

xvi

ABBREVIATIONS

IRLS Iterative Re-weighted Least Squares

GT Ground Truth

IMU Inertial Measurement Unit

RPE Relative Pose Error

ATE Absolute Trajectory Error

SIFT Scale Invariant Feature Transform

SURF Speeded-Up Robust Features

I-SLSJF Iterated Sparse Local Submap Joining Filter

EIF Extended Information Filter

EKF Extended Kalman Filter

SMJ Sparse Map Joining

BO Batch Optimization

SO Sequential Optimization

DCO Divide and Conquer Optimization

LAGO Linear Approximation for Graph Optimization

TORO Tree based netwORk Optimizer

MO Multi Observation method

SO Single Observation method

PGR Pose Graph Representation

MAP Maximum a Posteriori

xvii

ABBREVIATIONS

DBN Dynamic Bayesian Network

ICP Iterative Closest Point

RE-RANSAC Re-projection Error RANdom SAmpling Consensus

EM-RANSAC Essential Matrix RANdom SAmpling Consensus

VO Visual Odometry

FABMAP Fast Appearance Based Mapping

IR Infrared

M-Estimator Maximum likelihood-type Estimator

GPS Global Positioning System

xviii

Chapter 1

Introduction

Robotics is an exciting field of research which tries to build and understand many of the

tasks human perform in everyday life. While many robots have in the past been restricted

by known locations such as assembly line in a factory, nowadays, a wide range of solutions

in non-fixed environments are made possible through the aid of robotics. The major

challenge that exists is when these robots are faced with new unstructured and unknown

environments.

Even for humans confronted with the same problem, the first typical course of action

is to represent this new environment as a map. However, in doing so one must also have

some knowledge of ones location. This leads to the famous causality dilemma in robotics

called Simultaneous Localization and Mapping (SLAM), the process of building the map

around the localized position whilst at the same time localizing oneself given a map.

Knowing one’s location and having a well established understanding of the environment

is critical for many high level operations. Some key competencies of an advanced robotic

system should include navigation, exploration, obstacle avoidance and path planning, all

of which require some information gained from SLAM.

The SLAM problem was first raised in a seminal paper by Leonard and Durrant-Whyte

[1]. They asked, whether it was possible to perform SLAM using only the sensors on board

a robot, without the aid of any external global positioning systems. Since no sensor is

perfect, the robot can never make an exact judgment on what will happen next or where

2

CHAPTER 1. INTRODUCTION

it will be in the next time step. However, Leonard and Durrant-Whyte convey that it is

possible to make an informed estimate on the robot’s location and map with a measured

degree of certainty.

1.0.1 SLAM Applications

What makes SLAM useful is the large number of real world applications that exist, whereby

there is no aid given from any external referencing systems (such as GPS). In this situation

a robot must rely solely on its own measurement sensors to build up an understanding of

its surroundings. Below are two such applications.

Home Robotics

(a) Willow Garage PR2 (b) UTS RobotAssist

Figure 1.1: Home Robots

For a robot to confidently operate in a home environment, it must be robust to changing

environments, clutter and sometimes dynamic scenes. Maps should therefore be very

descriptive and regularly updated as the robot continues to operate. The robot must also

be spatially aware of its surrounding such that tasks can be smoothly executed. Typical

on-board sensors found on a home robot include RGB-D cameras, lasers, sonars, and

inertial measurement units (IMU). Either a single sensor or combination of sensors is used

in the building of SLAM maps for the home environment.

3

CHAPTER 1. INTRODUCTION

Search and Rescue

Figure 1.2: Search and Rescue Robot

In a search and rescue scenario, robots are built for their stability and rigidity. An example

of a platform is the Packbot, seen in Figure 1.2. On top of platform structure, due to

the unpredictable nature and complexities in the environment, robots are also expected

to build very high fidelity 3D maps. Not only does this provide the robot with awareness

about its surroundings but allows rescue workers to pin point exact locations of potential

victims.

In many situations, the robot will also lose communication with its user and must rely

solely on its own autonomy to navigate safely. Therefore it is extremely critical that the

robot knows accurately about its own location uncertainty.

1.0.2 Brief History of SLAM

The original problem of SLAM has been traditionally formulated as a pose and feature

based Bayesian network, solved by Bayesian filters such as the Extended Kalman Filter

(EKF). However filtering does not scale well with larger feature sizes and can gradually

become inconsistent over time, resulting in the solution becoming corrupted due to lin-

earization errors [2]. Particle Filters [3] have also been researched with some increasingly

good results, but yet again do not scale well to higher dimensions and suffer from degen-

4

CHAPTER 1. INTRODUCTION

eracy and depletion [4]. Current state of the art SLAM approach have reverted back to

the original idea of optimization, first proposed in the seminal paper by Lu and Milios [5].

Due to the increased computation power of modern computers and sensor, SLAM maps

of high quality have been produced for very large scale environments. In many cases,

optimization approaches [6–8] are proven to be the superior method.

1.1 Motivation

Current trends have led the SLAM problem into many new directions. In this thesis we

will be focusing on one of the most common and concise representations, known as feature

based SLAM. This is when the joint probability of the posterior is estimated for both robot

position and landmark location using the observations of landmarks and vehicle motion.

When landmarks can be easily expressed as point features (absolute Euclidean position),

this SLAM variant is by far the most precise way to represent the problem.

Many modern methods have chosen to solve feature based SLAM using optimization,

[6, 9] [10] [11, 12]. With the success of these algorithms, also come major draw-backs. First

is the problem of local minima. The optimization step involves solving a high dimensional

non-linear least squares problem. This means that the global minimum of the cost function

can be hard to find through conventional iterative methods. Some initial evaluations

has been made in this field [13, 14]; however, more reliable methods should be further

investigated.

The second is the problem of scalability. This is when the manageability of internal

states and information correlation become overly large due to the length of trajectory or

the total number of landmarks. One scenario is that of a large environment, where the

robot must either perform a long trajectory to explore the whole map, and/or observe

many features to get an accurate estimate of its location.

5

CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis is divided up into a series of contributions made over the course of my PhD

candidature. The principle contributions of this thesis are as follows:

• Developing a reliable algorithm that will achieve a high success rate for the global

minimum of a SLAM problem. The contributions include a proposal for the general

framework towards reliability and a technique called Iterative Re-weighted Least

Squares (IRLS) bootstrapping for the realization of this framework.

• For large scale maps, the computational complexity of maximum likelihood will grow

over time. Sparse Map Joining (SMJ) counters this problem through sub-mapping

and marginalization of robot poses. This approach is supported, by experimental ev-

idence, to have good consistency for both 2D and 3D feature based SLAM problems.

Emphasizes is also put on the evaluation, where we have compared the different

sub-map joining methods (Batch, Sequential and Divide & Conquer).

• The next contribution demonstrates how a Pose Graph Representation (PGR) of

feature based SLAM has the capability of also greatly improving the efficiency. The

major issues tackled are information reuse and the degree of efficiency. These have

been addressed through the Multi Observation Model and the Key Poses method.

• Our final contribution is the development of a fully-fledged SLAM system that is

capable of solving RGB-D SLAM. By applying (IRLS), (SMJ), and (PGR), our

algorithm becomes highly reliable and efficient. Due to the poor depth observability

of the sensor, we also propose a new hybrid mapping strategy that allows us to map

environments where other RGB-D SLAM strategies would have otherwise failed.

6

CHAPTER 1. INTRODUCTION

1.3 Publications

The following is a list of publications supporting the work presented in this dissertation.

• Hu. G, Khosoussi. K and Huang. S, "Towards a reliable SLAM back-end", IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS) pp. 37-43, Tokyo, Japan,

2013.

• Hu. G, Huang. S, Zhao. L, Alempijevic. A and Dissanayake. G, "A robust RGB-D SLAM

algorithm", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) pp. 1714-1719, Vilamoura, Portugal, 2012.

• Hu. G, Huang. S and Dissanayake. G, "Evaluation of Pose Only SLAM", Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp.

3732-3737, Taipei, Taiwan, 2010.

• Hu. G, Huang. S, and Dissanayake, G., "3D I-SLSJF: A consistent sparse local submap

joining algorithm for building large-scale 3D Map", Proceedings of the IEEE International

Conference on Decision and Control (CDC) held jointly with the Chinese Control Confer-

ence (CCC) pp. 6040-6045, Shanghai, China, 2009.

• Wang. H, Hu. G, Huang. S and Dissanayake. G, "On the Structure of Nonlinearities in

Pose Graph SLAM", Proceedings of Robotics: Science and Systems, Sydney, Australia, 2012.

• Zhao. L, Huang. S, Yan. L, Wang. J and Hu. G, "Large-scale monocular SLAM by local

bundle adjustment and map joining", Proceedings of the IEEE International Conference on

Control Automation Robotics & Vision (ICARCV) pp. 431-436, Singapore, 2010.

• Wang. J, Hu. G, Huang. S and Dissanayake. G, "3D Landmarks extraction from a Ranger

Imager Data for SLAM", Proceedings of Australasian Conference on Robotics and Automa-

tion (ACRA), Sydney, Australia, 2009.

• Kirchner, N, Alempijevic. A, Caraian. S, Fitch. R, Hordern. D, Hu. G, Paul. G, Richards.

D, Singh. S and Webb. S, "Robot assist-a platform for human robot interaction research",

Proceedings of Australasian Conference on Robotics and Automation (ACRA) pp. 1-10,

Sydney, Australia, 2009.

7

CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

• Chapter 2 gives the reader a preliminary understanding into the major concepts

expressed in this thesis. These include how to solve SLAM through optimization and

how to properly evaluate different SLAM algorithms. There will also be a discussion

on related literature surrounding the contributions.

• Chapter 3 details the first contribution, Reliable Optimization. In this chapter

we introduce the general framework for reliability and propose Iterative Re-weighted

Least Squares bootstrapping (IRLS). A comparison is made against other popular

bootstrapping algorithms in SLAM literature.

• Chapter 4 introduces a method called Sparse Map Joining. Through the process

of pose marginalization and sub-map joining, the overall computational complexity

of the problem is reduced. The evaluation of this approach is conducted on both

simulated and real dataset.

• Chapter 5 promotes the idea of Pose Graph Representation where only robot

poses are estimated and observations are inferred through relative pose constraints.

This type of representation exhibit some unique properties that will be further in-

vestigated and discussed.

• Chapter 6 is a case study that incorporates the contributions in Chapters 3-5. Two

SLAM algorithms are developed to solve the problem of RGB-D SLAM. The first

will tackle the ideal conditions and the other will handle the problematic case of

poor depth observability.

• Chapter 7 concludes this thesis with a discussion on possible future work.

8

Chapter 2

Preliminaries

2.1 Extended Kalman Filtering for SLAM

Traditionally SLAM has been solved using filtering based methods such as the Extended

Kalman Filter (EKF). The main problem arises from the non-linearity of the observa-

tion and motion models. Constantly marginalizing and linearizing at every iteration will

quickly introduce optimistic estimates and lead to inconsistency. EKF SLAM has a special

monotonic property where the determinant of map covariance will eventually become zero

due to the landmarks becoming fully correlated [15]. Individual landmark variance will

converge towards a lower bound determined only by the robot location error that existed

when the first observation was made. The inconsistency of EKF results is an estimated

covariance which may be less than the true covariance [2]. In addition to these properties,

the computation complexity is O(N2) where N is the number of features. Given that the

covariance matrix is dense, the complexity quickly escalates as more and more features

are added.

Many of the pitfalls in filtering are caused by the marginalization of robot poses. The

more stable alternative is to keep all the poses and use an optimization based framework.

The next section provides preliminary knowledge into how optimization can be formulated

for SLAM.

9

CHAPTER 2. PRELIMINARIES

2.2 Graph Based SLAM

A popular way to represent the SLAM problem is through graphical modeling. These

techniques are often referred to as "Graph Based" or "Network Based" approaches. In

literature there are many ways to representation SLAM graphically, (e.g., Factor Graphs

[12, 16, 17], Bayes Trees [18] or Markov Random Fields [19]). All of which are fundamen-

tally derived from the Dynamic Bayesian Network (DBN) [20, 21], a much generalized

expression derived from probability theories, see Figure 2.1.

m

X0 X1 X2 X3 Xt

u1 u2 u3 ut

z1 z2 z3 zt

Figure 2.1: In this Dynamic Bayesian Network, the robot poses and map are hidden
variables (blue), and measurements are known variables (green). The connectivity
follows a recurring pattern given the transitional models defined by odometry u and
observation z.

In DBN, the transition model is defined by p(Xt|Xt−1, ut), describing how the robot

position is updated through the odometry. The map (m) probability is then updated

given the robot location Xt. In DBN, only the temporal structure of the SLAM problem

is being described. More modern graphical models actually highlight the spatial structure

as well. In the follow section, we will solve a specific type of SLAM problem known as

Feature Based SLAM, using a graphical model.

10

CHAPTER 2. PRELIMINARIES

2.2.1 Odometry and Observation Information

A directed graph G = (V, E) is used to denote our graphical representation of SLAM.

Where the vertices V = XP ∪ XF correspond to robot and feature positions. The edges

E = ẐF ∪ ẐO represent the relative transforms/measurements between vertices.

The nodes or states are often represented by their absolute positions in a global coordi-

nate frame. In the 2D case, x, y denote the position and θ is the orientation.

XP
i =

⎡
⎢⎢⎢⎢⎣

xP
i

yP
i

θP
i

⎤
⎥⎥⎥⎥⎦ , XF

m =

⎡
⎢⎣xF

m

yF
m

⎤
⎥⎦ (2.1)

Here, XP
i ∈ XP and XF

m ∈ XF .

Edges in the graph encapsulates the dependences that exist between node variables,

mapped directly to the sensor data. There are multiple ways one can define the mapping,

and in this thesis we will be using a very generalized form

ẐO
ij = gij(XP

i , XP
j) + ωO

ij

ẐF
im = him(XP

i , XF
m) + ωF

im

(2.2)

In this expression, ẐO
ij ∈ ẐO and ẐF

im ∈ ẐF , measurement functions gij(·, ·) and him(·, ·)
are non-linear and ωO

ij ∼ N (0, Σ̂O
ij) and ωF

im ∼ N (0, Σ̂im) denotes the measurement noise.

The noise is assumed to be a multivariant Gaussian with covariance matrices.

Σ̂O
ij =

⎡
⎢⎢⎢⎢⎣

Σxx Σxy Σxθ

Σyy Σyy Σyθ

Σθx Σθy Σθθ

⎤
⎥⎥⎥⎥⎦ , Σ̂F

im =

⎡
⎢⎣Σxx Σxy

Σyx Σyy

⎤
⎥⎦ (2.3)

The measurement functions describing the transformation for 2D (pose to pose and pose

to feature) are

11

CHAPTER 2. PRELIMINARIES

gij(XP
i , XP

j) =

⎡
⎢⎢⎢⎢⎣

cos(θP
i)(xP

j − xP
i) + sin(θP

i)(yP
j − yP

i)

− sin(θP
i)(xP

j − xP
i) + cos(θP

i)(yP
j − yP

i)

θP
j − θP

i

⎤
⎥⎥⎥⎥⎦ (2.4)

him(XP
i , XF

m) =

⎡
⎢⎣ cos(θP

i)(xF
m − xP

i) + sin(θP
i)(yF

m − yP
i)

− sin(θP
i)(xF

m − xP
i) + cos(θP

i)(yF
m − yP

i)

⎤
⎥⎦ (2.5)

Remark. In feature based SLAM, j = i+1 for all gij. However, in this thesis we will also

be looking at the pose graph problem, in which case, ẐF and XF do not exist. The graphs

become E = ZP ∪ ẐO and V = XP , where a new edge in ZP is also a relative pose between

XP
i to XP

j and j �= i + 1. Typically ZP is not a measured edge so ˆ is not assigned.

Transforming Sensor Measurements

Different sensors produce different sensor models based on their operating principles. Often

these models are non-linear in their state variables. Nevertheless, some of these can be

transformed into the generalized form, defined by Equations (2.4), (2.5).

ẐF
im = s(ẐS

im) (2.6)

For a range (R) and bearing (φ) sensor (e.g., laser)

ẐS
im =

⎡
⎢⎣Rim

φim

⎤
⎥⎦ , s(ẐS

im) =

⎡
⎢⎣Rim cos(φim)

Rim sin(φim)

⎤
⎥⎦ (2.7)

To transform the covariance we must linearize about the measured point by taking the

partial derivative (JS), Jacobian of function s and obtain

Σ̂F
im = (JS)Σ̂S

im(JS)T (2.8)

12

CHAPTER 2. PRELIMINARIES

Gaussian Assumption

A common assumption made for SLAM problems, is that the measurement noise is ap-

proximately Gaussian. This assumption is both common and appropriate for many robotic

sensors. By doing this, one can exploit various statistical approaches for solving and

analysing optimization problems. Note, the flaw of this assumption is that, even if the

noise of a sensor is exactly Gaussian, the non-linearity of various function (e.g., motion

model) can cause the transformed result to be no longer Gaussian [16]. Therefore, it is

important to realize that the Gaussian assumption is only ever a good approximation.

The other major flaw is on the influence of outliers. When an outlier is present in

the graph, the Gaussian distribution can become skewed, causing the final solution to

become corrupted by the outlier. In practice a 3 Sigma bound should always be imposed

on the noise values during simulations. However, when dealing with real sensor data, this

restriction, in many instances is difficult to enforce.

2.2.2 Linear Least Squares

Once we have a representation for all the nodes and edges of the graph, the next objective

is to find the most likely configuration of robot poses and/or features such that the error

between the measurements and the estimates are minimized. In terms of probability,

this can be expressed as a Maximum Likelihood (ML) or Maximum a Posteriori (MAP).

In optimization, we can treat this as being a weighted least squares problem under the

assumption of independent Gaussian noise and for MAP, also independent Gaussian prior.

A common analogy for least squares, theorized by Golfarelli et al [22], expresses the

graph as a springs and masses model (edges are springs and vertices are masses). The

higher the uncertainty existing between two vertices, the weaker the springs become.

Trying to minimize the energy required for the springs to hold all the masses together is

the objective.

First, the general form of the optimization problem can be posed in the following manner

13

CHAPTER 2. PRELIMINARIES

X� = argmin
X

F (X) (2.9)

When F (X) is in a particular format, then the least squares problem is formed. The

aim now is to minimize the sum of the squares of all the residuals in the cost function

F (X). Residuals arise from the error between the theoretical measurements Z̄ given by

the estimated X� and the actual measurements Ẑ.

The objective function is described by (Note, the following series of formulations are all

derived in their general forms)

F (X) =
∥∥∥∥f(X) − Z

∥∥∥∥
2

(2.10)

A linear least squares problem exists when the function f can be constructed from linear

combinations

f(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1(X)

f2(X)
...

fn(X)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

fi(X) = ai,1x1 + ai,2x2 + · · · + ai,nxn (2.12)

Collecting all the co-efficient aij into matrix A, the equation becomes

F (X) =
∥∥∥∥AX − Z

∥∥∥∥
2

(2.13)

Now to find the minimum point of function F , we will take the derivative and make it

equal to zero.

14

CHAPTER 2. PRELIMINARIES

∥∥∥∥AX − Z

∥∥∥∥
2

= (Z − AX)T (Z − AX)

= ZT Z − ZT AX − XT AT Z + XT AT AX

(2.14)

∂
∂X (ZT Z − ZT AX − XT AT Z + XT AT AX) = 0 (2.15)

The extrema exist when

(AT A)X = AT Z (2.16)

Equation (2.16) is a linear equation to solve for X. One can see that the matrix (AT A)

must be invertible. Directly computing (AT A) is sometimes computationally expensive to

do in SLAM; however, given that the matrix is symmetric and positive definite, Cholesky

or QR Decomposition [7] may be used to quickly solve AT AX = AT Z. In Cholesky de-

composition AT A is converted into LT L where L is a lower triangular matrix with positive

diagonal elements. QR decomposition replaces A with QR, where Q is an orthogonal ma-

trix and R is an upper triangular matrix of A. Although QR is considered more stable,

the faster of the two is Cholesky and will be the preferred approach in this thesis.

2.2.3 Non-Linear Least Squares

In linear least squares, the problem is convex, meaning that there is only ever one unique

solution that exists. In fact, the functions f(X) when associated with SLAM is non-linear,

and cannot simply form a linear combination (2.12). In our 2D measurement models

(2.4), this arises from the trigonometric functions cosine and sine. However, many other

complex non-linarites also exist. e.g. 3D parameterizations in Section 4.3.1 and Bundle

Adjustment in Section 4.3.2.

A popular way is to use iterative approaches to solve non-linear least squares. The

idea is that the solution of the maximum likelihood can be found through a series of

iterations, each time re-linearizing at the point of estimation. Simply put, the state vector

15

CHAPTER 2. PRELIMINARIES

Xn → Xn+1 is continually updated until convergence (n specifying the iteration number).

An important issue surrounding this method is that one cannot guarantee the global

minimum of the problem (in many cases the iterations converge to the local minimum for

general non-linear least squares problems). The intuition is that the objective function for

SLAM has some special properties [13] that makes the convergence relatively stable. In

Chapter 3, we introduce a way to further improve the convergence.

Finding the step size associated with each iteration of non-linear least squares is a critical

issue in SLAM and there exist multiple options. The most popular of which are Gradient

Descent, Newton Methods and Gauss Seidel [23]. In Newton Method’s, the step size is

calculated based on the second order derivative, exploiting the curvature of the objective

function. The most popular of the Newton Methods is Gauss-Newton, where the second

derivative is not explicitly calculated but approximated by the Taylor expansion. The

main reason is that the actual second order derivative can be exceptionally difficult to

determine. In the other two methods, Gradient Descent and Gauss Seidel, the step size is

adjusted manually at every iteration to fulfil the gradient condition. Due to this fact the

convergence rate becomes very slow when it gets close to a minimum but is overall more

stable. Gauss-Newton is by far the fastest of the three methods; Figure 2.2 demonstrates

an simple example.

Figure 2.2: Gauss-Newton (Red) compared to Gradient Descent (Green) on a simple
objective function1.

1Image courtesy of http://en.wikipedia.org/wiki/Newton’s_method_in_optimization

16

CHAPTER 2. PRELIMINARIES

Gauss-Newton (GN)

The formulation of Gauss-Newton is as follows

F (X) = (Z − f(X))T (Z − f(X)) (2.17)

f(X) ≈ f(Xn−1) + J(X − Xn−1) (2.18)

First we need to linearize the non-linear function on the state X by applying the Taylor

Expansion. Here Xn−1 is the previous estimate (X0 being the initial estimate).

The following is an example of the Jacobian matrix in SLAM when two poses XP
1 , XP

2 are

observing two features XF
1 , XF

2 . In reality, this matrix is typically larger, more complex

and sparser. Ji represents the partial derivatives of P (pose to pose equations) and F

(pose to feature equations) with i being either pose or feature indecies.

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

JP
1 JP

2 0 0 0

0 JP
2 JP

3 0 0

JF
1 0 0 JF

1 0

0 JF
2 0 0 JF

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.19)

The last step is to substitute Equation (2.18) back into (2.13).

X� = argmin
X

∥∥∥∥Z − f(Xn−1) − J(X − Xn−1)
∥∥∥∥

2
(2.20)

Xn = (JT J)−1JT (Z − f(Xn−1) + JXn−1) (2.21)

Often in literature, this expression is rewritten as Xn = Xn−1 + ΔX such that only ΔX

is being calculated at each iteration.

17

CHAPTER 2. PRELIMINARIES

Xn − Xn−1 = (JT J)−1JT (Z − f(Xn−1))

= ΔX
(2.22)

As we can see, one step of Gauss-Newton is very similar to linear least squares but X�

is derived iteratively until the change in |Xn+1 − Xn| → 0. However, it is not guaranteed

that the matrix JT J is capable of always forming a positive definite one. Often, it will be

dependent on the current linearization point Xn−1. Moreover, Newton methods will only

converge quickly when the estimate is already close to the minimum or else the chosen

descent step will be uncertain.

Hybrid Methods

To counteract the issues mentioned above, algorithms such as Levenberg-Marquardt [24]

or Powell’s Dog-Leg [25] were introduced. In LM, a damping factor λ is selected such that

the matrix is always positive definite.

(JT J + λI) (2.23)

This way, the λ value allows the algorithm to switch between Gradient Descent and Gauss-

Newton in a gradual way. The selection of λ can be found in [26].

Powell’s Dog-Leg is an alternative approach to this problem, first employed in SLAM

by Rosen et al [27]. This method also combines the rapid convergence of Gauss-Newton

and the stability of Gradient Descent but maintains a trust region and applies a gradual

switch. Rosen conveys that the performance of Powell’s Dog-Leg is better than Levenberg-

Marquardt in some instances.

18

CHAPTER 2. PRELIMINARIES

2.2.4 Weighted Non-Linear Least Squares

In many optimization problems, such as SLAM, there is often an uncertainty Σ̂ associated

with the measurement Ẑ. The additional information can then be translated into least

squares by weighting each individual function. Ultimately, resulting in some edges having

greater influence over others. Weighted least squares are extremely important in SLAM

due to sensor noises being not independent and different sensors having different noise

models.

X� = argmin
X

∥∥∥∥f(X) − Z

∥∥∥∥
2

Σ−1
(2.24)

When (2.24)2 is passed through equations (2.18) to (2.21), the resulting expression for

non-linear least squares becomes

Xn = (JT Σ−1 J)−1JT Σ−1(Z − f(Xn−1) + JXn−1) (2.25)

Often in SLAM, it is much easier to express the covariance matrix in information form

(measurement information Ω and graph information Λ). The relationships are given by

Ω = Σ−1

Λ = JT ΩJ
(2.26)

Why the information form is much more efficient will become clearer in later chapters.

The information form has a major drawback associated with the recovery of the graph

covariance. Due to the poor scaling of the Λ inversion, the true covariance is almost

impossible to recover for larger sizes of Λ. However various tricks in literature have been

proposed to approximate some marginal covariance [28–30].

