BEAMFORMING AND TIME REVERSAL IMAGING FOR NEAR-FIELD ELECTROMAGNETIC LOCALISATION USING PLANAR ANTENNA ARRAYS

MOHAMMED JAINUL ABEDIN

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

UNIVERSITY OF TECHNOLOGY, SYDNEY (UTS)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

April 2011

Certificate

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

....

Monammed Jainul Abedin

Acknowledgements

During the time I worked on this project many people provided me valuable help and guidance. First and foremost, I wish to thank my supervisor Associate Professor Ananda Mohan Sanagavarapu (a.k.a. A. S. Mohan) for giving me the opportunity, support, inspiration and guidance necessary for undertaking this research work. The topics reported in this thesis formed part of ARC grants allocated to my supervisor. I would also like to thank my co-supervisor Professor Hung Nguyen for his help and support, and for providing me with a Health Technologies Top-Up scholarship.

I would like to express my gratitude to the Australian Government for giving me, initially, an International Postgraduate Research Scholarship (IPRS) and, later an Australian Postgraduate Award (APA) along with tuition fees waiver through a Research and Training Scheme (RTS). I also wish to thank University of Technology, Sydney (UTS) and the Faculty of Engineering and IT for supporting me throughout my study including Faculty of Engineering International Student Extension Scholarship, Faculty of Engineering Health Technologies Top Up, Faculty of Engineering Top Up Scholarship, Thesis Completion Equity Grant, Vice Chancellor Conference Grant and Faculty funding for conference attendance.

My special thanks go to Dr. Tony Huang a past member of Ananda's group at UTS for many useful discussions at the initial stages of my research at UTS. I also wish to thank our group members: Fan Yang, Muhammad Yazed, Masud Rana, Delwar Hossain and other fellow students of the Centre for Health Technologies for their generous help and company. I am very grateful to Michelle Black for assisting me with English editing. I also express my appreciation to Rosa Tay and Phyllis Agius for their ongoing help with administrative support throughout my study.

I am thankful to my friends Monir, Upal and Sayem for their great support during my early days in Australia. I am very grateful to my wife Rupa and son Lahin for their hearty support and love. I am really proud of being a son of wonderful parents who gave me constant encouragement, mental support and the merit in having patience.

Abstract

The localisation of radiating sources of electromagnetic waves in the near-field of a receiver antenna array are of use in a vast range of applications, such as in microwave imaging, wireless communications, RFID, real time localisation systems and remote sensing etc. Localisation of targets embedded in a background dielectric medium, which is usually the case in Radar, UWB imaging and remote sensing, can be done using the scattered response received at the antennas. In this thesis, we investigate methods for localisation of both near-field radiating as well as scattering sources of electromagnetic waves.

For localisation of near-field radiating sources, planar antenna arrays such as concentric circular ring array (CCRA), uniform rectangular array (URA), uniform circular array (UCA) and elliptic array are employed. The thesis employs beamforming and parameter estimation methods for localisation and proposes novel algorithms that are based on standard Capon beamformer (SCB), subspace based superresolution algorithms (MUSIC and ESPRIT) and maximum likelihood (ML) methods. Complex array geometries can suffer from severe mutual coupling and are susceptible to array modelling errors. These errors impair the performance of algorithms that are used for beamforming and parameter estimation for localisation. To overcome the limitations of standard Capon beamformer (SCB), a modified capon beamforming method is proposed to make SCB robust against both array modelling error and mutual coupling effects. The proposed method is applied with planar antenna arrays for localisation of near-field sources. Planar arrays are also used with MUSIC and ESPRIT superresolution algorithms for performance investigation in a near-field source localisation. Here, to reduce the computational burden of standard MUSIC and ESPRIT algorithms, a novel method to estimate the range using the time-delay is proposed. Lastly, to overcome the performance limitations of superresolution algorithms with planar arrays, the ML estimation is investigated for the localisation of near-field sources using planar arrays. Since ML method cannot automatically detect the number of sources, a novel method is proposed here for detecting the number of sources. Finally, performance comparisons of all the methods under investigation have been presented using computer simulations.

