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Active Class Discovery and Learning for Networked Data
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Abstract

With the recent explosion of social network applications,

active learning has increasingly become an important

paradigm for classifying networked data. While existing re-

search has shown promising results by exploiting network

properties to improve the active learning performance, they

are all based on a static setting where the number and the

type of classes underlying the networked data remain sta-

ble and unchanged. For most social network applications,

the dynamic change of users and their evolving relation-

ships, along with the emergence of new social events, often

result in new classes that need to be immediately discov-

ered and labeled for classification. This paper proposes a

novel approach called ADLNET for active class discovery

and learning with networked data. Our proposed method

uses the Dirichlet process defined over class distributions to

enable active discovery of new classes, and explicitly models

label correlations in the utility function of active learning.

Experimental results on two real-world networked data sets

demonstrate that our proposed approach outperforms other

state-of-the-art methods.

Keywords: Active learning, networked data, class
discovery

1 Introduction

In most data mining problems, obtaining label infor-
mation for training classification models is usually an
expensive and time consuming process [2]. Instead of
labeling all instances, or randomly selecting instances
to label, active learning [7, 21] represents a family of
methods that selectively choose the most informative in-
stances for a labeler (or an oracle) to label. Active learn-
ing aims to significantly reduce the labeling cost, but
still maintain similar classification accuracy. It has been
extensively studied for almost two decades since [14] and
has become a popular tool to reduce labeling costs for
many real-world data mining applications.

In recent years, the widespread use of social network
systems has enabled the availability of a huge amount of
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networked data, in which the data exists in graph struc-
ture where nodes (V ) denote instances1 (such as users
or scientific publications) and edges (E) denote rela-
tionships between nodes (e.g. users in a social network
may share friendship and scientific publication may have
citation relationships). Because instances are not inde-
pendent, but are connected by links between each other
to form a network, the labels of neighboring instances
are correlated. For example, in a citation network, pa-
pers that cite each other often have similar topics. In
friendship networks, people that are friends are likely
to have similar interests. In this situation, effective ac-
tive learning algorithms should not just depend on the
properties of an instance itself, as does traditional ac-
tive learning. Instead, the network structure should be
taken into consideration to choose the best instances for
labeling. Recent research works [3, 4, 11, 15, 22] have
shown that selectively querying node labels based on
network connectivity and collective classification signif-
icantly improves the active learning performance.

Despite much progress in active learning for net-
worked data, two important issues have not been well
addressed. First, almost all the algorithms have as-
sumed that the class space, to which the instances are
classified, is known and remains stable. This often leads
to a stronger assumption that training data consists
of samples from all the classes, so the goal of the ac-
tive learning algorithm is simply to label the most in-
formative samples with respect to the known classes.
However, the networked data is complex and dynamic
in nature. Some classes may not exist in advance, or
the class might exist but samples representing the class
are simply not available at the time when data are col-
lected for training. For example, in Twitter, where users
constantly produce new tweets, abnormal events, such
as terrorist attacks, or natural disasters often appear
abruptly and attract significant attention. It is clear
that these events have not happened before, so each has
its unique class label that does not exist in the exist-
ing class space. The active learning goal is therefore not
only to label informative samples, but also to actively
discover and update the class space for the learning task,
as shown in Figure 1.

1In this paper, nodes and instances are interchangeable terms
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Second, most of the existing research has not explic-
itly modeled label correlations in the utility calculation
of active learning for querying. Previous work has pri-
marily focused on using graph-based metrics to define
the informativeness of instances [3, 6, 22], or on combin-
ing link information with node-specific features to train
a classifier [4, 11]. In the context of networked data, the
labels of linked nodes are correlated in the local neigh-
borhood, and such dependencies, if properly modeled in
the utility function of active learning, could significantly
contribute to classifying the nodes in the network.

In this work, we propose ADLNET (active discovery
and learning for network data), which incorporates net-
work structure and collective classification to enable ac-
tive discovery of new classes and learning. Specifically,
we use a Dirichlet process (DP) model defined over class
distributions to estimate the probability of an instance
belonging to known or unknown classes. The DP model
is thereafter coupled with the empirical risk minimiza-
tion (ERM) approach that minimizes the expected clas-
sification error of a collective classifier to identify nodes
in the network for labeling. We also introduce a social
regularization term to explicitly capture label correla-
tions between neighboring nodes. A new utility func-
tion, which integrates new class discovery, classification,
and social regularization, is proposed to select the most
informative nodes for active learning.