2The notation ||e||2Σ−1 means eT Σ−1e

19

CHAPTER 2. PRELIMINARIES

2.2.5 Least Squares for SLAM

Now we will formulate weighted non-linear least squares for SLAM. In feature based

SLAM, the weighted minimization problem (2.24) is replaced by

X� = argmin
X

∑
ij

∥∥∥∥ẐO
ij − gij(XP

i , XP
j)

∥∥∥∥
2

Ωij

+
∑
im

∥∥∥∥ẐF
im − him(XP

i , XF
m)

∥∥∥∥
2

Ωim

(2.27)

The pose graph SLAM problem is expressed in a similar fashion.

X� = argmin
X

∑
ij

∥∥∥∥ẐO
ij − gij(XP

i , XP
j)

∥∥∥∥
2

Ωij

+
∑
ij

∥∥∥∥ZP
ij − gij(XP

i , XP
j)

∥∥∥∥
2

Ωij

(2.28)

Finally, we will introduce a general form of these equations represented by generic edges

and nodes.

X� = argmin
X

∑
ij

∥∥∥∥Zij − bij(Xi, Xj)
∥∥∥∥

2

Ωij

(2.29)

This equations grants the possibility that each node can carry any parameterization and

any edges, and function bij can define that relation between node Xi and Xj through Zij .

In SLAM, there is always an anchor point that prevents the Hessian matrix (JT J)

from becoming rank deficient. This is intuitive, since the map must be always fixed onto

a specific coordinate system or else the map becomes ambiguous. In our case, XP
0 is

typically referred to as the anchor point.

20

CHAPTER 2. PRELIMINARIES

major advantage is that it allows us to make more generalizations across multiple SLAM

problems. As for the Front-End, we have relied on the absolute certainty of simulated

datasets when supporting our results. When dealing with real data, one cannot completely

trust the reliability of any given Front-End estimation process.

2.4 Evaluating a SLAM algorithm

Any newly developed SLAM Back-End must be evaluated in an appropriate way. In this

section, we propose some fundamental ideas and methods to determine the Reliability,

Consistency and Accuracy of a SLAM solution. These are the χ2 value, Normalized

χ2, Normalized Estimation Error Squared and χ2 Ratio.

2.4.1 Chi Squared (χ2)

The χ2 value allows us to verify any solution obtained for a least squares problem. This

number relates to the standard deviations of error between estimated and measured values.

It is well-known that for the measurement model defined in (2.29), if the measurement

function bij(·, ·) are linear in Xi, Xj , then

F � �
∥∥∥∥f(X�)

∥∥∥∥
2

Ω
(2.30)

In a linear problem F � ∼ χ2
ν with ν denoting the number for the degrees of freedom3.

Therefore, the expected value and variance of F � (over all possible measurements) are

equal to ν and 2ν, respectively. It is also common to extend this result to non-linear

measurement functions and use ν as the approximate expected value of F � by linearizing

the non-linear models around X� [31].

The natural interpretation of χ2 is that of the squared Mahalanobis distance (geometric

distance). In our case, χ2 lets us test varies properties of a SLAM algorithm.
3In general ν = dim(z) − dim(x). Here z denotes the vector of all measurements and dim(·) returns the

size of the given vector [31]

22

CHAPTER 2. PRELIMINARIES

A common usage of χ2 is to monitor if Gauss-Newton has converged. This is done by

examining at the χ2 change between the current and previous iterations of non-linear least

squares. In a perfect system, we should wait until the χ2 change is zero. However, due to

numerical errors, we have found that using a fixed threshold is an appropriate alternative.

|χ2
k−1 − χ2

k| < τ (2.31)

Here k is the iteration of Gauss-Newton. From our experiments, τ = 0.001 is shown to be

sufficient.

2.4.2 Expected Value of χ2 / Normalized χ2

An approximated expected value can be used to test and/or validate the assumptions

(e.g., distribution of the noise). To do this, one could compare the theoretical approximate

expected value to the obtained minimum in order to verify that the obtained solution is

in fact X�, if the assumptions of the problem can be trusted.

The value of ν depends on the number of edges and vertices of the network. Therefore,

to evaluate the performance across different datasets, it is more convenient to normalize

F � and report the value of F �

ν , commonly referred to as the Normalized χ2.

If F �

ν is close to 1, then it would confirm to us that the Maximum Likelihood solution

has been reached. In this thesis, the term Reliability is given to express how often a

method can achieve the Maximum Likelihood solution, measured by the percentage of

success (success rate).

23

CHAPTER 2. PRELIMINARIES

2.4.3 χ2 Ratio

One can also quantitatively assess the error between two χ2 values obtained from different

SLAM methods. This thesis introduces the χ2 ratio as a measure of accuracy or closeness

towards the maximum likelihood solution (Best possible SLAM solution).

χ2
(Alg) =

∥∥∥∥f(X(Alg)) − Z

∥∥∥∥
2

Ω(ML)

(2.32)

χ2
ratio =

χ2
(Alg)

χ2
(ML)

(2.33)

Where χ2
(ML) is the χ2 at the global minimum and χ2

(Alg) is the χ2 assessed at the final

estimate of the algorithm X(Alg). The closer the ratio is to 1, the less the approximation

is made between the Maximum Likelihood and the proposed algorithm. In later chapters,

we will see that some pre-processing is required to obtain X(Alg) from the actual algorithm

estimate.

It is important to recognize that the objective of a SLAM Back-End is not to obtain

the ground truth but the best estimate of maximum likelihood given the measurements.

The relationship between the ground truth and maximum likelihood is somewhat related

to the graph structure. Olson [32] demonstrates that increasing the average node degree

brings the χ2 ratio closer to 1 as does recent works by Carlone [14] investigating other

relationships (number of spanning trees, graph cycles, etc). Evaluation criterias such as

Root Mean Squared Error (RMSE) or State Square Error (SSE) [33] are good indications

of map quality but they should not be mistaken with the accuracy of an optimized solution

which is the χ2 ratio.

2.4.4 Normalized Estimation Error NEES

χ2 alone cannot judge the overall consistency (how well the uncertainties encapsulates the

ground truth) of the algorithm. Consistency is often considered one of the most important

factors in judging how well a SLAM algorithm is behaving. An inconsistent result will be

24

CHAPTER 2. PRELIMINARIES

too conservative or optimistic in its estimate.

A common check for map consistency is to evaluate the Normalized Estimation Error

Squared (NEES) [34] when the ground truth is known. This insures that the solution

lies within the 95 or 99 % probability region of the χ2 distribution. The lower the NEES

value, the closer the estimate trajectory is to the ground truth, in the Mahalanobis sense.

A single NEES is defined by

NEES � (X̃ − X)T Σ−1(X̃ − X) (2.34)

Where X̃ is the ground truth and NEES is χ2 distributed with dim(X) degree of freedom.

To be totally accurate, the term consistency actually refers to the quality of the final

estimate based over multiple Monte Carlo simulations4. If N is the number of Monte

Carlo experiments, then given that the covariance is exactly Gaussian when N approaches

infinity the average NEES will tend towards the true dimension of the state.

The NEES is calculated using

NEES =
1
N

N∑
l=1

∥∥∥∥X̃ − (X�)l

∥∥∥∥
2

Λ�
l

(2.35)

Where l is a particular noise seed, Λ� is the final graph information obtained by the

algorithm itself (2.26).

A NEES check refers to an error match between the covariance given by the Cramer-

Rao upper bound and the estimate. For a successful check, the NEES would need to be

less than a 95% or 99% χ2 gate [34].

The drawback to NEES is that evaluations are only made on the macro level, given that

a single NEES consists of all elements of the state. Frese [35] proposed, using generalized

eigenvalues, to evaluate each state term individually. However, Huang et al [6] proves that
4One single run of NEES does not correlate the error together and does not follow the χ2 distribution.

In the book by Bar-Shalom [34], there is a quote stating, "thorough examination of a nonlinear filter is
needed via (multiple) Monte Carlo runs to find out if it is consistent"

25

CHAPTER 2. PRELIMINARIES

the two results are roughly equal. Even though NEES is taken on average over multiple

Monte Carlo Simulations and the errors are completely different, the covariance Σ should

remain roughly the same.

2.5 Related Works

Over the recent years, the standard feature based SLAM problem has evolved in many

ways. We have separated the related work into two categories. First, is to improve the

reliability of SLAM and the second is to obtain scalability.

2.5.1 Improving Reliability

Often the nonlinearity in SLAM can cause Gauss-Newton [36] iterations to either diverge

or coverage onto a local minimum rather than finding the maximum likelihood solution

(global minimum). The following are various methods proposed to improve reliability in

SLAM.

Gauss Seidel

The idea of solving the non-linear problem through relaxation was first introduced by

Duckett et al [37]. The idea is to only solve for one node at a time until each node in the

graph has been updated. For unknown orientations, Duckett’s formulation uses fine-tuning

to change the state estimates such that the global minimum may be achieved. However,

this approach is unfeasible for large datasets. Frese et al [11], extends Duckett’s work

to improve the efficiency, by introducing multi-level relaxation (MLR), which essentially

applies Gauss Seidel relaxation at different resolutions.

Stochastic Gradient Decent

Olson [33, 38] introduced another iterative method for optimizing pose-graphs based on the

Stochastic Gradient Decent (SGD). The method considers the single cost of each individual

constraint and adds a dynamic learning rate which evolves during the optimization process.

26

CHAPTER 2. PRELIMINARIES

The method will systematically iterate rather than randomly choose which edges to

process. An effective way to control the learn rate α has been suggested by Robbins and

Monro [39]. However, Olson has acknowledged that this way may be sub optimum.

Grisetti et al in TORO [40] further improved on the efficiency of SGD by exploiting the

topology of the pose graph by introducing a tree based parameterization. The algorithm

has also been extended into 3D, correctly handling the learning rate issue for 3D rotations.

TORO is currently considered the most widely employed SGD algorithms in SLAM.

According to [33], due to the approximations involved, these two methods are unable to

completely converge onto the exact maximum likelihood estimate.

Linear Approximation Graph Optimisation

Carlone et al [41] suggested that the poor maximum likelihood estimate is mainly con-

nected to the angles and its representations, which make the problem non-linear and

non-convex. Each pose-to-pose constraint in pose-graphs consists of a relative position

part (x and y components in 2D) and a relative orientation part. The latter part is a

linear function. Therefore, by ignoring the effect of x, y for each constraint, a suboptimal

estimate for robot orientations may be obtained by solving a linear least squares problem.

After obtaining an estimate of robot orientations, observations become linear in x and y

and they can be approximated by solving another linear problem.

By exploiting the structure of 2D pose-graphs, LAGO is very quick and can produce a

good approximate for the initial guess of Gauss-Newton. However, for the same reason,

it is closely dependent on the problem formulation, and any extension to other SLAM

variants, such as feature based or 3D, seems very difficult.

Furthermore, the covariance matrix of measurement (both loop closing and odometry)

noise must be block diagonal. The quality of LAGO’s solution depends on the ratio

between the variances of the x and y parts, and the variance of the orientation part in the

measurement noise. If this ratio is not close to 1, then it is impossible to ignore the effect

on x and y.

27

CHAPTER 2. PRELIMINARIES

Spanning Tree

A spanning tree is a connected spanning subgraph where no cycles are formed. We can

consider odometry to be a special case where the edge sequences are defined by the robot

motion. The spanning tree is a relatively simple concept which has become very popular

in predicting initial poses in pose graphs [8]. In spanning trees a breadth-first search is

performed on the poses where the root of the tree starts from the anchored pose.

A standard way to find the spanning tree is to employ a Dijkstra [42] algorithm starting

from the anchor pose. While doing this search, the graph should be considered un-directed,

such that measurement from one node to another may be inverted. The cost is then

propagated by 1 at each edge until all nodes have been visited.

2.5.2 Overcoming Computational Complexity

In literature, many techniques have been proposed to solve the SLAM problem in an

efficient way. These are further categorized into, approximate or non-approximate. Non-

approximate solutions exploit the structure of the problem to simplify the mathematical

operations. e.g., factorization, re-ordering, tree-parameterization. Approximate methods

change the nature of the problem itself to directly reduce the complexity; however, the

final solution is often sub-optimal.

Graph SLAM

This technique was first proposed by Thrun and Montemerlo in [9] and now has many

variations [43–46]. The key insight is that landmarks/features can be marginalized and

the reduction lets the algorithm solve complex SLAM problems where the number of

features is exceptionally large.

Although this is a non-approximation approach, (the final result is equivalent to the ML),

the problem must be solved iteratively, meaning that at each iteration marginalization

and recovery of features must also occur. In which case, the time taken to perform these

calculations may greatly devalue the effectiveness of the algorithm. Graph SLAM does not

28

CHAPTER 2. PRELIMINARIES

explicitly discard any information which also suggests that the sparseness is not necessarily

reduced. Therefore, during factorization, there is no guarantee of any speed improvement.

Thrun and Montemerlo [9] discuss that under the constraint of local features and a small

number of iterations, Graph SLAM can be the most effective.

Smoothing and Mapping (SAM)

This technique designed by Dellaert et al [12], takes advantage of the sparsity of the

information matrix. Instead of using the full information matrix, they keep the matrix in

the square root form, which can be applied in conjunction with QR Factorization. Doing

so, the algorithm avoids calculating the matrix JT J , greatly reducing complexity. As a

result of the algorithm solving the Maximum a Posteriori, it is also solving a full SLAM

problem. However, considering that smoothing is performed on the entire trajectory and

features, the overall complexity will still grow over long periods of time.

To overcome growing complexity, Kaess et al [30] introduces incremental smoothing

and mapping (iSAM), further exploring SAM by incrementally building the map, without

rebuilding the data structures or constantly re-linearizing. Another advantage of iSAM is

that it allows access to the marginal covariance matrix for data association given that the

full covariance is otherwise impossible to recover.

Sub-mapping algorithms have also been explored through the SAM framework, (Tectonic

SLAM) [47]. Each sub-map is solved locally using SAM and then each relative pose

between sub-maps are optimized individually. Linearization is only performed on the

sub-map level so the solution is an approximation on ML.

TreeMaps

Tree Maps reduce the dimensionality by affecting the edges of a graphical tree, essentially

pruning the edges to achieve an approximate solution.

Paskin et al, Thin Junction Tree Filter (TJTF) [48], tries to maintain a tree where

the overall probability distribution is kept within a bound by marginalizing distributions

29

CHAPTER 2. PRELIMINARIES

along the edges. This method is based on a filtering framework which we know can be

inconsistent over time.

Frese et al (TreeMap) [49], divides the environment up into local and sub regions through

the concept of binary trees. However, this representation has in-consistency associated

with the propagation of linearization points. The result is poor uncertainty estimates and

artifacts in the final solution.

2.6 Summary

In this chapter, we have provided a formulation for feature based SLAM. Starting from a

graphical model, we finally arrive at an optimization problem solved through weighted non-

linear least squares. The equations that have been presented provide some fundamental

concepts needed for subsequent chapters.

Furthermore, we have built a formal understanding for evaluating a SLAM algorithm

through Normalized χ2, Normalized Estimation Error Squared, and χ2 Ratio.

In the second part of this chapter, some related works were discussed. This involved the

two major issues investigated in this thesis. Improving the reliability of SLAM (Section

2.5.1) and achieving scalability by reducing computational complexity (Section 2.5.2).

In the following chapters, we will be proposing new ways to manage these issues, and

this will form the main contributions of this thesis.

30

Chapter 3

Reliable Optimization

3.1 Introduction

When a robot needs to traverse through its environment and plan tasks, the accuracy of

the environment map and robot pose is critical. The best estimate one can obtain is that

of the maximum likelihood, mentioned in Section 2.2. However, due to the existence of

non-linearity in the measurement functions, there is no guarantee of the global convergence

when using Gauss-Newton. It is common for the Back-End to converge onto a local minima

or even worse diverge. One key insight is the importance of the initial estimate (X(0)) (see

Section 2.2.3). A naive approach would be to use the robot odometry and concatenate

each relative measurement to estimate an initial state. e.g., dead reckoning. However, the

sensor noise will accumulate error very quickly causing the final estimate to be very far

from the actual ML solution. The pursuit of finding a good initial estimate has always been

an attractive research topic in SLAM, commonly recognised in literature as bootstrapping.

In general, any method which obtains an initial estimate for non-linear least squares can

be considered a bootstrapper, even dead reckoning. In this chapter we will demonstrate

the effectiveness of Iterative Re-weighted Least Squares as an idea for bootstrapping.

Through stringent evaluations, and comparing to other existing bootstrappers, the initial

guess for our method has a greater success rate of being inside the basin of attraction of

the global minimum. Also, not only is this bootstrapped solution easy to apply, but easily

31

CHAPTER 3. RELIABLE OPTIMIZATION

generalized across many different SLAM variants.

3.2 A General Framework for Reliable Optimization

As mentioned earlier, to solve the SLAM problems (2.29) with Gauss-Newton, it is crucial

to have an initial estimate that is sufficiently close to the global minimum. The basin of

attraction may depend on various factors such as the noise level or graph structure [14].

Our main motivation comes from a very intuitive idea to smooth the optimization process

such that the final solution is guaranteed to converge.

The idea is to solve a sequence of intermediate optimization problems P1, . . . , PN such

that:

(C1) The initial guess obtained from a spanning tree is within the basin of attraction of

the global minimum of P1.

(C2) The solution of each problem Pk is within the basin of attraction of the global

minimum of the next problem Pk+1.

(C3) The solution of the final problem PN is within the basin of attraction of the global

minimum of Equation 2.29 (Bootstrapping).

The existence of the spanning tree in C1 relates to the fact that the objective function

value for that subgraph is exactly zero, since there are no cycles present in this graph, there

are also no residual errors. Therefore, each spanning tree has only one unique solution.

Using the spanning tree as the initial guess for P1 and using the solution of Pk as the initial

estimate in Pk+1, we will eventually arrive at the maximum likelihood estimate. C2 must

then be continually satisfied until the initial value is within the basin of attraction of the

original least squares problem, condition C3.

32

CHAPTER 3. RELIABLE OPTIMIZATION

Graduated Non-Convexity and Simulated Annealing

This idea is somewhat related closely to Graduated Non-Convexity [50], shown in Figure

3.1. Starting from a convex problem, it is possible to define a series of sub-problems which

become progressively and smoothly more non-convex, until finally arriving at the original

problem. The region where the global optimum lies, for a current problem, must include

the point where the global optimum is from a previous problem. The use of graduated

non-convexity is common practice in image processing (e.g., image blurring [51]).

Simulated Annealing [52] also has close relationships with our idea. Rather than smooth-

ing the function, the algorithm randomly perturbs the current estimate by a fixed amount,

arriving at the same result. The disadvantage is that the randomness of sampling can

greatly increase the complexity.

Figure 3.1: Example of graduated non-convexity

In our framework, we are not smoothing or adding randomness to the problem but rather

finding individual problems where the global minimums are easy to find. The smoothness

in each function may come naturally but is not the primary focus.

33

CHAPTER 3. RELIABLE OPTIMIZATION

3.2.1 Defining a Sequence

Designing a finite sequence {Pk}N
k=1 according to general framework (3.2), can be very

difficult. The reason being that there are currently no techniques available to determine

if an estimate is inside the basin of convergence. However, similar to graduated non-

convexity the algorithm does not have to strictly meet all three criterias to yield good

results. Therefore, it is possible to design our own sequence {Pk}N
k=1 based on some

approximate methods and support the heuristic principles with extensive Monte Carlo

studies. It is also critical to test for a broad range of possible scenarios, which are realistic

in terms of noise, graph structure and graph types.

Figure 3.2: A basic sequence of edges which slowly increases the difficulty of the
problem. The blue circles represent the pose nodes and the green lines are the loop
closure edges.

Let us first start by analyzing a basic sequence {Pk}N
k=1: Pk, of subgraphs, Gk = (V, Ek)

(i.e., Ek ⊂ E). Here each graph has a subset of edges from the original graph. We can then

enforce an addition condition, that for any point in the sequence k we have Ek ⊂ Ek+1.

Subgraphs are solved using the formulations specified in Equation (2.29). Figure 3.2 shows

an example of such a sequence.

From an intuitive standpoint, each new edge introduced in Ek (i.e., Ek \ Ek−1) should be

sufficiently consistent with the edges in Ek−1. In other words, closing a (new) big loop in Ek

might violate (C2), and consequently increase the risk of converging to a local minima. On

the other hand, if we start to ignore measurements, then we will never reach an optimum

subgraph which will satisfy (C3). A well rounded algorithm must somehow gradually

incorporate edges by controlling sudden influence but also produce a final solution which

34

CHAPTER 3. RELIABLE OPTIMIZATION

exists to satisfy the third condition.

Alternative Sequences

Many alternative algorithms can be viewed as special (or extreme) cases of our general

framework. For example, incremental methods such as iSAM [30] fit well within this

framework: the Pk in incremental approaches is the non-linear least squares problem

that arises in the process of obtaining the maximum likelihood estimate, at time step k

(using all the available edges up to that time). Sub-mapping techniques such as the one

mentioned in the Chapter 4, are also an example of this. The sequence is defined by the

joining sequence of the local maps.

3.2.2 Iterative Re-weighted Least Squares

Our proposal is to apply a heuristic approach, which is to assign (additional) weights w
(k)
ij

to each individual edge.

X�
(k) = argmin

x

∑
i,j

w
(k)
ij

∥∥∥∥(Ẑij − bij(Xi, Xj))
∥∥∥∥

2

Ωij

(3.1)

It is important to note the difference in this new approach compared to the aforemen-

tioned ideas posed in the previous section. Now, all the edges are being used in the

optimization process (3.1) rather than only a subset. Therefore, the influence of edges

follow a specific continuous function compared to being equal or having no influence. Do-

ing so, we are able to achieve this gradual transition. Figures 3.3 shows the new weighted

sequence.

35

CHAPTER 3. RELIABLE OPTIMIZATION

Figure 3.3: A weighted sequence. Red: low weight, Blue: moderate weight, Green:
high weight.

One way to add weights is to apply Iterative Re-weighted Least Squares (IRLS) in M-

estimation. Typically this technique has been used in removing outliers in optimization

problems where large residuals are considered potential outliers. In our case we recognize

large residuals as being inconsistent with the initial guess within each intermediate opti-

mization problem. The real advantage of IRLS is in its simplicity, which does not deviate

much from the original Gauss-Newton equations.

3.2.3 Formulation for IRLS

Starting from the original non-linear least squares problem and using the square root of

Ωij = Ω
1
2
ijΩ

1
2
ij we can define the normalized error vector as

eij � Ω
1
2
ij(Ẑij − bij(Xi, Xj)) (3.2)

Then we propose to use the following X
(0)
(irls) as the initial estimate

X
(0)
irls = argmin

x

∑
i,j

ρ(rij) (3.3)

Where rij � ‖eij‖2 denotes the �2-norm of eij . ρ(·) is a new cost function which will have

different convergence properties. This function is known as the M-estimator and will be

further discussed in Section 3.2.4.

36

CHAPTER 3. RELIABLE OPTIMIZATION

Because of this new function ρ(·), the optimization problem in Equation (3.3) may seem

difficult to solve. However, it can be reformulated into IRLS and solved with only slight

modifications to Gauss-Newton.

Using the notations proposed in [53] we start by computing the gradient of the objective

function in (3.3) w.r.t. x, setting this to zero

∑
i,j

ψ(rij)
∂rij

∂xt
= 0, for t = 1, . . . , n (3.4)

Where ψ(r) � dρ(r)/dr is known as the influence function of the M-estimator (The im-

portance of this will be explained in the following section).

Now by defining the weight function w(r) � ψ(r)/r we can rewrite (3.4) as

∑
i,j

w(rij) rij
∂rij

∂xt
= 0, for t = 1, . . . , n (3.5)

The LHS of (3.5) can be inferred as the gradient of the cost function in the kth iteration

and is similar to the following IRLS problem

minimize
∑
i,j

w(r(k−1)
ij)r2

ij (3.6)

Where r
(k−1)
ij is the residual computed using the latest estimate. For each iteration k we

need to re-compute new weights according to the residuals and solve (3.6) using Gauss-

Newton (iteratively). Ideally, weights should only be updated after Gauss-Newton has

converged but in practice, we observed that comparable results may be obtained by per-

forming only a single Gauss-Newton iteration for a fixed set of weights.

37

CHAPTER 3. RELIABLE OPTIMIZATION

3.2.4 M-Estimators

It should be clear that the M-estimator function ρ(·) is a critical part of our algorithm.

Furthermore, the influence function ψ(·) is directly linked to the convergence of IRLS

and the final result. Therefore, it is of utmost importance to understand its properties.

Figure 3.4 and Figure 3.5 depict the influence and weights functions of some popular

M-estimators.

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

ψ
(r

)

(a) L2 (Least Squares)

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

ψ
(r

)

(b) Huber

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

ψ
(r

)

(c) Cauchy

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

ψ
(r

)

(d) Geman-McClure

Figure 3.4: Influence functions

38

CHAPTER 3. RELIABLE OPTIMIZATION

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

r

w
(r

)

(a) L2 (Least Squares)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

r

w
(r

)

(b) Huber

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

w
(r

)

(c) Cauchy

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r

w
(r

)

(d) Geman-McClure

Figure 3.5: Weight functions

Firstly M-estimators can be categorized based on their influence function. From the

influence, a weight value is assigned to each graph edge, following the formations given in

Section 3.2.3.

We can see that the influence function in normal least squares is un-bounded, which is

the reason why outliers have large and detrimental influence on the result or in our case

with no outliers, exhibit poor convergence properties. The other M-estimators can be split

into two categories, re-descending or non-re-descending.

Huber is a non-re-descending estimator. The influence keeps increasing until it reaches

a fixed value lim|r|→∞ ψ(r) = ±α. Re-descending estimators such as Cauchy and Geman-

McClure has tails which descend towards zero lim|r|→∞ ψ(r) = 0 causing large residuals

39

CHAPTER 3. RELIABLE OPTIMIZATION

to be de-emphasized. Intuitively speaking the re-descending influence functions fit better

with the ideas posed in the general framework in Section 3.2. The reason being that some

edges may be de-emphasized to a point where their influence has little to no effect on the

overall problem.

