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Abstract -Cellular network service providers compete
with each other for the vast and dynamic market that is
characterized by the ever-changing services on offer and
technology. These services require very reliable net-
works that can meet the customer service level of agree-
ment (SLA). We are motivated by this to model the cellu-
lar network service faults and this paper reports on re-
sults of faults prediction modelling. Cellular networks
are uncertain in their behaviours and therefore we use a
Bayesian network to model them. We derive probabilis-
tic models of the cellular network system in which the
independence of relations between the variables of inter-
est are represented explicitly. We use a directed graph in
which two nodes are connected by an edge if one is a di-
rect cause of the other. We present the simulation results
of the study.

Index Terms: Fault Prediction, Bayesian network, Cellu-
lar networks, simulation, fault management and services.

1. INTRODUCTION

Networkfaults can be classified into two groups as mal-
functions and outages [1],[2]. Malfunction is said to

occur when the active network elements (NE) may be work-
ing with some errors in some sense but not well, while out-
ages occur when the active network elements are completely
knocked out and do not work at all. Malfunctions are nor-
mally characterized by performance degradation in various
performance parameters, for example, unclear reception,
increase in noise level, increase in delay, etc.

An outage may be clear such that even network users may
notice when it has occurred. Its impact on the services being
offered can be quantified in monetary terms [1]. In our pre-
vious work we related faults to services [1], [2], outlining
the vulnerable services to certain faults. This makes the cel-
lular service providers to put in place proactive fault detec-
tion [6], [7] mechanisms to avoid these effects.

In this paper, we propose a probabilistic fault prediction
modelling that can be used by cellular network service pro-
viders that could lead to prevention of the faults before they
actually occur. This will lead to reduction in revenue leak-
age as a result of faults [1]. Cellular service providers may
also enhance their chances of maintaining their customers as
a result of high quality of service provision. In the long run
the cellular service provider improves its revenue earnings
and customer base.

This paper is organized as follows. In section II, we give a
brief overview of faults prediction in cellular networks. We
present faults prediction model in cellular network service
providers in section III and faults prediction using Bayesian
Network in section IV. We simulate the cellular network

service faults and provide the simulation results in section V
and draw conclusions in the subsequent section.

II. OVERVIEW OF FAULTS PREDICTION
The rigorous process of determining what will happen

under specific conditions can be referred to as prediction. A
telecommunications fault is an abnormal operation that sig-
nificantly degrades performance of an active entity in the
network or disrupts the flow of communication. All errors
are not faults as protocols can mostly handle them. Gener-
ally faults may be indicated by an abnormally high error rate
[1], [2]. Therefore fault prediction is the process of deter-
mining which telecommunication fault will occur under cer-
tain specific conditions.

In the past few years, some amount of research progress
has been made in this area. This includes a classifier training
method for anomaly fault detection in [10], use of rein-
forcement learning for proactive network management in [9]
and fault management in communication networks in [11].
While a dynamic Bayesian belief network for intelligent
fault management systems in [3] explored ways of applying
the Bayesian Belief Network in fault prediction, the paper
falls short of explaining how services over the network are
likely to be affected with the faults. An intelligent monitor-
ing system using adaptive statistical techniques in [6] can
detect faults before they actually occur but do not relate
these faults to services. While they apply Bayesian reason-
ing techniques to perform fault localization in complex
communication systems using dynamic, ambiguous, uncer-
tain, or incorrect information about the system structure and
state [5], it fails to give a predictive formula. In this paper
we present this predictive formula for performing the pre-
ventative maintenance of the network.

In our previous publication [4], we proposed probabilistic
fault prediction in cellular networks. With the data from a
certain communications network service provider, we pre-
sent more detailed fault prediction models in relation to ser-
vices in this paper.

