Numerical and Experimental Investigations of Vibration-based Assessment of Timber Beams Rehabilitated by Fibre-Reinforced Polymer

By

Runhua Xiao

A thesis submitted for the degree of Master of Engineering (Research)

Faculty of Engineering and Information Technology (FEIT) University of Technology, Sydney (UTS)

February, 2014

University of Technology, Sydney

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

ABSTRACT

Timber has been traditionally used all over the world as a construction material. Built timber structures may require repair and/or strengthening because of a number of factors such as age-related deterioration, fungus or termite attacks and damage caused by overloading. In recent years, a great deal of research and development has been focused on utilizing vibration based methods to detect structural damage and use of fibre reinforce polymer (FRP) on timber for strengthening or repair damaged timber structural members in various types of structures. Although the application of FRP for repair and/or strengthening of structures has been researched for a decade, anon-destructive evaluation of the effectiveness and reliability of the FRP repaired or strengthened structure are yet to be investigated.

In this study, the damage index method, i.e. a robust vibration-based damage detection method, is proposed to localize and quantify damage in timber beams and to evaluate the effectiveness of repair for the damaged timber beams, in which the damaged timber beams are repaired by applying carbon fibre reinforced polymer (CFRP).

In addition to numerical investigation using Finite Element (FE) analysis, an experimental program comprising of static and dynamic testing was carried out on five laminated veneer lumber (LVL) beams. Different damage cases (severe, moderate, minor) are introduced on these beams. The experimental results indicate that the use of CFRP was effective in repairing the damaged timber beams. Both numerical and experimental investigations have also shown that the proposed damage index method is able to accurately detect damage location and severity, and evaluate the repair effectiveness for damaged timber beam after repairing with CFRP.

ACKNOWLEDGEMENT

This Master research could not have been possible without the assistance, understanding and guidance rendered by numerous people throughout the project. The author would very much like to express his appreciation and gratitude to his supervisors, Associate Professor Jianchun Li, and Docter Rijun Shrestha, for their support and guidance throughout this work and for their patience with proof-reading this thesis. The author would also like to thank Yunlong Luo, who had given the author invaluable advice and assistance in writing this thesis. Utmost gratitude is also due to Xiang Luo and Nin Yan who helped the author for familiar with the ANSYS and MATLAB.

Furthermore, the author would like to thank staff of the UTS Structures Laboratory for their help in the experimental work. Special thanks must also go to David Dicker and Peter for helping the author in setting up static test system and the acquisition system. I wish to sincerely thank Muhammad for helping author applying CFRP on damaged beams. The author also feels a deep sense of gratitude to all the academic and nonacademic staff in the Faculty of Engineering and Information Technology for the help rendered.

Finally, the author wishes to thank for my family. For my parents, it is their altruistic and unimaginable support through my master research period. Thank to my aunt, Dr Linda Xiao for giving me a lot of support and guidance on my study and daily life.

LISTOFPUBLICATIONS BASED ON THIS RESEARCH

Refereed Journal Articles

- Xiao, R., Li, J. & Shrestha, R. (2014), 'Investigations of Vibration Based Condition Assessment of Timber Beams Strengthened with Fibre Reinforced Polymer', *Advanced Materials Research Vol.831 (2014) pp 53-57.*
- Xiao, R., Li, J. & Shrestha, R. (2014), 'A Novel Vibration Based Assessment Approach for Repair Effectiveness of Damaged Timber Beam Rehabilitated by Fibre Reinforced Polymer', *In Preparation*.