The descent rate is another important factor in selecting the right M-estimator. As can

be seen in Figure 3.4, the Geman-McClure influence function descends much faster than

the Cauchy influence function. If the descent phase is too quick, then loop-closing edges

might not have a chance to affect the bootstrap solution and we might violate (C3). On

the other hand, descending too slowly will reduce the reliability and violate (C2).

3.2.5 Generalized Influence Function

To find the most suitable influence function, we define the following family of re-descending

influence functions which incorporates both descent rate and the idea of re-decadence into

one equation.

ψα(r) � r

(1 + r2)α
, wα(r) � 1

(1 + r2)α
(3.7)

When the variable α = 1, we will achieve the same influence function as the Cauchy. If

we increase α, then the tail will re-descend faster, becoming exactly Geman-McClure [53]

at α = 2. Going the other way we start to see that the function no longer becomes re-

descending. At α = 0.5, we arrive at a similar influence function to Huber, and by reducing

α even further to zero, this is equivalent to solving a normal least squares (�2-norm). We

have represented this visually in Figure 3.6.

40

CHAPTER 3. RELIABLE OPTIMIZATION

(a) Influence Function

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

r

w
(r

)

α=0.5
α=0.75
α=1
α=1.25
α=1.5
α=1.75

(b) Weight Function

Figure 3.6: Generalized influence and weight function

In general, the optimal value for α is dependent on the nature of the measurements and

the noise level. We conducted a series of Monte Carlo simulations to test the behavior

of M-estimators for different values of α. In these experiments the final solution of the

M-estimator is bootstrapped to the Gauss-Newton algorithm. The success rate in Table

3.1 depicts how often the final value of the (least squares) objective function is less or

equal to the best achievable value if we start from the ground truth X̃.

Table 3.1: Success Rate (%) of ψα(·) in 100 Monte Carlo Simulations for Different
α Values for the Manhattan Dataset

STD (
√

Σxx,
√

Σyy,
√

Σθθ) α = 0.5 α = 0.75 α = 1 α = 1.25 α = 1.5 α = 1.75 α = 2

(0.1,0.1,0.1) 54% 94% 100% 98% 78% 14% 4%

(0.2,0.2,0.2) 16% 94% 98% 88% 22% 0% 0%

(0.3,0.3,0.3) 0% 58% 74% 60% 2% 0% 0%

Table 3.1 is the result of 100 Monte Carlo simulations of the Manhattan dataset at three

noise levels. According to our results, the best performance happens when α close to 1

(i.e., Cauchy M-estimator [53] with constant c = 1). Smaller α values tend to only perform

poorly under larger noises and large values of α are shown to be very unreliable. Note

that α = 0 is not tested since this is equivalent to the original non-linear least squares

problem. In the rest of this thesis, when we have referred to IRLS then the default α value

is 1.

41

CHAPTER 3. RELIABLE OPTIMIZATION

3.2.6 Initial Influence

Although the Cauchy M-estimator has the best performance, simply applying a fixed

influence works well on C2 and C3 but does not easily address C1. From our experiments,

we have found that the number of iterations needed to converge from the first initial set

of weights to be greater than 5. This suggests that the initial value is not necessarily close

to the first global minimum.

To solve this problem, we propose a set of initial weighted steps that will change the

value of α. We begin by setting α = 2 (exactly that of Geman-McClure) then decrease the

parameter by 0.5, apply a single iteration of IRLS at each α level, and finally stop when

α = 1 (our original IRLS function).

It is important to note that this has no bearing on solving a new M-estimator problem

since only one iteration of IRLS is performed for each new weight set. This can only be

considered a smooth way to find a better start point for IRLS.

3.2.7 Stopping Condition for IRLS

It can be difficult to determine at which iteration point the current IRLS iteration is

close enough to satisfy condition (C3). The only way is to identify if the solution is fully

converged.

A typical way to identify convergence of an iterative algorithm is to check the changes in

the objective function values. However, it can be difficult to set fixed thresholds for a non-

normalized value. As a result, an unnecessary number of iterations would be performed

if the threshold is too conservative. A better way would be to monitor the weight values

directly, given that our M-estimator function have already been normalized between 0 to

1. The following equation will be used as our stopping criteria

1
m

∑
i,j

[w(r(k)
ij) − w(r(k−1)

ij)]
2

< ε (3.8)

Where m is the total number of edges and ε is the threshold value. We have found ε = 0.01

to work well for our datasets.

42

CHAPTER 3. RELIABLE OPTIMIZATION

3.2.8 Summary of IRLS algorithm

The algorithm that summarizes the approach of IRLS bootstrapping, is described in detail

in Appendix B.

3.3 Evaluation Criteria

To evaluate IRLS, first we must find a reasonable way to evaluate for reliability. The

follow section explains our approach.

3.3.1 Benchmark Solution

Gauss-Newton(GN) can be considered the standard approach in SLAM Back-Ends, al-

though other techniques such as gradient descent, LM or PDL [25] might perform better

under some conditions. However, we have found that GN is sufficient for the complexities

in our parameterizations.

A popular way to find the global minimum is to run a Gauss-Newton algorithm initiated

from the ground truth GT+GN. The +GN postfix implies that the result of the bootstrapper

has been used as the initial value of GN. This method is arguably the most reliable way to

obtain the global minimum if the ground truth is available. Therefore, if a bootstrapper

were to achieve the same or lower value as GT+GN, then its solution can be considered as

the ML estimate X�.

The values used in our comparisons are the normalized χ2, described in Section 2.4.4.

3.3.2 Noise Conditions

In simulation the noise level is critical in determining the difficulty of the problem. Noise

levels were chosen carefully to cover all of the possible cases. The noise in the covariance

matrices are tested for:

1. A scalar multiple of the identity matrix.

43

CHAPTER 3. RELIABLE OPTIMIZATION

2. Diagonal and Σxx = Σyy �= Σθθ.

3. Full with correlation coefficients:
Σxy√

ΣxxΣyy
= Σxθ√

ΣxθΣθθ
= Σyθ√

ΣyyΣθθ
= 0.5.

3.3.3 Monte Carlo Evaluation

It is of utmost importance to conduct a Monte Carlo study when evaluating SLAM algo-

rithms. Failure to do so may result in drawing wrong conclusions about the reliability of

those methods. A single successful realization of noise can be misleading from an overall

perspective. In other words, without a proper Monte Carlo study, one is not able to fully

take into account the possible failures of a SLAM algorithm.

3.3.4 Success Rate

The success rate refers to the number of Monte Carlo simulations in which the bootstrapper

was able to obtain the benchmark solution, see Section 2.4.4. In addition, we can also

look at the average normalized χ2 to assess if there are large deviations in the final result.

If the algorithms were not able to achieve the global minimum, the χ2 value will give us a

sense of how close the converged local minimum is from the global minimum in terms of

objective function.

44

CHAPTER 3. RELIABLE OPTIMIZATION

3.4 Experiment and Results

The following is a detailed list of experiments performed to test the reliability of our IRLS

bootstrapping.

For our simulation we have generated 50 Monte Carlo noise instances. The units used

in Tables 3.2 and 3.3 for the standard deviation of noise are in metres (
√

Σxx,
√

Σyy) and

radian (
√

Σθθ). For each case we report the success rate of different methods. Additionally,

we report (in parenthesis) the average of the obtained normalized χ2 over Monte Carlo

simulations to verify if the obtained solution is in fact the global minimum X�.

3.4.1 IRLS for Feature Based Graphs

First, we will test the success rate for a simulated feature based graph. The initial pose

estimates are obtained by concatenating the odometry. The initial position of features are

define by the first/initial observation to that feature, transformed from their respective

pose estimate.

The odometry covariance ΣO and features observation covariance ΣF are set to similar

values. The simulation trajectory is that of Loop 2D. For simulation details see Appendix

A.

Table 3.2: Success Rate (%) for 50 Monte Carlo Simulations (Average normalized
χ2)

STD (
√

ΣO
xx,

√
ΣO

yy,
√

ΣO
θθ) (

√
ΣF

xx,
√

ΣF
yy) Odometry+GN IRLS+GN GT+GN

(0.05,0.05,0.05) (0.05,0.05) 100 (0.985) 100 (0.985) (0.985)

(0.2,0.2,0.2) (0.2,0.2) 70 (1.211) 98 (1.006) (0.988)

(0.3,0.3,0.3) (0.3,0.3) 34 (1.256) 82 (1.033) (0.986)

(0.1,0.1,0.1) (0.1,0.1) (correlated) 90 (1.508) 100 (0.984) (0.984)

(0.2,0.2,0.2) (0.2,0.2) (correlated) 70 (1.306) 98 (0.999) (0.989)

From Table 3.2, we can see a significant increase in success rate when applying our

IRLS+GN algorithm. Odometry as an initial value quickly becomes unreliable as the

45

CHAPTER 3. RELIABLE OPTIMIZATION

noise value increases. However, the local minimum is not very far from the global minimum

according to the normalized χ2.

3.4.2 IRLS on Pose Graphs

There exists bootstrapping algorithms to compare against if we re-formulate IRLS for pose

graphs. This allows us to conduct a much more rigorous evaluation.

We have chosen the following three popular bootstrappers.

1. TORO+GN, A popular implementation of tree based parameterization adapted from

the concept of SGD 1.

2. LAGO+GN, Linear Approximation, solving a linear problem for angles first 2.

3. ST+GN, Spanning Tree, the initial guess is obtained from a Dijkstra breadth first

search [8]

To make the evaluation fair, initial values have all been set to be the odometry. For

Tree-based Network Optimizer, TORO and Linear Approximation for Pose Graph Opti-

misation, LAGO, we have used the author’s original implementations. Rather than gen-

erating our own dataset we choosen to use two popular datasets, Manhattan3500 (MAN)

by Olson [33], and City10000 (CITY) by Grisetti [40], that have been tested in various

pose graph SLAM papers. The number of Monte Carlo trails is kept constant and noise

is chosen such that the variance of odometry ΣO and loop closure constraints ΣP are kept

the same.

1http://www.openslam.org/toro.html
2http://www.lucacarlone.com/index.php/resources/software

46

CHAPTER 3. RELIABLE OPTIMIZATION

Table 3.3: Manhattan3500 Dataset, Success Rate (%) for 50 Monte Carlo Simula-
tions (Average normalized χ2)

STD (
√

Σxx,
√

Σyy,
√

Σθθ)O,P IRLS+GN LAGO+GN TORO+GN ST+GN Odometry+GN GT+GN

0.05,0.05,0.05 100 (1.00) 50 (6.64) 100 (1.00) 100 (1.00) 50 (5.63) (1.00)

0.1,0.1,0.1 100 (1.00) 2 (1.29e+4) 100 (1.00) 90 (1.07) 2 (5.04e+5) (1.00)

0.2,0.2,0.2 98 (0.99) 0 (1.28e+4) 70 (1.14) 10 (2.11e+5) 0 (2.05e+3) (0.99)

0.3,0.3,0.3 80 (90.03) 0 (4.60e+3) 40 (2.0e+2) 0 (1.05e+4) 0 (1.07e+3) (0.99)

0.05,0.05,0.2 96 (1.04) 0 (1.16e+4) 74 (1.33e+2) 28 (3.21e+5) 0 (6.32e+5) (1.00)

0.2,0.2,0.05 100 (1.00) 46 (1.62e+3) 100 (1.00) 100 (1.00) 0 (3.81e+2) (1.00)

0.1,0.1,0.1 (correlated) 86 (1.15e+3) 4 (1.63e+6) 0 (3.80e+3) 90 (1.03) 0 (8.28e+6) (1.00)

0.2,0.2,0.2 (correlated) 78 (1.008) 0 (1.81e+4) 0 (2.15e+3) 12 (6.51e+5) 0 (1.26e+6) (0.99)

Table 3.4: City10000 Dataset, Success Rate (%) for 50 Monte Carlo Simulations
(Average normalized χ2)

STD (
√

Σxx,
√

Σyy,
√

Σθθ)O,P IRLS+GN LAGO+GN TORO+GN ST+GN Odometry+GN GT+GN

0.05,0.05,0.05 96 (1.04) 2 (54.74) 94 (1.11) 100 (1.00) 0 (2.78e+2) (1.00)

0.1,0.1,0.1 100 (1.00) 0 (22.16) 82 (1.069) 94 (1.01) 0 (68.52) (1.00)

0.2,0.2,0.2 98 (1.00) 0 (7.50) 8 (1.23) 0 (1.29) 0 (19.3) (1.00)

0.3,0.3,0.3 92 (1.00) 0 (4.49) 0 (1.30) 0 (1.57) 0 (8.82) (1.00)

0.05,0.05,0.2 70 (1.31) 0 (16.44) 20 (8.17) 4 (2.59) 0 (50.86) (1.00)

0.2,0.2,0.05 100 (1.00) 0 (96.90) 94 (1.026) 100 (1.00) 0 (361.32) (1.00)

0.1,0.1,0.1 (correlated) 92 (1.03) 0 (32.05) 0 (43.99) 96 (1.01) 0 (112.65) (1.00)

0.2,0.2,0.2 (correlated) 90 (1.00) 0 (8.32) 0 (40.95) 0 (1.43) 0 (24.60) (1.00)

It is clear that even for pose graphs the success rate for IRLS+GN is high. In fact,

according to Table 3.3 and 3.4, it is the only algorithm capable of handling all noise levels.

Except for two cases, the average of the normalized χ2 for IRLS+GN is always close to 1,

although its success rate might be lower than 100%. For the other methods, ST+GN has a

high success rate only when the noise is small, while TORO+GN completely fails when the

noise components are correlated. LAGO+GN, in general, performs poorly especially if the

noise components are correlated and/or Σθθ is larger than Σxx and Σyy (this behavior was

predicted in Section 2.5.1). Finally, the total failure of Odometry+GN underlines the fact

that a reliable bootstrapper is important in SLAM.

47

CHAPTER 3. RELIABLE OPTIMIZATION

3.4.3 Resulting Maps

Now let us take a look at the resulting maps for a given noise instance

(a) Odometry+GN (b) IRLS+GN

Figure 3.7: A single run at noise level (0.2,0.2,0.2) with correlated noise Loop 2D

(a) Ground Truth

−50 −40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

10

20

(b) IRLS+GN

−50 −40 −30 −20 −10 0 10 20

−40

−30

−20

−10

0

10

(c) LAGO+GN

−30 −20 −10 0 10 20 30 40 50 60

−30

−20

−10

0

10

20

30

(d) TORO+GN

−50 −40 −30 −20 −10 0 10 20

−50

−40

−30

−20

−10

0

(e) ST+GN

−50 −40 −30 −20 −10 0 10

−10

−5

0

5

10

15

20

25

30

35

(f) Odometry+GN

Figure 3.8: A single run at noise level (0.2,0.2,0.2) with correlated noise Manhat-
tan3500

48

CHAPTER 3. RELIABLE OPTIMIZATION

(a) Ground Truth

−60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

(b) IRLS+GN

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

(c) LAGO+GN

−80 −60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

(d) TORO+GN

−60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

(e) ST+GN

−60 −40 −20 0 20 40 60 80

−50

−40

−30

−20

−10

0

10

20

30

40

50

(f) Odometry+GN

Figure 3.9: A single run at noise level (0.2,0.2,0.2) with correlated noise City10000

When visually inspecting Figures 3.7, 3.8 and 3.9, it is apparent that our method pro-

duced the most consistent maps. The obtained solutions by IRLS+GN are exactly the

maximum likelihood estimates. Note that for a fixed noise level, the usefulness of the

maps may depend on graph connectivity. As can be seen in City 10000, if the graph

connectivity is better (e.g., higher average node degree), then the maximum likelihood

estimate would actually be closer to the ground truth [32].

49

CHAPTER 3. RELIABLE OPTIMIZATION

3.5 Discussion

3.5.1 Importance of Noise Correlation

In many practical scenarios, the noise components may be correlated. For instance, if

feature matching is used to obtain a relative pose measurement or if the motion model

belongs to a non-holonomic vehicle, then the correlation will naturally exist between the

x, y and θ components of the noise.

3.5.2 Computation Time

The computation time of each technique for a single run is reported in Table 3.5. For a fair

comparison of computation time between different techniques we have to make sure that

all of the algorithms are converging to the true maximum likelihood estimate X�. It is

very difficult to generate a series of (realistic) Monte Carlo simulations with this property.

Therefore, we decided to report the computation time of each method for a single run.

Unlike Table 3.3, here we do not generate our noise samples; instead we use the original

(noisy) datasets.

Table 3.5: Computation Time for a Single Run of Each Bootstrapper on an Intel
corei5-2400 Running at 3.10GHz

Dataset Bootstrapper # Iterations Time(s) # +GN Iterations GN Time (s) Total Time (s)

MAN

IRLS (single GN) 9 0.19 3 0.07 0.26

IRLS 48 0.95 3 0.07 1.03

TORO 100 2.56 3 0.07 2.63

LAGO - 0.06 3 0.07 0.13

ST - ≈ 0 4 0.09 0.09

Odometry - ≈ 0 6 0.13 0.13

CITY

IRLS (single GN) 11 1.62 3 0.48 2.10

IRLS 64 9.14 3 0.48 9.62

TORO 100 11.95 3 0.48 12.43

LAGO - 0.35 2 0.33 0.68

ST - ≈ 0 4 0.63 0.63

Odometry - ≈ 0 7 1.07 1.07

50

CHAPTER 3. RELIABLE OPTIMIZATION

Empty entries in Table 3.5 denote N/A cases (e.g., number of bootstrapping iterations

in Odometry). In Table 3.5, “IRLS (single GN)” refers to the case in which, for each

set of weights, instead of solving that intermediate non-linear least squares fully using

GN, we only perform a single GN step. As mentioned in Section 3.2.3, in practice the

performance of “IRLS (single GN)” is close to the original IRLS method, while being much

faster. According to Table 3.5, our proposed method does not increase the computational

complexity per iteration of a standard SLAM Back-End (adding the weights computation

step); only that the total number of iterations will change. The total computation time

of our proposed method is comparable to that of alternative methods.

3.6 Summary

In this chapter we have demonstrated that the IRLS can be considered as a reliable boot-

strapping technique. This idea is also supported by the framework detailed in Section 3.2.

After discussing a number of heuristic realizations for that ideal framework, we illustrated

the connection between this problem and robustness against outliers. Then we decided to

use M-estimators with re-descending influence functions as our IRLS bootstrapper.

Extensive Monte Carlo studies revealed that the proposed method can outperform the

existing methods with comparable computation time. Furthermore, unlike the alternative

methods, the proposed algorithm is capable of handling different noise levels, graph types

and formulations. From our findings, we can now say that the search for the global

minimum using IRLS bootstrapping is much better than that of standard Gauss-Newton

with odometry as the initial estimate. The next problem lies in the scalability of the graph

which causes the optimization problem to become inefficient. In the next two chapters we

will introduce two techniques that attempt to resolve this issue.

51

Chapter 4

Sparse Map Joining

4.1 Introduction

In the previous chapter it was demonstrated that a range of general SLAM optimization

problems can be improved through Iterative Re-Weighted Least Squares (IRLS), the next

attractive topic of research is to solve large scale SLAM problem more efficiently. In

many applications of feature based SLAM, the number of poses and features can grow

considerably large, due to the size and complexity of the environment in which the robot

must operate. If we were to be optimizing for all poses and features, then the process of

optimization would not scale particularly well. The problem lies within the computation

burdens associated with re-linearization at each iteration of non-linear least squares and

the number of iterations needed for convergence. It is possible to reduce the number of

iterations with IRLS, but the time per iteration increases as more states are added to the

problem.

Our first proposed idea, for managing scalability, is to marginalize robot poses through

a method called Sparse Map Joining (SMJ). The original idea stems from previous work

done by Huang et al [54], Iterative-Sparse Local Submap Joining Filters (I-SLSJF). The

main contribution in this chapter, is the added extension into 3D and the ability to handle

multiple observation models.

In this chapter we will first provide a methodology of SMJ and 3D SMJ in Sections 4.2

52

CHAPTER 4. SPARSE MAP JOINING

and 4.3. Then, in Section 4.4 we will conduct a series of evaluations to provide evidence

for the three major evaluation criterias: consistency; accuracy; and efficiency. Finally, in

Section 4.5, we pose a few discussion topics on the properties of SMJ.

4.2 Sparse Map Joining

The main idea behind SMJ is that a series of consistent sub/local maps are first obtainable

from the original feature based data set. Then, after marginalizing out the poses, the

process of joining the maps is a simple solution to a standard Gauss-Newton optimization.

In the process of marginalization, the final result will only be an approximate estimate on

the original feature based SLAM problem (see Equation (2.27)).

The interesting aspect about this approach is that not all the poses are completely

removed causing the information matrix to remain sparse. In which case, selecting an

optimum number of local maps can significantly improve the computation time. Further-

more, the way in which one solves the map joining problem, can have an effect on the

convergence properties of non-linear least squares.

The steps involved in SMJ are local map building, marginalization, map fusing and

optimization.

4.2.1 Building Local Maps

It is important to understand that there are currently no simple methods available to

recover lost information once the local maps have been joined. Therefore, we are under

the assumption that each local map is already consistent before the joining process. To

better meet this assumption, our local maps are built using standard ML, detailed in

Section 2.2.5, rather than EKF or EIF, as suggested by I-SLSJF. The convergence of

non-linear least squares optimization in our local maps are further improved by reliable

optimization (Refer to Appendix B), X
L(0)
irls → (XL).

Below is the formulation for optimizing a local map, where F is given by Equation

53

CHAPTER 4. SPARSE MAP JOINING

(2.27).

(XL)� = argmin
XL

F (XL) (4.1)

The state vector and measurements vectors are encapsulated by

XL = (XP ∪ XF)

ZL = (ẐO ∪ ẐF)
(4.2)

Odometry and observation functions are kept standard, according to equations (2.4) and

(2.5). Once each local map is optimized, the map is represented by its final state vector

XL and its associated information matrix ΛL.

When splitting up the data into local maps, the structure (edges and nodes) of the

local maps should also determine the sizes and regions of each map. We have taken the

basic approach, dividing the overall map up equally. The techniques takes trajectory size

and splits it based on the required number of local maps n. Features that lie within

each division of the trajectory are segregated accordingly. In sub-mapping literature [55],

researchers have typically created local maps based on metric separation (e.g., splitting at

every 5 metres along the trajectory). However, we feel that an optimal splitting strategy

should also take into consideration reliability of local map convergence as well as graph

structure. In our evaluation, we are only relatively assessing the quality of SMJ under

differing numbers of local maps, justifying our simplistic splitting approach.

4.2.2 Marginalization

The next step involves marginalizing the poses out of each local map. First we define the

new state representation

XL(M) = [XP
k , XF

1 · · · XF
m]T (4.3)

XL(M) now encapsulates all the features and the last poses XP
k for each local map. To

54

CHAPTER 4. SPARSE MAP JOINING

marginalize the corresponding information matrix ΛL → ΛL(M), Schur Complement is

applied (See Appendix E). Note, the process of marginalization only applies on the original

set of local maps. This is a pivotal concept for later methods with additional local map

subsets (sub-maps).

The final stage of marginalization is to treat all our local maps as local observations

ẐL(M) from the anchor pose of each local maps. The measurements are assumed to have

a zero-mean Gaussian noises with information matrix ΩL(M) from the marginalized local

map information matrix ΛL(M).

ZL(M) = XL(M)

ΩL(M) = ΛL(M)
(4.4)

(XL
1)�,ΛL

1 Z
L(M)
1 ,ΩL(M)

1

Figure 4.1: Marginalization of a local map. Blue: Features, Red: Anchor pose

4.2.3 Fusing Local Maps

In fusing, the global optimization problem represented is in the global map space, defined

by XG, ZG, ΩG, ΛG. The observations ZG are formed by combining the global locations

of the local maps XL. Due to the correlations that exist within each sub map, IRLS

bootstrapping is no longer possible. Therefore, we have resorted to using standard Gauss-

Newton (2.27) for optimization. Consequently, the initial estimate now becomes more

important for convergence. Figure 4.2 illustrates the graph setup for the process of map

fusion.

55

CHAPTER 4. SPARSE MAP JOINING

Z
L(M)
1 ,ΩL(M)

1 Z
L(M)
2 ,ΩL(M)

2

ZG,ΩG → (XG)�,ΛG

Figure 4.2: Two local maps are joined by applying Gauss-Newton on a global map.
Green: Common nodes

The behavior of the joining algorithm is affected by the order in which local maps are

fused. In the next sections we will be introducing three ways in which the order can be

changed. We call these map joining methods.

Batch Optimization (BO)

Batch optimization combines all local maps as a whole, by concatenating the end maps at

the points where they join (last pose of each local map). In the end only one optimization

step is needed. Given that the number of local maps stays the same, out of all the map

joining methods, BO makes the least approximations.

The downside is that BO can suffer from poor initial estimates and is prone to failure

like any non-linear least squares algorithm. By solving multiple optimization problems we

can try to alleviate this issue. See Appendix C.1 for the algorithm.

56

CHAPTER 4. SPARSE MAP JOINING

4.3 3D Sparse Map Joining

SMJ is further extended for 3D SLAM problems by expanding the state and redefining

the measurement functions to cater for new parameterizations.

