

University of Technology, Sydney

Faculty of Engineering and Information Technology

"A numerical investigation of air flow and temperature

distribution in a ventilated room"

A Thesis submitted for the Degree of Master of Engineering (Research)

Tatiana Kivva

March, 2011

Certificate of authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

L

STRAKT

Acknowledgment

I would like to express my gratitude to all those who gave me the opportunity to complete this thesis. I am extremely grateful to my supervisors Phuoc Huynh and Matthew Gatson. I also would like to express my deep and sincere gratitude to John Reizes whose academic experience as well patience and kindness have been invaluable to me. The completion of this thesis would not have been possible without the support of my industrial supervisor Derek Munn and my colleague Tarek Alfakhrany.

Finally, I am thankful to my family for all their support and encouragement.

Table of contents

Certificate of authorship	i
Acknowledgment	ii
Table of contents	iii
List of illustrations and tables	v
Nomenclature	xxiii
Abstract	1
Chapter 1	2
Introduction	2
Chapter 2	11
Literature review	11
Chapter 3	34
Computational methodology	34
3.1 Mathematical methods	34
3.1.1 Mass, momentum and energy conservation equations	34
3.1.2.1 Turbulence equations	36
3.1.2.2 k-ε equations and wall functions	40
3.2 Numerical methods	44
3.3 Brief description of the CFD-ACE commercial code	47
Chapter 4	49
CFD modelling	49
4.1 Geometry and flow conditions	49
4.2 Grid generation	53
4.3 Boundary conditions	58
4.4 Validation and verification	61
Chapter 5	68
Results and Discussion	68

5.1 Effect of fan flow rate	68
5.2 Effect of fan location	71
5.3 Effect of wall temperatures	75
5.4 Effect of air transportation method	76
Chapter 6	80
Conclusion and recommendations	80
Appendix	82
References	

List of illustrations and tables

Figure 1-The dependence of heat transfer mechanism for human body temperature reducti as a function of ambient temperature and required heat flux for a sitting person (Reproduce from Hebgen and Heck, 1973)	
Figure 2–Comfortable indoor temperature as a function of clothing and activity level (Reproduced from Fanger et al., 1980)	3
Figure 3-The predicted distributions between predicted mean vote (PMV) and the percentage of people unsatisfied (PPD) with indoor environmental conditions (ISO 7730 2005)	ge 5
Figure 4– The percentage of dissatisfied people as a function of temperature gradient (Awb and Hazim, 2003)	i 6
Figure 5-Design graph for a ventilated system (Source Xue and Shu, 1999)	9
Figure 6 – Pressure and velocity profiles for buoyancy driven flows through the big opening (Source: Heiselberg et al., 2003)	14
Figure 7 – Geometrical dimensions of the simulated model (Source: Favaralo and Manz, 200)5) 16
Figure 8 – Flow separation near the opening's edge (Source: Favaralo and Manz, 2005)	16
Figure 9 – The discharge coefficient as a function of the difference between outside and insi average temperatures for different position of an opening (Source: Favaralo and Manz, 200)	
Figure 10 –Constriction of airflow streamlines near the opening edge (Source: Favaralo and Manz, 2005)	18
Figure 11 – The experimental setup (Source: Tanny, Haslavsky and Teitel, 2008)	19
Figure 12 – Velocity and temperature distributions through the higher opening (Source: Tan Haslavsky and Teitel, 2008)	iny, 19
Figure 13 – The dependence of the pressure coefficient and the ratio of local velocity and reference velocity (Source : Warren and Parkins, 1985)	22
Figure 14- The value of $f(\beta)$ as a function of incidence angles and $(U_L/U_R)/\sqrt{ C_p }$	
(Source: Larsen and Heiselberg, 2008)	23
Figure 15– Geometrical characteristics of an impinging jet and enclosure (Source: Jambunathan, 1992)	25
Figure 16 -Geometrical parameters of impinging round free buoyant jets (Source: Peterson, 1994)	26