To improve computational efficiency, we also em-
ploy graph-based measures to speed up active learning
on large-scale networked data. The ERM approach em-
ployed by ADLNET, while having good performance, is
computationally expensive because it needs to examine
classification error reduction with respect to the models
trained for each unlabeled instance. This means that
ERM needs to induce a classifier for each unlabeled in-
stance and chooses the one with the minimum expected
error. Motivated by the observation that the instances
picked up by ERM are “important” nodes from network
perspectives [15], we propose to use various graph-based
measures to limit the search space for ADLNET. That
is, ADLNET employs these measures to pick up a small
subset of instances as candidates, and then uses ERM to
find the best instance to label among these candidates.
This hybrid scheme achieves a better tradeoff between
classification accuracy and computational efficiency.

2 Related work

Active learning is a machine learning strategy that
allows a prediction model to construct its training
data in interaction with an oracle. It aims to reduce
the labeling cost by choosing informative instances to
label. In this paper, we focus on pool-based active
learning. Depending on what query strategies are used,

A

B

Figure 1: An example of class discovery and active learning
for networked data. The shape of each node denotes its
class. Solid-filled nodes and empty nodes denote labeled
and unlabeled nodes, respectively. Nodes with dashed lines
belong to a new class that has not been discovered. Nodes A
and B are the most informative nodes from a class discovery
and active learning perspective, respectively.

pool-based active learning techniques can be broadly
grouped into three categories [21]. The first category
is based on uncertainty sampling, in which an active
learner selects an instance that it is most uncertain
about to label [12, 14, 24]. The second category is the
query-by-committee (QBC) approach [8, 17]. The QBC
approach maintains a committee of classifiers and the
most informative query is considered to be the one that
all classifiers most disagree about. The third family
of methods aim to query instances where the expected
classification error can be reduced as much as possible
(i.e., minimize the empirical risk) [15, 19].

Recently, graph-based active learning has been pro-
posed to address the problem of classifying networked
data [3, 4, 6, 15, 22]. Some existing research has fo-
cused on using graph-based metrics to define the infor-
mativeness of instances and then select instances with
the highest informative scores [3, 6, 22]. Other research
has considered combining link information with node-
specific features to train the classifiers, and then using
various query strategies for instance selection [4, 11].
Bilgic et al. [4] proposed ALFNET, an active learning
method for networked data. ALFNET uses clustering
techniques to form an initial labeled set. At each it-
eration, ALFNET builds three classifiers and computes
a local disagreement score for each node. These scores
are aggregated for each cluster and thereafter clusters
with the highest scores are chosen, from which a set of
instances are selected to label. Kuwadekar and Neville
[11] proposed a semi-supervised method that models a
network structure using relational dependency networks
and relies on an ensemble of models to select the best
instance to query. However, these methods are based
on a restrictive assumption that the initial training set
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contains examples from all the possible classes; thus,
there is a lack of capability to model and discover new
classes.

Early research work on new or novel class detec-
tion has been found in active learning and data stream
areas [9, 10, 13, 16]. Masud et al. [16] presented an ac-
tive learning algorithm to discover new classes in data
streams, in which a pre-specified threshold is used to dif-
ferentiate existing classes and new classes. Hospedales
et al. [9] proposed an active learning algorithm us-
ing both generative and discriminative models. This
method relies on calculating the likelihood of each in-
stance being generated by a Gaussian mixture model to
detect new classes. Similarly, the work by [10] also de-
pends on the estimated class membership probabilities
to identify new classes. None of the methods consider a
prior model for class distributions, which results in the
decision for discovering a new class to be mainly ad-hoc
and data driven. Also, the lack of ability to model net-
work structures makes these approaches inapplicable for
our classification problem on networked data.

