

University of Technology Sydney Faculty of Engineering and Information Technology School of Civil and Environmental Engineering

Investigation of Composite Façade Mullions

By

Sihao (Susan) Huang

BEngSc, Tonji University, China, 1991

MEngSc, University of New South Wales, Australia, 1997

MIEAust, CPEng, Chartered Professional Engineer, The institute of Engineers Australia

NPER, National Professional Engineers Register

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

May 2014

CERTIFICATE OF AUTHORSHIP/ORGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Sihao (Susan) Huang

May 2014

Acknowledgement

I would like to take this opportunity to express my sincere gratitude to my principal supervisor, Professor Bijan Samali, for his encouragement, support, understanding and immense knowledge. Professor Samali brought me into the research world and patiently guided me through my PhD study and helped me with the thesis writing. I could not have imagined to have finished my research without his help.

I would like to also show my greatest appreciation to my co-supervisor, Associate professor Jianchun Li for his tremendous support, guidance, enthusiasm and patience which helped me through the most challenging period of my research. It was a great pleasure to be able to have routine technical discussions with him. His expertise helped me to achieve a higher research standard.

My sincere thanks also go to my sponsor, Permasteelisa Group and its Sydney Research Director, Dr Marc Zobec, who provided me funding and direction for this research project. It was a big motivation to me knowing that my research was recognized and needed by the industry.

At last, I would like to thank my family: my husband Xiaodong Wang and son Douglas Wang as well as my parents for their continuous support, patience and understanding through my study.

Table of Contents

CERTIFICATE OF AUTHORSHIP/ORGINALITY	I
Acknowledgement	II
List of Figures	VII
List of Tables	XIII
List of Notations	XIV
Abstract	XVII
1. Introduction	2
1.1 Scope and limitations	6
1.2 Thesis layout	7
2. Literature review	10
2.1 Introduction	10
2.2 Past studies on composite façade mullion	
2.3 Study of material properties of aluminium and polyamide	
2.4 Studies involving Interfacial modelling	
2.5 Sandwich theory	
2.6 Sandwich beam under bending	
2.7 Summary and conclusions	
3. Experimental investigation of a typical thermal break façade mullion section	1 34
3.1 Introduction	
3.2 Typical Section of thermal break façade mullion under investigation	
3.3 Quasi-static shear and transverse tensile tests at various temperatures	
3.3.1 Shear tests	
3.3.1.1 Test setup	37
3.3.1.2 Failure modes and typical results	41
3.3.2 Transverse tensile tests	
3.3.2.1 Test setup	45 III

	3	.3.2.2	2 Failure modes and typical results	
	3.4	Hig	h strain rate shear and transverse tensile tests at room temperature	
	3.4	.1	Shear tests	53
	3.4	.2	Section transverse tensile tests under high strain rate loadings	55
	3.4	.3	Test results and discussion	57
	3.5	Fou	ar-point bending beam tests at room temperature under quasi-static le	oadings
				61
	3.5	.1	Test setup	61
	3.5	.2	Failure mechanism and typical results	64
	3.6	Sur	nmary and conclusions	69
4	. Nu	meri	cal investigation of the typical thermal break façade section	72
	4.1	Intr	oduction	72
	4.2	Ma	terial modelling	73
	4.2	.1	Aluminium material modelling	73
	4.2	.2	Polyamide material property	79
	4.3	Inv	estigation of the influence of element types	82
	4.4	Inte	eraction between aluminium profile and polyamide insert	
	4.5	Nui	merical investigation of the section shear capacity	100
	4.5	.1	Model setup	100
	4.5	.2	Typical results	107
	4.6	Nui	merical investigation of section transverse tensile capacity	112
	4.6	.1	Model setup	112
	4.6	.2	Typical results	119
	4.7	Nui	merical investigation of façade beam in four point bending	124
	4.7	.1	FE Model setup - model geometry, boundary conditions an	d mesh
			assignment	124
	4.7	.2	Proposed partitioned multi-phase beam failure model	130
	4.7	.3	Typical results	135
				IV