In order to localise targets embedded either in homogeneous or in heterogeneous background medium, we employ time reversal (TR) techniques that localise based on the received scattering responses from the embedded targets. We propose a novel beamspace-TR technique that can achieve efficient focusing on targets embedded in both a homogeneous and heterogeneous dielectric background media. It is shown that prior to back propagation, applying beamspace processing to the TR operation in the receiving mode helps achieve a reduced dimensional computation and achieves selective focusing. We have also proposed beamspace-TR-MUSIC algorithm for improving the resolution of standard TR-MUSIC algorithm. Performance of these techniques is investigated for localising the target embedded in a clutter rich dielectric background where the dielectric contrast between the target and the background medium is very low. We also propose to extend the maximum likelihood based TR (TR-ML) to improve the focusing ability and to help to localise dielectric targets embedded in a highly cluttered dielectric medium. To prove the ability of the proposed algorithms, they are applied to the problem of UWB radar imaging for the detection of early stage breast cancer. Computer simulations are used for the investigation of the imaging performance of TR, beamspace-TR, TR-MUSIC, beamspace-TR-MUSIC and TR-ML methods on a two-dimensional electromagnetic heterogeneous dielectric scattering model of the breast.

Contents

Certificate	i
Acknowledgementsii	
Abstract	
List of Figures	
List of Tables	xix
List of Abbrevia	tions xx
Symbols and No	tationsxxi
Chapter 1. Int	roduction
1.1 Near-F	ield Localisation
1.2 Use of	Antenna Geometries for Localisation5
1.3 Method	ls for Localisation
1.4 Thesis	Organisation21
1.5 Contrib	outions Made in this Thesis
Chapter 2. Lo	calisation using Planar Antenna Arrays with the Capon Beamforming
Method 27	
2.1 Introdu	ction
2.2 Source	Localisation using a Beamforming Method
2.3 Planar	Antenna Arrays
2.4 Signal	Modelling
2.4.1 No	n-Coplanar Transmitter and Receiver Dipoles
2.4.2 Ve	rtically Oriented Coplanar Transmitter and Receiver Dipoles
2.4.3 Co	planar Horizontal Transmitter and Vertical Receiver Dipoles
2.5 Effects	of Wireless Channel on Localisation

2.5.	1 Path Loss due to Multipath
2.5.	2 Angular Spread 44
2.5.	3 Fading Channel
2.6	Standard Capon Beamformer: Introduction and Limitations
2.6.	1 Standard Capon Beamformer
2.6.2	2 SCB with Diagonal Loading (DL-SCB)
2.6.	3 Robust Capon Beamformer (RCB)
2.7	Modified Standard Capon Beamformer (M-SCB): Proposal 55
2.7.	1 Computation of Array Weights in M-SCB
2.7.	2 Power Estimation using M-SCB
2.7.	3 Compensation of Mutual Coupling and Array Modelling Error
2.7.	4 Effect of Steering Vector Mismatch in Beamforming with Planar Arrays 60
2.8	Beamforming using M-SCB in a Multipath Scenario 61
2.9	Simulation Results
2.9.	1 M-SCB for ULA
2.9.2	2 Performance of M-SCB for Planar Antenna Arrays
2.10	Discussion
Chapter 3	 Localisation using Planar Antenna Arrays with Superresolution Algorithms 81
3.1	Introduction
3.2	Array Manifold: Arbitrary Array 85
3.2.	1 Manifold of a Planar Arbitrary Array for 3-D Localisation
3.2.2	2 Manifold of a Planar Arbitrary Array for 2D Localisation
3.3	Localisation using Planar Antenna Arrays
3.3.	1 Beamspace Processing