Another line of work related to active discovery of
new classes has been developed in the area of online doc-
ument clustering with novelty detection [1, 26]. These
approaches use a non-parametric Dirichlet process prior
to model the growing number of clusters, and to handle
the generation of novel clusters. This has inspired us
to use a Dirichlet process to model online class distri-
butions in our active learning framework for new class
discovery. Different from online cluster modeling which
depends on a vague prior distribution, in our work, the
Dirichlet process prior distribution can be estimated us-
ing examples from corresponding classes. Coupled with
the empirical risk minimization approach, our proposed
algorithm, to the best of our knowledge, is the first re-
search work to address active class discovery and learn-
ing for complex networked data.

3 Problem Definition and Preliminary

This work focuses on pool-based active learning prob-
lem. The networked data is represented as a large graph
G = (V, E), where V denotes a set of nodes (vertices)
and E denotes the edges between nodes. Each node
vi ∈ V is described by a feature vector xi = ~(vi) and
a class label yi ∈ Y, where ~(v) denotes a function that
extracts a feature vector for node v and Y denotes a set
of class labels. An edge eij ∈ E , connecting nodes vi and
vj , describes relationships between vi and vj . Given the
initial class space Y and a set of labeled nodes V l ∈ G
with V l = {(vi, yi)}Ni=1 and yi ∈ Y, our active learning
problem aims to: (1) label the most informative sam-
ples to build a learner for classifying unlabeled nodes
Vu ∈ G with maximum accuracy, and (2) discover new

classes to include in the class space Y.
For each query t and its label yt provided by the

labeler, if class yt does not exist in the current class
space Y, i.e. yt ̸∈ Y , we will need to expand the class
space to include new label Y ← Y ∪ {yt}. For example,
in Figure 1, “circle” and “triangle” are two classes that
have been discovered. If an algorithm selects A as
a query node, the “diamond” will be discovered and
included in the class space.

Given the current class space and networked data
set that contains labeled and unlabeled data, collective
classification [20] is commonly used to predict the label
of nodes for networked data, by using the correlations
between neighbors as additional features. Assume Ni

denotes the labels of the neighbors of node vi, where
Ni = {yj |eij ∈ E}, collective classification uses a variety
of aggregation operators including count, model and
proportion, etc. to construct new features aggr(Ni).
It then trains a probabilistic classifier based on node
vi’s original features xi, and new features aggr(Ni),
represented by P (yi|xi, aggr(Ni)).

The iterative classification algorithm (ICA) is a
popularly used collective classification method [20],
which is based on a local vector-based classifier. For
each node vi represented by its feature vector xi, ICA
calculates the aggregation values as link features to
learn P (yi|xi, aggr(Ni)). It iteratively updates the
predictions of all nodes by using the previous predictions
for unknown labels in the neighborhood as new features
aggr(Ni), until the algorithm converges.

4 The Proposed Algorithm

Since our objective is to selectively label informa-
tive samples and actively discover and update the
class space for networked data, we use an objective
function in Eq.(4.1), which integrates three individ-
ual utility components including utilities for classifica-
tion (Uclassification), class discovery (Udiscovery), and so-
cial regularization (Usocial) in a networked environment.
Parameters α and β in Eq.(4.1) control respective con-
tributions of the three components to the overall query
selection strategy, and the question of how they would
affect the classification accuracy will be empirically in-
vestigated.

(4.1) U = Uclassification + αUdiscovery + βUsocial

Once the utility function defined in Eq.(4.1) is
suitably determined, our ADLNET algorithm will follow
a typical active learning process to query class labels
for selecting instances and expanding the class space,
if necessary. Algorithm 1 lists the pseudo-code of the
ADLNET algorithm, with detailed steps explained in
the following sub-sections.
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Algorithm 1 Active class Discovery and Learning for
Networked Data

Input: (1) Networked data: G = (V, E); (2) initial class
space: Y; and (3) label budget: budget.