Faults prediction brings several advantages to cellular
service providers. These include: help in supporting project
planning and steering; helps network managers in re-routing
of network traffic in case of foreseen problems in a route;
network managers can take corrective action before the
faults occur, thereby ensuring services reliability and avail-
ability over the network; decision making; increases the
effectiveness of quality assurance; system quality increases
as more faults are found and operations cost will be mini-
mized as faults are found earlier when they are cheaper to
repair [6-8 and 12].

The purpose of faults prediction is to enable timely and
successful high-level service failures-compromises or proac-
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tive failure correction, thereby increasing the chances for
proactive error correction before failures set in. This leads to
preventative maintenance, which consists of deciding
whether or not to maintain a system according to its states,
can decrease the cost of maintenance by avoiding overstock-
ing of spare parts and over repairing.

We have used Bayesian network (also called belief net-
works) model to evaluate the probabilities associated with
the occurrence of one or more faults, based on the informa-
tion received from the system under diagnosis. This infor-
mation is constituted by the alarms generated during the
operation of the managed NE, or obtained as a result of pre-
vious correlation processes.

III. FAULTS PREDICTION MODEL
A Bayesian network is a directed acyclic graph in which

each node represents a random variable (may be discrete or
continuous) to which conditional probabilities are associ-
ated, given all the possible combinations of values of the
variables represented by the directly preceding nodes. An
edge in this graph indicates the existence of a direct causal
influence between the variables corresponding to the inter-
connected nodes. This type of network depends on probabil-
ity and causal factors, known as causal Markov condition
[20]. Bayesian networks are also called causal networks.
Figure 1 shows a Bayesian network for telecommunication
network diagnosis.

P(Po)

P(CjMux,Po)

P(fIMux,Po)
Figure 1: A Bayesian network for cellular network faults

diagnosis

A subjective probability expresses the degree of belief of
an expert related to the occurrence of a given event, based
on the information this person has available up to the mo-
ment. We evaluate the conditional probabilities from em-
pirical data obtained from a certain cellular network service
provider. The data is about the study of the behaviour shown
in the past by the system being studied.

Given a Bayesian network and a set of evidences up to
the moment it is possible to evaluate the network, that is, to

calculate the conditional probability associated with each
node. Generally speaking, this is a NP-hard problem [13-15]
but with the use of appropriate heuristics and depending on
the problem dealt with networks containing thousands of
nodes may be evaluated in an acceptable time.

The Bayesian Network provides the advantages of [6-8]:
mathematical support; robustness; facility for construction;
capacity to identify, in polynomial time, all the conditional
independence relationships, from the information propitiated
by the Bayesian network structure; capacity for non-
monotonic reasoning, through which previously obtained
conclusions may be withdrawn as a result of new informa-
tion.
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Figure 2: Example of a Bayesian network [4)

Figure 2 shows a Bayesian network of four nodes corre-
sponding to discrete variables of two or three states each.
The variables are Power (po), Multiplexer (Mux), Cell (C)
and Transmission (T) with Good, weak and blackout; Ok
and faulty; normal, uncertain and abnormal; normal, uncer-
tain and abnormal states respectively. However, power can
be considered as continuous variable as shown in Table 1.
Let the probability (P) of event X occurring be denoted by
P(X).

Therefore we compute P(Po), P(C), peT) and P(Mux)
equals to 0.36%, 0.42%, 76.57% and 22.63% respectively
[1], [2]. We derive local a posteriori probabilities [19], for
each one of them is conditioned to the occurrence of a cer-
tain pattern of values of the direct predecessors of the node.
For instance, assuming that multiplexer is ok and power is
normal.