Contents	S
content	3

3.3.2	Near-Field Parameter Estimation
3.4 Sub	ospace based Estimation Algorithms: MUSIC and ESPRIT
3.4.1	Signal Modelling
3.4.2	MUSIC Algorithm for Bearing Estimation
3.4.3	ESPRIT Algorithm for Bearing Angle Estimation
3.4.4	Estimation of Range using Time-Delay
3.5 Effe	ect of Mutual Coupling
3.5.1	Mutual Coupling Compensation Techniques 103
3.5.2	Computation of Compensation Matrix using Genetic Algorithm 108
3.5.3	Performance Comparison of Mutual Coupling Compensation Methods 109
3.6 Cal	ibration and Array Position Error
3.7 Sim	nulation Results
3.8 Dis	cussion
Chapter 4. Method	Localisation using Planar Antenna Arrays with Maximum Likelihood 127
4.1 Intr	oduction
4.2 Per	formance Degradation due to Preprocessing in a Superresolution Algorithm
132	
4.3 Sig	nal Modelling for Near-Field Localization
4.4 Cor	npensation of Array Mutual Coupling for ML Method
4.5 ML	Estimation of Near-Field Parameters
4.6 ML	Localization of Wideband Sources
4.6.1	CCRA for Wideband Source Localisation
4.6.2	Wideband Signal Processing for Localisation
4.6.3	Simulation Results for Wideband Source Localisation

4.7	Detection of Number of Signals	145
4.8	Estimation of Phase Reference	146
4.9	Simulation Results	147
4.10	Discussion	157
Chapter	rr 5. Localisation of Embedded Targets using Time Reversal Technique	159
5.1	Introduction	159
5.2	Time Reversal Technique	165
5.2	2.1 Decomposition of Time Reversal Operator (DORT) Method	168
5.2	2.2 TR Method in the Presence of Multiple Scattering	173
5.3	Beamspace-TR Technique	174
5.3	3.1 Beamspace Processing in TR Operation	175
5.3	3.2 Computation of Beamspace Processing Matrix	176
5.4	Time Reversal MUSIC Technique	179
5.5	Maximum Likelihood based Time Reversal Technique	181
5.6	Backscattered Signal Modelling using 2-D Dielectric Cylinder	183
5.6	6.1 Backscattered Signal Modelling for UWB Excitation	186
5.6	6.2 Effects of Frequency Domain Processing of UWB Signal for TR	189
5.7	Localisation of Lossy Dielectric Target Embedded in Heterogeneous Bac	kground
	191	
5.8	Simulation Results	195
5.8	8.1 Imaging of Point Like Targets in Homogeneous Background	196
5.8	8.2 Imaging of Cylindrical Targets Embedded in Homogeneous Medium	199
5.8	8.3 Imaging of Target Malignant Tissue in a 2-D Breast Model	206
5.9	Discussion	217

Chapter	r 6. Conclusions and Scope for Future Work	9
6.1	Contributions	219
6.2	Conclusions	228
6.3	Scope for Future Work	232
Append	lix I	4
Biblic	ography:	241

List of Figures

Figure 1.1: Passive localisation of near-field emitting source using planar arbitrary array. 2
Figure 1.2: Localisation of embedded targets using radar imaging technique2
Figure 2.1: Uniform linear array (ULA) with dipole antennas
Figure 2.2: Uniform rectangular array (URA)
Figure 2.3: Concentric circular ring array (CCRA)
Figure 2.4: Uniform elliptic array of dipoles
Figure 2.5: Non-coplanar receiver antenna array and vertical dipole source
Figure 2.6: Vertical dipole source coplanar with receiver array
Figure 2.7: Horizontal dipole source coplanar with receiver antenna array
Figure 2.8: Circular ring model for calculation of angular spread due to near-field
scattering around the emitting source
Figure 2.9: Power spectrum of beamformers for comparison of estimated DOAs
Figure 2.10: Output SINR versus SNR for ULA using M-SCB
Figure 2.11: Output SINR with respect to signal snapshots for ULA using M-SCB 65
Figure 2.12: Beampattern for ULA using M-SCB for different number of array elements.66
Figure 2.13: Comparison of beamformers output SINR with respect to input signal power
for ULA
Figure 2.14: Power spectrum for estimation of AOA of SOI after suppressing the
interferences
Figure 2.15: Beampattern in azimuth plane for elliptic array using M-SCB