Output: Labeled data G and updated class space Y.
1: Vu ← unlabeled nodes in G
2: x← feature vector of a node v
3: Train initial models and ICA classifier
4: numQueries← 0
5: while numQueries ≤ budget do
6: for each vi ∈ Vu do
7: Unewclass ← New class probability Eq.(4.3)
8: Uclassification ← Classification uncertainty Eq.(4.9)
9: Unetwork ← Social regularization Eq.(4.10)

10: end for
11: v∗ ← argmaxU(vi) defined in Eq.(4.1)
12: yv∗ ← Query class label of v∗

13: if yv∗ ̸∈ Y then
14: Y ← Y ∪ yv∗

15: end if
16: Vu ← Vu \ v∗
17: Update models and ICA classifier
18: numQueries← unmQueries+ 1
19: end while

4.1 Active Class Discovery One important objec-
tive of the ADLNET algorithm is to actively discover
and update the class space for the active learning task.
It is a non-trivial task to calculate the probability of an
instance belonging to an unknown class because noth-
ing has been observed yet for the class. To solve this
problem, we model class distributions under the Dirich-
let process assumption so as to calculate the probability
of an instance being to a new class. Dirichlet process is
a stochastic process used to handle an infinite number
of classes [18]. It has proven useful for non-parametric
Bayesian modeling on online document clustering.

In particular, we use a two-parameter Poisson-
Dirichlet Process (PDP) [5], which is an extension of
the Dirichlet Process. It is defined as

(4.2) G|G0, a, b ∼ Dirichlet(a, b,G0),

whereG0 indicates a base distribution over a probability
space. The discount parameter a, 0 ≤ a ≤ 1, and the
strength parameter b, b ≥ −α, control the amount of
variation of G from G0.

In PDP, the number of classes is assumed to be
infinite and we use its marginalized posterior – the
Chinese restaurant process – as a prior on the true class
distribution. The Chinese restaurant process can be
described using the analogy of a restaurant with an
infinite number of tables, where K tables are already
occupied and nk is the number of customers already
at the kth table. The total number of customers in

the restaurant is n =
∑K

k=1 nk. Suppose that other
customers enter the restaurant once at a time and
choose a table to sit at. The probability of choosing an
occupied table is (nk−b)/(n−1+a), and the probability
of choosing a new table is (a+ bK)/(n− 1 + a).

We assume that the class is not bounded for the
K classes observed so far. Node v (and its feature
vector x = ~(v)) may belong to an existing class
k ∈ {1, . . . ,K} or a new class K + 1. Using PDP, we
define the existing and the new class probabilities for
node v as follows.
(4.3)

ppdp(y = k|x) =

{
nk−b

(n−1+a)p(x|y = k) if k ≤ K,
a+bk

(n−1+a)p(x) if k = K + 1.

In Eq.(4.3), parameters a and b are estimated by putting
hyper priors over them to infer their values using the
sampling strategy described in [23].

To calculate conditional probability p(x|y) in
Eq.(4.3), we can employ any probabilistic models, and
in our work, we use a Gaussian mixture model

(4.4) p(x|y) =
Ty∑
t=1

wy,tg(x|µy,t,Σy,t),

where wy,t, t = 1, . . . , Ty are the mixture weights, and
g(x|µy,t,Σy,t) are the component Gaussian densities,
defined as a D-variable Gaussian function form

g(x|µy,t,Σy,t)(4.5)

=
1

(2π)
D/2|Σy,t|1/2

exp {−1

2
(x− µy,t)Σ

−1
y,t(x− µy,t)}.

The density p(x) can be estimated by using Gibbs
sampling or a Gaussian model. For simplicity, we
construct a Gaussian model from all the instances to
calculate p(x).

By substituting p(x|y) and p(x) in Eq.(4.3), we
obtain the probability of an instance belonging to an
existing class or a new class. Intuitively, a new class
is likely to emerge, if we observe that an instance has
a high probability of being generated by the new class.
Therefore, we define Udiscovery = p(ynew|x) to aim for
the discovery of new classes as early as possible.