2	4.8	Sur	nmary and conclusions	140
5.	Со	mpai	rison of experimental and numerical investigations	144
4	5.1	Intr	oduction	144
4	5.2	Coi	nparison of shear test results and FE modelling	145
4	5.3	Coi	mparison of tensile test results and FE modelling	148
4	5.4	Coi	mparison of beam test results and FE modelling	157
	5.4	.1	Comparison of deformed shapes	157
	5.4	.2	Comparison of load vs mid-span displacement	159
	5.4	.3	Comparison of strain distribution diagrams	162
	5.4	.4	Comparison of moment-curvature relationship	166
4	5.5	Sur	nmary and conclusion	174
6.	Nu	meri	cal investigation of other profiles with similar connection details	178
e	5.1	Intr	roduction	178
(5.2	Nu	merical investigation of the section shear capacity	179
	6.2	.1	Section geometry	179
	6.2	.2	Model setup	180
	6.2	.3	Typical results	186
e	5.3	Nu	merical investigation of the section transverse tensile capacity	190
	6.3	.1	Model setup	190
	6.3	.2	Typical results	195
e	6.4	Nu	merical investigation of four-point beam bending	200
	6.4	.1	Model setup	200
	6.4	.2	Typical results and discussions	211
(5.5	Sur	nmary and conclusions	215
7.	Pro	opose	ed frame work for analytical solution based on sandwich theory	218
-	7.1	Intr	roduction	218
-	7.2	Ana	alytical formulations	221

7.2.	1 Superposition approach	
7.2.	2 Basic assumptions	
7.2.	3 Sub-structure I	
7.2.	4 Sub-structure II	
7.2.	5 Overall structure behaviour	
7.3	Equivalent section	
7.4	Summary and conclusions	
8. Sun	mary, conclusions and recommended future works	
8.1	Summary and conclusions	
8.2	Recommended future works	
Appendix	x – Polyamide Material Properties in transverse direction	
Bibliogra	phy:	

List of Figures

Figure 1.1	Images of modern curtain walls	3
Figure 3.1	Section details	36
Figure 3.2	Shear test setup sketch and photo at room temperature	38
Figure 3.3	Test setup inside temperature chamber	40
Figure 3.4	High/Low temperature test setup	40
Figure 3.5	Shear test failure mode – Polyamide slipped away	41
Figure 3.6	Shear strength vs test temperatures	43
Figure 3.7	Characteristic shear strength vs temperature	43
Figure 3.8	Elasticity constant vs temperature	44
Figure 3.9	Load-slip relationship at room temperature	45
Figure 3.10	Tension test setup sketch and photo at room temperature	46
Figure 3.11	Tension test setup full view	47
Figure 3.12	Test setup inside temperature chamber	48
Figure 3.13	Tensile test failure modes	49
Figure 3.14	Tensile strength vs test temperatures	51
Figure 3.15	Characteristic tensile strength vs temperature	51
Figure 3.16	Test set-out on Schenck testing machine	54
Figure 3.17	Failure mode – Polyamide slippage	55
Figure 3.18	High strain rate tensile test setup on shake table	56
Figure 3.19	Tensile failure modes	57
Figure 3.20	Shear strength vs strain rates	58
Figure 3.21	Elasticity constant vs strain rates	58
Figure 3.22	Tensile strength vs strain rates	59
Figure 3.23	Test setup diagram	62
Figure 3.24	Full view of test setup	63
Figure 3.25	Strain gauge layout	64
Figure 3.26	Typical deformation of test specimen	65
Figure 3.27	Strain distribution diagrams along cross-section at dip load	66
Figure 3.28	Failure mechanism	67
Figure 3.29	Illustration of failure mechanism of this façade beam	68
Figure 3.30	Typical load vs mid-span displacement for beam types	69
Figure 4.1	Stress-strain diagram of Ramberg-Osgood model in general form	74