Refereed Conference Papers

- Xiao, R., Li, J. & Shrestha, R. (2014), 'Investigations of Vibration Based Condition Assessment of Timber Beams Strengthened with Fibre Reinforced Polymer', 3rd International Conference on Civil Engineering and Building Materials, 2013.
- Xiao, R., Li, J. & Shrestha, R. (2014), 'A Novel Vibration Based Assessment Approach for Repair Effectiveness of Damaged Timber Beam Rehabilitated by Fibre Reinforced Polymer', *In Preparation*.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENT	iii
LISTOFPUBLICATIONS BASED ON THIS RESEARCH	iv
Table OF CONTENTS	V
LIST OF FIGURES	viii
LIST OF TABLES	X
LIST OF NOTATIONS	xi
1.1Background	1
1.2 Objective of the Study	3
1.3 Scope of the Work	4
1.4 Significance of the Research Work	5
1.5 Organisation of the Thesis	6
CHAPTER 2 LITERATURE REVIEW	7
2.1 Vibration Based Damage Detection	7
2.1.1 Methods Based on Natural Frequency	7
2.1.2 Mode Shape Method	8
2.1.3 Dynamic Flexibility Based Method	10
2.1.4 Modal Strain Energy Based Method	11
2.2 FRP Application on Timber Structures	16
2.3 FE modelling on Timber and FRP	21
2.3.1 Modelling of Timber	21
2.3.2 Modelling of CFRP Rehabilitation	22
CHAPTER 3 EXPERIMENTAL INVESTIGATION	24
3.1 Introduction	24
3.2 Material Properties	24
3.2.1 LVL Beam	24
3.2.2 Property of Carbon Fibre Reinforced Polymer	24

3.3 Design of Specimens	25
3.3.1 Dimensions of LVL Timber Beams	25
3.3.2 Inflicted Damage in Test Beams	26
3.3.3 Procedures of Using CFRP to Repair Damaged Timber Beams	27
3.4 Four-point Bending Test for the Specimens	28
3.4.1 Static Test Set up	28
3.4.2 Static Test Results	29
3.5 Modal Testing and Experimental Modal Analysis	30
3.5.1 Modal Test Set Up	30
3.5.2 Data Post-processing	33
3.5.3 Results of Natural Frequency	33
Summary	37
CHAPTER 4 FINITE ELEMENT MODELLING	
4.1 Introduction	38
4.2 Finite Element Model for Intact Timber Beam	38
4.3 Mesh Density	40
4.3.1 Meshes Considered for Modelling	41
4.3.2 Comparison of Different Mesh Densities	41
4.4 Methods of Modelling Damage in LVL Beam.	44
4.5 Methods of Modelling Damaged Beam Repaired with CFRP	45
4.7 The Results and Discussions on Load-deflection Relationship	46
4.6 Correlation Analysis Using Dynamic Results	48
4.6.1 Natural Frequencies	49
Summary	50
CHAPTER 5 Structural Damage Detection and Repair Evaluation of Timber	
Beams Using the Modal Strain Energy Method	51
5.1 Introduction	51
5.2 Review of Proposed Damage Detection Methods	51
	•

5.3 Numerical Results Discussion	52
5.3.1 Obtaining Modal Parameters by Experimental Modal Analysis (EMA).	52
5.3.2 Identifying the Location of Single Notch Damage	54
5.3.4 Estimation of Severity of Damage	57
5.3.5 Evaluating the Effectiveness of CFRP Rehabilitation	61
5.4 Experimental results discussion	66
5.4.1 Identifying the Location of Single Notch damage	66
5.4.2 Estimation of Severity of Damage	72
5.4.3 Evaluate the Effectiveness of CFRP Rehabilitation	75
5.5 Comparison between Numerical and Experimental Results	79
5.5.1 Comparison in Locating Damage Results	79
5.5.2 Comparison in Damage Severity Estimation Results	80
5.5.3 Comparison in Evaluating the Effectiveness of CFRP Rehabilitation	84
Summary	87
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	88
6.1 Conclusions	88
6.2 Recommendations and Future Work	91
REFERENCES	93
APPENDIX A: Static Test Results	96
APPENDIX B: Comparison in Locating Damage Results	97

