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Abstract 

The rapid development of satellite and wireless communications pose extraordinary 

demands on broadband circularly polarised (CP) antenna elements and high-

performance antenna arrays. The use of high-dielectric-constant materials as the 

substrate for the driven layer and a low-dielectric-constant material as superstrate for the 

radiating patch overcomes the conflict between circuit integration and antenna radiation. 

The aim of the research presented in this thesis is to design and develop high 

performance singly-fed microstrip patch antennas and arrays for CP applications. 

Firstly, we introduce a singly-fed cross-aperture coupled patch antenna and a stacked 

patch antenna using high and low dielectric materials known as Type-F and Type-E 

elements, respectively. As the physical structure of the Type-E element is close to the 

conventional linearly-polarised electromagnetically coupled patch (LP-EMCP) 

antennas, we have also denoted it as CP-EMCP antenna. The development of CP-

EMCP antennas addresses the drawbacks of the cross-aperture patch antenna. A 

systematic optimisation method is developed for the design of CP-EMCP elements, at 

which the mean frequencies of the bandwidths can be adjusted in order to achieve a 

wide overlaid bandwidth. Secondly, we investigate the effects of perturbation on the 
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parasitic patch, layer displacements, material tolerances and superstrate thicknesses on 

the broadband performance as well as the mutual coupling of the CP-EMCP elements. 

Both our theoretical and experimental results show that the CP-EMCP elements are 

robust in performance and have a low mutual coupling. When compared to the 

conventional stacked EMCP antennas and to the reduced surface-wave antenna, the 

mutual coupling between CP-EMCP elements is lower which allows the use of small 

element spacings to avoid grating lobes, which therefore make these elements good 

candidates for high-performance CP arrays. 

Following a parametric study on the effect of displacements between stacked patches 

and the loss consideration of the coplanar feed network printed on high dielectric 

constant substrates, the modified Type-E elements whose parasitic patch have a zero 

perturbation are developed for the design of high performance CP arrays. The low 

mutual coupling allows short feed-lines to connect with the spatially offset elements so 

as to minimise the feed loss. Consequently, it became possible to develop the novel 

sequentially rotating feed networks which incorporate the modified elements with a 

small element spacing of 2/3/..,0 for the 4- and 16-element planar antenna arrays. The 

results indicate that these arrays have high gain, low axial ratio, high antenna efficiency 

low sidelobe levels, and wide overlaid bandwidth. 
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