Figure 4.2	Stress-strain relationship of aluminium alloy 6063T676
Figure 4.3	True stress – true strain relationship of aluminium alloy 6063T679
Figure 4.4	Stress-Strain relationship of PA66 in longitudinal direction80
Figure 4.5	Stress-Strain relationship of PA66 in transverse direction81
Figure 4.6	True stress - true strain relationship of PA66 in longitudinal direction81
Figure 4.7	True stress - true strain relationship of PA66 in transverse direction82
Figure 4.8	Trial model geometrical details
Figure 4.9	Boundary condition and theoretical reaction force diagram
Figure 4.10	Enlarged contact surface detail91
Figure 4.11	Proposed model of progressive failure mechanism at aluminium and
	polyamide contact surfaces
Figure 4.12	Frictional behaviour between two contact bodies
Figure 4.13	Section geometry details100
Figure 4.14	Partition assignment
Figure 4.15	Master-slave assignment
Figure 4.16	FE model details and comparison with test setup104
Figure 4.17	Mesh assignment of part 1 (AL1) from different view angles105
Figure 4.18	Mesh assignment of part 2 (AL2) from different view angles 105
Figure 4.19	Mesh assignment of part 3 (PA) from different view angles106
Figure 4.20	Mesh assignment of the assembled whole section
Figure 4.21	Deformed shape107
Figure 4.22	Load vs slippage of connection from FE model110
Figure 4.23	Comparison of Stresses at along and cross direction at maximum loading
Figure 4.24	Partition assignments of AL2 in front and side views
Figure 4.25	Interaction assignment
Figure 4.26	FE model setup details and comparison with test setup116
Figure 4.27	Mesh assignment of part 1 (AL1) from different view angles117
Figure 4.28	Mesh assignment of part 2 (AL2) from different view angles117
Figure 4.29	Mesh assignment of part 3 (PA) from different view angles118
Figure 4.30	Mesh assignment of the assembled whole section
Figure 4.31	Deformed shape
Figure 4.32	Load vs displacement from FE model120

Figure 4.33	Normal stress plot along Y-axis	121
Figure 4.34	Normal stress plot along X and Z axis	122
Figure 4.35	Details of simplified section	125
Figure 4.36	Model setup diagram	127
Figure 4.37	Symmetrical boundary assignments	127
Figure 4.38	Mesh assignment of part 1 (AL1) from different view angles	128
Figure 4.39	Mesh assignment of part 2 (AL2) from different view angles	128
Figure 4.40	Mesh assignment of part 3 (PA) from different view angles	129
Figure 4.41	Mesh assignment of assembled whole section	129
Figure 4.42	Partition assignment of top aluminium part (AL1) and polyamide	e (PA)
		130
Figure 4.43	Partition assignment of bottom aluminium part (AL2)	130
Figure 4.44	Proposed progressive beam failure model	132
Figure 4.45	Interaction assignment	133
Figure 4.46	Deformed shape and displacement contour along 2-axis (vertical
	displacement)	135
Figure 4.47	Displacement contour along 3-axis (horizontal displacement)	135
Figure 4.48	Load vs mid-span displacement for all models	136
Figure 4.49	Shear stress contour from model D	139
Figure 4.50	Bending stress contour from model D	139
Figure 5.1	Comparison of deformed shapes	145
Figure 5.2	Random slippage at connections	146
Figure 5.3	Relationship of load – slippage of connection comparison	147
Figure 5.4	Comparison of deformed shape	149
Figure 5.5	Load-displacement relationships from test data	150
Figure 5.6	Revised load-displacement relationships from test data	151
Figure 5.7	Load-displacement relationships - comparison of test and FE mode	el 152
Figure 5.8	Comparison of load-displacement relationship under different be	oundary
	conditions	154
Figure 5.9	Load-displacement relationships - comparison of test and modi	fied FE
	model	156
Figure 5.10	Comparison of bending deformation	157
Figure 5.11	Comparison of connection failure	158