LIST OF FIGURES

Figure 1. 1 Timber structures	1
Figure 2.1 Different investigations to increase wood flexural properties (Andre 2006	5) 16
Figure 2.2 Load-deflection curves for CFRP-reinforced wood beams in three-p	point
bending (Plevris and Triantafillou 1992)	18
Figure 2.3 Reinforcing schemes for the three samples (Johns and Lacroix 2000)	19
Figure 2.4 Reinforcement schemes (Schober and Rautenstrauch 2005)	21
Figure 2.5 FEA model: (a) meshed beam with boundary condition (cut-away view	w of
Beam DF5); (b) strain contour (Beam DF4).	22
Figure 3.1 Laminated veneer lumber	. 24
Figure 3.2 CFRP sheets	25
Figure 3.3 Dimension of Specimen	26
Figure 3.4 Side view of a typical damage inflicted in test beams	27
Figure 3.5 LVL Timber beams repaired by CFRP	28
Figure 3.6 CFRP rehabilitation	28
Figure 3.7 Four points bending test set up	29
Figure 3.8 Load-deflection curve comparison for Beam 1	30
Figure 3.9 Modal test set up	31
Figure 3.10 Piezoelectric accelerometer	31
Figure 3.11 Impact hammer	32
Figure 3.12 Multi-channel signal conditioner	32
Figure 4.1 The geometrics properties of SOLID45	39
Figure 4.2 A typical FE model of a LVL timber beam	39
Figure 4.3 First three flexural mode shapes for the FE beam model	40
Figure 4.4 Different mesh models of the timber beam	41
Figure 4. 5 The mode shapes of intact FE beam with different mesh densities	43
Figure 4.6 Numerical static test results comparison for different mesh size	43
Figure 4.7 Configuration of a typical damage case	44
Figure 4.8 The geometrics properties of SHELL63	45
Figure 4.9 Load-Deflection comparison between numerical and experimental results	s46
Figure 4.10 Over-cut damaged	47
Figure 4.11 Load-deflection curve comparison	48
Figure 5.1 The applied impact loading in the transient dynamic analysis	. 53 viii

Figure 5.2 Single Notch Damage Located at Mid-span	55
Figure 5.3 Single severe damage at quarter-span	55
Figure 5.4 Multi damage cases located at mid-span and quarter-span	57
Figure 5.5 Damage estimation index for single damage at mid-span	59
Figure 5.6 Comparison of actual and estimated severity of damage	60
Figure 5.7 Comparison of actual and calibrated severity of damage	61
Figure 5.8 Results of single severe damage at mid span before and after repairing	64
Figure 5.9 Results of single severe damage at quarter span before and after repairing	64
Figure 5.10 Results of double severe damage before and after repairing	64
Figure 5.11 Load deflection curve for beam D1	65
Figure 5.12 Single notch damage located at mid-span	68
Figure 5.13 Single severe damage located at quarter span	68
Figure 5.14 Double damage cases located at mid-span and quarter-span	70
Figure 5.15 Damage estimation index for single damage at mid-span	73
Figure 5.16 Comparison between actual and estimated results	74
Figure 5.17 Comparison between actual and calibrated results	75
Figure 5.18 Results of single severe damage at mid span before and after repairing	76
Figure 5.19 Results of single severe damage at quarter span before and after repairing	g76
Figure 5.20 Results of double severe damage before and after repairing	76
Figure 5.21 Load deflection curve for single damage located at mid-span	77
Figure 5.22 Comparison between numerical and experimental results for 4L	79
Figure 5.23 Comparison between numerical and experimental results for 2M4S	80
Figure 5.24 Comparison of severity estimation between numerical and experime	ntal
results	81
Figure 5.25 Comparison of estimated severity between numerical and experimental	data
	82
Figure 5.26 Comparison of calibrated severity between numerical and experimental	data
	84
Figure 5.27 Comparison of repaired severity estimator between numerical	and
experimental results	85