Figure 17 –Experimental data and correlation results for stability criterion (Source: Peterson 1982)	n, 27
Figure 18 – Orientation of jets (Source: Kuhn et al, 2002)	28
Figure 19 – Natural and forced heat transfer for different jet orientations	30
Figure 20 – Schematics of the tested room and convector (Source: Larsen et al, 2007)	31
Figure 21- Velocity distributions a) for ventilator speed 0.42 m/s and b) for ventilated speed 0.77 m/s (Source: Larsen et al, 2007)	32
Figure 22 –The turbulent bounder layers	43
Figure 23 – The finite volume	44
Figure 24 – The finite difference expressions	46
Figure 25 Geometry and boundary conditions	50
Figure 26 - CFD geometry for the room with a fan adjusted in the middle of the ceiling (Location 1)	51
Figure 27 - CFD geometry for the room with a fan adjusted on the ceiling near the opening (Location 2)	51
Figure 28 - CFD geometry for the room with a fan adjusted on the ceiling near the back wall (Location 3)	52
Figure 29 - CFD geometry for the room with a fan adjusted on the back wall (Location 4)	52
Figure 30–Locations of the edge elements	55
Figure 31 –Butterfly mesh distributions	56
Figure 32 Arbitrary Interface	56
Figure 33– Final mesh distributions	57
Figure 34 – Temperature contours in the middle plane for simulations with a) small values of and ϵ b) with k and ϵ equal 0 at inlet boundary condition	f k 60
Figure 35 – A plot of discharge coefficients versus dimensionless opening heights	62
Figure 36 - The temperature contours for steady state solutions performed by a) Favaralo an Manz, 2005, b) present work	nd 63
Figure 37- The temperature contours for the computation using a) Low Re Chien, 2005, b) standard k- ϵ turbulence models	66
Figure 38 - Temperature contours with air flow through the fan 0.0001 m/s	68

vi

Figure 39 - Temperature contours with air flow through the fan 1 m/s	68
Figure 40 - Temperature contours with air flow through the fan 2 m/s	69
Figure 41 - Temperature contours with air flow through the fan 2.5 m/s	69
Figure 42 - Temperature contours with air flow through the fan 3.7 m/s	69
Figure 43 - Visualization of temperature distributions for different locations of a fan	71
Figure 44- Fan locations and resulting velocity distributions in a room	72
Figure 45 - The particle trace of incoming air	73
Figure 46 -The average temperature in a room with surface temperature of the walls 303 K	73
Figure 47 - The average temperature in a room with surface temperature of the walls 305 K	74
Figure 48 - The average temperature in a room with surface temperature of the walls 307	74
Figure 49 - Visualisation of temperature contours for different temperature of the walls	76
Figure 50 - Visualisation of temperature contours for different velocities of supplied air a) 0.0001 m/s, b) 0.505 m/s, c) 1 m/s, d) 2 m/s, e)2.5 m/s f)3.7 m/s	77
Figure 51 - Temperature contours for different velocities of extracted air a) 0.0001 m/s, b) 0.505 m/s, c) 1 m/s,	78
Figure 52 -1_0.0001_303 Temperature and velocity distributions with airflows through fan c 0.0001 m/s	of 81
Figure 53 -10.505_303Temperature and velocity distributions with airflows through fan o 0.505 m/s	of 82
Figure 54 -1_1_303Temperature and velocity distributions with airflows through fan of 1 m/	/s 83
Figure 55- 1.2_303Temperature and velocity distributions with airflows through fan of 2 m/s	s84
Figure 56 - 1_2.5_303 Temperature and velocity distributions with airflows through fan of 2. m/s	.5 85
Figure 57-1_3.7_303 Temperature and velocity distributions with airflows through fan of 3. m/s	7 86
Figure 58 - 1_0.0001_305 Temperature and velocity distributions with airflows through fan o 0.0001 m/s	of 87
Figure 59 - 1_0.505_305 Temperature and velocity distributions with airflows through fan of 0.505 m/s	f 88