Figure 2.16: Beampattern in elevation plane for elliptic array using M-SCB
Figure 2.17: Output SINR with respect to signal snapshots for an elliptic array using M-
SCB
Figure 2.18: Output SINR versus SNR for elliptic array using M-SCB70
Figure 2.19: Beampattern in azimuth plane for UCA using M-SCB70
Figure 2.20: Beampattern in elevation plane for UCA using M-SCB
Figure 2.21: Output SINR with respect to signal snapshots for UCA using M-SCB71
Figure 2.22: Output SINR versus SNR for UCA using M-SCB71
Figure 2.23: Beampattern in azimuth plane for URA using M-SCB72
Figure 2.24: Beampattern in elevation for URA using M-SCB
Figure 2.25: Output SINR with respect to signal snapshots for URA using M-SCB73
Figure 2.26: Output SINR versus SNR for URA using M-SCB73
Figure 2.27: Beampattern in azimuth plane for CCRA using M-SCB74
Figure 2.28: Beampattern in elevation plane for CCRA using M-SCB74
Figure 2.29: Output SINR with respect to signal snapshots for CCRA using M-SCB 75
Figure 2.30: Output SINR versus SNR for CCRA using M-SCB
Figure 2.31: Comparison of output SINR with respect to signal snapshots for planar arrays
using M-SCB
Figure 2.32: Comparison of output SINR versus SNR for planar arrays using M-SCB76
Figure 2.33: Comparison of the performance of beamformers for estimation of azimuth
angle using CCRA
Figure 2.34: Comparison of the performance of beamformers for estimation of range using
CCRA

Figure 2.35: Comparison of the performance of M-SCB with CCRA for estimating
azimuth angle (left) and range (right) by using data computed from the analytical
expression and full-wave simulation
Figure 3.1: Planar arbitrary antenna array
Figure 3.2: Calculation of mutual coupling effect between two dipole antennas by EMF
method
Figure 3.3: Calculated mutual impedances by EMF method 102
Figure 3.4: Magnitude of the impedance matrix elements for a UCA formed of 8-element
thin dipoles
Figure 3.5: Magnitude of the elements of impedance matrix for a planar arbitrary antenna
array formed of 8-element thin dipoles
Figure 3.6: Uniform circular array (UCA)
Figure 3.7: Magnitude of <i>m</i> -th array element characteristics of the planar arbitrary antenna
array
Figure 3.8: Magnitude of <i>m</i> -th array element characteristics of a CCRA
Figure 3.9: Magnitude of <i>m</i> -th array element characteristics of a UCA
Figure 3.10: Eigenvalues of the estimated covariance matrix
Figure 3.11: 2-D MUSIC pseudospectrum for the estimation of azimuth and elevation
angles using a planar arbitrary antenna array
Figure 3.12: Contour plot for estimating the azimuth and the elevation angles of near-field
sources
Figure 3.13: The coefficients obtained from cross-correlation among the eigenvectors of
signal subspace

Figure 3.14: Estimated azimuth angles using ESPRIT algorithm with a planar arbitrary
antenna array
Figure 3.15: Estimated elevation angles using ESPRIT with a planar arbitrary antenna
array
Figure 3.16: Histogram plot of estimated azimuth angles using ESPRIT algorithm 120
Figure 3.17: Histogram plot of estimated elevation angles using ESPRIT algorithm 120
Figure 3.18: Correlation coefficient for computing the compensation matrix by applying
GA for an arbitrary antenna array
Figure 3.19: MUSIC pseudospectrum after compensating for mutual coupling effect 121
Figure 3.20: MUSIC pseudospectrum in ideal case without mutual coupling effect 122
Figure 3.21: Performance comparison between MUSIC and ESPRIT algorithm for the
estimation of azimuth angle using planar antenna arrays
Figure 3.22: Performance comparison of the computed range using planar antenna arrays.
Figure 3.23: Performance comparison for the estimation of azimuth angle with respect to
SNR using superresolution algorithms with a CCRA
Figure 3.24: Performance comparison of computed range for different input SNR using
estimated time delay with CCRA
Figure 3.25: Performance comparison for the estimation of (i) azimuth angle using MUSIC
and ESPRIT algorithms and (ii) range using cross correlation based time-delay estimation
method
Figure 4.1: Performance comparison of ML and MUSIC method with CCRA for the
estimation of azimuth angle of wideband near-field source