4.2 Active Learning In order to improve classifica-
tion accuracy, ADLNET adopts an empirical risk min-
imization (ERM) strategy [19] to identify the most in-
formative node in the network to label. Given an un-
labeled node v ∈ Vu (v is denoted by its feature vector
x = ~(v)) and a predicted label y using the current ICA
classifier, ADLNET trains a new ICA classifier by in-
cluding {x, y} into the labeled nodes V l and estimates
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the new classifier’s expected classification error. The
aim is to select node v, which results in the maximum
error reduction, with the expected error of a classifier
given as follows

(4.6) Ep =

∫
x

ℓ(p(y|x), p̂(y|x))dp(x, y),

where ℓ(·) is the loss function that measures the differ-
ence between the true distribution p(y|x) and the clas-
sifier’s prediction p̂(y|x). For the loss function, we use
the log loss

(4.7) ℓ =
∑
y∈Y

pVl(y|x) log p̂Vl(y|x).

We limit the calculation of expected future error only
for labeled data, in our work, because true labels are not
known for the rest of the data. We calculate the margin
between the true label and the estimated probability for
the labeled data based on the current classifier. Thus,
we have

(4.8) Ep = − 1

|V l|
∑

v∈Vl;x=~(v)

∑
y∈Y

pVl(y|x) log p̂Vl(y|x).

Given a node v, before we make the query, the true
label of v is unknown. However, the current classifier
provides an estimate of the distribution from which
v’s true label would be chosen, and we use it in an
expectation calculation to compute the estimated error
for each possible label, y ∈ {y1, . . . , ym}. Furthermore,
we take an average weighted by the current classifier’s
posterior, ppdp(y|x), which is computed using Eq.(4.3).
Therefore, we have

Uclassification = exp{−EP }(4.9)

= exp{ 1

|V l|
∑
y∈Y

∑
v∈Vl;x=~(v)

[ppdp(y|x)ℓ(y, p̂(y|x))]}.

Based on this classification utility, from the unlabeled
set Vu we select the node that maximizes the expected
reduction in error for the labeled node set V l.

4.3 Social Regularization To capture network
structure, we also introduce a social regularization term
in the utility measure to explicitly model label correla-
tions in the local neighborhood. Intuitively, the most
valuable unlabeled node should lie in high-density re-
gions in the network and their predictions should dis-
agree the least with their local neighbors. So we aim to
select the node with low variance, and high agreement
between its neighbors. Given a node v and its neighbor
set N , we define

(4.10) Usocial =
∑
j∈N

exp(−DKL(yi||yj)),

where DKL is Kullback-Leibler divergence between the
prediction for node i and its neighbors. This utility
measures the agreement between x and its neighbors
with respect to their predictions. It implicitly indicates
that a node would be favored if its neighbors have
similar predictions.

4.4 Efficiency Improvement The ADLNET algo-
rithm finds the most informative node v∗ by iterating
over all unlabeled nodes Vu and selects the one with the
largest utility value, as shown in Algorithm 1. The em-
pirical risk minimization (ERM) strategy employed in
Section 4.2 is the most computationally expensive part
that takes O(Kn2), where n is the number of nodes
and K is the number of classes in Y. For large-scale
networked data, the algorithm, referred to as ADL-
NET(ERM), is computationally inefficient.

To improve computational efficiency, we focus on
speeding up the ERM process. Similar to [15], we
use three graph-based metrics (betweenness centrality,
closeness centrality, and clustering coefficients) [25] to
limit the search space for ERM. Specifically, between-
ness centrality measures the degree of brokerage for
each node, that is, how much information is propagated
through the node. Closeness centrality measures how
close a node is to all other nodes in the network, as
defined by the shortest path from the source node to
the destination node. Clustering coefficients measure
the ratio of the number of links between a node’s neigh-
bors to the total possible number of links between the
node’s neighbors. From a communication flow perspec-
tive, nodes having high scores for these measures are
important or central nodes in the network. We con-
sider such nodes to also be good candidates to label
for active learning. Therefore, instead of iterating over
all the unlabeled nodes Vu, ADLNET employs each of
these measures to pick up top m instances to form a
small candidate set (∆), and then uses ERM to find the
best node among all candidates in ∆ (where ∆ ∈ Vu

and |∆| ≪ |Vu|). The three graph-based metrics are
global measures of the underlying network connectivity
that can be computed once before making the query.
At each iteration of active learning, it just takes O(1)
to retrieve the topm instances with respect to each mea-
sure, because the sorted list of nodes do not change. As
a result, the computational complexity of ADLNET is
reduced to O(Kmn) where m≪ n.