vii

Figure 60 - 1_1_305 Temperature and velocity distributions with airflows through fan of 1 m/s 89
Figure 61- 1_2_305 Temperature and velocity distributions with airflows through fan of 2 m/s 90
Figure 62 - 1_2.5_305 Temperature and velocity distributions with airflows through fan of 2.5 m/s 91
Figure 63 - 1_3.7_305 Temperature and velocity distributions with airflows through fan of 3.7 m/s 92
Figure 64 - 1_0.0001_307 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 93
Figure 65 -1_0.505_307 Temperature and velocity distributions with airflows through fan of 0.505 m/s 94
Figure 66 - 1_1_307 Temperature and velocity distributions with airflows through fan of 1 m/s 95
Figure 67 -1_2_307 Temperature and velocity distributions with airflows through fan of 2m/s 96
Figure 68 - 1_2.5_307 Temperature and velocity distributions with airflows through fan of 2.5m/s 97
Figure 69 - 1_3.7_307 Temperature and velocity distributions with airflows through fan of 3.7m/s 98
Figure 70 - 1_5_307 Temperature and velocity distributions with airflows through fan of 5 m/s 99
Figure 71 - 2_0.0001_303 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 100
Figure 72 - 2_0.505_303 Temperature and velocity distributions with airflows through fan of 0.505 m/s
Figure 73 - 2_1_303 Temperature and velocity distributions with airflows through fan of 1 m/s 102
Figure 74 - 2_2_303 Temperature and velocity distributions with airflows through fan of 2 m/s 103
Figure 75Figure A 2_2.5_303 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 76 - 2_3.7_303 Temperature and velocity distributions with airflows through fan of 3.7 m/s

Figure 77 - 2_0.0001_305 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 106 Figure 78 - 2_0.505_305 Temperature and velocity distributions with airflows through fan of 0.505 m/s 107 Figure 79 2_1_305 Temperature and velocity distributions with airflows through fan of 1 m/s 108 Figure 80 - 2 2 305 Temperature and velocity distributions with airflows through fan of 2 m/s 109 Figure 81 - 2_2.5_305 Temperature and velocity distributions with airflows through fan of 2.5 m/s 110 Figure 82 - 2 3.7 305 Temperature and velocity distributions with airflows through fan of 3.7 m/s 111 Figure 83 -2_5_305 Temperature and velocity distributions with airflows through fan of 5 m/s 112 Figure 84 - 2_0.0001 307 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 113 Figure 85 - 2_0.505_307 Temperature and velocity distributions with airflows through fan of 0.505 m/s 114 Figure 86 - 2 1 307 Temperature and velocity distributions with airflows through fan of 1 m/s 115 Figure 87 -2_2_307 Temperature and velocity distributions with airflows through fan of 2 m/s 116 Figure 88 - 2 2.5 307 Temperature and velocity distributions with airflows through fan of 2.5 m/s 117 Figure 89 -2 3.7 307 Temperature and velocity distributions with airflows through fan of 3.7 m/s 118 Figure 90 - 2 5 307 Temperature and velocity distributions with airflows through fan of 5 m/s 119 Figure 91 - 3_0.0001_303 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 120 Figure 92 - 3 0.505 303 Temperature and velocity distributions with airflows through fan of 0.505 m/s 121 Figure 93 - 3_1_303 Temperature and velocity distributions with airflows through fan of 1 m/s 122

Figure 94 - 3_2_303 Temperature and velocity distributions with airflows through fan of 2 n	n/s 123
Figure 95 - 3_2.5_303 Temperature and velocity distributions with airflows through fan of 2 m/s	2.5 124
Figure 96 - 3_3.7_303 Temperature and velocity distributions with airflows through fan of 3 m/s	3.7 125
Figure 97 - 3_0.0001_305 Temperature and velocity distributions with airflows through fan 0.0001 m/s	of 126
Figure 98 - 3_0.505_305 Temperature and velocity distributions with airflows through fan o 0.505 m/s	of 127
Figure 99 - 3_1_{305} Temperature and velocity distributions with airflows through fan of 1 n	n/s 128
Figure 100 - 3_2_305 Temperature and velocity distributions with airflows through fan of 2 m/s	129
Figure 101 - 3_2.5_305 Temperature and velocity distributions with airflows through fan of m/s	2.5 130
Figure 102 - 3_3.7_305 Temperature and velocity distributions with airflows through fan of m/s	3.7 131
Figure 103 -3_0.0001_307 Temperature and velocity distributions with airflows through fan 0.0001 m/s	n of 132
Figure 104 - 3_0.505_307 Temperature and velocity distributions with airflows through fan 0.505 m/s	of 133
Figure 105 - 3_1_{307} Temperature and velocity distributions with airflows through fan of 1 m/s	134
Figure 106 - 3_2_307 Temperature and velocity distributions with airflows through fan of 2 m/s	135
Figure 107 - 3_2.5_307 Temperature and velocity distributions with airflows through fan of m/s	2.5 136
Figure 108 - 3_3.7_307 Temperature and velocity distributions with airflows through fan of m/s	3.7 137
Figure 109 - 3_5_307 Temperature and velocity distributions with airflows through fan of 5 m/s	138
Figure 110 - 4extraction_0.0001_303 Temperature and velocity distributions with airflows Through fan of 0.0001 m/s	139