The reasons why a cell may not discharge some of its
functionalities may include: broken cables and other net-
work elements, natural disaster and planned maintenance
[figures 1 and 2]. Nevertheless, the probability that a cell
will be in normal state given multiplexer is ok and with the
background knowledge that power is in normal state is cal-
culated using;



P(C I Mux,Po) = pcci Po) *PCMuxl CPo)
P(Muxl Po)

Where:

P(Muxl Po) == JP(Muxl C,Po) *P(C I Po)dC

P(MuxIPo) is the likelihood function.
The joint probability distribution P(xl' x2 , ••• X J for a

Bayesian network may be obtained through the product of
the local probability distributions [16] for each random
variable. For example, the Bayesian network of figure 2 in
which the joint distribution P( Po, Mux, C, T) may be
calculated as;
P(Po,Mux,C, T)

(3)
== P(Po) *P(Mux) *P(C1 Po,Mux)*P(TI Mux)
Therefore if one knows a set of evidences
e == {X m == xm , ••• , X p == x p}' constituted by allthe

known values of the random variables of a Bayesian net-
work, where {Xm, ...,Xp} C X == {X"X2, ••• ,Xn}, the

calculation ofthe probability (or 'belief) that a variable
X k Il {Xm ,.." X p} assumes the value x, is given by

I)
P(Xk == xk) * Pee I X, == xk)P(X k == X k e == -----'-----"---"------'-----'----'----"----"-'--

pee)

Let us take a Bayesian network for a set of vari-
ables X = {Xl ,... , X n} , which consists of a network struc-
ture S that encodes a set of conditional independence asser-
tions about variables in X, and a set P of local probability
distributions [16] associated with each variable. Together,
these components define the joint probability distribution for
X. The network structure S is a directed acyclic graph. The
nodes in S are in one-to-one correspondence with the vari-
ables X. We use X, to denote both the variable and its corre-
sponding node, and Pt, to denote the parents of node X, in S
as well as the variables corresponding to those parents. The
lack of possible arcs in S encodes conditional independen-
cies. In particular, given structure S, the joint probability
distribution for X may also be given by the equation below:

n

P (X ) == n P ( x i I pt i ) (5)
;;1

The distributions corresponding to the terms in the product
of Equation 5 are local probability distributions P. The pair
(S, P) encodes the joint distribution P(x). We learn the net-
works from data and therefore the probabilities will be
physical and their values my be uncertain [19].

To illustrate the above derivations, we use the Bayesian
network of figure 2. Supposing that e={T=abnormal} is the
set of all the known evidences, the belief that the power is
good is given by:

P(P G d I T b I)
P(Po = Good,T = abnormal)

o = 00 = a norma =
P(T = abnormal)

0.3815
P(Po = Good I T = abnormal) = -- = 0.9966 :::;99.66%

0.3828

(1) This example demonstrates the capacity for non-
monotonic reasoning of the Bayesian networks [8], [12] and
[17], while the only known evidence was that the transmis-
sion was abnormal, the belief that the power was good was
99.66%. As it is known that the multiplexer was faulty, we
recalculated the belief with a higher value of 99.68% being
gotten. This belief grew with the new revelation that the Cell
was found to be in normal state was made available. Our
calculation brought a higher value of 99.71%.

(2)

(4)

IV. FAULT PREDICTION USING BAYESIAN NE-
TOWORK

For each variable of a Bayesian network some states
corresponding to faults may be defined, whose probability
will be evaluated during a diagnosis session. This would be
the case, for example, of the states Po= blackout. Mux =Ok,
T=Normal and C=Uncertain in the network of Figure 2.

Any variable of a Bayesian network may also be defined
as an observation node, if its state is possible to be observed
during a diagnosis session. These variables would be capa-
ble of providing information on when a fault may occur ac-
cording to the probability observed. It must be pointed out
that a node may be an observation one at the same time as
the corresponding variable may contain fault states.

Fault prediction in a Bayesian network consists of the
evaluation of the probabilities associated with the occur-
rence of one or more faults, based on the information re-
ceived from the system under diagnosis. This information is
basically constituted by the alarms generated during the op-
eration of the managed network elements, or obtained as a
result of previous correlation processes.