4.3.1 Standard 3D Range and Bearing

For range and bearing models, the modifications are simple. Poses and features are rep-

resented by

XP
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xP
i

yP
i

zP
i

αP
i

βP
i

γP
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XF
m =

⎡
⎢⎢⎢⎢⎣

xF
m

yF
m

zF
m

⎤
⎥⎥⎥⎥⎦ (4.5)

Where (x, y, z) are positions and (α, β, γ) are Euler angles for rotation. Now we can define

the new measurement function h(3d) as

h
(3d)
im (XP

i , XF
m) = Rot(αP

i , βP
i , γP

i)

⎡
⎢⎢⎢⎢⎣

xP
m − xF

i

yP
m − yF

i

zP
m − zF

i

⎤
⎥⎥⎥⎥⎦ (4.6)

Where Rot is the rotation matrix consisting of the three angles in SO(3). In addition to

this we also have a new odometry function, g
(3d)
ij defined as

g
(3d)
ij (XP

i , XP
j) =

{
δxij , δyij , δzij , δαij , δβij , δγij

}
(4.7)

The function h(3d) is reused for the x, y, z components of g
(3d)
ij and the rotations δαij , δβij , δγij

are obtained from the rotation matrix relationship, given that Rot(·, ·, ·) is orthogonal

59

CHAPTER 4. SPARSE MAP JOINING

{
δxij , δyij , δzij

}
= h(3d)(XP

i , XP
j) (4.8)

Rot

{
δαij , δβij , δγij

}
= Rot(αP

i , βP
i , γP

i)Rot(αP
j , βP

j , γP
j)T (4.9)

Decomposing the Euler angles from a rotation matrix Rot(·, ·, ·) is very standard, for more

detail see Appendix F.

When solving non-linear least squares, we simply refer back to (2.27) and replace

him → h(3d) and gij → g(3d).

Remark. Our decision to use Euler parameterization over Manifold methods [57], comes

from the fact that the observation information matrix is no longer block diagonal. In

Manifold, as defined by Hertzberg [58], there is an assumption that information can be

normalized into an identity matrix by changing the measurement value. However, in the

case of SMJ this cannot be performed when matrices are correlated. Although we are

aware that using Euler parameterization can lead to singularity in rotation for the 3D

feature based graph SLAM, the occurrences are uncommon in our problems.

4.3.2 SMJ for Bundle Adjustment(BA)

Many feature based SLAM problems exist where there is no odometry and the sensor is

only capable of measuring the bearings to features. Such problems are seen in computer

vision, commonly referred to as Bundle Adjustment [26]. In BA formulation, the state

variable stays the same while the observation function h
(3d)
im changes. This new function

is typically defined by a re-projection equation

h
(3d)
im (XP

i , XF
m) = Proj(XP

i , XF
m, K) (4.10)

Where K represents the camera calibration matrix. The residual is now the re-projection

error between the observed pixel location Ẑ = [uim, vim]T and the theoretical value Z̄ =

60

CHAPTER 4. SPARSE MAP JOINING

h
(3d)
im (XP

i , XF
m). When applying SMJ to this problem, each local map is only correct up

to a scale. Unless the scale is corrected for all local maps, the final solution can become

consistent to a single scale. Zhao et al supported this point in [59]. Through the process

of map joining, the scale drift can also be minimized.

Local maps in BA must be solved using LM over GN due to the conditioning of bearing

only being very sensitive to the linearization point. Sparse Bundle Adjustment (SBA)

[60] is a popular algorithm that applies BA while exploiting the sparse block structure to

achieve efficiency.

4.3.3 Dual-Observation Model Joining

An interesting idea for SMJ, is not to only focus on a fixed observation model, but switch

between multiple ones. An instance of this is to combine a range and bearing local map

with bearing only local map. One such application is given in Chapter 6 Section 6.5,

(RGB-D SLAM).

The equation itself is only a slight modification on (4.6)

h
(3d)
im (XP

i , XF
m) = S(Rot(αP

i , βP
i , γP

i)

⎡
⎢⎢⎢⎢⎣

xP
m − xF

i

yF
m − yP

i

zP
m − zF

i

⎤
⎥⎥⎥⎥⎦) (4.11)

where S represents a new scale variable. Considering scale does not affect rotation, only

the translation part of h
(3d)
im is modified. The same is repeated for g

(3d)
ij . The graphical

representation of the dual-observation joining is represented in Figure 4.6.

61

CHAPTER 4. SPARSE MAP JOINING

Scaled Map Un-Scaled Map (BA)

Scaled Map After Joining

Figure 4.6: An additional variable (Orange: Scale) is introduced onto the marginal-
ized local maps, unlike the other variables in the graph, scale is just a scalar value
without spatial context. The Jacobian and observation functions are modified re-
spectively. This variable is then jointly optimized with the rest of the poses and
features.

As a side note, the properties of the global map must be considered when using SO. The

scale of the global map is not recoverable until a metrically accurate map is joined.

62

CHAPTER 4. SPARSE MAP JOINING

4.4 Evaluation

Due to marginalization in local maps, SMJ is an approximate solution to the original

Maximum Likelihood problem. We will assess the information loss through a series of

experiments, evaluating according to the ideas outline in Section 2.4.

Rather than consider noise level as a possible changing parameter, we want to focus

on the primary variables in our algorithm, which is the number of local maps n and the

joining method. Therefore, we propose to only use a series of fixed simulated scenarios

with fixed noise uncertainties in our evaluations. These are detailed in Appendix A. The

following is a summary of noise variances that were chosen and a summary of the sim-

ulated datasets. Notice that our simulations are targeted towards both scale and graph

connectivity. The generated noises are bounded by 3σ to prevent outliers.

Table 4.1: Simulation Noise

Dimension Odometry Noise STD Observation Noise STD

2D (
√

Σxx,
√

Σyy,
√

Σθθ)= (0.05,0.05,0.05) (
√

Σxx,
√

Σyy) = (0.05,0.05)

3D (
√

Σxx,
√

Σyy,
√

Σzz,
√

Σαα,
√

Σββ ,
√

Σγγ) = (0.05,0.05,0.05,0.05,0.05,0.05) (
√

Σxx,
√

Σyy,
√

Σzz) = (0.05,0.05,0.05)

Table 4.2: Summary of Datasets

Dimension Dataset no. Poses no. Features no. Feature Observations Average Node Degree

2D

Circle 61 36 2196 44.8

Loop 301 76 785 4.15

Manhattan 3500 36 3871 2.18

3D

Circle 61 64 3904 61.96

Loop 301 381 3096 9.06

Sphere 701 149 4416 29.6

4.4.1 Consistency using NEES

When we consider consistency, the Normalized Estimation Error Squared (NEES) is tested,

refer back to Section 2.4.4.

NEES is typically performed on the algorithm in question, which in our case is Sparse

63

CHAPTER 4. SPARSE MAP JOINING

Map Joining. Therefore, to do a comparison with Maximum Likelihood, we must first

deduce the state vector X(ML) and information matrix Λ(ML) into the same state represented

as SMJ.

First, the non-associated states are removed from the ML solution (states that do not

exist in the SMJ formulation). The information matrix is updated using the Schur Com-

plement (Appendix E), so to be consistent with the reduced state vector X
(M)
(ML) .

X(ML) → X
(M)
(ML)

Λ(ML) → Λ(M)
(ML)

(4.12)

By applying marginalization, a NEES of ML and SMJ can be directly compared to the

95% χ2 Gate calculated at dim(X) degree of freedom, refer to Section 2.4.4. Note, during

a NEES test it is wise to reject any Monte Carlo simulations that are above the NEES

value for any given ML result, (X(ML), Λ(ML)) on Equation (2.35). The reason being that

SMJ is only an approximation and can never achieve a better solution to ML, so it would

be pointless to test SMJ on an already inconsistent ML result.

One issue faced when calculating NEES in 3D is the handling of Euler angles due to their

non-uniqueness. There exists several rotation sequences of the 3 angles to achieve a specific

3D rotation. One cannot simply take the difference between the ground truth angles

and the estimated angles to calculate the NEES. Also transforming angles into a unique

definition such as quaternions would require further linearization. As a result, for 3D

problems, we have decided to ignore checking of consistency in rotation and only focused

on the x, y, z elements. This is simply done by applying an addition marginalization step

to remove the Euler angles from the state.

X
3D(M)
(ML(xyz)) → X

3D(M)
(ML)

Λ3D(M)
(ML(xyz)) → Λ3D(M)

(ML)

(4.13)

64

CHAPTER 4. SPARSE MAP JOINING

Experiments

The experiments are conducted for all the datasets mentioned in Appendix A. The chang-

ing parameter is the number of local maps that the trajectory is divided up into, n =

4, 10, 20. The number in parentheses corresponds to the percentage of successful Monte

Carlo runs where the NEES value lie within the theoretical 95% χ2 Gate.

Table 4.3: 2D NEES Test on 50 Monte Carlo Runs (Percentage of Runs Within 95%
χ2 Gate)

MAP Fusing Method n = 4 n = 10 n = 20

CIRCLE

Gate 106.39 126.57 159.81

BO 79.09(100) 96.25(100) 124.63(98)

SO 79.09(100) 96.25(100) 124.63(98)

DCO 79.09(100) 96.25(100) 124.63(98)

ML 79.09(100) 96.25(100) 124.63(98)

LOOP

Gate 194.8 214.47 246.96

BO 235.88(44) 191.64(84) 215.39(90)

SO 485.79(30) 1862(30) 2882(5)

DCO 424.66(42) 360.04(44) 421.26(39)

ML 166.79(98) 182.54(100) 210.42(98)

MANHATTAN

Gate 106.39 126.57 159.8135

BO 127.92(64) 191.78(40) 332.84(10)

SO 161.89(56) 196.58(33) 466.49(6)

DCO 161.91(56) 598.27(6) 1354(2)

ML 82.24(96) 100.63(96) 132.44(94)

65

CHAPTER 4. SPARSE MAP JOINING

Table 4.4: 3D NEES Test on 50 Monte Carlo Runs (Percentage of Runs Within 95%
χ2 Gate)

MAP Fusing Method n = 4 n = 10 n = 20

CIRCLE

Gate 238.32 257.75 290.03

BO 196.60(98) 212.03(98) 242.48(100)

SO 196.60(98) 212.03(98) 242.48(100)

DCO 196.60(98) 212.03(98) 242.48(100)

ML 196.60(98) 212.03(98) 242.49(100)

LOOP

Gate 1247.6 1284.8 1346.8

BO 1165.9(96) 1194.4(100) 1250(96)

SO 1466.6(47) 1541(46) 1832.3(36)

DCO 1217(98) 1245.1(83) 1308.7(81)

ML 1155.2(98) 1190.6(98) 1249.1(96)

SPHERE

Gate 509.94 528.91 560.48

BO 460.98(98) 475.69(100) 504.57(100)

SO 536.99(88) 632.79(94) 504.59(100)

DCO 469.04(94) 521.75(98) 504.68(100)

ML 456.57(100) 474.39(100) 503.16(100)

From Tables 4.3 we can observe that the consistency between SMJ and ML is identical

when the graph is fully connected (Circle). For less connected graphs, increasing the

number of local maps can either improve (Loop) or degrade (Manhattan) the probability

of consistency (number in parenthesis). The trend is that by increasing n there is an

overall reduction in the consistency, especially when we analyze SO and DCO methods.

We can associate this to the approximations imposed by the additional linearization at

each joining step.

It is safe to state that BO can produce the most consistent results for SMJ and by

increasing the total number of local maps inconsistency may occur depending on how well

connected the graph is.

66

CHAPTER 4. SPARSE MAP JOINING

4.4.2 Accuracy using χ2 Ratio

To measure the accuracy, we will be using the χ2 ratio test mentioned in Section 2.4.3.

This is where we evaluate the closeness of the new proposed algorithm (SMJ) to Maximum

Likelihood.

χ2 ratio is compared in reference to the ML estimate, after all, this is the best obtainable

solution for feature based SLAM.

State Recovery

For a given SLAM algorithm that has its states marginalized from the original problem,

the missing states can be recovered by fixing the known states associated with the results

from the given algorithm. First, re-define the original ML problem then solve for the

remaining variables.

For the case of SMJ, the fixed states are all the features and remaining poses in the joined

graph. The final step is to calculate the new χ2
(SMJ) with the recovered state estimate using

Equation (2.32) and then apply the ratio equation

χ2ratio =
χ2

(SMJ)

χ2
(ML)

(4.14)

67

CHAPTER 4. SPARSE MAP JOINING

Experiments

The χ2 ratio test is performed on the same datasets employed in the NEES experiments

in Section 4.4.1.

Table 4.5: 2D χ2 Ratio on 50 Monte Carlo Trails (Standard Deviation)

MAP Fusing Method n = 4 n = 10 n = 20

CIRCLE

BO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

SO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

DCO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

LOOP

BO 1.02(0.01) 1.00(0.003) 1.00(0.001)

SO 1.17(0.30) 1.65(1.28) 1.91(1.55)

DCO 1.13(0.29) 1.07(0.13) 1.09(0.15)

MANHATTAN

BO 1.00(≈ 0) 1.00(0.003) 1.00(0.002)

SO 1.00(≈ 0) 1.00(0.003) 1.00(0.001)

DCO 1.00(≈ 0) 1.00(0.005) 1.00(0.002)

Table 4.6: 3D χ2 Ratio on 50 Monte Carlo Trails (Standard Deviation)

MAP Fusing Method n = 4 n = 10 n = 20

CIRCLE

BO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

SO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

DCO 1.0(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

LOOP

BO 1.00(≈ 0) 1.0(≈ 0) 1.0(≈ 0)

SO 1.01(0.012) 1.02(0.03) 1.03(0.05)

DCO 1.00(0.007) 1.0(0.005) 1.0(0.005)

SPHERE

BO 1.017(0.06) 1.00(0.002) 1.0(≈ 0)

SO 25.74(174.74) 7.90(48.8) 1.00(≈ 0)

DCO 1.01(0.017) 1.40(2.88) 1.00(≈ 0)

The results from Tables 4.5 and 4.6 indicate that, after the poses are recovered from the

estimate, the overall χ2 ratio is very close to 1. This suggests that the SMJ results have

come very close to the actual ML solution. Only in the instances of SO is the average

large. We can associate this with possible outliers in the results due to poor convergence.

Overall, DCO can be seen as a better approximation. Also, increasing the number of local

maps does not have any profound change on the accuracy.

68

CHAPTER 4. SPARSE MAP JOINING

4.4.3 Computation Time

To measure the computation time of SMJ, we must also compare the different optimization

approaches. The key to an efficient map joining algorithm depends on the time in which

the local maps are built and the time taken for joining them.

When assessing the computation time, we have taken into consideration the IRLS boot-

strapping time also. Given that the trajectories chosen are complex, we believe that

applying IRLS is critical to obtaining consistent results. In our tests, the times for IRLS

are included in the parentheses, and thresholds are set according to Sections 3.2.7 and

2.4.1.

For the test, the focus is on a single run of the algorithms. SMJ is currently implemented

in Matlab and compared with the Matlab implementations of Maximum Likelihood and

IRLS. Unlike Chapter 3, there is no easy way to implement SMJ into g2o due to cor-

relations within the observation information matrix. Therefore, it would not be fair to

compare the ML method in Chapter 3 with our current SMJ implementation. However,

in actual SMJ usage, we have taken advantage of g2o for building local maps.

Table 4.7: Computation Time For a Single SMJ Run on an Intel corei5-2400 Running
at 3.10GHz, (IRLS Bootstrapping Time)

Dimensions Local Maps Local Maps(s) SO(s) BO(s) DCO(s) Total Time(s)

Manhattan

n = 4 2.66+(19.75) 0.99 1.19 0.99 23.39/23.60/23.40

n = 10 2.23+(13.18) 0.74 0.48 0.59 16.15/15.90/16.00

n = 20 2.10+(10.81) 1.08 0.99 0.71 14.00/13.90/13.62

ML 11.44+(17.56)=29

Sphere

n = 4 3.44+(29.48) 1.30 1.15 1.13 34.21/34.07/34.04

n = 10 3.08+(20.54) 2.45 1.38 2.11 26.07/25.01/25.74

n = 20 2.96+(14.03) 5.08 2.11 3.28 22.07/19.11/20.28

ML 4.63+(79.93)=84.57

69

CHAPTER 4. SPARSE MAP JOINING

Table 4.7 is an computation time analysis on the Manhattan and Sphere datasets. It is

obvious that SMJ is much more efficient when compared to regular ML. The results are

even more evident for 3D, where the overall time reduction is substantial (76%). We can

see that the majority of the time is spent on solving the local maps when the number of

local maps n is small. Only when we increase the number of local maps does the time

taken for joining start to influence the overall time. BO is not always the most efficient

method, but for the sphere trajectory it is considerably better than DCO and SO.

The number of local maps chosen has the greatest impact on the efficiency. Note,

although the larger n value gives lower computation times, from the results in Section 4.4.1,

the results may also become in-consistent (especially in the Manhattan case). Therefore,

choosing the best n value will be critical in obtaining an optimal SMJ algorithm.

70

CHAPTER 4. SPARSE MAP JOINING

4.4.4 Resulting Maps

It is better to visualize SMJ once the marginalized poses are recovered. The following are

the maps of a single Monte Carlo instance for Manhattan and Sphere. In view of the large

number of features, the features have been omitted from the figures to provide clarity.

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20
Odometry
ML
SMJ, Batch, 10 Local Maps

(a) Circle 2D Result

−10

−5

0

5

10 0

5

10

15

20
0

2

4

(b) Circle 3D Result

−40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

(c) Loop 2D Result

−40

−20

0

20
0

20

40

60

80

100
−40

−30

−20

−10

0

(d) Loop 3D Result

−40 −30 −20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

(e) Manhattan Result

−50

0

50 −40

−20

0

20

−30

−20

−10

0

10

20

30

(f) Sphere Result

Figure 4.7: A single run comparing ML to Batch Optimization at n = 10.

71

CHAPTER 4. SPARSE MAP JOINING

It is a common misconception to compare the results of a optimized solution visually.

SLAM results from very noisy data can result in extremely poor looking maps. However,

this does not mean the solution is less optimal than a poorly converged SLAM result with

less noise.

4.4.5 Real Datasets

To better verify SMJ, we run our algorithm on two real datasets. The DLR-Spatial-

Cognition dataset [61] is collected using artificial landmarks (white/black circles) placed

on the ground. This data contains both odometry and landmarks with good uncertainty

measurements. Pre-processing of data has been performed with known data associations.

There are a total of 3296 poses, 539 features, 14163 observation and average node degree

of 25.83.1

The other benchmark dataset is Victoria Park [62]. The data is collected by using a

laser sensor to detect natural features in an outdoor environment coupled with vehicle

odometry. Data associated is provided using an EKF based SLAM system. There are a

total of 6899 poses, 299 features, 45390 observation and average node degree of 151.80.2

Both datasets have passed the expected value test in Section 2.4.4, meaning that the

Gaussian assumption is being satisfied within the measurements.

The results are summarized in Table 4.8, and a visual comparison is provided in Figure

5.8.

Table 4.8: χ2 Ratios and Time taken for 20 local maps

Dataset SO BO DCO ML time Best SMJ time

DLR 1.02 1.00 1.13 317.41 30.18

Victoria Park 1.00 1.00 1.00 1390.70 134.56

1https://svn.openslam.org/data/svn/2d-i-slsjf
2http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm

72

CHAPTER 4. SPARSE MAP JOINING

−50 −40 −30 −20 −10 0 10 20 30

−20

−10

0

10

20

30

40 Odometry
ML
Batch
Sequential
D and C

(a) DLR

0 5 10 15

8

10

12

14

16

18

Odometry
ML
Batch
Sequential
D and C

(b) DLR Zoomed In

−100 −50 0 50 100 150 200

0

50

100

150

200

(c) Victoria Park

30 35 40 45 50 55 60 65 70 75 80

185

190

195

200

205

210

215

220

(d) Victoria Park Zoomed In

Figure 4.8: Results from the DLR dataset and the Victoria Park dataset.The SMJ
algrotihms applied are Batch, Sequential and D&C.

These results prove that SMJ is also very effective on real world scenarios, with a

significant improvement on the efficiency over standard ML. The χ2 ratios are also very

good suggesting that there is very little information loss in the SMJ approximation. In

DLR there is a global rotation on DCO and SO methods which is indicative of the lower

connectivity in the dataset.

73

CHAPTER 4. SPARSE MAP JOINING

4.5 Discussion

The following is a series of discussions about the SMJ algorithm.

Information Matrix Sparsity

We should recognize that some of the the efficiency of SMJ comes from the sparsity of

the information matrix. This sparsity is a result of keeping the last poses of each local

map within the final state vector. If we were to marginalize every pose except the current

ones, the result would be equivalent to an EKF based method becoming very inefficient as

the feature size grows [63]. Through additional marginalization of poses, SMJ will reduce

the overall number of states but still keep a certain degree of sparsity. Considering that

local maps only contain the information about its nearby features, the sparsity of the final

information matrix ΛSMJ is determined by how the map is split and the total number of

local maps.

Improving the Convergence

From our results, it is evident that SMJ can sometimes diverge due to linearization issues.

We have found that the node degree (number of times a feature is observed) plays an

important role in improving convergence, consistency and accuracy of the result. With a

fully connect graph such as Circle, there is almost no quality lost due to the approxima-

tions; however, for a more realistic SLAM scenario, many factors can impact the outcome

of SMJ.

The main assumption of the SMJ algorithm is that local maps are consistent. On top of

applying IRLS bootstrapping, selecting the number of local maps also helps with better

convergence properties, such that the assumption is satisfied. We have found that smaller

local maps are typically simpler non-linear least squares problems that can converge very

quickly.

From the results, increasing the number of local maps can improves the overall computa-

tion time of the algorithm, see Table 4.7. One major drawback is that the optimal method,

74

CHAPTER 4. SPARSE MAP JOINING

BO, can sometimes diverge due to bad initial estimates (concatenating the ends of several

local maps). By using SO or DCO, the convergence is improved to some degree given that

a better initial value is achieved at each joining step. However, these methods may impose

additional approximations and will be even further away from the maximum likelihood

solution. To avoid these approximations one could apply SO and DCO as bootstrappers

to solving a Batch SMJ problem.

Alternatively, if the dataset is able to be improved directly (e.g., Active SLAM), one

should aim to improve the average or minimum node degree of the dataset. Our recom-

mendation is to either find more features, increasing the overall density of features, or

improve the sensing capabilities to observe more features from a single pose. A small

example of this can be seen in the real datasets - Victoria park has a much larger sensor

range compared to DLR and respectively also has a better χ2 ratios (Table 4.8).

SMJ as a Bootstrapper

In many cases, the estimates achieved by SMJ are very close to the actual Maximum

Likelihood estimate. Tables 4.5 and 4.6 provide evidence for this. If we were to solve

ML, starting from the SMJ estimate, our chances of converging to the global minimum is

much better than that of odometry. Therefore, SMJ also makes a good candidate for the

reliability framework described in Section 3.2, and can be categorized as a bootstrapper

for feature based SLAM. According to the framework, the intermediate optimization steps

C2 can be treated as the SO or DCO joining of local maps and C3 can be satisfied from

the final BO solution.

75

CHAPTER 4. SPARSE MAP JOINING

4.6 Summary

In this chapter we have demonstrated how to solve the SLAM Back-End, through 2D and

3D SMJ for the efficient building of large scale maps. The overall dimensionality is reduced

by the marginalization of poses through the local map building and joining process.

We have proposed three methods to solve the map joining problem: Batch Optimization;

Sequential Optimization; and Divide & Conquer Optimization. Batch Optimization is

demonstrated to be the most consistent out of the three. The other two methods are

in-fact approximations of BO and should only be considered if BO has or is likely to

converge onto a local minimum. Overall, computation time can be improved by increasing

the number of local maps to some extent. However, we must take care that the consistency

is not also being compromised.

SMJ is an effective way of handling scalability for the feature based SLAM problems

mentioned in this chapter. Unfortunately, pose marginalization is still not enough when the

number of features are exceptionally large. This is especially true in vision based SLAM. In

the next chapter we will propose Pose Graphs Representation - a way to effectively remove

the features from the map and handle the scalability issue in a completely different way.

76

Chapter 5

Pose Graph Representation

5.1 Introduction

One way to reduce state dimensionality is to remove all features from a graph and use

a purely pose based representation of the data. As discussed in Chapter 3, pose graphs

can be a simpler SLAM problem to solve, since all vertices (V) share the same dimension

and all edges (E) can be expressed using the same measurement equations. Consequently,

pose graphs have very strong properties that link with many important concepts in graph

theory. Many works in pose graphs [38, 40, 41, 43] have found ways to exploit these prop-

erties to improve on the issues faced in SLAM. Although the growing trend in the SLAM

community has been towards pose graph; the process and affects in converting a feature

based problem into a pose graph representation has remained somewhat unexplored.

Intuitively, one ought to expect a reduction in computation time when features are

no longer being estimated. What is unknown are the associated approximations and

inconsistencies that arise when changing the feature observations into relative poses. The

important fact to consider is that a single observation may correlate many poses once the

least squares is solved, if they are to be approximated, some of these correlations may

become lost.

The critical question posed in this chapter is whether the original problem of Features

based SLAM can be represented as a Pose Graph, is it possible to achieve a substantial

77

CHAPTER 5. POSE GRAPH REPRESENTATION

gain in SLAM efficiency while still minimizing the amount of information loss? In addition

to this, are there any added advantages to this type of representation?

The chapter is comprised of the following sections. Section 5.2 gives a brief introduction

into pose graphs. Section 5.3 details the steps involved in converting a feature based SLAM

problem into a pose graph representation. Section 5.4 is our evaluation and Section 5.5

poses some discussion topics.

5.2 Pose Graphs

In addition to the related work mentioned in Section 2.5, the pose graph representation

(PGR) has also been very effective in solving many large scale mapping applications for

both 2D [8, 30] and 3D environments [64]. In recent developments, researchers have even

found ways to remove the influence of bad data association and outliers [16, 65].

In pose graphs, raw sensor data is replaced with the so called "virtual measurements"

conditioned by the original measurements. In other words relative poses are formed by

the most likely transform that fits the feature observations. Standard estimation tech-

niques are made possible, if the "virtual measurements" are also assumed to be Gaussian.

However, in reality the observation model is multi modal, meaning that removing single

features observation may lead to multiple relative poses and the connectivity needs to be

described as a probability distribution. Trying to deal with multi modality is highly com-

plex and can sometimes be infeasible to solve [66]. Therefore, researchers have resorted to

approximate methods like the one proposed in this chapter.