Figure 5.12	Load vs mid-span displacement graph – Type B beam159
Figure 5.13	Load vs mid-span displacement graph – Type C beam160
Figure 5.14	Load vs mid-span displacement graph – Type D beam 160
Figure 5.15	Load vs mid-span displacement graph – Type E beam161
Figure 5.16	Mid-span strain distribution diagrams at critical loading stages - Type B
	beam
Figure 5.17	Mid-span strain distribution diagrams at critical loading stages - Type C
	beam
Figure 5.18	Mid-span strain distribution diagrams at critical loading stages - Type D
	beam
Figure 5.19	Mid-span strain distribution diagrams at critical loading stages - Type E
	beam
Figure 5.20	Illustration of a bent segment167
Figure 5.21	Load vs bottom curvature at mid-span location – Type B beam 169
Figure 5.22	Load vs bottom curvature at mid-span location – Type C beam 170
Figure 5.23	Load vs bottom curvature at mid-span location – Type D beam 170
Figure 5.24	Load vs bottom curvature at mid-span location – Type E beam 171
Figure 5.25	Strain distribution diagrams in the location of combined bending and
	shear forces – all beam types
Figure 5.26	Comparison of typical strain distribution diagrams at dip load between
	regions under pure bending and under combined bending and shear
	forces
Figure 6.1	Geometry of the asymmetrical mullion section under study
Figure 6.2	Partition assignment
Figure 6.3	Master-slave assignment
Figure 6.4	Boundary conditions and applied displacement
Figure 6.5	Mesh assignment of part AL1 from different view angles
Figure 6.6	Mesh assignment of part AL2 from different view angles
Figure 6.7	Mesh assignment of polyamide part PA from different view angles 185
Figure 6.8	Mesh assignment of the assembled whole section
Figure 6.9	Deformed shape
Figure 6.10	Load vs slippage of connection
Figure 6.11	Partition assignment of internal and external aluminium parts

Figure 6.12	Interaction assignment	192
Figure 6.13	Displacement and boundary conditions	192
Figure 6.14	Mesh assignment of the internal aluminium part from differe	nt view
	angles	193
Figure 6.15	Mesh assignment of polyamide part from different view angles	193
Figure 6.16	Mesh assignment of the external aluminium part from differe	nt view
	angles	194
Figure 6.17	Mesh assignment of the assembled whole section	194
Figure 6.18	Deformed shape from different view angles	195
Figure 6.19	Enlarged details of failure mode	196
Figure 6.20	Load vs displacement diagram	197
Figure 6.21	Details of simplified section	201
Figure 6.22	Model setup diagram	202
Figure 6.23	Assignment of lateral support	203
Figure 6.24	Mesh assignment of internal aluminium part	204
Figure 6.25	Mesh assignment of polyamide part	205
Figure 6.26	Mesh assignment of external aluminium part	205
Figure 6.27	Mesh assignment of the whole section	205
Figure 6.28	Interaction assignment	207
Figure 6.29	Load vs mid-span displacement – Trial 1	208
Figure 6.30	Load vs mid-span displacement – comparison of trial models	209
Figure 6.31	Deformed shape and displacement contour along 2-axis	(vertical
	displacement)	211
Figure 6.32	Displacement contour along 3-axis (horizontal displacement)	211
Figure 6.33	Strain distribution diagrams at mid-span location	213
Figure 6.34	Load vs curvatures at various locations of the mid-span cross-see	ction
		214
Figure 7.1	Illustration of superposition loadings	221
Figure 7.2	Geometry and free body diagram of overall sub-structure I	223
Figure 7.3	Loads and internal forces on skins and core of sub-structure I	224
Figure 7.4	Deformation diagram of sub-structure I	226
Figure 7.5	Loading diagram of four-point bending	233
Figure 7.6	Shear force diagram	233

Figure 7.7	Bending moment diagram	. 233
Figure 7.8	Peeling stress in the core	. 239
Figure 7.9	Free body diagram of overall sub-structure II	. 241
Figure 7.10	Loads and internal forces on skins and core of sub-structure II	. 242
Figure 7.11	Deformation diagram of sub-structure II	. 243
Figure 7.12	Geometry of the typical thermal break façade section	. 251
Figure 7.13	Geometry of equivalent solid section	. 252