5 Experiments

In order to validate the performance of our proposed
algorithm, we conducted extensive experiments on two
real-world data sets – CiteSeer and Cora [20]. In both
data sets, instances correspond to documents, which
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Data Set CiteSeer Cora

# of Instances 3312 2708
# of Classes 6 7
# of Links 4732 5429
# of Instances of largest Class 701 818
# of Instances of smallest Class 249 180

Table 1: Description of CiteSeer and Cora

are represented by a set of features vectors, and the
network structure is provided by the citations between
different documents. We ignore the documents’ self-
citations and the direction of links, thus considering two
documents as connected if either of them has cited the
other. The detailed description of the two data sets is
given in Table 1. Our proposed algorithm is referred
to as ADLNET in our experiments, which uses the
speedup strategy to implement ERM and selects the
top three instances for each metric. For comparison, we
compare ADLNET with three baseline methods:

• RAND uses the same collective classifier as the
proposed ADLNET algorithm, but randomly se-
lects instances from the unlabeled set Vu to label.

• ALFNET is a state-of-the-art method to active
learning on networked data proposed in [4]. It
uses clustering and committee ensemble to choose
instances in the network to label. To make fair
comparisons, we select only one instance, instead
of k instances at each iteration.

• ADLNET(ERM) uses the same proposed utility
measure in Eq.(4.1) to select nodes for labeling.
It differs from ADLNET in that, while computing
classification error reduction, it iterates over all the
unlabeled instances rather than using the speedup
strategy to select instances. We will particularly
compare the time efficiency of these two methods.

5.1 Experimental settings All experimental re-
sults are based on five times five-fold cross validation.
The labels of instances in the training set are unknown
until queried. The links of the training data to the test
data are removed to avoid test data being queried dur-
ing training. On both data sets, the feature vectors
(keywords) representing the documents are very sparse,
so we use principal component analysis (PCA) to trans-
form the original feature space into a lower-dimensional
space. For classification, we use logistic regression as
the learning method to train the ICA classifier and we
use the proportion, which is the proportion of each
class in the neighbors of x, as link features. The ICA

classifier is trained on the combined features, including
node features (keywords) and link features.

At the beginning of active learning, we randomly
choose nodes (less than 1% of training data) from
two majority classes to form an initial labeled set.
Therefore, the initial class space Y includes two classes,
and during the succeeding active iterations, class space
Y is continuously updated to include new classes. At
each iteration, each method selects one node to query
its class label by using different query strategies. Once
the label is obtained, the labeled set V l is updated
by including the new labeled node, with a new ICA
classifier being retrained and validated on the same test
set. When testing the algorithm, the links between the
test nodes and the rest of the data are restored. The
ICA classifiers generated using different active learning
algorithms are applied to the whole training and test
data. The classification accuracy is calculated based on
the algorithm performance on the held-out test nodes.

Our experiments compare the classification accu-
racy of different methods with respect to a fixed num-
ber of queries. Suppose that each query is subject to
the same labeling cost, the number of queries indicates
the total cost of an active learning process. A better ac-
tive learning algorithm is expected to achieve a higher
classification accuracy given a same number of queries.
In order to compare the performance of different algo-
rithms for new class discovery, we also report the num-
ber of classes found during the active learning process
for all algorithms.

5.2 Results on CiteSeer In Figure 2, we report
average classification accuracy of different algorithms
with respect to the number of queries on the CiteSeer
data set. We set the two parameters α and β in
Eq.(4.1) to 2 and 3, respectively. The results show that
ADLNET performs best, and Random is inferior to both
ADLNET and ALFNET. At the beginning of the active
learning process, ADLNET achieves a much higher
accuracy than ALFNET because it discovers new classes
earlier than ALFNET, which leads to a significant
performance gain in classification accuracy. After about
80 queries, the accuracy of the two algorithms gets very
close because the class space has been fully explored.
Overall, ADLNET can be observed to outperform all
baseline methods.

Figure 3 compares different active learning algo-
rithms in terms of their ability to discovery new classes.
We can see that, ADLNET performs most effectively to
discover new classes and it is the first to find all the
classes from all three algorithms.

