Investigating the Cell Division Protein FtsZ and its Regulation in *Bacillus subtilis*

Phoebe Coral Peters

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Institute for the Biotechnology of Infectious Diseases University of Technology, Sydney NSW, Australia

December 2008

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the written preparation of the thesis, and all experimental work associated with it, has been carried out solely by me, unless otherwise indicated. Finally, I certify that all information sources and literature used are acknowledged in the text.

Production Note: Signature removed prior to publication.

Phoebe Coral Peters December 2008

SHIVERSITY OF TECHNOLOG LIBRARY SYDNEY 123

Acknowledgements

These past few years have certainly been thoroughly enjoyable and stimulating and for that there are many people to acknowledge. Firstly I wish to thank a thousand times over my supervisor, Associate Professor Liz Harry. She provided me with a fabulous and fascinating project, and her guidance, support and advice were invaluable throughout, one could simply not ask for more in a supervisor. Liz always encouraged me to take opportunities and infused into me the confidence to truly develop as a scientist. I also owe her further thanks for reading and re-reading this thesis, teaching me to craft my arguments and refine my expression of the written word.

The people of the Harry lab have always provided friendship and invaluable assistance and I sincerely thank them all for creating such a wonderful and inspiring environment; Gerry Wake, Rowena Lock, Rebecca Rashid, Lyndal Thompson, Torsten Theis, Kate Michie, Marcelle Freeman, Margaret Migocki, Kylie Turner, Patricia Quach, Leigh Monahan, Adeline Koay, Ana Porta-Cubas, Jo Packer, Christopher Rodrigues, Jo Santos, and all the honours students. The wealth of knowledge and experience concentrated into one lab was awe-inspiring, and there was always someone happy to help. Just as importantly there was constantly a friendly face ready with a smile, word of encouragement, or an excuse to get a cup of tea and do the crossword. Particularly I thank Pat (the queen of formatting), Leigh (the king of editing) and Packer for being such tremendous people to both play and work with.

I am greatly indebted to Shigeki Moriya, who taught me so much about being a scientist, about life in general, and of course provided valued antibodies. I am grateful to Arne Müller (Carl Zeiss) for technical assistance with 3D deconvolution, time-lapse imaging and image analysis, and Fraser Torpy for performing statistical analyses. I thank Professor Guy Cox and Carola Thoni for their companionship in Germany and along with the Leica STED team, Ulf Schwarz, Jochen Sieber and Tanjef Szellas, for their know-how and technical expertise in microscopy. I also thank the FABLS network for funding these ventures to

Germany. For the priceless gift of strains I acknowledge Laurent Janniere, Petra Levin and Frederico Gueiros-Filho.

Just as importantly, on a personal note I would like to thank my **fiancé**, Cameron Jennings, without his smile to enliven each and every day, I simply would not have made it through. With my whole heart I thank him for being the simply wonderful person that he is, for proofreading this dissertation and for being an all round super-genius. Special thanks goes to my parents and family for their patience and unending patronage throughout my lengthy uni education, and to my friends, particularly Kate, Heather and Peta, who have provided much needed distractions and laughs.

Lastly, I would like to acknowledge the financial assistance provided by the University of Technology, Sydney in the form of an IBID Postgraduate Scholarship.

Table of Contents

Certificate of Authorship/Originality ii		ii
Acknowledgements iii		
Table of Contents		v
Table of Figuresx		<i>x</i>
Table of	f Tables	xv
Publica	tions	cvi
Abbrevi	ationsxi	viii
Abstrac	tx	xii
Chapter	· 1. Introduction	1
1.1	Preface	1
1.2 1.2.1	The model organism: <i>Bacillus subtilis</i> Sporulation and the spore outgrowth system	2
1.3 1.3.1 1.3.2	DNA replication Initiation of DNA replication DNA chain elongation	
1.4	The cell division protein, FtsZ, and the Z ring	10
1.4.1 1.4.2 1.4.3 1.4.4	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring	.11 .12 .13 .16
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA	.11 .12 .13 .16 17 .20 .21
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3 1.7	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29 31
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3 1.7 1.8	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division The cytoskeletal network Bacterial pathway coupling	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29 31 33
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3 1.7 1.8 1.9	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division The cytoskeletal network Bacterial pathway coupling Thesis aims	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29 31 33 34
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3 1.7 1.8 1.9 Chapter	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division The cytoskeletal network Bacterial pathway coupling Thesis aims 2. Material and Methods	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29 31 33 34 <i>37</i>
1.4.1 1.4.2 1.4.3 1.4.4 1.5 1.5.1 1.5.2 1.6 1.6.1 1.6.2 1.6.3 1.7 1.8 1.9 Chapter 2.1	FtsZ The Z ring Biochemistry of FtsZ and the Z ring Positioning the Z ring FtsZ accessory proteins and the divisome FtsA ZapA Regulation of cell division The Min system Nucleoid occlusion The coordination between DNA replication and cell division The cytoskeletal network Bacterial pathway coupling Thesis aims 2. Material and Methods Chemicals, reagents and solutions	.11 .12 .13 .16 17 .20 .21 22 .24 .27 .29 31 33 34 37 37

