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Abstract

Ocean acidification will impact the photo-physiology of reef-building corals as it can

lead to dysfunction of the symbiosis and loss of productivity. The major objective of

this thesis was to provide insight into the mechanism of CO2-induced bleaching and

productivity loss across multiple life-history stages and interpret these findings in an

ecological context.

Chapter 1 provides a review of the literature investigating the photo-physiological

impact of ocean acidification, emphasizing the experimental conditions in studies that

observed Symbiodinium dysfunction and productivity loss. Chapter 2 presents a

working hypothesis to describe the fundamental physiological aspects of coral

bleaching under ocean acidification. This research investigates the response of

Acropora aspera using pulse amplitude modulation (PAM) fluorometry and oxygen

respirometry under increased pCO2 with concomitant high light conditions. The

dinoflagellate density and HPLC pigment analysis are utilised to characterise the

CO2-induced bleaching response. We present a conceptual model linking

photorespiration to CO2-induced bleaching and productivity loss.

The impact of ocean acidification on coral reef ecosystems is likely to deviate from

oceanic climate models due to diel modification of carbonate chemistry by

community metabolism. Chapter 3 characterises the diurnal variation in carbonate

chemistry at sites around Lizard Island and links this to the ocean acidification

response of Acropora millepora collected from these sites. Furthermore, we utilise

permutational multivariate statistical analyses to partition the variation in carbonate

chemistry attributable to community composition at these sites. It was hypothesized

that greater diurnal variation in carbonate chemistry may improve resilience of

scleractinian corals to future ocean acidification conditions. This chapter highlights

that site-specific physiological trade-offs may influence the response of reef-building

corals to future ocean acidification scenarios.

Chapter 4 reports a visual bleaching response in A. millepora juveniles under future

ocean acidification conditions. The effect of ocean acidification on coral juveniles is



hypothesised to impact Symbiodinium uptake and photochemical efficiency. We

utilised the iPAM to align the photochemistry in the juveniles with their visual

bleaching response and Symbiodnium type, as assessed by denaturing gradient gel

electrophoresis (DGGE) of the internal transcribed spacer region 1 (ITS1) of the

ribosomal genes. This study links the bleaching response with recruits containing a

dominant population of Symbiodinium type D1 or D1-4, with potential implications

for post-settlement survivorship and population dynamics.

Lastly, in Chapter 5 the key findings of this thesis are discussed in light of the

ecological implications for the Great Barrier Reef. The synopsis outlines the effect of

ocean acidification on the photo-physiology, productivity, calcification, reproduction

and symbiont acquisition of reef-building corals. Future avenues for research are

suggested based on new research gaps revealed by this thesis with the aim to continue

to provide up-to-date scientific information to policy makers and reef managers.
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