Figure 4.2: Performance comparison of ML and MUSIC method with CCRA for the
estimation of elevation angle of wideband near-field source144
Figure 4.3: Performance comparison of ML and MUSIC method with CCRA for the
estimation of the range for wideband near-field source
Figure 4.4: Estimated locations of near-field sources using ML method with a CCRA 149
Figure 4.5: Estimated locations using ML method with CCRA for randomly varied source
positions
Figure 4.6: V-shaped planar array that consists two subarrays of ULA
Figure 4.7: Estimated x and y coordinates using V array (when $\gamma = 60^{\circ}$) with ML method.
Figure 4.8: Estimated x and y coordinates using V array (when $\gamma=90^{\circ}$) with ML method.
Figure 4.9: Estimated x and y coordinates using V array (when $\gamma = 120^{\circ}$) with ML method.
Figure 4.10: Detection of the number of sources using the proposed method 153
Figure 4.11: Detection of the number of sources using the MDL criteria
Figure 4.12: Estimated coordinate x_1 of first source using different antenna arrays 154
Figure 4.13: Estimated coordinate x_2 of second source using different antenna arrays 154
Figure 4.14: Estimated coordinate y_1 of first source using different antenna arrays 154
Figure 4.15: Estimated coordinate y_2 of second source using different antenna arrays 155
Figure 4.16: RMSE of estimated azimuth angle using ML method with different antenna
arrays
Figure 4.17: RMSE of estimated range using ML method with different antenna arrays. 155

Figure 4.18: Performance comparison for estimated azimuth angles using ML method with
CCRA
Figure 4.19: Performance comparison for estimated range using ML method with CCRA.
Figure 5.1: Multistatic radar imaging by using time reversal technique
Figure 5.2: UWB pulses, (a) excitation with modified modulated hermite pulse, (b)
response from background without target and (c) response from a dielectric target 188
Figure 5.3: TR image of a perfectly conducting target embedded in a homogeneous
background
Figure 5.4: Eigenvalues of a self-adjoint matrix by considering variable bandwidth of
frequency bins for frequency domain processing of UWB signal
Figure 5.5: Two-dimensional numerical breast model
Figure 5.6: Variation of conductivity (left) and permittivity (right) as a function of
frequency
Figure 5.7: Singular values of multistatic response matrix formed for two point-like targets
embedded in a homogeneous background
Figure 5.8: Focusing a time reversed wave field into a homogeneous background 197
Figure 5.9: TR-MUSIC pseudospectrum indicating predicted location of two point-like
targets in the presence of multiple scattering
Figure 5.10: Beamspace-TR image of two closely spaced point-like targets embedded in a
homogeneous background medium
Figure 5.11: Singular values of multistatic response matrix formed by using the
backscattered responses from two dielectric targets embedded in a homogeneous
background

Figure 5.12: TR image of two dielectric targets in homogeneous background 201
Figure 5.13: TR-MUSIC image of two dielectric targets embedded in homogeneous
background
Figure 5.14: TR-MUSIC pseudospectrum for localisation of dielectric targets embedded in
a homogeneous background
Figure 5.15: Beamspace-TR image of dielectric cylindrical targets embedded in a
homogeneous background medium
Figure 5.16: TR-ML image of targets embedded in the homogeneous background 204
Figure 5.17: Estimated locations of target by applying TR-ML technique with different
trials
Figure 5.18: RMSE performance of TR-ML for imaging of two targets embedded in a
homogenous background
Figure 5.19: Singular values multistatic matrix for a single target tissue embedded in N3-
type tissue heterogeneities
Figure 5.20: Singular values of multistatic matrix for a single target tissue embedded in
N2-type tissue heterogeneities
Figure 5.21: Singular values of multistatic matrix for a single target tissue embedded in
N1-type tissue heterogeneities
Figure 5.22: Beamspace-TR image of 2-D numerical breast model with N3-type tissue
heterogeneities
Figure 5.23: Conventional TR image of 2-D numerical breast model with N3-type tissue
heterogeneities
Figure 5.24: Beamspace-TR image of 2-D numerical breast model with N2-type tissue
heterogeneities