List of Tables

Table 3.1	Beam specimen types and quantity
Table 4.1	Stress and strain conversion
Table 4.2	Comparison of deformed shapes
Table 4.3	Comparison of bending stresses
Table 4.4	Frictional coefficient assignment for the proposed progressive failure
	model
Table 4.5	Contact shear stresses at top connection 108
Table 4.6	Contact shear stresses at bottom connection 109
Table 4.7	FE model type and span details 127
Table 4.8	Detailed dimension of partition
Table 4.9	Assignment of displacement and friction co-efficient
Table 4.10	Contact stress along Z-axis at top connection
Table 4.11	Contact stress along Z-axis at bottom connection
Table 5.1	Boundary conditions
Table 6.1	Contact shear stresses at the connection between internal aluminium part
	and polyamide
Table 6.2	Contact stresses at the connection between external aluminium part and
	polyamide188
Table 6.3	Contact stresses at connection between internal aluminium part and
	polyamide198
Table 6.4	Contact stresses at connection between external aluminium part and
	polyamide199
Table 6.5	Assignment of displacement and friction co-efficient

List of Notations

A _c	Total areas of polyamide inserts
A_t and A_b	Area of top and bottom skins, respectively
b	The width of beam
С	Elasticity constant (N/mm ²) – Chapter 3
С	Height of core – Chapter 7
c ₀	Elasticity constant under quasi-static loading
c_t and c_b d_t and d_b	Distance from neutral axis to the centroidal axis of top and Height of top and bottom skin
D_1 to D_4 E	Integration constants which will be determined by Young's modulus of the material
E _c	Young's modulus of core material
EI	Flexural stiffness of the beam
f _e	Conventional elastic limit
F_k	Force needed to maintain relative motion between two bodies
F _{max}	Maximum shear/tensile load (N)
F_s	Force just sufficient to prevent the relative motion
G _c	Shear modulus of the core.
I_t and I_b	Second moment of inertia of top and bottom skin
l	Length of the test specimen (mm)
М	Applied bending moment
M_T^I	Total bending moment existing at the section
M_{xx}^i	Bending moments at top and bottom skins $(i = t, b)$
N.A	Neutral axis of the section
N_T^I	Axial force existing at the section
N_{xx}^{i}	Axial forces at top and bottom skins $(i = t, b)$

п	Exponent characterizing the degree of hardening of the curve
Р	Force normal to the interface between the two sliding bodies
P^{II}	Concentrated load P applied on sub-structure II
P_t^I and P_b^I	Concentrated load P applied on sub-structure I at top and bottom skin
P_t^T and P_b^T skin	Concentrated load P applied on the whole structure at top and bottom
p^{II}	Vertical peeling stress at the interface between core and skins
p_t^I and p_b^I Q	Vertical normal stress at top and bottom contact layers, respectively. Tensile strength (N/mm)
Q_T^I	Total shear force existing at the section
Q _{mean}	Mean value of the measured values of transverse tensile strength at the test temperature
Q_{xx}^i	Shear forces at top and bottom skins $(i = t, b)$
q^{II}	UDL applied on sub-structure II
q_t^I and q_b^I	UDL applied on sub-structure I at top and bottom skin
q_t^T and q_b^T	UDL applied on the whole structure at top and bottom skin
Т	Shear strength (N/mm)
T _{mean}	Mean value of the measured values of shear strength at the test temperature
u_t^0 and u_b^0 w^I w_c^{II}	Horizontal displacement at the neutral axis of top and bottom skin, Vertical displacement of the skins and core for sub- structure I. Displacement of core of sub-structure II
x_1 and x_2 $\varepsilon_{0,e}$	Distance equal to one-third of span length and Residual strain corresponding to the stress f_e
ε^{pl}	True plastic strain
ε^t	True total strain
σ_v^c	Normal compressive stress in vertical direction in the core

ΔF	Increase of the shear load (N)
$\Delta\delta$	represents the corresponding displacement of ΔF (mm)
Ċ	Elasticity constant under a specific strain rate loading
γ	Coefficient relating to the type of profile
ρ	Radius of curvature
σ	True stress
S	Estimated standard deviation
γ	Shear strain of the core.

Abstract

Modern curtain wall systems are typically designed with extruded aluminium members. As a load bearing vertical element of the curtain wall system, mullions are also made of aluminium extrusions with glass fibre reinforced polyamide acting as a thermal break joining the external and internal extrusions together. This research is focused on the behaviour of this type of thermal break composite façade mullions under quasi-static loadings.