Figure 5.1 gives a simple example of creating a pose graph. Robot poses are estimated

independently from the map/features once in the pose graph form. It is also possible to

recover the features once the best configuration of the poses is known.

78

CHAPTER 5. POSE GRAPH REPRESENTATION

Figure 5.1: Example of a feature based graph represented as a pose only graph.

5.3 Pose Graph Representation of Feature Based SLAM

In many robotic systems the idea of extracting observation vectors from sensor measure-

ments might be non-trivial. Given that we are able to use a simple point feature based

model (gim), described in (2.2): the following sections are devoted to the methodologies

for extracting relative pose constraints whilst at the same time preserving the overall

consistency of the problem.

5.3.1 Obtaining Relative Pose

Using very standard methods, it is possible to derive a relative pose ZP
ij from two sets of

point feature observations ẐF from poses i and j. The associated covariance/information

matrix ΩP
ij is either approximated or directly obtained through the least squares algorithm.

The formulation is as follows

ZP
ij =

⎡
⎢⎢⎢⎢⎣

δxP
ij

δyP
ij

δθP
ij

⎤
⎥⎥⎥⎥⎦ ∼ N(0, ΣP

ij) (5.1)

To obtain this relative pose, ZP
ij (with Gaussian noise), one way is to assume data

79

CHAPTER 5. POSE GRAPH REPRESENTATION

association and optimize for T .

T �
ij = argmin

Tij

∑
m

∥∥∥∥Tij(ẐF
im) − (ẐF

jm)
∥∥∥∥

2
(5.2)

A better way is to reformulate Equation (5.2) into a two pose SLAM optimization problem

defined by the functions expressed in Section 2.2.1. This way features are also being jointly

optimized.

X� = argmin
X

∑
m

∥∥∥∥(ẐF
im − XF

m)
∥∥∥∥

2

Ωim

+
∑
m

∥∥∥∥(ẐF
jm − hjm(XP

j , XF
m))

∥∥∥∥
2

Ωjm

(5.3)

Assuming that XP
i = {0, 0, 0} is an anchor pose, then the optimized state (XP

j)� = T �
ij .

From the least squares formulation we can obtain ΩP
ij after marginalizing out the feature

part of the states.
Λ = J(X�)T ΩF J(X�)

ΩP
ij = ΛP (M)

j

ZP
ij = (XP

j)�

(5.4)

A simple example of this process is conveyed below.

ẐF
im, ΩF

im

ẐF
jm, ΩF

jm

XP
i

(XP
j)�

ZP
ij , ΩP

ij

Figure 5.2: In this example, the relative pose measurement ZP
ij is obtained by solving

a non-linear least squares using the observations ẐF
im, ẐF

jm.

In regression, the initial estimate is a critical factor for convergence. Horn [67] proposes a

closed form way of finding Tij using the centroids of the coordinate system. This technique

80

CHAPTER 5. POSE GRAPH REPRESENTATION

is both efficient and accurate for 2D and 3D transformations.

T
(0)
ij = Horn(ẐF

im, ẐF
jm) (5.5)

To avoid solving a full non-linear least squares problem, one could directly apply the

result of Horn and approximate the covariance by linearizing about the estimate. However,

this would not lead to the most accurate estimate or covariance of the relative pose. For

further discussion see Section 5.5.1.

Minimum Number of Observations (Obsmin)

When obtaining a relative pose, one important condition is the minimum number (Obsmin)

of feature observations needed. This number is equal to the degrees of freedom in the

system, (For our 2D models it is 2, and 3D it is 3). If Obs > Obsmin, less uncertain and

more accurate ZP
ij will be obtained but may also result in less relative poses. The minimum

number will be an important factor in the search for relative poses.

5.3.2 Information Reuse

Information reuse, when computing relative poses, is a critical factor to consider when

trying to avoid inconsistency. Simply stated, the uncertainties in a feature observations

Σ̂F
ij , when applied in its current form, will lead to overconfidence given that the information

itself is being reused in several relative pose calculations.

In this section, we will express two ways for overcoming information reuse.

81

CHAPTER 5. POSE GRAPH REPRESENTATION

Single Observation Method, PGR(SO)

Avoiding information reuse all together is a popular approach. This is done by only ever

applying information once. Which means, when an observation is selected to compute

ZP
ij , it can no longer be employed in any subsequent calculations for relative poses. To do

this, one must first distribute the observations, such that the maximum number of relative

poses are obtained. In the process, the minimum observation condition, Obsmin, should

also be taken into account.

ẐF
1,1 ẐF

2,1 ẐF
2,2 ẐF

3,2

ẐF
1,2

ZP
1,2 ZP

2,3
i1 i2 i3

m1 m2

Figure 5.3: Given a simple 1D problem where Obsmin = 1, (ẐF
1,1, ẐF

2,1) are used to
calculate ZP

1,2 and (ẐF
2,2, ẐF

3,2) for ZP
2,3. If we wanted to add an additional relative pose

between i1 and i3 (red dotted lines), then the constraint ẐF
1,2 would need to be used

in conjunction with observation ẐF
3,2, violating the PGR(SO) criteria. Therefore,

the observation ẐF
1,2 is ignored (red dotted lines)

PGR(SO) does not impose any alterations to the information, but is only effective

when the number of features are exceptionally large. If this is not the case, then very few

relative poses can be obtained, resulting in significant information loss.

Multi Observation Method, PGR(MO)

The Multi Observation Method, PGR(MO), reconciles the problem of information reuse

by evenly dividing information heuristically. The intuition is that, an observation with

measurement Ẑij with information matrix Ωij is equivalent to k number of the same

observations each with the information 1
k Ωij . Simply put, depending on the number of

times an observation is applied to calculate a relative pose, its corresponding information

82

CHAPTER 5. POSE GRAPH REPRESENTATION

20 22 24 26 28 30 32 34 36 38

−2

0

2

4

6

8

10 Uncertainty Ellipse Information Reused
Uncertainty Ellipse ML

(a) Information Reused

20 22 24 26 28 30 32 34 36 38
−4

−2

0

2

4

6

8

10 Uncertainty Ellipse PGR(MO)
Uncertainty Ellipse ML

(b) Multi Observation Method (MO)

Figure 5.5: When information reuse is not handled, the uncertainties in x, y are
overconfident. For MO, the resulting ellipse is much closer to that of the maximum
likelihood. The trajectory is a zoomed section of Loop 2D.

Effectiveness of PGR

Depending on the graph structure, PGR is not necessarily faster at solving a feature

based problem. This is due to the scaling on the number of edges that is obtainable. The

following is a simple condition to quickly determine which methods (PGR or ML) are

more efficient based on the total number of edges in each graph.

3n � 2m (5.6)

Equation (5.6) describes the efficiency condition only for a 2D problem, given that the

number of equations for an edge in pose-pose is 3 and pose-feature is 2. Thus, the number

of feature observations m must be significantly larger than the number of obtainable

relative poses n, such that steps involved in pose graph optimization is more efficient.

In PGR there exist two pre-processing steps needed before applying optimization on the

pose graph, Equation (2.28). The first involves the searching of possible relative poses

and the second is the calculation of the found relative poses. The first step will scale

quadratically based on the number of poses in the search space and the second is linear

over the number of relative poses found. Step two is often more computationally expensive

84

CHAPTER 5. POSE GRAPH REPRESENTATION

since it involves solving multiple non-linear least squares problems. If the condition (5.6)

is not sufficiently satisfied, then additional computation burdens are added to the pre-

processing steps as well, making the overall algorithm even slower.

Reducing Complexity Via Key Poses

Understanding that our main concern is computation time, one way to better meet con-

dition (5.6), is to further approximate the pose graph. The proposed method, Key Poses,

limits the number of relative poses that the algorithm can make, by only searching through

a subset of the original pose set. XK ⊂ XP
(ML). From the search process, we can obtain a

new n.

Finding the optimal subset for achieving a good approximation while also improving the

efficiency is difficult. A good subset has to be both consistent and accurate. Our technique

is heuristic, in that we define a Key Pose from every k number of poses along the length

of the trajectory. If k = 1, then the maximum number of relative poses will be searched

for. As k increases, the search space becomes smaller, in turn increasing our chance to

satisfy (5.6) while applying a greater approximation on the optimal pose graph.

The intuition for this method is that neighboring poses will not add much influence

when improving the overall quality of the graph and only lower quality information is

lost when ignoring some of these during a search. Another interpretation is that, feature

observations tend to occur in clusters, meaning that a series of consecutive poses will most

likely observe the same features. The chances of our search missing important relative

poses for loop closures are low, unless k is set too large.

To find the optimal subset XK , the simplicity and computational overheads of Key

Poses makes our method very attractive. Although more sophisticated techniques should

be pursued to make PGR(MO) even better. We wish seek to investigate this idea further

in future work.

85

CHAPTER 5. POSE GRAPH REPRESENTATION

5.3.3 Algorithm

Once the pose graph is created, we can resort to our standard IRLS+GN approach,

mentioned in Section 3.4.2, to solve the optimization problem. The algorithm for PGR

is summarized in Appendix D.

86

CHAPTER 5. POSE GRAPH REPRESENTATION

5.4 Evaluation

Similar to Chapter 4, the same set of techniques as in Section 4.4 are employed for eval-

uation. Here the concern is placed on the performance of PGR(MO) under differing k

values. Since the efficiency of pose graphs comes from the removal of features, the datasets

(Appendix A) utilized in SMJ have been slightly modified. The modification is to increase

overall feature density while keeping all other parameters constant, (e.g., Sensor Model,

Trajectory and Noise).

Below is the summary of the modified datasets. The trajectory size of Manhattan has

been halved so that ML is able to finish without suffering from memory issues due to the

increased number of feature observations.

Table 5.1: Summary of Datasets

Dimension Dataset no. Poses no. Features no. Feature Observations Average Node Degree

2D

Circle 61 64 3904 62

Loop 301 324 3482 11.12

Manhattan 1750 172126 3871 94.16

3D

Circle 61 64 3904 62

Loop 301 1369 11189 13.39

Sphere 701 363 10435 19.5

Again we will be comparing against the benchmark solution, Maximum likelihood for

feature based SLAM, checking for NEES and χ2 ratios.

5.4.1 Consistency using NEES

This time only poses are checked for NEES, in which case all the features have to be

marginalized from X(ML) and Λ(ML).

X(PGR) = [XP 1
, · · · , XP n

]
T

(5.7)

87

CHAPTER 5. POSE GRAPH REPRESENTATION

Once again this is done by imposing the Shur Complements (5.8). For NEES equations

refer back to (2.35).1

X(ML) → X
(M)
(ML)

Λ(ML) → Λ(M)
(ML)

(5.8)

Experiments

The results from NEES tests are detailed in the following two tables:

Table 5.2: 2D NEES Test on 50 Monte Carlo Trails (Percentage of Runs Within
95% χ2 Gate)

MAP Gate k = 1 k = 2 k = 3 k = 5

CIRCLE 215.56 99.14(100) 81.14(100) 88.10(100) 92.94(100)

LOOP 974.02 572.46(100) 549.32(100) 585.07(100) 647.187(100)

MANHATTAN 5419.70 2924.5(100) 2883.70(100) 3912.3(100) 4224.40(100)

MAP Gate k = 8 PGR(SO) ML

CIRCLE 215.56 96.17(100) 198.00(82) 181.72(90)

LOOP 974.02 698.168(100) 904.55(90) 891.04(100)

MANHATTAN 5419.70 4623.00(100) 4780.40(88) 5179.90(100)

Table 5.3: 3D NEES Test on 50 Monte Carlo Trails (Percentage of Runs Within
95% χ2 Gate)

MAP Gate k = 1 k = 2 k = 3 k = 5

CIRCLE 215.56 99.44(100) 81.14(100) 88.10(100) 92.94(100)

LOOP 974.02 569.96(100) 550.24(98) 579.19(100) 721.35(100)

SPHERE 2210.80 1367.00(100) 1415.90(100) 1467.40(100) 1640.50(100)

MAP Gate k = 8 PGR(SO) ML

CIRCLE 215.56 96.17(100) 198.00(82) 181.72(90)

LOOP 974.02 1300.70(30) 988.21(36) 901.62(96)

SPHERE 2210.80 1833.50(100) 2183.40(60) 2075.40(100)

1Refer to Sections 2.4.4 and 4.4.1 for more information regarding this evaluation technique

88

CHAPTER 5. POSE GRAPH REPRESENTATION

The NEES results provide evidence that the consistency of our algorithm is comparable

to ML. PGR is overall consistent, even after reducing the search space significantly with

PGR(MO). Only at Loop 3D k = 8 does the NEES become unstable, which is related to

a combination of poor connectivity and high k value. When compared to PGR(SO), at

reasonable k values (1-3) PGR(MO) results are always better, concluding that handling

information reuse is far more effective than trying to avoid it.

For 3D trajectories the results confirm similar trends; however, 3D parameterization for

pose graphs can become unstable due to ambiguities associated with Euler angles param-

eterization. Because of this we have started from ground truth to guarantee convergence

and stability.

5.4.2 Accuracy using χ2 Ratio

Once again accuracy is evaluated by the χ2 ratio, refer to Section 4.4.2. This time, recovery

of the unknown states is obtained by fixing the robot poses (estimate of PGR) in place

and optimizing only features. For pose graphs, the recovery of features via this technique

may be regarded as the most optimal way to obtain the map once a pose graph is solved.

Although the problem is still non-linear, we have found the convergence to be, at most

times, reliable.

The χ2 ratio equation is defined by

χ2ratio =
χ2

(PGR)

χ2
(ML)

(5.9)

89

CHAPTER 5. POSE GRAPH REPRESENTATION

Experiments

The same simulations as in Section 5.4.1 are repeated for the χ2 Ratio test:

Table 5.4: 2D χ2 Ratio on 50 Monte Carlo Trails (Standard Deviation)

MAP PGR(MO) k = 1 k = 2 k = 3 k = 5 k = 8 PGR(SO)

CIRCLE 1.00(≈ 0) 1.03(0.01) 1.03(0.01) 1.02(0.01) 1.33(1.33) 1.29(0.46)

LOOP 1.00(≈ 0) 1.06(≈ 0) 1.32(0.26) 3.75(1.16) 8.23(1.85) 1.22(0.01)

MANHATTAN 1.00(≈ 0) 1.02 (≈ 0) 1.08(0.15) 2.95(0.95) 7.53(1.64) 1.10(0.02)

Table 5.5: 3D χ2 Ratio on 50 Monte Carlo Trails (Standard Deviation)

MAP PGR(MO) k = 1 k = 2 k = 3 k = 5 k = 8 PGR(SO)

CIRCLE 1.00(≈ 0) 1.03(≈ 0) 1.03(0.01) 1.02(0.01) 1.32(1.33) 1.29(0.46)

LOOP 1.00(≈ 0) 1.02(≈ 0) 2.44(0.57) 22.38(2.18) 56.51(6.75) 1.24(0.01)

SPHERE 1.49(3.37) 2.11(4.78) 3.27(5.85) 22.55(9.95) 53.83(12.56) 8.98(10.39)

Although the NEES test demonstrates much consistency in all cases of PGR(MO),

only under some k values is the estimate accurate or close to ML. The reasons are linked

to the connectivity of the graph or pose graph structure. As k increases, even small errors

incurred from pose estimation will translate to large errors in the re-estimation of feature

location. If the graph is already poorly connected in the pose feature graph, then it is

unlikely that a good χ2 ratio can be obtained. In the 3D datasets, the translation error is

even higher. Even at the lowest k, Sphere has a substantial difference in χ2 ratio.

The χ2 ratio tells us that we might lose significant information in the pose graph rep-

resentation and this is amplified when trying to reduce the computation time with high

values of k. As a consequence, unlike SMJ, it would be unwise to use PGR unless both

accuracy and efficiency can be maintained. The situation will be highly dependent on

the nature of the problem whereby pose and feature configurations should satisfy good

connectivity and the efficiency condition (5.6).

90

CHAPTER 5. POSE GRAPH REPRESENTATION

5.4.3 Resulting Maps

Here are the outcomes of a single run of PGR. Again features have been omitted for clarity.

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20
Odometry
ML
PGR(MO)

(a) Circle 2D Result

−5

0

5

10 0

5

10

15

−2
−1

0
1

(b) Circle 3D Result

−20 0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

(c) Loop 2D Result

0
20

40 0

20

40

60

80

100

−40

−30

−20

−10

0

10

20

30

(d) Loop 3D Result

−20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

(e) Manhattan Result

0
10

20
30

40
50 −20

−10
0

10
20

−20

−10

0

10

20

(f) Sphere Result

Figure 5.6: A single run comparing ML to PGR(MO) k = 3.

5.4.4 Computation Time

The algorithm, in terms of computation time, is split into the following sub-categories:

pre-processing - searching for and calculating relative poses. and solving - optimization

91

CHAPTER 5. POSE GRAPH REPRESENTATION

using IRLS+GN. From this we can compare the total time for standard ML and PGR.

The results are given for a single Monte Carlo simulation of Manhattan and Sphere. Again

we have decided to evaluate all our results in Matlab for a fair comparison.

Table 5.6: Computation Time in Seconds, on an Intel Corei5-2400 running at
3.10GHz, (IRLS time)

Dataset k Search Time Computing Relative Pose Solving Pose Graph Total Time 3n � 2m

Manhattan

1 1054.9 14526 4157+(28060) 47798 1127613,125416

2 112.9 2171.2 1502.8+(2704.0) 6490.9 291177,125416

3 46.8 903.2 205.4+(409.2) 1564.6 124449,125416

5 16.3 295.7 37.4+(86.5) 435.9 44184,125416

8 6.5 131.3 12.1+(37.2) 187.1 18963,125416

SO 397.5 368.1 173.2+(117.3) 1056.2 34038,125416

ML 1190.2+(394.4)=1584.6

Dataset k Search Time Computing Relative Pose Solving Pose Graph Total Time 6n � 3m

Sphere

1 26.8 842.9 1361.4+(2210.8) 4441.9 87510,20870

2 5.2 210.1 156.0+(219.8) 591.3 21882,20870

3 2.3 105.0 43.0+(66.3) 216.8 9618,20870

5 0.9 32.4 12.8+(38.0) 84.3 3198,20870

8 0.4 16.1 21.7+(18.4) 56.7 1194,20870

SO 24.2 45.1 29.41+(46.9) 145.7 2355,20870

ML 94.7+(185.4)=280.2

We see that only when k is equal or greater than 3, is the efficiency condition satisfied.

Seeing that searching takes up substantial computation time at lower values of k, we

cannot simply keep applying the searching step until the condition is met. By either

approximating the search or finding a better way to structure variables, it would be possible

to obtain the n relative poses much faster. Currently the best k can only be obtainable

from Monte Carlo testing.

When solving the pose graph, the efficiency can be observed from the sparsity of the

information matrices. The sparsity will relate directly to the time taken to apply the

factorization step at each iteration point. As the value of k grows so does the sparsity,

which is obvious because less relative poses are being constructed. Figure 6.1 displays the

change in the information matrix as we increase k. We compare this to a marginalized

ML information matrix without the features. Even at k = 1, the matrix is a lot sparser,

suggesting that pose graphs are quicker to factorize when compared to marginalized feature

92

CHAPTER 5. POSE GRAPH REPRESENTATION

based SLAM problems. However, the additional overhead associated with calculating

Jacobians, residuals, and pre-processing diminish the overall computation time.

(a) Marginalized ML (b) k = 1

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 579253

(c) k = 2

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 286712

(d) k = 3

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 133996

(e) k = 5

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 86708

(f) k = 8

Figure 5.7: Information matrix sparsity of differing k values on the 3D Sphere
dataset

93

CHAPTER 5. POSE GRAPH REPRESENTATION

5.4.5 Real Datasets

PGR(MO) and PGR(SO) are tested on real datasets introduced in Section 4.4.5. k

values are adjusted accordingly such that 3n � 2m.

Table 5.7: χ2 Ratios and Time taken

Dataset k 3n � 2m PGR(MO) PGR(SO) PGR(MO) time PGR(SO) time ML time

DLR 3 21786,28368, 1.40 2.03 240.60 377.89 317.41

Victoria Park 11 52683,90780 1.83 - 700.09 - 1390.70

−50 −40 −30 −20 −10 0 10 20 30

−20

−10

0

10

20

30

40 Odometry
ML
PGR(MO)
PGR(SO)

(a) DLR Results

0 2 4 6 8 10 12 14

8

10

12

14

16

18
Odometry
ML
PGR(MO)
PGR(SO)

(b) DLR Results Zoomed In

−50 0 50 100 150 200

0

50

100

150

200

(c) Victoria Park Results

30 40 50 60 70 80
180

185

190

195

200

205

210

215

220

225

(d) Victoria Park Results Zoomed In

Figure 5.8: Results of DLR dataset and Victoria Park dataset.

The reason why we have omitted PGR(SO) for Victoria Park is that 3n is exceptionally

large. The k value must be set high for Victoria Park due to the poses completely outnum-

94

CHAPTER 5. POSE GRAPH REPRESENTATION

bering features, resulting in the same feature being observed multiple times. Considering

that features are not especially large in the datasets, using PGR is not as effective when

compared to SMJ as shown in Table 4.8. Evidently we will also not be able to achieve a

better χ2 ratio given the large k. It is clear that for DLR and Victoria park, the precedent

for estimating features is much higher than that of poses. From the results, we realize

that PGR is a very sub-optimum approach for these types of problems.

5.5 Discussion

Now we will discuss some interesting properties of PGR.

5.5.1 Further Improving Efficiency

As mentioned in Section 5.3.1, one way to avoid solving a full least squares problem is to

use the closed form Horn function [67] to approximate relative poses ZP
ij . Then recover the

covariance through marginalization of the resulting information Λ → ΩM
ij . In some SLAM

problems it may be very expensive to use full optimization methods, given the number of

feature observations and features.

If the solution from Horn is close to the actual maximum likelihood, then the consistency

of the results should be preserved. The following is a preliminary test for Horn.

Table 5.8: Horn vs. Least Squares on Sphere Dataset, k = 3

MAP Gate NEES Time to Computing Relative Poses (sec)

Least Squares 2210.8 1786.7 105.0

HORN 2210.8 1795.3 61.7

Table 5.8 indicates a 40% decrease in the time taken to resolve all the relative poses. Also

a very small change is seen in the NEES values. Ultimately more investigation is required

but from preliminary testing, this type of approximation can still lead to a consistent

solution.

95

CHAPTER 5. POSE GRAPH REPRESENTATION

5.5.2 Euler Angle Parameterization

In three dimensions, the singularities of Euler angles and over parametrization of quater-

nions can become problematic in defining the correct state space. Grisetti et al [57]

provides evidence that the singularities of Euler angle parametrization can easily lead to

divergence in Gauss-Newton methods.

The manifolds representation proposed by [58] defines the underlying space as manifolds

and applies a special operator X0 � ΔX to replace the original X0 + ΔX. The special

operator encapsulates the transition of incremental state vector ΔX into the new estimate

X�. During minimization, each update is done in small increments on the local Euclidean

space and the accumulated result is represented globally in non-Euclidean space. Doing

so avoids Euler angles becoming trapped into singular configuration during updates steps

and also the associated ambiguities. In future work, we wish to investigate this better

representation of 3D rotation.

5.5.3 Outliers in Feature Observations

In filtering based SLAM, outliers are handled through data association given known co-

variances [68]. However, in full SLAM one must perform an expensive inverse on the

information or calculate marginals to get covariances. Therefore, data association is typ-

ically left up to the Front-End to solve, where data association is never guaranteed and

outliers are inevitable. If they are passed through to ML, then the result is often extremely

poor or completely unusable.

Robust estimation methods have often been used to counter these issues by reducing the

influence of large residuals (outliers), refer to Chapter 3. The major problem associated

with these methods is that robustness is lost once the number of outliers is too large.

Figure 5.9(a) illustrates what happens to ML when only a small number of observation

outliers are introduced. Figure 5.9(b) demonstrates the affects in applying a Robust M-

estimator, Cauchy, for only 5% feature outliers.

96

CHAPTER 5. POSE GRAPH REPRESENTATION

(a) ML with 5% outliers (b) Cauchy M estimator with 5% outliers

Figure 5.9: ML in the presents of outliers (outliers are randomly generated on
observations in no specific order)

It is clear that robust methods do work but not particularly well for solving pose feature

graphs when there are too many outliers.

Our proposal is to employ PGR(MO) first to find relative poses and then apply a

robust method on the pose graph to damping the influence of outliers in the poses graph

space. k = 1 is imposed in our test case because we are not concerned about computation

time.

The algorithm will return a result for the M-estimator problem which cannot be directly

compared to ML using existing strategies. Instead we choose to take a look at the root

mean square error (RMSE).

RMSE =

√√√√√√
∥∥∥∥X̃P − (XP)�

(Alg)

∥∥∥∥
2

dim(XP)
(5.10)

97

CHAPTER 5. POSE GRAPH REPRESENTATION

−40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100 Poses
Relative Poses

(a) PGR(MO) 0%

−40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

(b) PGR(MO) 20% Outliers

−40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

(c) PGR(MO) 50% Outliers

−40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

(d) PGR(MO) 70% Outliers

−60 −40 −20 0 20 40 60

0

10

20

30

40

50

60

70

80

90

100

(e) PGR(MO) 90% Outliers

Figure 5.10: The following list of figures depicts the final estimate from using
PGR(MO) at k = 1. Solving for a feature based SLAM problem with outliers. The
RMSE’s are respectively for, 0% = 0.1151, 5%=0.0987, 20%= 0.1448, 50%=0.0925,
70%=0.3035, 90%= 8.4773. ML pose graphs RMSE = 0.1,

Figure 5.10 displays a single run of Loop trajectory. The default set of relative poses

can be seen from Figure 5.10(a), additional relative poses in subsequent figures are in fact

outliers. The RMSE remains close to the outlier free RMSE until around 70 percent. Only

when the percentage become extremely large (90%) does the outliers start to influence the

data and our method fails. PGR with robust estimation conveys an overall robustness

towards observation outliers.