A. Uncertainty causingfactors
Strictly speaking, for any type of fault prediction that is

considered, the set of alarms data to be considered will al-
ways be subject to errors and omissions. Such errors and
omissions may be generated both in the network element
responsible for the original fault as in elements situated in
other points of the managed network, they may also be
caused by communication failures or by the network man-
agement system itself. Besides that, the simultaneous occur-
rence of two or more faults may generate an alarm pattern
that is characteristic of a fault that has not occurred, thus
inducing the alarm correlation system to error. We may con-
clude, therefore, that uncertainty is inherent to any alarm
correlation process where we got our data.

The main uncertainty-causing factor as it is inherent to
the correlation process is due to error possibilities, which
has four main sources. These include:
I. The influence of factors not captured by the managed

system model.
2. The imprecision in the attribution of values for the

probabilities distributions
3. The imprecision in the capture and transference of the

alarms. This may be illustrated even in simple systems
such as the one of Figure 2, where errors may occur
both in the observation of the power voltage, due to the
difference in the reading of the power voltage, due to
errors in the voltmeter operation or to a defect of the
network element itself.

4. Imprecision in the information obtained as the result of
other correlation processes.



B. Markov chain method
This method was named after Andrei Markov and is a

discrete-time stochastic process with the Markov property.
In such a process, the past is irrelevant for predicting the
future given knowledge of the present. A Markov chain is a
sequence Xl' X2, X3 , ••• of random variables. The range of
these variables, i.e., the set of their possible values, is called
the state space, the value of X n being the state of the proc-
ess at time n. If the conditional probability distribution of
Xn+l on past states is a function of Xn alone, then:

Where x is some state of the process. The identity above
identifies the Markov property.

Table 1: An imagined Database for the Cellular faults
CASE Power Multiplex er Cell T ransmis sion

I 240 ~ 3000 Ok N N

2 190 - 240 &>3000 faulty U N

3 <190 Ok A A

4 <190 faulty N U

5 240 - 3000 faulty A N

6 <190 Ok U U

7 190 - 240 & >3000 Ok U A

8 190-240& >3000 faulty A N

9 240 - 3000 Ok N A

10 240 ~ 3000 faulty N U

V. FAULTS SIMULATION
In order to investigate the performance of the models

we have developed so far, we carried out extensive simula-
tion experiments under various conceivable cellular network
environments. Some of these include: different power sup-
ply behaviour, typical background traffic, and anomaly
transmission characteristics.

In this section we give an overview of fault simulation.
Categories of simulation techniques are explored in the fol-
lowing section. We give preliminary simulation results and
lastly analysis of the results.

A. Overview offault simulation
Simulation is the representation or imitation of a process

or system by another device. In a test environment, a simu-
lator can be used in place of a network element or a part of
the network to produce desired conditions. For instance,
when testing a Radio Network Controller (RNC), the test
equipment can simulate the Core Network (CN) behaviour,
keeping the RNC independent of the network. Simulators
are used to do the following:
• To get information about the dependability of a network

element (NE); normal and abnormal situations are
specified and simulated, and the NE's ability to cope

•

with the simulated environment allows the operator to
predict how well the NE will perform in the field; simu-
lations are also used for conformance testing where
standardized conditions are applied to the NE.
To substitute missing network elements or parts of a
network during the development process; simulation
creates a realistic operating environment for the item
under development.
To save development and installation costs; the strong
and weak points of an item can be discovered in the de-
velopment process, before introducing it to an operating
network.

•

B. Categories of Fault Simulation
Fault models are categorized as logical and delay. Logi-

cal fault models can be structural or functional, permanent
or intermittent, single or multiple. Delay fault models can be
transport or inertial. Transport delay fault model can be fur-
ther divided into unity delay, transition-independent delay,
ambiguous delay fault model or nominal delay fault model.

Our main focus in this work is stuck-at structural faults.
Saboteurs or mutants perform fault injection methods [21].
A saboteur is a model of a component instantiated in the
original circuit that is added to a circuit to cause a fault.
Saboteurs can be simple serial, complex serial or parallel.
Mutant of a model is a faultable model resulted from a trans-
formation of the original model. A mutant is made by add-
ing saboteurs to descriptions, replacing subcomponents,
generating wrong operators or manually modifying the
original model. The mutant method is generally more ab-
stract than the saboteur.