Figure 111 - 4extraction_0.505_303 Temperature and velocity distributions with airflows through fan of 0.505 m/s 14
Figure 112 - 4extraction_1_303 Temperature and velocity distributions with airflows through fan of 1 m/s 14
Figure 113 - 4extraction_2_303 Temperature and velocity distributions with airflows through fan of 2m/s
Figure 114 - 4extraction_2.5_303 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 115 - 4extraction_3.7_303 Temperature and velocity distributions with airflows through fan of 3.7 m/s
Figure 116 - 4extraction_0.0001_305 Temperature and velocity distributions with airflowsthrough fan of 0.0001 m/s14.
Figure 117 - 4extraction_0.505_305 Temperature and velocity distributions with airflows through fan of 0.505 m/s 14
Figure 118 - 4extraction_1_305 Temperature and velocity distributions with airflows through fan of 1 m/s
Figure 119 - 4extraction_2_305 Temperature and velocity distributions with airflows through fan of 2m/s
Figure 120 - 4extraction_2.5_305 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 121 - 4extraction_3.7_305 Temperature and velocity distributions with airflows through fan of 3.7 m/s
Figure 122 - 4extraction_0.0001_307 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 15
Figure 123 - 4extraction_0.505_307 Temperature and velocity distributions with airflows through fan of 0.505 m/s 152
Figure 124 - 4extraction_1_307 Temperature and velocity distributions with airflows through fan of 1 m/s
Figure 125 - 4extraction_2_307 Temperature and velocity distributions with airflows through fan of 2m/s
Figure 126 - 4extraction_2.5_307 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 127 - 4extraction_3.7_307 Temperature and velocity distributions with airflows through fan of 3.7 m/s

Figure 128 - 4extraction_5_307 Temperature and velocity distributions with airflows through fan of 5 m/s
Figure 129 - 4injection_0.0001_303 Temperature and velocity distributions with airflowsthrough fan of 0.0001 m/s158
Figure 130 - 4injection_0.505_303 Temperature and velocity distributions with airflows through fan of 0.505 m/s 159
Figure 131 - 4injection_1_303 Temperature and velocity distributions with airflows through fan of 1 m/s
Figure 132 - 4injection_2_303 Temperature and velocity distributions with airflows through fan of 2m/s
Figure 133 - 4injection_2.5_303 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 134 - 4injection_3.7_303 Temperature and velocity distributions with airflows through fan of 3.7 m/s
Figure 135 - 4injection_0.0001_305 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 164
Figure 136 - 4injection_0.505_305 Temperature and velocity distributions with airflows through fan of 0.505 m/s 165
Figure 137 - 4injection_1_305 Temperature and velocity distributions with airflows through fan of 1 m/s
Figure 138 - 4injection_2_305 Temperature and velocity distributions with airflows through fan of 2m/s
Figure 139 - 4injection_2.5_305 Temperature and velocity distributions with airflows through fan of 2.5 m/s
Figure 140 - 4injection_3.7_305 Temperature and velocity distributions with airflows through fan of 3.7 m/s
Figure 141 - 4injection_0.0001_307 Temperature and velocity distributions with airflows through fan of 0.0001 m/s 170
Figure 142 - 4injection_0.505_307 Temperature and velocity distributions with airflows through fan of 0.505 m/s 171
Figure 143 - 4injection_1_307 Temperature and velocity distributions with airflows through fan of 1 m/s
Figure 144 - A 4injection_2_307 Temperature and velocity distributions with airflows through fan of 2m/s