We also compare the performance of two proposed
algorithms, ADLNET and ADLNET(ERM). ADL-
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Figure 2: Average classification accuracy on CiteSeer
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Figure 3: Average number of classes found on CiteSeer

NET(ERM) needs to iterate over all the unlabeled data,
while ADLNET uses three graph-based metrics to speed
up the ERM process. Figure 4(a) and Figure 4(b) com-
pare the classification accuracy and time efficiency of
the two algorithms. We observe that both methods
have comparable accuracy with ADLNET(ERM) hav-
ing a slightly higher accuracy than ADLNET. However,
using the speedup strategy, ADLNET significantly im-
proves the time efficiency of ADLNET(ERM).

Experiments were also performed to investigate how
the parameters α and β (as defined in Eq.(4.1)) would
affect classification accuracy of our ADLNET algorithm.
Figure 5(a) shows classification accuracy by varying the
values of α. We can observe that, at the beginning,
as the value of α increases, ADLNET achieves higher
accuracy. This is because using a larger value of α places
more emphasis on discovering new classes, which results
in better classification performance. Figure 5(b) shows
classification accuracy using different values of β given a
fixed value of α. As we can see, ADLNET achieves the
highest accuracy when β is set to be 3. Overall, when β
is set to be 2, 3, or 4, the accuracy of ADLNET is very
close. This indicates that, social regularization helps
to improve the classification accuracy when its value is
properly set.

5.3 Results on Cora In the second set of experi-
ments, we compared the performance of different algo-
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Figure 4: Comparison of ADLNET and ADL-
NET(ERM) on CiteSeer

rithms on the Cora data set. Figure 6 shows average
classification accuracy with respect to the number of
queries. The two parameters α and β were set to 2 and
3, respectively. We can see that ADLNET outperforms
the other two baselines, in particular at the beginning
of the query process. Again, it indicates that, ADLNET
has the advantage of discovering new classes in the early
stage of the active learning process.

Figure 7 compares the average number of classes
found by different algorithms. As we can see, ADLNET
outperforms other baselines to quickly find all the
classes, while the performance of ALFNET and RAND
are very close to each other in terms of their ability for
new class discovery.

In Figure 8(a) and Figure 8(b), we compare the
performance of ADLNET and ADLNET(ERM) on the
Cora data set. The results show that ADLNET and
ADLNET(ERM) have comparable classification accu-
racy. However, ADLNET takes eight times less pro-
cessing time than ADLNET(ERM).

In Figure 9(a) and Figure 9(b), we study the impact
of ADLNET’s two parameters α and β on the classifica-
tion accuracy. The results confirm that a larger α value
is more effective to discover new classes at the early
stage of the active learning process. Moreover, when β
is set to 3, ADLNET achieves superior accuracy by us-
ing social regularization to capture label correlations in
the network.
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Figure 5: Average accuracy for different α and β values
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Figure 6: Average classification accuracy on Cora

6 Conclusion and Future Work

This paper has proposed a new framework that com-
bines new classes discovery and active learning for net-
worked data. Our proposed ADLNET algorithm uses a
Dirichlet process prior to model class distributions for
both known and unknown classes, through which ADL-
NET has the ability to actively discover and update
the class space. To select important nodes for label-
ing, ADLNET chooses the node that minimizes the ex-
pected error of the collective classifiers trained from the
benchmark set. Label correlations are also modeled as
social regularization in the overall utility calculation for
effective active learning. Experimental results demon-
strate that, as compared to other state-of-the-art meth-
ods, the proposed ADLNET algorithm discovers new
classes more effectively and results in higher accuracy
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Figure 7: Average number of classes found on Cora
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Figure 8: Comparison of ADLNET and ADL-
NET(ERM) on Cora

for classifying networked data.
This research can be extended in several directions.

First, we will investigate how to improve the computa-
tional efficiency of the ADLNET algorithm in large-scale
network data. Second, we will explore different strate-
gies to model social regularization as a way to capture
label correlations in the networked data. Finally, we will
extend this work to stream-based data environments,
where nodes and links in the network may dynamically
change over time.
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Figure 9: Average accuracy for different α and β values
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