Fault Simulation techniques are categorized as: serial,
parallel, deductive and differential fault simulations. The use
of a particular technique depends on task and type of the
devices to be simulated. For instance, fault simulation for
combinational circuits may be done by the above techniques
or parallel-pattern single-fault propagation or critical path
tracing technique.

F;mltList Teslset Des~n mel

r-, ../ SimulatorI.•••
MOlSboss I'

Database

<; .../

Evaluation

Figure 3: Fault simulation flow diagram

A fault simulator needs in addition to the circuit model,
stimuli and expected responses (that are needed for true-
value simulation as shown in Figure 3), fault model and
fault list. The proposed fault simulation flow [figure 3] con-



sists of design model, test set and fault list all being input to
simulator. The simulation process takes place inside the
simulator with evaluation of results and data being stored in
Morsboss database. The fault simulator must classify the
given target faults as detected or undetected by the given
stimuli.

Let detected faults be D, detectable faults be Df and

faults coverage be Fe. We compute the fault coverage us-
ing:

D
Df

(7)

One of the great strengths of simulation modeling is the
ability to model and analyze the dynamical behavior of a
system. This makes simulation an ideal tool for analyzing
the telecommunication faults, which exhibit very complex
dynamical behavior.

C. Preliminary simulation results
We used Bayesian network and statistical analysis mod-

els, which bases its calculations on probability density func-
tion (PDF) algebra. The use of PDFs is more informative
and allows for flexibility than using isolated values or per-
haps their averages [10]. We sampled four variables (faults)
in our simulation experiment. Power as one of the faults in
the cellular network under study is a continuous variable.
Figure 4 shows the PDFs of power as a network fault, which
represents the distribution of voltage of power observed
during a time window. The uniform percentile partitioned
into 42 Bins is shown in Figure 5.

Figure 4: PDF of Power as Network fault

We simulated a cellular network service provider fault
conditions by injecting various volumes (i.e., voltage incase
of power) or conditions of each of the four variables into the
simulation testbed. Specifically, in the test network, a net-
work element (NE) is assumed to be faulty, either when
there is excessive power supply leading to its damage
(though most NEs have power stabilizers) or when power
supply is less then required voltage (assumed in this study to
be 240Volts). We assume [as in Figure 1] that power is the
parent node of all the variables. Therefore, incase of power

failure the other NEs are bound to malfunction or fail as
well.

As mentioned above, we carried out extensive simulation
experiments. The purpose of the experiment is to ascertain
and give some predictive expression of faults as they occur
in a cellular network service provider. The combination of
different variables for these simulation experiments is given
in Table I. The data sets collected are used to estimate fault
models and to simulate fault data for various scenarios of a
cellular network service provider.

Figure 5: PDF of power

D. Analysis of results
The actual data from a certain cellular network service

provider are used for training datasets. The results are used
as the base because they are the best that can be achieved for
the actual cellular service provider network. The generated
PDF data are used for training purposes, while the actual
data are used for testing.

The results of the experiments are shown in Figure 6,
where the x-axis is the false alarm rate and the y-axis is the
detection rate. In our experiments the false alarm rate is the
rate of the typical variable being classified as faults or
anomalies, while the detection rate, is calculated as the ratio
between the number of correctly detected faults or anoma-
lies to their total number (refer equation 7).

From the simulation experiments, we observe that there
is little difference in actual data and simulated environments
results. This gives us confidence that this model can work
under real environments and it can be used to predict net-
work faults with the confidence level of99.8%.



Figure 6: False Detection Rate

VI. CONCLUSION
Probabilistic fault prediction models were presented. The

simulation results were presented with further research to be
conducted on the accuracy of the models presented. Differ-
ent environments will be studied with services being af-
fected as well being simulated.
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