Figure 5.25: Conventional TR image of 2-D numerical breast model with N2-type tissue
heterogeneities considered
Figure 5.26: Beamspace-TR image of 2-D numerical breast model with N1-type tissue
heterogeneities
Figure 5.27: TR-MUSIC image of 2-D numerical breast model with N3-type tissue
heterogeneities
Figure 5.28: Beamspace-TR-MUSIC image of 2-D numerical breast model with N3-type
tissue heterogeneities
Figure 5.29: TR-MUSIC image of 2-D numerical breast model with N2-type tissue
heterogeneities
Figure 5.30: Beamspace-TR-MUSIC image of 2-D numerical breast model with N2-type
tissue heterogeneities
Figure 5.31: TR-MUSIC image of 2-D numerical breast model with N1-type tissue
heterogeneities
Figure 5.32: Beamspace-TR-MUSIC image of 2-D numerical breast model with N1-type
tissue heterogeneities
Figure 5.33: TR-ML image of a 2-D numerical breast model with N2 type tissue
heterogeneities
Figure 5.34: TR-ML image of 2-D numerical breast model with N1-type tissue
heterogeneities
Figure 6.1: Performance comparison of estimation methods using CCRA for azimuth angle
estimation
Figure 6.2: Performance comparison of estimation methods using CCRA for range
estimation

Figure 6.3: Performance comparison of estimation methods using URA for azimuth angle
estimation
Figure 6.4: Performance comparison of estimation methods using URA for range
estimation
Figure 6.5: Performance comparison of estimation methods using UCA for azimuth angle
estimation
Figure 6.6: Performance comparison of estimation methods using UCA for range
estimation
Figure 6.7: Performance comparison of estimation methods using uniform elliptic array for
azimuth angle estimation
Figure 6.8: Performance comparison of estimation methods using uniform elliptic array for
range estimation

List of Tables

Table 3.1: The normalised mutual impedances among the dipole elements of an arbitrary
antenna array
Table 3.2: Elements of compensation matrix $\tilde{\mathbf{C}}$ which are calculated by using correlation
of MUSIC pseudospectrums
Table 3.3: Elements of compensation matrix \tilde{C} which are calculated by using the proposed
method
Table 3.4: Estimated range using proposed method, true range and estimation error 118
Table 3.5: Values of estimated compensation matrix using the proposed method
Table 4.1: Computed compensation matrix $\hat{\mathbf{C}}$ for the effect of mutual coupling
Table 5.1: Dielectric parameters used for different breast regions in the numerical breast
model

List of Abbreviations

	Uniform linear array
ULA	Simon inca array
UCA	Uniform circular array
CCRA	Concentric circular ring array
URA	Uniform rectangular array
SCB	Standard Capon beamformer
M-SCB	Modified standard Capon beamformer
MVDR	Minimum variance distortionless response
RCB	Robust Capon beamformer
DL	Diagonal loading
SOI	Signal of interest
MUSIC	Multiple signal classification
ESPRIT	Estimation of signal parameter via rotational invariance
ML	Maximum likelihood
MDL	Minimum description length
TR	Time reversal
TR-MUSIC	Time reversal multiple signal classification
TR-ML	Maximum likelihood based Time reversal
CRLB	Cramer-Rao lower bound
EVD	Eigenvalue decomposition
SVD	Singular value decomposition
DWBA	Distorted wave Born approximation

Symbols and Notations

(.)*	Complex conjugate of a matrix
$(.)^T$	Transpose of a matrix
$(.)^H$	Conjugate transpose of a matrix
<i>Tr</i> (.)	Trace of matrix
R	The real part of matrix
5	Imaginary part of a matrix
\oplus	Direct sum
Min{}	Minimum of the argument list
Max{}	Maximum of the argument list
I _m	$(m \times m)$ identity matrix
Diag(x)	Diagonal matrix built with the component of the vector x
<i>E</i> [.]	Statistical expectation operator
• <i>F</i>	Frobenious norm
$J_n(.)$	Bessel function of the first kind of order n
$H_n(.)$	Hankel function of the first kind of order n
$J'_n(.)$	Derivative of Bessel function of the first kind of order n
$H'_n(.)$	Derivative of Hankel function of the first kind of order n
$h_n(.)$	Spherical Hankel function of the first kind of order n
Y(.)	Legendre polynomial