The primary cause of this impressive outcome comes from a number of factors. First,

PGR naturally imposes a pre-filter on outliers by ignoring constraints that fail to converge

onto the expected value, see Section 2.4.4. Second, the in-consistencies from the outliers,

when they appear in pose graph form, are easily picked up by the M-estimator. Finally

and most importantly, the odometry has greater influence on the structure of the graph

98

CHAPTER 5. POSE GRAPH REPRESENTATION

itself and is the dominating factor during convergence. Unlike graphs with features, where

the observations play a more dominate role. Some of these factors may explain why many

state of the art robust techniques have worked so well [16, 65, 69].

Our technique is very simple in nature but has not undergone rigorous evaluations that

are expected from a robust SLAM Back-End. However we feel there is great value in

investigating this idea further.

5.6 Summary

In this chapter we have set out to improve the efficiency of feature based SLAM by reduc-

ing the feature observations into pose graph representation PGR. To tackle the issue of

information reuse we have proposed a technique known as Multi Observation PGR(MO),

dividing up the observation information heuristically. From experimental results we have

demonstrated that not only is our method consistent but also made computation efficient

through the concept of Key Poses.

The drawback to this additional approximation is that PGR(MO) becomes less ac-

curate as information of features are slowly lost to coincide with the computation time

reduction. Although poses are consistent, as supported by Section 5.4.1 the χ2 ratio

deteriorates as the variable k is increased.

We conclude that, it is only advisable to apply PGR when the feature densities are

high or the efficiency condition (5.6) are sufficiently satisfied at lower values of k. Or else

it is more advisable to use Sparse Map Joining.

In the final chapter, to investigate the two scalability strategies further, we will apply

them to a real world scenario. Starting from the sensor data, we will arrive at a final

representation of the completed map and estimate for pose locations. The aim is to build

a complete framework which will encapsulate both the Front-End and Back-End elements

of SLAM.

99

Chapter 6

Case Study: RGB-D SLAM

6.1 Introduction

Having demonstrated novel and improved ways of handling Reliability and Scalability

in feature based SLAM, in this chapter we apply these concepts to a real world problem,

RGB-D SLAM. This is when a single RGB-D camera is employed to map an indoor

environment without the aid of any auxiliary sensors.

Recently, RGB-D sensors have become very common in the field of SLAM. The popu-

larity stems from the fact that rich 3D and color information can be obtained at relatively

low cost. This means that sufficient information is available to utilize a single RGB-D

camera to perform SLAM. Unfortunately, the sensor quality, limited range and narrow

field of view, restrict current SLAM algorithms to only operate under specific environ-

mental conditions. We feel that the full potential of the RGB-D camera has yet to be

explored and more optimal strategies should be developed.

Our aim is to develop a general framework for RGB-D SLAM which will handle multiple

aspects of both the Front-End and Back-End. The final outcomes are to build accurate

and consistent 3D SLAM maps even when faced with challenging indoor environments.

100

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.1.1 Related Work

A significant body of work in SLAM has gone into utilizing range and bearing cameras

models. These can be linked to the pioneering work done by Nister et al [70], combining

feature extraction and RANSAC matching to obtain accurate pose estimation using stereo

cameras.

Newcombe et al [71] tackled SLAM by splitting tracking and mapping into separate

problems. In this work the camera is tracked over a global model of the environment

through an ICP algorithm. The environment model is made denser and refined over several

observations such that tracking is improved. Unfortunately ICP is often unreliable causing

the algorithm to lose track of the model being constructed. Furthermore, keeping track

of a dense model can be computationally expensive. This is why current implementations

of Newcombe’s algorithm have been limited to operating inside very small and structured

environments.

Henry et al [72] proposes a method to jointly optimize visual features. This approach

is simplistic in nature but able to work very intuitively with the RGB-D camera models.

During optimization, Sparse Bundle Adjustment (SBA) is applied to obtain the final maps.

However, SBA assumes the errors in u, v and d are equally weighted which is incorrect

given that depth is being measured separately from the RGB image and has its own unique

uncertainty. Hence, Henry’s method will not be able to accurately encapsulate the true

uncertainty of features.

Other works into RGB-D SLAM have generally formulated themselves around the pose

graph SLAM model [73, 74]. Nevertheless, we feel that the formal representation should

be in fact feature based, which will ultimately lead us to more consistent and accurate

solutions.

101

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.1.2 Motivation

First, we want to develop a well-rounded feature based SLAM system (Front-End and

Back-End) for solving RGB-D SLAM. Once we have a good framework, injecting concepts

such as, Reliable Optimization, Sparse Map Joining, or Pose Graph Representation be-

comes trivial. Given the extensive work done in computer vision to handle many of the

critical issues in data association, the Front-End itself is not the major contribution in

this chapter. Rather, our primary goal is to setup a good quality graphical model of poses

and features, for a flexible Back-End.

Second, for all the methods mentioned in Section 6.1.1, sufficient depth information

must be provided at all times to continue their functionality. Otherwise a failure state

will be reached whereby the algorithms cannot recover. Rather than treating this as a

sensor limitation, we feel the RGB element of the sensor allows us to develop more advance

techniques to overcome this problem.

6.1.3 Chapter Overview

In Section 6.2, we will talk about RGB-D cameras and their associated sensor models.

Section 6.3 lists the techniques used in the SLAM Front-End, including a description as

to how they can be applied specifically to RGB-D sensors. In our SLAM framework, we

propose two algorithms. The first is to solve RGB-D SLAM for the ideal condition (Section

6.4). The second algorithm is a hybrid mapping scheme to handle depth observability

problems (Section 6.5). A final discussion and summary is given in Section 6.6.

102

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.2 RGB-D Cameras

One of the most recent developments in sensing technology has come in the form of 3D

range cameras. The most popular of which include the Microsoft Kinect and Asus Xtion

Pro, both derived from PrimeSense’s patented technology [75]. The sensors are categorized

as RGB-D cameras, due to the two image types that are outputted. A primary RGB

based coloured image, represented by the three color channels (Red, Green, Blue) and

a secondary Depth image, where each pixel is representative of a range measurement.

The camera can be further classified under active sensors [76] since the camera must

constantly project a structure light pattern to calculate the depth values. Other popular

RGB-D sensors include the Swiss Ranger, Kinect 2.0 and PMD, which work using time of

flight principles.

In this thesis we have opted to use the Microsoft Kinect sensor, for both its accuracy

and availability (low cost).

(a) Microsoft Kinect (b) Asus Xtion

(c) PMD Camera (d) Microsoft Kinect 2.0 (e) Swissranger

Figure 6.1: Range of 3D cameras

103

CHAPTER 6. CASE STUDY: RGB-D SLAM

RGB-D Sensor Model

From our observations, we found that the range values in the Kinect becomes heavily

discretized and sparse after 4 metres. The overall depth uncertainty grows exponentially

and become very unreliable past this operating range. As a result, we have opted to

truncate the depth image at the limit to avoid erroneous measurements corrupting the

results. Another limiting factor in these cameras is the small field of view, 60 ◦ in contrast

with many 3D lasers which are typically 180 ◦.

The RGB-D camera follows a very standard sensor model. We start by transforming

the sensor into Euclidean space using the projection equation.

ẐS
im =

⎡
⎢⎢⎢⎢⎣

uim

vim

dim

⎤
⎥⎥⎥⎥⎦ (6.1)

ẐF
im =

⎡
⎢⎢⎢⎢⎣

δxF
im

δyF
im

δzF
im

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(uim − cx) ∗ dim/fx

(vim − cy) ∗ dim/fy

dim

⎤
⎥⎥⎥⎥⎦ (6.2)

Here cx, cy denotes the principle points and fx, fy are the focal lengths. All elements can

be found in the camera calibration matrix (K) obtained from the pre-calibration of the

RGB camera. Then the sensor model is then defined by

ẐF
im = him(XF

m, XP
i) + ω (6.3)

The noise is assumed to be Gaussian ω ∼ N (0, ΣF
im) and the precision of the depth is

roughly 3cm at 3m. The covariance in the sensor readings have been estimated to be

104

CHAPTER 6. CASE STUDY: RGB-D SLAM

Σ̂S
im =

⎡
⎢⎢⎢⎢⎣

12 0 0

0 12 0

0 0 0.032

⎤
⎥⎥⎥⎥⎦ (6.4)

Using the Equation (2.8), we can successfully obtain the associated covariance/information

matrix Σ̂F
im of all feature measurements defined by the transform Equation (6.2).

Luckily the correlations between the RGB image and Depth image (u, v)rgb → (u, v)depth

have already been provided by the OPENNI drivers1. Therefore, all sensor measurements

are already fixed to the RGB camera reference frame. Given that we do not have any

additional transforms to robot or other sensors, the poses are now representative of the

RGB camera location.

uim, vim, dim, ΣS
im dim

δxF
i , δyF

im, δzF
im, ΣF

im

Figure 6.2: Camera model of the Microsoft Kinect Camera, (Left: RGB Image
Right: Depth Image). Red Arrows illustrates the one to one pixel correlation of d
values. u, v, d which are then projected into Euclidean space through the projection
equation. The grayscale intensity is representative of the depth value of each pixel.

1see openni (under registered depth)

105

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.3 Handling the RGB-D SLAM Front-End

In previous chapters, limited information is provided about the SLAM Front-End, due

to this aspect being very sensor and problem specific. For our RGB-D SLAM Front-End

we have adopted some well-known and state of the art techniques in computer vision and

range imaging. The following section details these techniques.

6.3.1 Feature Selection

In selecting the feature type, we have opted to use appearance based over geometric. The

reason is that more characterizations are available in image appearance given the fidelity

of edges, corners and areas of intensity change. Geometric features are often lost inside

the noisy measurements as a result of depth image inaccuracies. In the general case it is

far easier to extract more appearance features than that of geometric features in one given

scene.

The robustness of an appearance based extractors often depend on its scale and rotation

invariance. Without going into specifics, below is a table of key properties for three popular

extractors.

Table 6.1: Feature Extractors

Feature Scale Invariant Rotation Invariant Feature Density Efficiency

Harris Corners [77] No No High High

SIFT [78] Yes Yes High Low

SURF [79] Yes Yes Moderate High

Due to the simplicity of descriptors, Harris Corners lack the robustness when matching

scene scale or rotation invariance. This is especially critical, as we will see later, in solving

the loop closure problem. Algorithms such as SURF or SIFT assign multi-dimensional

feature vectors describing the orientations of surrounding pixels. SURF features are very

efficient to compute; however, better quality maps can be achieved if we maximize the

total number of obtainable features. Thus our preferred feature type is SIFT.

106

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.3.2 Feature Matching

Once features are identified we must now find a method to associate them across multiple

camera frames.

Descriptor Matching

Before performing robust matching and outlier removal, a heuristic matching scheme can

be applied to directly match feature descriptors. K Nearest Neighbor [80] is a popular

choice in this case, matching based on the Euclidean distance of descriptors. Matches are

rejected if the distance is greater than a fixed threshold (0.5m). Although this may still

lead to many wrong matches, using the information of descriptors can greatly reduce the

search space for more rigorous algorithms.

Random Sample Consensus

Random Sample Consensus, or RANSAC, is a well-known method in computer vision.

First introduced by Fischler and Bolles [81], the idea is that at each iteration of this

algorithm a set of random points are sampled, defining the overall model (transform) of

all the remaining points. Several hypotheses are tested until the transform with the lowest

error residual or the largest number of inliers is obtained. In RANSAC theory it is widely

known that the minimum number of iterations (k) can be found up to a given probability

represented by

k =
log(1 − p)

log(1 − (1 − v)s)
(6.5)

Where p is the probability of the RANSAC algorithm to only select inliers from the dataset.

v is the probability that, within a sampled number of points (s), a single match can be an

outlier. Common parameter values to set are p = 0.99 and v = 0.7.

An additional condition is to stop when we have reached an acceptable number of inliers

(T). A rule of thumb is to terminate based on the proportion of assumed outliers.

107

CHAPTER 6. CASE STUDY: RGB-D SLAM

T = N(1 − ε) (6.6)

Here, N is the total number of matches. A conservative value for the probability ε is 0.2.

Once the inliers are found an optimal model function can be calculated by properly

formulating least squares over the inliers. This process is helpful when a more accurate

initial estimate is needed to solve the SLAM optimization problem. However, we have

found that a closed form estimate from the inliers to be adequate.

There are two RANSAC algorithms applied, each catered towards a specific data asso-

ciation scenario.

Re-projection Error (RE-RANSAC)

Re-projecting 3D data into the 2D projection space is common in feature matching [72, 82]

Re-projection Error RANSAC involves finding the distance squared error between two

set of 3D points reprojected into camera space. This technique only works when image

features also have associated depth information. First ẐF
im = (uim, vim, dim) is kept in

the projection space. Then the function f maps the observed features from pose i to the

theoretical measurement Z̄F
jm, observed from pose j. This occurs all in Euclidean space.

Z̄F
jm = f(Tij , ẐF

jm, ẐF
im) (6.7)

One can easily obtain transform Tij , from image i to j, by combining Horn [67] with the

re-projection Equation (6.2). First we project the measurements into Euclidean space and

find Tij with Horn(ẐF
im, ẐF

jm). Then ẐF
im is transformed by Tij and re-project back into

the camera space to obtain Z̄S
jm. Equal weighting is assumed to simplify the problem and

hasten the calculations. To find the inliers, the residual r (in image space) of RE-RANSAC

is given by the sum squared error for each feature m, which is exactly the re-projection

error.

108

CHAPTER 6. CASE STUDY: RGB-D SLAM

r =
∑
m

∥∥∥∥Z̄S
jm − ẐS

jm

∥∥∥∥
2

(6.8)

Essential Matrix RANSAC (EM-RANSAC)

To find the inlier matches given two monocular images, Nister [83] proposed a 5 point

method to find the solution of an essential matrix. Since the essential matrix (E) is directly

related to the fundamental matrix (F), if the calibration matrix (K) is pre-determined,

optimizing for E will also lead to the optimum F.

The algorithm computes a 10th degree polynomial to find the roots of the function in a

closed form manner. One important factor that this algorithm considers is the enforcement

on the calibration parameters. In doing so it is able to overcome degeneracy from planar

or near planer scenes.

Without explicitly detecting the degeneracy, the 5 point algorithm assumes that the

plane structure is finite and has a cheirality constraint [83] whereby there exists a unique

solution for the essential matrix. Another method was proposed by Torr et al [84] which

switches between a homography model and a fundamental matrix model to handle degen-

eracy. We feel that the 5 point algorithm provides a smoother transition given that the

calibration matrix is known.

The camera motion is estimated by two corresponding homogeneous image point sets

ẐS
im = (uim, vim, 1), ẐS

jm = (ujm, vjm, 1) related by the fundamental matrix F .

(ẐS
jm)T FẐS

im = 0 (6.9)

Given the calibration, the essential matrix E has the relationship

K−T EK−1 = F (6.10)

The essential matrix has the property to represent both translation and rotation up to a

109

CHAPTER 6. CASE STUDY: RGB-D SLAM

scale. So to be a valid matrix, it must also satisfy the following condition

2EET E − tr(EET)E = 0 (6.11)

Given the Equations (6.9) and (6.11), the essential matrix is then solved through Nister’s

5 point algorithm [83]. To find the inliers, we will need to calculate the residuals of any

given sample of E. Simple algebraic distance has no geometric significance, and thus

the Sampson distance [26] is used instead. This distance is a first order distance error

approximation on the perpendicular distance to the epipoles.

6.3.3 Iterative Closest Point (ICP)

Since there is no odometry when using only a single RGB-D camera, we propose a "virtual

odometry" constructed by Iterative Closest Point (ICP).

ICP attempts to finds the minimum difference between two point clouds and optimizes

using a cost function expressed by the closeness of points and/or planes. The algorithm

itself is iterative and stops once the solution converges. For our ICP algorithm we employ

the state of the art Generalised ICP [85], which is a hybrid implementation between point-

to-point and point-to-plane. We also found that point clouds can be down sampled by a

factor of 3 to speed up processing without general loss of accuracy [86]. The Generalised

ICP algorithm is publicly available 2.

A major limitation of ICP, is the assumption of good environmental structure. However,

the limited field of view in the sensor can easily cause problems. For very planar observa-

tions the sliding effect [87] is a known phenomenon and the reason why scenes that have

clutter are often considered extremely beneficial. Another limitation of ICP is its inability

to provide an accurate estimate of uncertainty. Unlike wheel encoders or IMU systems,

this odometry has no direct bearing on real world sensor data, rather it is an estimate of

the most probable configuration given all the information in two depth images.

In our idea, ICP is restricted to only odometry estimates. To make sure if the "virtual
2http://www.robots.ox.ac.uk/ avsegal/generalized_icp.html

110

CHAPTER 6. CASE STUDY: RGB-D SLAM

odometry" can be trusted, we compare the ICP result to the best transform found by

RE-RANSAC. If the difference is large, we make the assumption that ICP has most likely

failed and proceed to ignore the measure for odometry at that pose.

6.3.4 RGB Visual Odometry

Visual odometry in monocular SLAM is only essential for the initial estimate of the states.

This is because pose locations are inferred from the features themselves through the opti-

mization of re-projection error in Bundle Adjustment (BA).

To obtain the visual odometry from EM-RANSAC, one must decompose the essential

matrices down to its fundamental elements of rotation R and translation T . SVD is

the most common approach for this decomposition [26]. Note that E is only seen as a

projective transform and is assigned an arbitrary scaling. Scale consistency between poses

and features is only obtained after BA.

6.3.5 Initializing a New Pose

New poses are initialized by either ICP or Visual Odometry. However, using every pose of

each camera frame can rapidly increase the size of the state vector. Therefore we apply a

common technique to only update the pose state when the camera has moved or rotated

a fixed distance. This distance travelled is simply tested by analyzing the ICP changes

between the current frame and the previous pose frame. In visual odometry, given that

scale is arbitrary, we instead apply Optical Flow [88] to judge the camera motion.

6.3.6 Initializing a New Feature

Although features are important in defining our map, just like poses, placing every fea-

ture into our state vector is unnecessary. To associate features through continuous poses

(images), we will track their ID’s. If the feature is matched in at least 3 images it is

assigned an ID and initialized to the state vector. Selectively picking features based on

their information gain can greatly reduce the total complexity. Our simple heuristic has

111

CHAPTER 6. CASE STUDY: RGB-D SLAM

the capability of selecting features with information gain in mind but more comprehensive

methods have been investigated in literature [89].

3D features are initialized by concatenating the first observation on the pose estimate

that the feature was observed from. The harder problem is to initialize features without

depth information. A common approach is to apply linear triangulation [26] on the ob-

served points whilst transformed over pose estimates obtained from visual odometry. The

resultant estimate of features locations are scaled over the decomposed essential matrix.

However, there may exist some ambiguities in this approach, causing features to appear

behind the camera or very far away due to parallax. Our current solution for these am-

biguities is to remove these feature entirely; however, better initializations method have

been proposed in literature, refer to Section 6.6.

6.3.7 Loop Closing

Loop closure is handled via the key frame selection approach [72], during which frames for

each camera poses are checked for scene difference. The first frame at pose 1 is selected

as the first key frame, then every new frame is compared with the current to check for

feature matches (RE-RANSAC). If the feature matches fall below a set threshold a new

key frame is created and set to the current.

Once all the key frames are found, they are then fed into the Fast Appearance Based

Mapping (FABMAP) algorithm [90] for place recognition 3. FABMAP has become an

extremely popular and efficient way of performing image based loop closing in SLAM. The

power lies in the bag of words approach, where features are quantized into vocabulary. The

vocabulary in our case is representitive of the SIFT features. The result is a probability

matrix that determines if two observations have come from a similar location. From the

most probable list of matches, we perform an additional RE-RANSAC to re-associate

the feature, forming the loop closure in our feature based SLAM graph. Figure 6.3(a),

conveys the probability matrix for two datasets and an example of the matches at one of

the matched key frames.
3website: http://www.robots.ox.ac.uk/ mjc/Software.htm

112

CHAPTER 6. CASE STUDY: RGB-D SLAM

The advantage of using SIFT features as the vocabulary and the matching, is that

scale and rotation invariance allows for association on scenes with very different viewing

orientations. Figure 6.3(c) highlights this.

5 10 15 20 25 30

5

10

15

20

25

30

(a) FABMAP probability matrix Teddy

5 10 15 20 25 30

5

10

15

20

25

30

(b) FABMAP probability matrix Room

(c) Loop closure match Teddy

(d) Loop closure match Room

Figure 6.3: An example of loop closing using Key Frame

113

CHAPTER 6. CASE STUDY: RGB-D SLAM

Using FABMAP avoids the need to perform a search with quadratic complexity across

all the poses and greatly increases the efficiency of loop closing.

6.4 RGB-D SLAM

Often in the case of RGB-D SLAM, researchers have chosen to represent the complete

problem in terms of pose graph [73, 74], disregarding the features entirely and instead

opting for relative poses created by ICP as loop closures. Since scan matching is ap-

plied to evaluate the constraints, the information loss is justified by the strength or low

uncertainties given to relative poses.

We identify three major downsides in these approaches. First, ICP has many defective

properties when inferring feature observations into relative pose constraints. This is mainly

caused by the limited view angle of the sensor resulting in insufficient observations of

geometric structures.

Second, without the addition of features in the optimization problem it is less likely to

find good consistency in the poses estimates. The reason being that sensor data uncertain-

ties are not accurately represented in the optimization problem. Consequently, in these

pose graph approaches there is no way of handling information reuse which may result in

overconfident covariances.

Lastly, by not explicitly optimizing the features there is no existing representation of

the map at the end of optimization. The maps are therefore created from sensor data

projected over the estimated poses, which may be visually attractive but impractical to

exploit in techniques such as localization.

Our RGB-D SLAM algorithm starts by formulating the complete feature based SLAM

problem first by tracking and associating the features in the Front-End. From this we

can start to make improvements on Back-End with Reliable Optimization, Sparse Map

Joining (SMJ) and Pose graph representation (PGR). The end result is a consistent graph

with near optimal estimates on the given datasets.

114

CHAPTER 6. CASE STUDY: RGB-D SLAM

Front-End and Back-End

In Figure 6.4, we denote the clear division between the Front-End and the Back-End

components in a complete SLAM algorithm. The Front-End is a sequential process of

Extraction, Filtering, Matching and the obtaining of virtual odometry. Once the dataset

is fully analyzed, loop closure is performed to re-associate features in each key frame

match. From all this information, a graph is constructed and then passed into the SLAM

Back-End.

From previous chapters, we asserted that the Back-End can be solved in multiple ways.

We will be testing our two proposed methods (SMJ and PGR) for both accuracy and

efficiency.

6.4.2 Experiments and Results

The dataset we have chosen comes from the Technical University of Munich4 [91]. They

have provided 3 distinct trajectories each with differing properties. Teddy is a dataset

which closes a single loop, reconstructing the shape of a single object. The Desk dataset is

a curved trajectory that doubles back to its original position closing several loops. Room

is the largest of the three datasets, mapping out an entire office space closing several loops

and forming a complex trajectory.

In these RGB-D datasets, not only are they well documented, in addition the ground

truth has been obtained through a Vicon system5 with sub-millimeters accuracy. To avoid

any failures due to sensor limitations, the datasets selected consist of well defined scene

structures and good availability of depth information.

Our preferred evaluation methods are Absolute Trajectory Error (ATE) and Relative

Pose Error (RPE), proposed by J. Sturm [91]. ATE is very straight forward as it first

aligns the estimate with ground truth and then checks for the overall translation error,

allowing for a good visual inspection on the overall result. RPE on the other hand, takes

the difference between the estimated motion and the true motion. This is especially useful
4http://vision.in.tum.de/data/datasets/rgbd-dataset/download
5http://www.vicon.com/

116

CHAPTER 6. CASE STUDY: RGB-D SLAM

for examining loop closures and visual odometry. The Δ parameter lets us set how much

drift is incurred after a fixed motion (Δ is set to 0.5 meters in our case). RPE also

evaluates over both rotation and translation which is not the case in ATE.

Table 6.2 provides a quick summary of the datasets acquired from the Front-End and

Table 6.3 details the results after Back-End optimization. The ML solution has been omit-

ted from the results due to the large computational complexities associated with RGB-D

SLAM.

Table 6.2: Summary of Datasets

Dataset no. Poses no. Features no. Feature Observations

Teddy 325 60150 183480

Desk 286 32859 156583

Room 676 59223 274393

Table 6.3: Result of RGB-D SLAM

MAP ATE RPE Total Time for Optimization (s)

Teddy

Visual Odometry 0.024 0.020 -

SMJ 0.016 0.022 2818.8

PGR(MO) 0.025 0.020 748.7

Desk

Visual Odometry 0.115 0.044 -

SMJ 0.025 0.032 1521.1

PGR(MO) 0.038 0.044 356.4

Room

Visual Odometry 0.207 0.065 -

SMJ 0.069 0.056 5393.4

PGR(MO) 0.077 0.058 3170.6

117

CHAPTER 6. CASE STUDY: RGB-D SLAM

From the results, there is an indication that the visual odometry for a single loop closure

trajectory, Teddy has only small drift. Therefore, optimization does not provide much

improvement on the poses through optimization. Also there is very little rotation in the

trajectory itself which may also explain the small errors.

For the datasets, Desk and Room, there are significant improvements on the poses.

Both SMJ and PGR have much lower ATE’s and RPE’s compared to visual odometry. Due

to the multiple loop closures and complex trajectories visual odometry quickly deviates

from the ground truth. In terms of computation time, PGR is the better algorithm due

to the dense population of features in the problem, although the approximation makes it

slightly less accurate compared to SMJ.

Upon visual inspection on Figure 6.5, we can see how the optimization result differs

from ground truth. We have also performed a point cloud overlay on the SMJ final pose

estimate to reconstruct the scene in Figure 6.6.