Figure 145 - 4injection_2.5_307 Temperature and velocity distributions with airflows through fan of 2.5 m/s 174

Figure 146 - 4injection_3.7_307 Temperature and velocity distributions with airflows through fan of 3.7 m/s 175

Figure 147 - 4injection_5_307 Temperature and velocity distributions with airflows through fan of 5 m/s 176

Table 1 – Properties of air	50
Table 2 – Properties of wall material	
Table 3 – The mesh parameters	
Table 4 – Boundary conditions	58
Table 5 – The temperature and air flow rate results	59
Table 6 – The description of computational models	62
Table 7 – The results obtained using different turbulent models	64
Table 8 – A grid resolution study	67

Nomenclature

- A area $[m^2]$
- Ar Archimedes number
- C coefficient
- CN contaminant concentration
- Cp specific heat capacity $[J/(kg \cdot K)]$
- d diameter [*m*]
- D draught rating [%]
- E wall roughness
- f the ratio between the covered and exposed surface of a body,
- FC clothing function,
- h heat transfer coefficient $[Wm^{-2} / °C]$
- H height [m]
- k is the von-Karman constant
- g is the gravitational acceleration [m^2/s]
- Gr Grashof number
- L length scale [m]
- *m* metabolic energy $[Wm^{-2}]$
- Nu Nusslet number
- *p* pressure [*Pa*]
- Re Reynolds number

- Ri Richardson number
- Q volumetric flow rate of air $[m^3/s]$
- $\stackrel{\rightarrow}{s}$ intermediate parametric function between the computational and physical spaces
- t time [s]
- T temperature [°C]
- u velocity component [*m/s*]
- V velocity [m/s]
- v velocity component [m/s]
- W free energy production (external work) $[Wm^{-2}]$
- w velocity component [*m/s*]
- *x* grid coordinate [*m*]
- *y* distance from the neutral plane [*m*]
- Z coordinate [m]

Greek symbols

- β incidence angle [$^{\circ}$]
- Γ_t turbulent or eddy diffusivity
- δ stretching factor

- δ_{ij} Kronecker delta
- ε turbulent energy dissipation
- λ is the conductivity air [*W/m K*]
- κ kinetic turbulent energy
- μ viscosity [Pa s]
- ρ density [kg/m3]
- σ_t Prandtl/Schmidt number
- au Taylor's jet entrainment constant
- υ is the kinematic viscosity $[m^2/s]$
- Φ dissipation function
- $\vec{\xi}$ computational domain vector

Subscripts

a	air
amb	ambient
b	bulk
bjo	free buoyant jet
cl	the absolute surface of cloths

com	combined	effect

- discharge
- e extracted
- fc forced convection
- in inside
- *i* tensor notation i = 1, 2, 3
- L local
- m mean
- " nozzle
- nc natural convection
- 0 nominal
- oc occupied
- out outside
- p pressure
- ref reference
- s supplied
- sf stratified
- turbulent
- v vertical direction
- wind

walls

- + dimensionless
- υ viscous
- fluctuations

Abstract

A numerical investigation of ventilation enhancement by a roof-mounted fan has been performed. The commercial code CFD-ACE is used for the quantitative and qualitative analysis of velocity and temperature distributions in a ventilated room.

The parametric study is based on the results of flow and thermal fields obtained from the numerical simulations of three-dimensional models to optimise the location and through flows of a roof-mounted fan to minimise the cooling time of a space once the fan is switched on. The four ventilator locations have been modelled and the environmental indoor conditions analysed for different speeds of extracted and injected air and temperature of walls. For all cases, Reynolds Average Navier-Stokes, continuity, energy and k- ϵ equations were defined for steady state and transient, incompressible, turbulent air flows. The second order upwind differential scheme was used and Boussinesq approximation was applied. The equations were solved by using a commercial code based on the finite volume method in a staggered grid system.