LIST OF TABLES

Table 3.1 The size of different damage scenarios	26
Table 3.2 Comparison of natural frequencies of Beam 3	34
Table 3.3 Comparison of percentage of drop in natural frequencies of Beam 3	34
Table 3.4 Comparison of natural frequencies of Beam 2	35
Table 3.5 Comparison of percentage of drop in natural frequencies of Beam 2	35
Table 3.6 Comparison of natural frequencies of Beam 1	35
Table 3.7 Comparison of percentage of drop in natural frequencies of Beam 1	36
Table 3.8 Comparison of natural frequencies of Beam 4	36
Table 3.9 Comparison of percentage of drop in natural frequencies of Beam 4	36
Table 4. 1 Comparison of natural frequencies of the LVL beam	49
Table 5.1 Estimation of severity of damage	58
Table 5.2 Calculation of calibration factor	60
Table 5.3 Results of calibrated severity of damage	61
Table 5.4 Comparison of effectiveness estimator for single damage at mid-span	66
Table 5.5 Comparison of effectiveness estimator for single damage at quarter-span	66
Table 5.6 Comparison of effectiveness estimator for double damage case	66
Table 5.7 Estimation of severity of single damage case	73
Table 5.8 Calculation of calibration factor	74
Table 5.9 Results of calibrated severity of damage	75
Table 5.10 Comparison of effectiveness estimator for single damage at mid-span	77
Table 5.11 Comparison of effectiveness estimator for single damage at quarter-span	n78
Table 5.12 Comparison of effectiveness estimator for double damage case	78
Table 5. 13 Comparison of estimated severity between numerical and experimenta	l data
	82
Table 5.14 Comparison of calibration factor	82
Table 5. 15 Comparison of calibrated severity between numerical and experimenta	l data
	83
Table 5.16 Comparison of effectiveness estimator between numerical and experim	ıental
results	84

LIST OF NOTATIONS

Δ	change in the flexibility
$arphi_i$	eigenvector of mode I of undamaged model
$arphi_j$	eigenvector of mode I of damaged model
Ø	mode shape vector
$ ot\!\!{}^{o}$	mode shape of mode <i>i</i>
${\it O}_{ij}$	mode shape vector of the i^{th} mode and j^{th} element of undamaged beam
${{{ { $	mode shape vector of the i^{th} mode and j^{th} element of damaged beam
δ	deflection of the LVL beam
β	damage indicator
β_j	damage indicator of <i>j</i> th member
α	severity estimator
α_j	severity estimator of <i>j</i> th member
α_{cj}	calibrated severity estimator of <i>j</i> th member
η	calibration factor
$\Delta lpha_d$	indicator of effectiveness of the repair calculated from dynamic test results
$\Delta lpha_s$	indicator of effectiveness of the repair calculated from static test results
α_s	severity estimation of damage
$\alpha_{\rm r}$	severity estimation of the repair
3-D	three-dimensional
9-nodes	9 measuring points taken from the VEMA
CFRP	carbon fibre reinforced polymer
COMAC	coordinate modal assurance criterion
DD	damage detection
Denom	denominator
DOF	degree of freedom
Ε	modulus of elasticity
E_j	j th equivalent elemental modulus of elasticity of undamaged beam
E_j^*	j th equivalent elemental modulus of elasticity of damaged beam
EI	flexural stiffness
EMA	experimental modal analysis
F	system force vector
FE	finite element
FEA	finite element analysis
FEM	finite element model

FFT	fast Fourier transform
FRF	frequency response function
Ι	moment of inertia
Κ	system stiffness matrix
L	light damage
LVDT	linear variable differential transformer
LVL	laminated veneer lumber
М	medium damage
MAC	modal assurance criterion
MSE	modal strain energy
NFerror	natural frequency difference between FE and experimental models
Num	numerator
VEMA	Virtual Experimental Modal Analysis
Ζ	system displacement vector
Z_j	damage location index