118

CHAPTER 6. CASE STUDY: RGB-D SLAM

Visual comparison to ground truth

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 Ground Truth
Visual Odometry
SMJ
PGR(MO)

(a) Teddy Top View

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Teddy 3D View

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(c) Desk Top View

−2

−1.5

−1

−0.5

0 −0.4
−0.2

0
0.2

0.4
0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(d) Desk 3D View

−0.5 0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e) Teddy Top View

−0.5
0

0.5
1

1.5
2

2.5

−1
−0.5

0
0.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(f) Room 3D View

Figure 6.5: Pose trajectories after optimization compared against the ground truth
measurement.

119

CHAPTER 6. CASE STUDY: RGB-D SLAM

Point Cloud Reconstruction

Figure 6.6: 3D point cloud overlay, Top: Teddy, Middle: Desk, Bottom: Room

Currently, our visualization strategy is to overlay the point clouds. More advance tech-

niques such as Surfel representation [72], use surface normals to cluster the points, reducing

the overall point density for faster rendering. Generating meshes is another possible alter-

native for reconstruction. Given sufficient memory, a dense mesh of the environment can

be recovered with high fidelity [92]. We would like to look into these visual representations

further, but they are not considered a major priority.

120

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.5 Robust RGB-D SLAM

In our previous RGB-D SLAM algorithm, there exist several cases where RE-RANSAC

will fail. The most detrimental is the encountering of poor or no depth observability. This

is common when features are too far away from the sensor or lie on a medium which the

sensor cannot detect (e.g., Low/High reflectivity, transparency). Another major flaw of

the sensor is the saturation of ambient infrared light, often occurring when the sensor is

taken outdoors in daylight.

Our second proposed algorithm tries to rectify these issues by applying Sparse Map

Joining combined with a Dual-Observation Model approach, refer to Section 4.3.3. From

this idea, we know that it is theoretically possible to join two local maps of differing

observation models. More specifically, a 3D feature based map and a bundle adjustment

map.

In this section we will focus on the associated steps in developing this robust RGB-D

SLAM algorithm and demonstrate experimentally on a dataset that has been exposed to

these failure conditions.

6.5.1 Local Map Building and Joining

Local maps that have depth information are built following the standard range and bear-

ing technique detailed in Section 4.3. For local maps that are bearing only, there exist

several proposed algorithms for solving the bundle adjustment problem. Our implemen-

tation applies the popular Sparse Bundle Adjustment idea (SBA) [60], where features are

parameterization in xyz space and Levenberg-Marquardt acts as the solver. Depending

on how reliable the Front-End is (good initial estimates, correct data association, etc.),

SBA converges reasonably.

6.5.2 Local Map Switching

To determine which local map is most appropriate for a given sensor reading, we must

derive a scoring mechanism.

121

CHAPTER 6. CASE STUDY: RGB-D SLAM

It is well-known, that the quality of visual odometry can be assessed either through

algebraic means (quality of fitting a model, etc.) and/or through the geometric properties

of a scene (plane structures, scene clutter, etc.) [84].

To plan how to switch between the two local maps, an analysis is made on the failure

modes. A critical assumption is that we will always have enough observed features for at

least one mapping approach to continue functioning. In reality, due to various configu-

rations, environmental factors and sensor failures, poor quality features can violate this

assumption. We have wisely chosen a dataset that avoids this problem.

Switching between RE-RANSAC and EM-RANSAC

Given that both RANSAC methods continue to operate, precedence of visual odometry

is always given to RE-RANSAC. The reasons being that the RGB camera on the Kinect

and Xtion are of poor quality (resolutions of 640 by 480 pixels) and therefore any mea-

surement of features far from the camera location are subjected to larger noise errors.

In addition, RE-RANSAC gives us extra geometric information through the depth sensor

which provides us with better constraints in our models.

Our monitoring system needs to find the possibilities scenarios where RE-RANSAC is

likely to fail, so that EM-RANSAC can take over. The following is a table listing what we

think are the critical failure conditions.

Table 6.4: RE-RANSAC Failure Modes

Failure Cases Description

Depth Drop Off Little to no depth values associated causing RANSAC to completely fail.

Feature Clustering A RANSAC estimate that is centered around a clustered region will return a poor estimates

of visual odometry.

Planar Structure If the geometric structure in the features are poor, ICP is likely to behave poorly due to

weakness in constraints.

122

CHAPTER 6. CASE STUDY: RGB-D SLAM

From the three failure cases, we have imposed three simple heuristics to monitor the

feature quality in RE-RANSAC. The first problem is that of Depth Drop Off which is

solved by applying a simple threshold on the minimum number of inlier from RANSAC.

γ1 is the threshold value and n is the number of inliers.

n < γ1 (6.12)

For Clustering, a second threshold called the cluster score α is applied. First the centroid

C is calculated from image inliers, then α is found using a distributed average over the

distance to C,

α =
1
n

∑
m

d1(C, Ẑm) (6.13)

where d1 is the distance function between two points and our new threshold becomes

α < γ2. Finally for Planar Structure, first we assume that the scene only consists of a

single plane and calculate the normal. β is found from the average inlier residuals to the

plane normal P N and points on the plane P X .

β =
1
n

∑
m

d2(P N , P X , Ẑm) (6.14)

where d2 function calculates the perpendicular distance from point to plane. The last

threshold is then β < γ3. If any thresholds are violated, a switch is made to start using

EM-RANSAC. Only when all three criteria are satisfied over a set number of frames does

switch back occur. This is to prevent noisy images from corrupting the switching process.

123

CHAPTER 6. CASE STUDY: RGB-D SLAM

After all the features have been associated, the graph is separated into local maps based

on the current sensor models along the trajectory. The maps are then solved independently

by either Maximum Likelihood or SBA accordingly.

Joining can be performed through any SMJ optimization approach, although we prefer

to utilize Batch Optimization. The dual observation model lets us rescale the entire map

to the appropriate global scale given significant enough features overlap between the local

maps. In SMJ we have the flexibility of keeping all the poses, or marginalizing them out

according to Section 4.4.2. Keeping all poses will naturally compromise the efficiency, but

can offer better reconstructions of the environment and avoid the pose recovery phase. In

the following experiment, we have opted to keep all poses during SMJ.

6.5.4 Experiment

UTS Level 6 Dataset

The UTS level 6 dataset was collected on a narrow balcony, forming a loop around a

multi-story building. During this trajectory, the openness of specific sections results in

many features being observed far from the sensor. In addition, there are glass windows

that cannot be directly detected by the sensor, contributing to the depth observability

issues.

The trajectory itself is 25m across and 15m wide. A total of 1670 Kinect images were

collected along the loop. In the visual odometry only 746 frames are used with 37 key

frames. The total number of features is 11218 with 62319 features observations.

125

CHAPTER 6. CASE STUDY: RGB-D SLAM

Visual Odometry

−35 −30 −25 −20 −15 −10 −5 0 5
−25

−20

−15

−10

−5

0

5

10

15

Figure 6.8: Initial estimate obtained from visual odometry. Anchor pose is set to
(0, 0, 0). Green: RE-RANSAC, Red: EM-RANSAC.

From Figure 6.8, we see how the inaccurate scale from EM visual odometry causes the

initial value to be greatly different to the actual trajectory. We can also see the areas

where the algorithm has decided to switch, indicated by the color change. The images

in Figure 6.9, illustrate the situations where a switch was deemed necessary, namely the

areas where there are glass walls or the environment is far from the camera.

Figure 6.9: RGB and Depth images at the switching point, RGB-D → RGB

126

CHAPTER 6. CASE STUDY: RGB-D SLAM

Optimized Graph (Scale & Loop Closure)

−20 −15 −10 −5 0

−15

−10

−5

0

5

10

15

(a) Before Loop closure

−20 −15 −10 −5 0

−15

−10

−5

0

5

10

15

(b) After adding Loop closure

Figure 6.10: Map joining results from SMJ’s dual observation method. Red: Cam-
era Poses, Blue: Feature Locations, Green: Common Features between local maps.

After joining, the scale in all the RGB Local maps are corrected (Figure 6.10(a)). If

we incorporate loop closuring (Figure 6.10(b)), the global map quality is improved. The

major influence for the scale accuracy is in the overlapping features marked in green circles.

We have found the scale to be most accurate when features are well distributed for good

geometry. The most inaccurate local map scale exists in the 2nd RGB map (indicated by

the second turn) where the overlapping features only exist on the left side of the camera.

This is because the entire right side wall is glass. To estimate a good scale value, we

must try to maintain good geometry and low feature uncertainty at the areas where the

algorithm has decided to switch, or else SMJ joining is likely to fail.

127

CHAPTER 6. CASE STUDY: RGB-D SLAM

Point Cloud Reconstruction

Figure 6.11: 3D point cloud overlay on pose estimate. Left: Top view, Right:
Isometric view

Unfortunately no ground truth is available for the UTS dataset. The best evaluation we

can achieve is to overlay the point clouds and compare against a 2D architectural floor

plan. From Figure 6.12, we can see that the metric scale is correctly estimated and the

boundaries of the floor plan are close to the boundaries of the point cloud.

Figure 6.12: Point cloud overlay and architectural floor plan

128

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.6 Discussion

In this section we will discuss limitations that exist in our two RGB-D algorithms.

6.6.1 RGB-D SLAM

From what we have seen in the results, visual odometry in data with few loop closures

is usually an adequate estimate of the given data. Applying additional optimization does

not necessarily improve the incurred drift, even after associating many features together.

A major unsolved problem in both our algorithms, is the handling of outliers. An

outlier handling approach was proposed in Section 5.5.3; however, reliance on a confident

odometry is critical, such that the influence of outliers is devalued. We can only partially

remove outliers with this approach in our RGB-D framework. This is because ICP is

often unreliable in the Front-End process resulting in no odometry information at many

steps. In future, we would like to explore methods to reduce the number of outliers in the

Front-End as well as a robustified Back-End that does not need to rely on odometry.

6.6.2 Robust RGB-D SLAM

In Robust RGB-D SLAM, failures may be caused by a violation of a few underlying

assumptions. These assumptions are discussed in turn. In our scheme, it is assumed

that the model is a perfect pinhole camera. In reality, factors such as lens distortion and

poor camera calibration can violate this assumption. In the Kinect Camera, the RGB

sensor has a very limited sensor resolution and we cannot confidently say that our models

are accurate. Thankfully, the lens distortion is relatively low, which means this can be

disregarded as a cause of major error. As long as the environment can be kept indoors,

very distant features with small parallax between frames can be restricted.

The uncertainties in the feature estimates associated between local maps should not

be overlooked. A major failure case is when the camera starts to turn and loses depth

information during or at the end of a turn. At this instance the monocular mapping

scheme cannot gain enough observations about the overlapping features, resulting in high

129

CHAPTER 6. CASE STUDY: RGB-D SLAM

uncertainty for those feature locations. As a result, the process of optimization will become

unstable, either diverging or becoming singular. This is a common problem in monocular

SLAM due to depth being inferred from bearing estimates, making it highly sensitive to

noise and ambiguities.

From our experiment, we have found that common features found during the joining

phase between RGB-D → RGB Map have the highest uncertainty. Typically when an

RGB-D map starts to fail the common features are within sensor range. As the algorithm

switches, the distant features in EM-RANSAC have larger influence on inliers causing

the closer features (common local map features) to have less associations. Therefore,

the failure case mentioned above is exhibited when joining occurs. In the results seen

in Section 6.5.4, the scale is only estimated when joining RGB → RGB-D Map. During

this transition, more common features are observed by the RGB Map to achieve a good

estimation on scale.

As previously mentioned in the experiments, structure of common features also plays

an important role in improving the estimate of scale. Typically clustering is a negative

attribute and we must try to avoid this as much as possible. However, because we cannot

always control the environment itself, there is no easy solution to this problem.

In the future, we propose to apply more robust monocular SLAM methods to counteract

these issues. Due to the projective nature of the monocular cameras, a point on the image

plane can represent an infinite depth value. Therefore, alternate parameterizations of

Bundle adjustment are useful in these cases, e.g., Inverse Depth [93] or Parallax Angle

[94]. In addition, data association and visual odometry may be improved by only selecting

high quality features. For example, the quad tree method selects features based on their

spatial separation [82]. Finally, we want to look into better triangulation methods for

feature initialization, such as the one suggested by Klein and Murray [95].

130

CHAPTER 6. CASE STUDY: RGB-D SLAM

6.7 Summary

In this chapter we have proposed two algorithms capable of utilizing only a single RGB-D

camera for SLAM. One to handle the typical RGB-D style environments, and the other

to handle environments where depth information is no longer observable due to sensor

limitations.

We have designed a software architecture capable of handling both the Front-End and

Back-End aspects of SLAM. The result is an estimate in which point clouds can be overlaid

on poses for reconstruction or feature maps can be used in robot localization.

From a series of experiments conducted on real world datasets, the performance of our

algorithms is evaluated. Given the large number of features in the problem, PGR is proven

to be especially efficient.

The dual observation model lets us build scale consistent maps where there is poor depth

observability along the length of a SLAM trajectory. Although, we have obtained good

results, there is still much room for improvement.

131

Chapter 7

Conclusion and Future Work

In this thesis, we started by giving a brief introduction to SLAM and its applications.

Then we formulated the problem as being feature based graph optimization, solved using

non-linear least squares. SLAM itself can be further divided up into two individual parts,

a Front-End and a Back-End. This thesis primarily focused on the latter, developing

reliable and efficient solutions to the optimization problem. The main contributions have

been detailed in Chapters 3, 4 and 5.

There are two main motivations being addressed in this thesis. The first is non-linearity,

which causes convergence onto a local minimum for non-linear least squares based ap-

proaches. Since we always desire the exact Maximum Likelihood estimate, an unreliable

optimization approach cannot be fairly evaluated or theoretically analyzed. The second

motivation is scalability. As the number of robot poses and features increase, the compu-

tation complexity must still stay within reasonable bounds for a solution to be found.

132

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Summary of Contributions

The following is a summary of the contributions and findings presented in this thesis.

7.1.1 Reliable Optimization

In Chapter 3 we proposed an algorithm that is able to achieve the global minimum of a

non-linear least squares problem with improved reliability. The main insight is the im-

portance of the initial estimate within Gauss-Newton. We started by presenting a general

framework towards reliability (Section 3.2), then introduced the concept of Iterative Re-

weighted Least Squares bootstrapping to smoothly step through the conditions outlined

in the framework (C1,C2,C3). One major advantage for our method is generalization,

meaning that the same formulation can be kept across various SLAM variants. Tests

have also confirmed that the IRLS bootstrapping algorithm can outperform other popular

bootstrappers (TORO, LAGO and Spanning Tree), even under very noisy measurement

conditions.

7.1.2 Sparse Map Joining

Our next contribution is the implementation of Sparse Map Joining (SMJ) for both 2D

and 3D feature based SLAM. The sub-mapping process itself approximates odometry and

features measurements as discrete local maps. The proposed method also takes advantage

of pose marginalization to reduce the dimensionality, making the overall algorithm very

efficient when compared to solving for the full Maximum Likelihood. In our experiments

we test three sub-map joining procedures, Batch, Sequential, and Divide & Conquer.

Each has their own way of solving the joining process, with Batch proving to be the most

consistent and accurate. Depending on the time needed to solve each individual local

map, increasing the number of local maps can also improve efficiency to a certain extent.

Finally, by reformulating SMJ, we are able to solve problems in SLAM with differing

observation models.

133

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1.3 Pose Graph Representation

The third contribution describes a way to convert the feature based SLAM problem into

a Pose Graph Representation. In doing so the dimension is reduced by not explicitly esti-

mating the individual feature locations. However, converting the problem into a pose only

graph may lead to information reuse. By dividing up observation information heuristically

through PGR(MO), we are still able to obtain the optimal number of relative poses while

keeping the estimate consistent. In addition, we have also introduced a concept called Key

Poses to handle the efficiency condition mention in Equation (5.6). If this condition is not

handled properly, then the efficiency of PGR will be greatly compromised.

It is evident that PGR is not always recommended over SMJ given the greater loss of

information (larger χ2 ratios). However, for environments where the features are densely

populated there is a significant boost in efficiency, making PGR the more feasible approx-

imation in case.

In our discussion we detail other benefits of PGR, namely feature based SLAM problems

in the presence of outliers. We demonstrate that a modified PGR algorithm is able to

withstand even a 70% outlier rate.

7.1.4 Case Study

In Chapter 6, we have conducted a case study to examine the effectiveness of our techniques

on a real world problem. By using a single RGB-D camera, we were able to construct two

SLAM algorithms that take in sensor data and output the estimate for both feature and

camera positions.

The first algorithm assumes a perfect environment where depth information is always

available to the sensor. The Front-End then builds a pose and feature graph, optimized

using either SMJ or PGR. We concluded from our findings that PGR is most effective of

the two method. This is evident from the comparison of the efficiency and accuracy of the

results against a known ground truth.

The second algorithm exploits the dual observation model, proposed in Section 4.3.3, to

134

CHAPTER 7. CONCLUSION AND FUTURE WORK

overcome poor depth observability. This involves joining a Range and Bearing (RGB-D)

map with a Bearing only (RGB) map. The idea is to jointly optimize scale alongside the

other state variables. Given that the uncertainty in the overlapping features between local

maps is low, we can accurately estimate a global scale value that can achieve metric accu-

racy in both map and poses. The evidence is supported through a real world experiment

with unreliable depth observability.

7.2 Future Work

In this final section, we will provide insight into possible future directions as well as

unforeseen challenges.

7.2.1 Improving the Reliability

From our experiments, after applying IRLS bootstrapping we can obtain a high success

rate for convergence towards the global minimum. However, this can be further improved,

especially for datasets with larger noise. In future work, we plan to investigate alternative

forms of the influence function (e.g., dynamic influence), which may contribute to the

reliability of our framework demonstrated in Section 3.2.

Currently we do not have a good theoretical basis on why the Cauchy M-Estimator

(α = 1) offers the closest estimate to the actual Maximum Likelihood solution. Therefore,

there is no way of knowing when our algorithm can achieve the final condition C3 (3.2).

Nevertheless, Cauchy is confirmed to be the best static influence function when compared

to other M-Estimators.

7.2.2 Optimal Splitting Strategy

As mentioned in Section 4.2.1, splitting of the original feature based graph into local maps

is very important to secure efficiency and accuracy of the SMJ algorithm. Our current

strategy is very naive, since it only considers the length of the trajectory and divides the

graph accordingly. In the future, we wish to find better splitting strategies that may be

135

CHAPTER 7. CONCLUSION AND FUTURE WORK

coupled with the reliability of local map convergence and/or the connectivity of a local

map graph.

7.2.3 Finding the Optimal Subset of Key Poses

In PGR, our main idea to gain efficiency is to only connect relative poses that are within

the key poses subset. These key poses are being selected based on their current location

along the pose trajectory defined by the variable k. A better way would be to select the

optimum subset of key poses base on metric accuracy or uncertainty.

7.2.4 Issues in RGB-D SLAM

Our current implementation of RGB-D SLAM is nowhere near perfect and the Front-End

is susceptible to many vulnerabilities.

First, the randomness of RANSAC does not give us a deterministic solution every time

the Front-End is run, which means our SLAM solution is also not repeatable. There

are many variants of RANSAC in literature which we would like to further investigate

(e.g., LMeds [96], MLESAC [97]), all with differing properties to improve on the standard

approach.

As mentioned in Section 6.6.1, even with the best data association technique we cannot

guarantee that no outliers will exist in the data. Since there is no direct way to obtain

odometry in RGB-D SLAM, the outliers become difficult to remove with our suggested

ideas. In the future, we wish to look into robust Back-Ends that can handle problems

where there is no odometry. As far as we know, this idea has yet to be investigated.

In the second algorithm (Robust RGB-D), the monocular SLAM part is still susceptible

to degeneracy, ambiguity and depth uncertainty. When coupled with a poor quality RGB

camera, our algorithm still has many failure cases to overcome. In the future we would

like to look more into combining a high definition camera with the Depth sensor and pa-

rameterizing the bundle adjustment problem better through inverse depth [98] or parallax

angle [94].

136

Appendix

A Simulated Datasets

In simulation, we have the liberty of using perfect Gaussian models, data association and

controlled static environments. Here is a list of trajectories we have used in this thesis.

CIRCLE (2D,3D)

(a) 2D Ground truth (b) 2D Odometry (c) 3D Ground truth

Figure 1: Circle trajectory

This is a circular trajectory where the sensor range is large enough to observe every feature

from every pose. Therefore, an edge will also exist connecting every feature to every pose.

In SLAM graphs, we can consider this dataset the most optimal in terms of connectivity.

For our 3D simulation the trajectories are kept the same except oscillation is applied on

the pitch angle.

138

139

LOOP (2D,3D)

(a) 2D Ground truth (b) 2D Odometry (c) 3D Ground Truth

Figure 2: Loop trajectory

Using a standard sensor model for range and bearing, the Loop trajectory has a large but

single loop, observing several features along the way. The objective is to keep overall node

degree and feature observations low.

MANHATTAN FEATURES (2D)

(a) Ground truth (b) Odometry

Figure 3: Manhattan features trajectory

This is a simulation of Manhattan [33] where features are observed instead of relative pose

constraints. This trajectory is very complex in nature with many loops. The observations

can be sparse or dense at different sections depending on the path taken.

140

SPHERE FEATURES (3D)

(a) Ground truth (b) Odometry

Figure 4: Sphere features trajectory

Sphere is a common trajectory used to test 3D SLAM algorithms for their reliability

towards complex rotations. In this instance 3D features are observed throughout the

trajectory using a typical 3D sensor model.

141

B Reliable Optimization

The following summarizes how to use IRLS as a bootstrapping algorithm

Algorithm 1: IRLS+GN
Input: (X(0), Z, Ω)

Output: Gauss-Newton results (X�)

k ← 1
INITIAL INFLUENCE

α ← 2 // Geman-McClure

while α > 1 do

foreach Edge i, j do

Compute r
(k−1)
ij using X�

(k−1) // calculate residual

w
(k)
ij = w(r(k−1)

ij , α) // calculate M-Estimator weight

Ωw
ij = w

(k)
ij Ωij

end

X�
(k) = GN(Equ (3.1), X�

(k−1), Z, Ωw)1

α = α − 0.5

k ← k + 1
end

ITERATIVE RE-WEIGHTED LEAST SQUARES

α = 1 // cauchy

while Not Converged (Equ (3.8) < ε) do

foreach Edge i, j do

Compute r
(k−1)
ij using X�

(k−1) // calculate residual

w
(k)
ij = w(r(k−1)

ij , α) // calculate M-Estimator weight

Ωw
ij = w

(k)
ij Ωij

end

X�
(k) = GN(Equ (3.1), X�

(k−1), Z, Ωw)

k ← k + 1
end

BOOTSTRAPPING

X� = GN(Equ (2.29), X�
(k), Z, Ω)

1GN(·, ·) refers to the Gauss-Newton function: the first argument refers to the function itself, the other
three respectively are the state vectors, measurement vectors and information matrix.

142

C Sparse Map Joining

C.1 Batch Optimization (BO)

Algorithm 2: Batch Joining
Input: Solved Local Maps: (ZL, ΩL, n)

Output: Solved Global Map: (XG, ΛG)

XG ← ZL
1

i ← 2

while i < n + 1 do

XG ← Concatenate(XG, ZL
i)// initialization

i ← i + 1
end

ZG =
[
ZL

1 , ZL
2 · · · ZL

n

]T

ΩG = diag(ΩL
1 , ΩL

2 · · · ΩL
n)

(XG, ΛG) = GN(Equ (2.27) , XG, ZG, ΩG)

return XG

143

C.2 Sequential Optimization (SO)

Algorithm 3: Sequential Joining
Input: Solved Local Maps: (ZL, ΩL, n)

Output: Solved Global Map: (XG, ΛG)

XG, ZG ← ZL
1

ΩG ← ΩL
1

i ← 2

while i < n + 1 do

XG = Concatenate(XG, ZL
i)// initialization

ZG =
[
ZG, ZL

i

]T

ΩG = diag(ΩG, ΩL
i)

(X∗G, ΛG) = GN(Equ (2.27) , XG, ZG, ΩG)

XG ← X∗G

ZG ← X∗G

ΩG ← ΛG

i ← i + 1
end

return XG

144

C.3 Divide & Conquer Optimization (DCO)

Algorithm 4: Divide and Conquer Joining
Input: Solved Local Maps: (ZL, ΩL)

Output: Solved Global Map: (XG, ΛG)

k ← 1 // tree depth

(ZL)k ← ZL

while dim((ZL)k) > 1 do

if dim((ZL)k) = Odd then

ZL
buff = (ZL

end)k// create buffer map

ΩL
buff = (ΩL

end)k

end

i ← 2

j ← 1

while i < dim((ZL)k) do

(XL
j)k+1 ← Concatenate((XL

i−1)k
, (XL

i)k)// initialization

(ZL
j)k+1 ←

[
(ZL

i−1)k
, (ZL

i)k
]T

(ΩL
j)k+1 = diag((ΛL

i−1)k
, (ΛL

i)k)

((X∗L
j)k+1

, (ΛL
j)k+1) = GN(Equ (2.27) , (XL

j)k+1
, (ZL

j)k+1, (ΩL
j)k+1)

(ZL
j)k+1 ← (X∗L

j)k+1

(ΩL
j)k+1 ← (ΛL

j)k+1

i ← i + 2

j ← j + 1
end

(ZL)k+1 ←
[
(ZL)k+1

, ZL
buff

]
// add buffer map

(ΩL)k+1 ←
[
(ΩL)k+1

, ΩL
buff

]

k ← k + 1
end

return XG = (X∗L)k+1

145

C.4 Sparse Map Joining Algorithm

Algorithm 5: Sparse Map Joining (SMJ) Algorithm
Input: Measurement, information and local maps size (ẐO, ẐF , ΩO, ΩF , n)

Output: SMJ state vector and information: (XG, ΛG)

OPTIMIZE AND MARGINALIZE LOCAL MAPS

(XL
1 · · · XL

n , ZL
1 · · · ZL

n) ← SplitMaps(ẐO, ẐF , ΩO, ΩF , n)

i ← 1

while i < n + 1 do
(XL

i , ΛL
i) ←IRLS+GN(XL

i , ZL
i , ΩL

i)2

ΩL
i ← ΛL(M)

i ← ΛL
i

ZL
i ← X

L(M)
i ← XL

i // marginalization

i ← i + 1
end

JOIN LOCAL MAPS

switch Joining Algorithm do

case BO
Use Algorithm 2

case SO
Use Algorithm 3

case DCO
Use Algorithm 4

end

return (XG)�

2IRLS+GN(·, ·, ·) refers to Iterative Re-weighted Least Squares bootstrapping in Algorithm 1.