Literature survey was carried out. Past research works on of the thermal break façade mullions was studied, as well as the current European standard specifying the performance requirement, proof and test for the thermal break profiles. Sandwich theory was studied and laid as a foundation of this research. Literature regarding material properties of aluminium and polyamide; interfacial action between aluminium and polyamide and composite beam bending were investigated and appropriate methodologies were adopted.

To investigate the behaviour of the thermal break façade mullions, a typical mullion section was studied. This is a symmetrical composite section made of external and internal aluminium extrusions and joined by a glass fibre reinforced polyamide core. Experimental investigations were carried out to find the section shear and tensile capacity as well as the connectivity constant. The section capacity tests were performed at various temperatures under quasi-static loadings to investigate the temperature effect. Experiments under high strain rate loading have been performed at room temperature to find the relationship between section shear and tensile capacity and loading rates. As the mullions usually work as a simply supported beam under wind, temperature and earthquake loads, bending behaviour is necessary to be investigated. Experiments of four-point bending were performed on this façade section. Specimens of three for four sets of span length each were tested at room temperature under quasi-static loadings.

Numerical simulations for the section shear and tensile tests, as well as four-point bending tests were carried out. Interfacial actions between aluminium and polyamide were modelled based on Coulomb's friction theory. Two new failure models – "Proposed progressive failure model" and "Proposed partitioned multi-phase beam failure model" were developed and applied to section shear capacity model and beam bending models to simulate the interface failure. ABAQUS software was chosen to

perform the simulations. The FE modelling results were compared with the experimental results in detail.

The results of experimental investigations on section capacities at various temperatures concluded that the section shear and tensile capacity as well as connectivity constant increased with decreased temperature. Experiments under high strain rate loads showed the section shear and tensile capacity was not sensitive to strain rate. However, the connectivity constant showed a clear trend of strain rate sensitivity.

Comparisons between experimental results and the numerical results were made. Failure modes observed from the shear and tensile experiments were repeated by the FE shear and tensile models. Load vs slippage graph obtained from shear model matched the experimental one very well. The load-displacement graph generated by the FE tensile model with equivalent material properties agreed well with the experimental one.

Results obtained from the FE beam models correlated to the experimental results very well. Load vs mid-span displacement graphs produced from both experiments and the FE models showed consistent peak loading capacity. The three-stage progressive failure mode observed from the experiments was reproduced by the FE models. Mid-span strain distribution diagrams at elastic range, generated by the FE models, were compared with the experimental ones as well. It was found that the FE model results were relatively consistent with the experimental ones. However, further improvements can be made in future studies. The relationship between moment and curvature at mid-span bottom extreme fibre obtained from the FE models confirmed consistency with experimental results.

A proposed frame work for an analytical solution of four-point bending of this type of composite thermal break façade profile in the elastic range was presented in this thesis. Based on the sandwich theory and superposition approach, formulations were derived to work out deflection and stresses, including peeling stresses between aluminium skins and polyamide core. Due to limited time and scope, the analytical solution has not been verified by experimental and numerical works in this research. It is recommended that experimental and numerical investigations be carried out to verify the analytical solutions and apply them to the industry applications in future studies.

Another asymmetrical thermal break profile was also investigated numerically. Finite element models of the section shear and tensile capacity were established by ABAQUS

software. The proposed progressive failure model was successfully applied to simulate the failure mechanism in the shear model. A four-point bending beam model was built in ABAQUS software with the proposed partitioned multi-phase beam failure model, effectively simulating the interface failure mechanism. The FE models generated similar trends as the typical section models, especially shear and tensile capacity models. However, variations in the beam model were observed. Further experimental investigations are required to confirm the phenomenon revealed by the numerical investigation in future studies.

Further research on the thermal break façade mullions can be extended to further investigation of strain rate sensitivity of section shear and tensile strength by performing large quantities of experiments and numerical simulations under high strain rate loadings. Future studies to carry out experimental and numerical investigations to verify the analytical solution and extended into industrial applications are highly recommended as well. Future studies involving experimental investigation of the asymmetrical thermal break sections to confirm the behaviour shown by the FE modelling is also valuable to provide further insight.

This page is left blank intentionally