146

D Pose Graph Representation

Algorithm 6: Relative Pose Searching
Input: Observations: (ZF , ΩF)

Output: Found Relative Poses: (Count, RelativePoseList)

XK ← SelectSubset(XP , k) // select pose subset

Count(ẐF) ← 0 // stores the frequency a observation is used

foreach pose XK
i do

n ← 1

foreach pose XK
j , j = i + n do

m ∈ all common features

if dim(m) > Obsmin then

RelativePoseListZP
ij

← (ẐF
im, ẐF

jm, ΩF
im, ΩF

jm)// create link

CountẐF
im

= CountẐF
im

+ 1// increment frequency

CountẐF
jm

= CountẐF
jm

+ 1

n ← n + 1
end

end

end

return CountẐF , RelativePoseListZP
ij

147

Algorithm 7: Calculating Relative Pose
Input: Found Relative Poses: (Count, RelativePoseList)

Output: Pose Graph Edges and Information: ZP , ΩP

foreach RelativePoseList do

ẐF
im, ẐF

jm, ΩF
im, ΩF

jm ← RelativePoseListZP
ij

// extract observations

XP
ij ← Horn(ẐF

im, ẐF
jm)// calculate initial

ΩF
im ← ΩF

im/CountẐF
im

// divide information, MO algorithm

ΩF
jm ← ΩF

jm/CountẐF
jm

TWO POSE GAUSS-NEWTON

if j = i + 1 then

(X�, Λ) ← GN(Equ (2.27),XP
ij , (ẐF

im, ẐF
jm, ẐO

ij), (ΩF
im, ΩF

jm, ΩO
ij)) // with odometry

else

(X�, Λ) ← GN(Equ (2.27),XP
ij , (ẐF

im, ẐF
jm), (ΩF

im, ΩF
jm)) // without odometry

end

ZP
ij ← XP (M) ← (X)�// Marginalize features

ΩP
ij ← ΛP (M) ← Λ

end

return ZP , ΩP

Algorithm 8: Pose Graph Representation (PGR) Algorithm
Input: Measurement and Information (ẐO, ẐF , ΩO, ΩF)

Output: Pose Graph state vector and information: (X, Λ)

RELATIVE POSE SEARCH

Algorithm 6

RELATIVE POSE CALCULATION

Algorithm 7

OPTIMIZATION

XP ← Concatenate(ẐO)// initialization

(X, Λ) ←IRLS+GN(XP , ZP , ΩP)

return (X, Λ)

148

E Schur Complement

Suppose

S =

⎡
⎢⎣ A B

BT C

⎤
⎥⎦ (1)

Given that C is a positive definite matrix and S is a positive semi-definite matrix then

the complement of C is Ω is

A − BC−1BT (2)

An example of feature marginalization on the information matrix is given below

Ω =

⎡
⎢⎣ ΩP P ΩP F

(ΩP F)T ΩF F

⎤
⎥⎦ (3)

ΩP (M) = ΩP P − ΩP F (ΩF F)−1(ΩP F)T (4)

149

F Transforming between Rotation Matrix and Euler Angles

The standard sequence for rotations in this thesis is, Yaw, Pitch, Roll or Rz(φ,)Ry(θ), Rx(ψ).

Euler Angles to Rotation matrix

Rx(ψ) =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

⎤
⎥⎥⎥⎥⎦ , Ry(θ) =

⎡
⎢⎢⎢⎢⎣

cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

⎤
⎥⎥⎥⎥⎦

Rz(φ) =

⎡
⎢⎢⎢⎢⎣

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

⎤
⎥⎥⎥⎥⎦

(5)

R = RzRyRx (6)

Rotation matrix to Euler Angles

R =

⎡
⎢⎢⎢⎢⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎥⎥⎥⎥⎦ (7)

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R31 �= ±1 − arcsin(R31))

R31 = −1 π/2

R31 = 1 −π/2

, ψ =

⎧⎪⎨
⎪⎩

R31 �= ±1 arctan(R21
cos(θ) , R11

cos(θ))

R31 = ±1 0

φ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R31 �= ±1 arctan(R32
cos(θ) , R33

cos(θ))

R31 = −1 arctan(R12
cos(θ) , R13

cos(θ))

R31 = 1 arctan(−R12
cos(θ) , −R13

cos(θ))
(8)

Bibliography

[1] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by tracking geometric

beacons,” Robotics and Automation, IEEE Transactions on, vol. 7, no. 3, pp. 376–382,

1991.

[2] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the ekf-

slam algorithm,” in Intelligent Robots and Systems (IROS), Proceedings of IEEE/RSJ

International Conference on. IEEE, 2006, pp. 3562–3568.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A factored solution

to the simultaneous localization and mapping problem.” AAAI Press, 2002, pp. 593–

598.

[4] T. Bailey, J. Nieto, and E. Nebot, “Consistency of the fastslam algorithm,” in Robotics

and Automation (ICRA), Proceedings of IEEE International Conference on. IEEE,

2006, pp. 424–429.

[5] F. Lu and E. Milios, “Robot pose estimation in unknown environments by matching

2d range scans,” in Computer Vision and Pattern Recognition (CVPR), Proceedings

of IEEE Computer Society Conference on, 1994, pp. 935–938.

[6] S. Huang, Z. Wang, G. Dissanayake, and U. Frese, “Iterated d-slam map joining: eval-

uating its performance in terms of consistency, accuracy and efficiency,” Autonomous

Robots, vol. 27, no. 4, pp. 409–429, 2009.

150

151

[7] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localization and map-

ping via square root information smoothing,” The International Journal of Robotics

Research (IJRR), vol. 25, no. 12, pp. 1181–1204, 2006.

[8] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent,

“Efficient sparse pose adjustment for 2d mapping,” in Intelligent Robots and Systems

(IROS), Proceedings of IEEE/RSJ International Conference on. IEEE, 2010, pp.

22–29.

[9] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to large-

scale mapping of urban structures,” The International Journal of Robotics Research

(IJRR), vol. 25, no. 5-6, pp. 403–429, 2006.

[10] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent maps by

relaxation,” in Robotics and Automation (ICRA), Proceedings of IEEE International

Conference on, vol. 4. IEEE, 2000, pp. 3841–3846.

[11] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm for simulta-

neous localization and mapping,” Robotics, IEEE Transactions on, vol. 21, no. 2, pp.

196–207, 2005.

[12] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and map-

ping via square root information smoothing,” The International Journal of Robotics

Research (IJRR), vol. 25, no. 12, pp. 1181–1203, 2006.

[13] S. Huang, H. Wang, U. Frese, and G. Dissanayake, “On the number of local min-

ima to the point feature based slam problem,” in Robotics and Automation (ICRA),

Proceedings of IEEE International Conference on. IEEE, 2012, pp. 2074–2079.

[14] L. Carlone, “Convergence analysis of pose graph optimization via gauss-newton meth-

ods,” in Robotics and Automation (ICRA), Proceedings of IEEE International Con-

ference on. IEEE, 2013.

152

[15] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A

solution to the simultaneous localization and map building (slam) problem,” Robotics

and Automation, IEEE Transactions on, vol. 17, no. 3, pp. 229–241, 2001.

[16] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose graph slam,” in

Robotics and Automation (ICRA), Proceedings of IEEE International Conference on.

IEEE, 2012, pp. 1254–1261.

[17] F. Dellaert, A. Kipp, and P. Krauthausen, “A multifrontal qr factorization approach

to distributed inference applied to multirobot localization and mapping,” in the 20th

national conference on Artificial intelligence, Proceedings of. AAAI Press, 2005, pp.

1261–1266.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press Cambridge,

2005, vol. 1.

[19] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” Ad-

vances in neural information processing systems, pp. 689–695, 2001.

[20] T. Dean and K. Kanazawa, “Probabilistic temporal reasoning.” AAAI Press, 1988.

[21] K. P. Murphy, “Dynamic bayesian networks: representation, inference and learning,”

Ph.D. dissertation, University of California, 2002.

[22] M. Golfarelli, D. Maio, and S. Rizzi, “Elastic correction of dead-reckoning er-

rors in map building,” in Intelligent Robots and Systems, 1998. Proceedings., 1998

IEEE/RSJ International Conference on, vol. 2. IEEE, 1998, pp. 905–911.

[23] M. Avriel, Nonlinear programming: analysis and methods. Courier Dover Publica-

tions, 2003.

[24] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization

and nonlinear equations. Society for Industrial and Applied Mathematics, 1987,

153

vol. 16.

[25] M. J. Powell, A new algorithm for unconstrained optimization. UKAEA, 1970.

[26] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge

Univ Press, 2000, vol. 2.

[27] D. Rosen, M. Kaess, and J. Leonard, “An incremental trust-region method for ro-

bust online sparse least-squares estimation,” in Robotics and Automation (ICRA),

Proceedings of IEEE International Conference on. IEEE, 2012, pp. 1262–1269.

[28] G. Tipaldi, G. Grisetti, and W. Burgard, “Approximate covariance estimation in

graphical approaches to slam,” in Intelligent Robots and Systems (IROS), Proceedings

of IEEE/RSJ International Conference on. IEEE, 2007, pp. 3460–3465.

[29] A. Ranganathan, M. Kaess, and F. Dellaert, “Loopy sam,” in The 20th International

Joint Conference on Artificial Intelligence (IJCAI), Proceedings of, 2007, pp. 6–12.

[30] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and

mapping,” Robotics, IEEE Transactions on, vol. 24, no. 6, pp. 1365–1378, 2008.

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes

3rd edition: The art of scientific computing. Cambridge university press, 2007.

[32] E. Olson and M. Kaess, “Evaluating the performance of map optimization algo-

rithms,” in RSS Workshop on Good Experimental Methodology in Robotics, 2009,

p. 40.

[33] E. B. Olson, S. Teller, and J. Leonard, “Robust and efficient robotic mapping,” Ph.D.

dissertation, Massachusetts Institute of Technology, Department of Electrical Engi-

neering and Computer Science, 2008.

[34] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking

154

and navigation: theory algorithms and software. John Wiley & Sons, 2004.

[35] U. Frese, “A discussion of simultaneous localization and mapping,” Autonomous

Robots, vol. 20, no. 1, pp. 25–42, 2006.

[36] K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for non-linear least squares prob-

lems. Informatics and Mathematical Modelling, Technical University of Denmark,

2004.

[37] T. Duckett, S. Marsland, and J. Shapiro, “Fast, on-line learning of globally consistent

maps,” Autonomous Robots, vol. 12, no. 3, pp. 287–300, 2002.

[38] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with

poor initial estimates,” in Robotics and Automation (ICRA), Proceedings of IEEE

International Conference on. IEEE, 2006, pp. 2262–2269.

[39] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of

Mathematical Statistics, pp. 400–407, 1951.

[40] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameterization for

efficiently computing maximum likelihood maps using gradient descent,” in Robotics:

Science and Systems (RSS), Proceedings of, 2007.

[41] L. Carlone, R. Aragues, J. Castellanos, and B. Bona, “A linear approximation for

graph-based simultaneous localization and mapping,” in Robotics: Science and Sys-

tems (RSS), Proceedings of, 2011.

[42] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[43] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit, and P. Fua,

“View-based maps,” The International Journal of Robotics Research (IJRR), vol. 29,

no. 8, pp. 941–957, 2010.

155

[44] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization

in urban environments,” in Robotics: Science and Systems (RSS), Proceedings of,

2007.

[45] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner,

R. Shade, D. Schroeter, and L. Murphy, “Navigating, recognizing and describing

urban spaces with vision and lasers,” The International Journal of Robotics Research

(IJRR), vol. 28, no. 11-12, pp. 1406–1433, 2009.

[46] J. Folkesson and H. Christensen, “Graphical slam-a self-correcting map,” in Robotics

and Automation (ICRA), Proceedings of IEEE International Conference on, vol. 1.

IEEE, 2004, pp. 383–390.

[47] K. Ni, D. Steedly, and F. Dellaert, “Tectonic sam: Exact, out-of-core, submap-based

slam,” in Robotics and Automation (ICRA), Proceedings of IEEE International Con-

ference on. IEEE, 2007, pp. 1678–1685.

[48] M. A. Paskin, “Thin junction tree filters for simultaneous localization and mapping,”

in International Joint Conference on Artificial Intelligence (IJCAI), Proceedings of,

G. Gottlob and T. Walsh, Eds. Morgan Kaufmann Publishers, 2003, pp. 1157–1164.

[49] U. Frese, “Treemap: An o (log n) algorithm for indoor simultaneous localization and

mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103–122, 2006.

[50] A. Blake and A. Zisserman, Visual reconstruction. MIT press Cambridge, 1987,

vol. 2.

[51] C. L. Zitnick, “Seeing through the blur,” in Computer Vision and Pattern Recognition

(CVPR), Proceedings of the IEEE Conference on. IEEE Computer Society, 2012,

pp. 1736–1743.

[52] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, no. 4598, pp. 671–680, 1983.

156

[53] Z. Zhang, “Parameter estimation techniques: A tutorial with application to conic

fitting,” Image and Vision Computing, vol. 15, no. 1, pp. 59–76, 1997.

[54] S. Huang, Z. Wang, and G. Dissanayake, “Sparse local submap joining filter for

building large-scale maps,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 1121–

1130, 2008.

[55] G. Grisetti, R. Kummerle, and K. Ni, “Robust optimization of factor graphs by using

condensed measurements,” in Intelligent Robots and Systems (IROS), Proceedings of

IEEE/RSJ International Conference on. IEEE, 2012, pp. 581–588.

[56] L. M. Paz, P. Jensfelt, J. D. Tardos, and J. Neira, “Ekf slam updates in o (n) with

divide and conquer slam,” in Robotics and Automation, 2007 IEEE International

Conference on. IEEE, 2007, pp. 1657–1663.

[57] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchical

optimization on manifolds for online 2d and 3d mapping,” in Robotics and Automation

(ICRA), Proceedings of IEEE International Conference on. IEEE, 2010, pp. 273–278.

[58] C. Hertzberg, “A framework for sparse, non-linear least squares problems on mani-

folds,” Ph.D. dissertation, University of Bremen, 2008.

[59] L. Zhao, S. Huang, L. Yan, J. Wang, G. Hu, and G. Dissanayake, “Large-scale

monocular slam by local bundle adjustment and map joining,” in Control Automation

Robotics Vision (ICARCV), Proceedings of, 2010, pp. 431–436.

[60] M. Lourakis and A. Argyros, “The design and implementation of a generic sparse

bundle adjustment software package based on the levenberg-marquardt algorithm,”

Institute of Computer Science-FORTH, Heraklion, Crete, Greece, Tech. Rep, vol. 340,

2004.

[61] J. Kurlbaum and U. Frese, “A benchmark data set for data association,” Univ. Bre-

men, Bremen, Germany, SFB/TR, vol. 8, pp. 017–02, 2009.

157

[62] J. Guivant and E. Nebot, “Simultaneous localization and map building: Test case for

outdoor applications,” Australian Centre for Field Robotics, 2002.

[63] G. Hu, S. Huang, and G. Dissanayake, “3d i-slsjf: A consistent sparse local submap

joining algorithm for building large-scale 3d map,” in Conference on Decision and

Control held jointly with 28th Chinese Control Conference, Proceedings of, 2009, pp.

6040–6045.

[64] A. Nüchter, 3D robotic mapping: the simultaneous localization and mapping problem

with six degrees of freedom. Springer, 2009, vol. 52.

[65] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot map-

ping.” in Robotics: Science and Systems (RSS), Proceedings of, 2012.

[66] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based

slam,” Intelligent Transportation Systems Magazine, IEEE, vol. 2, no. 4, pp. 31–43,

2010.

[67] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,”

Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642, 1987.

[68] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact pose slam,”

Robotics, IEEE Transactions on, vol. 26, no. 1, pp. 78–93, 2010.

[69] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust map

optimization using dynamic covariance scaling,” in Robotics and Automation (ICRA),

Proceedings of IEEE International Conference on. IEEE, 2013.

[70] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer

Society Conference on, vol. 1. IEEE, 2004, pp. I–652.

[71] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,

158

D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time

dense surface mapping and tracking,” in Mixed and augmented reality (ISMAR),

Proceedings of 10th IEEE international symposium on. IEEE, 2011, pp. 127–136.

[72] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgbd mapping: Using depth

cameras for dense 3d modeling of indoor environments,” in Advanced Reasoning with

Depth Cameras Workshop in conjunction with RSS, 2010.

[73] H. Strasdat, A. J. Davison, J. Montiel, and K. Konolige, “Double window optimisation

for constant time visual slam,” in Computer Vision (ICCV), Proceedings of 2011 IEEE

International Conference on. IEEE, 2011, pp. 2352–2359.

[74] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-time 3d visual

slam with a hand-held rgb-d camera,” in RGB-D Workshop on 3D Perception in

Robotics at the European Robotics Forum, Proceedings of, 2011.

[75] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using projected

patterns,” 2008, united states of ameriaca patent app. 12/522,171.

[76] C. Audras, A. Comport, M. Meilland, and P. Rives, “Real-time dense RGB-D locali-

sation and mapping,” in Australian Conference on Robotics and Automation (ACRA),

Proceedings of, 2011.

[77] C. Harris and M. Stephens, “A combined corner and edge detector,” in Alvey vision

conference, Proceedings of, vol. 15. Manchester, UK, 1988, p. 50.

[78] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[79] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in

Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[80] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best

159

matches in logarithmic expected time,” ACM Transactions on Mathematical Software

(TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[81] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Communi-

cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[82] C. Mei, G. Sibley, M. Cummins, P. M. Newman, and I. D. Reid, “A constant-time

efficient stereo slam system.” in BMVC, 2009, pp. 1–11.

[83] D. Nistér, “An efficient solution to the five-point relative pose problem,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 756–

770, 2004.

[84] P. H. Torr, A. W. Fitzgibbon, and A. Zisserman, “The problem of degeneracy in

structure and motion recovery from uncalibrated image sequences,” International

Journal of Computer Vision, vol. 32, no. 1, pp. 27–44, 1999.

[85] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Robotics: Science and

Systems (RSS), Proceedings of, 2009.

[86] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using depth

cameras for dense 3d modeling of indoor environments,” in Experimental Robotics.

Springer, 2014, pp. 477–491.

[87] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy, “Geometrically stable sam-

pling for the icp algorithm,” in 3-D Digital Imaging and Modeling. Proceedings of.

IEEE, 2003, pp. 260–267.

[88] C. Liu, “Beyond pixels: exploring new representations and applications for motion

analysis,” Ph.D. dissertation, Massachusetts Institute of Technology, 2009.

[89] W. Zhou, J. Miro, and G. Dissanayake, “Information-driven 6d slam based on ranging

160

vision,” in Intelligent Robots and Systems (IROS), Proceedings of IEEE/RSJ Inter-

national Conference on. IEEE, 2008, pp. 2072–2077.

[90] M. Cummins and P. Newman, “Accelerated appearance-only slam,” in Robotics and

Automation (ICRA), Proceedings of IEEE International Conference on. IEEE, 2008,

pp. 1828–1833.

[91] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of rgb-d slam systems,” in Intelligent Robots and Systems (IROS),

Proceedings of IEEE/RSJ International Conference on. IEEE, 2012, pp. 573–580.

[92] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald,

“Kintinuous: Spatially extended KinectFusion,” in RSS Workshop on RGB-D: Ad-

vanced Reasoning with Depth Cameras, 2012.

[93] J. Civera, A. J. Davison, and J. Montiel, “Inverse depth parametrization for monoc-

ular slam,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 932–945, 2008.

[94] L. Zhao, S. Huang, L. Yan, and G. Dissanayake, “Parallax angle parametrization for

monocular slam,” in Robotics and Automation (ICRA), Proceedings of IEEE Inter-

national Conference on. IEEE, 2011, pp. 3117–3124.

[95] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in Mixed

and Augmented Reality (ISMAR), Proceedings of 8th IEEE International Symposium

on. IEEE, 2009, pp. 83–86.

[96] P. J. Rousseeuw, “Least median of squares regression,” Journal of the American

statistical association, vol. 79, no. 388, pp. 871–880, 1984.

[97] B. J. Tordoff and D. W. Murray, “Guided-mlesac: Faster image transform estima-

tion by using matching priors,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 27, no. 10, pp. 1523–1535, 2005.

161

[98] J. Civera, A. J. Davison, and J. Montiel, “Inverse depth parametrization for monoc-

ular slam,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 932–945, 2008.

	Title Page
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Nomenclature
	Abbreviations
	1 Introduction
	1.0.1 SLAM Applications
	1.0.2 Brief History of SLAM

	1.1 Motivation
	1.2 Contributions
	1.3 Publications
	1.4 Thesis Outline

	2 Preliminaries
	2.1 Extended Kalman Filtering for SLAM
	2.2 Graph Based SLAM
	2.2.1 Odometry and Observation Information
	2.2.2 Linear Least Squares
	2.2.3 Non-Linear Least Squares
	2.2.4 Weighted Non-Linear Least Squares
	2.2.5 Least Squares for SLAM

	2.3 Front-End and Back-End
	2.4 Evaluating a SLAM algorithm
	2.4.1 Chi Squared (χ2)
	2.4.2 Expected Value of χ2 / Normalized χ2
	2.4.3 χ2 Ratio
	2.4.4 Normalized Estimation Error NEES

	2.5 Related Works
	2.5.1 Improving Reliability
	2.5.2 Overcoming Computational Complexity

	2.6 Summary

	3 Reliable Optimization
	3.1 Introduction
	3.2 A General Framework for Reliable Optimization
	3.2.1 Defining a Sequence
	3.2.2 Iterative Re-weighted Least Squares
	3.2.3 Formulation for IRLS
	3.2.4 M-Estimators
	3.2.5 Generalized Influence Function
	3.2.6 Initial Influence
	3.2.7 Stopping Condition for IRLS
	3.2.8 Summary of IRLS algorithm

	3.3 Evaluation Criteria
	3.3.1 Benchmark Solution
	3.3.2 Noise Conditions
	3.3.3 Monte Carlo Evaluation
	3.3.4 Success Rate

	3.4 Experiment and Results
	3.4.1 IRLS for Feature Based Graphs
	3.4.2 IRLS on Pose Graphs
	3.4.3 Resulting Maps

	3.5 Discussion
	3.5.1 Importance of Noise Correlation
	3.5.2 Computation Time

	3.6 Summary

	4 Sparse Map Joining
	4.1 Introduction
	4.2 Sparse Map Joining
	4.2.1 Building Local Maps
	4.2.2 Marginalization
	4.2.3 Fusing Local Maps
	4.2.4 SMJ Algorithm

	4.3 3D Sparse Map Joining
	4.3.1 Standard 3D Range and Bearing
	4.3.2 SMJ for Bundle Adjustment(BA)
	4.3.3 Dual-Observation Model Joining

	4.4 Evaluation
	4.4.1 Consistency using NEES
	4.4.2 Accuracy using χ2 Ratio
	4.4.3 Computation Time
	4.4.4 Resulting Maps
	4.4.5 Real Datasets

	4.5 Discussion
	4.6 Summary

	5 Pose Graph Representation
	5.1 Introduction
	5.2 Pose Graphs
	5.3 Pose Graph Representation of Feature Based SLAM
	5.3.1 Obtaining Relative Pose
	5.3.2 Information Reuse
	5.3.3 Algorithm

	5.4 Evaluation
	5.4.1 Consistency using NEES
	5.4.2 Accuracy using χ2 Ratio
	5.4.3 Resulting Maps
	5.4.4 Computation Time
	5.4.5 Real Datasets

	5.5 Discussion
	5.5.1 Further Improving Efficiency
	5.5.2 Euler Angle Parameterization
	5.5.3 Outliers in Feature Observations

	5.6 Summary

	6 Case Study: RGB-D SLAM
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Motivation
	6.1.3 Chapter Overview

	6.2 RGB-D Cameras
	6.3 Handling the RGB-D SLAM Front-End
	6.3.1 Feature Selection
	6.3.2 Feature Matching
	6.3.3 Iterative Closest Point (ICP)
	6.3.4 RGB Visual Odometry
	6.3.5 Initializing a New Pose
	6.3.6 Initializing a New Feature
	6.3.7 Loop Closing

	6.4 RGB-D SLAM
	6.4.1 Flow Chart of RGB-D SLAM
	6.4.2 Experiments and Results

	6.5 Robust RGB-D SLAM
	6.5.1 Local Map Building and Joining
	6.5.2 Local Map Switching
	6.5.3 Flow Chart of Robust RGB-D SLAM
	6.5.4 Experiment

	6.6 Discussion
	6.6.1 RGB-D SLAM
	6.6.2 Robust RGB-D SLAM

	6.7 Summary

	7 Conclusion and Future Work
	7.1 Summary of Contributions
	7.1.1 Reliable Optimization
	7.1.2 Sparse Map Joining
	7.1.3 Pose Graph Representation
	7.1.4 Case Study

	7.2 Future Work
	7.2.1 Improving the Reliability
	7.2.2 Optimal Splitting Strategy
	7.2.3 Finding the Optimal Subset of Key Poses
	7.2.4 Issues in RGB-D SLAM

	Appendix
	A Simulated Datasets
	B Reliable Optimization
	C Sparse Map Joining
	C.1 Batch Optimization (BO)
	C.2 Sequential Optimization (SO)
	C.3 Divide & Conquer Optimization (DCO)
	C.4 Sparse Map Joining Algorithm

	D Pose Graph Representation
	E Schur Complement
	F Transforming between Rotation Matrix and Euler Angles

	Bibliography