2.2.1	Testing the status of the <i>amyE</i> locus of <i>B</i> . <i>subtilis</i>	40
2.3	Preparation and transformation of competent B. subtilis cells	40
2.4	Construction of the minCD deletion strain	41
2.5	Preparation, germination and outgrowth of B. subtilis spores	41
2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5	General DNA methods Purification of chromosomal DNA from <i>B. subtilis</i> Agarose gel electrophoresis of DNA Determination of DNA concentration Polymerase chain reaction (PCR) and oligonucleotides DNA sequencing	42 42 42 43 43 43
2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.6 2.7.7	Microscopy methods Immunofluorescence microscopy (IFM) 3D deconvolution Ethanol fixation of cells and nucleoid visualisation Preparation for live cell fluorescence microscopy 7.4.1 Time-lapse of live fluorescence cells. Phase contrast and fluorescence microscopy Cell scoring and statistics Confocal microscopy	45 45 47 47 48 48 48 49 50 50
2.8 2.8.1	Antibody conjugation and STED Microscopy Fourier transform analysis	51 52
2.9 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 2.10	Western blot analysis Whole cell protein extraction for Western blotting Bradford assay for protein concentration Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins Western transfer Immunodetection Measuring DNA synthesis using tritiated thymine	52 52 53 54 54 54
2.11	Suppliers of chemicals, reagents and equipment	
Chapter Replicat	3. Investigating the Coordination of Cell Division with DNA ion	57
3.1 3.1.1 3.1.2 3.1.3	Introduction Linking cell division and DNA replication The drug 6-(p-hydroxyphenylazo)-uracil (HPUra) Chapter aims	57 57 59 61
3.2 3.2.1 3.2.2 3.2 3.2 3.2 3.2 3.2 3.2 3	 Results	62 62 64 64 66 69 70 71

3.3.1 Z rings form centrally in the presence of HPUra in a resistant strain	
3.3.2 How is Z ring assembly coordinated with DNA replication?	78
3.3.3 What role does the nucleoid play?	80
Chapter 4. Investigations into the Formation of FtsZ Helical Structur	'es
During the Cell Cycle	85
4.1 Introduction	85
4.1.1 The assembly nathway for Z ring formation	85
4.1.2 Non-ring polymers of FtsZ can form under aberrant conditions	87
4.1.3 Chapter aims	
4.2 Desults	02
4.2 Results	
4.2.1 Trisz forms a noncer structure during vegetative growth	03
4.2.1.1 Fluorescence intensity quantification of the FtsZ helix	96
4.2.1.3 FtsZ antibody binds specifically to the FtsZ protein	
4.2.2 The helical assembly of FtsZ forms prior to the Z ring.	
4.2.3 The helical structure of FtsZ in live cells	101
4.2.4 The FtsZ belical structure is highly dynamic	103
4.2.4.1 Development of time-lapse microscopy technique	
4.2.4.2 Dynamics of FtsZ within live cells	107
4.2.5 Cell cycle analysis of FtsZ localization in live cells	
4.2.5.1 Time-lapse of SU434 in vegetatively growing cells	
4.2.6 Helical dynamics of FtsZ confirmed using alternative fluorescence fusion pro	teins 117
4.2.6.1 FtsZ-GFP driven by the native promoter	
4.2.7 The cell division protein, FtsA, also forms a pre-divisional helical structure	125
4.2.8 Do the cell division proteins FtsZ and FtsA co-localize?	126
4.2.9 The cell division protein ZapA also forms short helices at midcell	130
4.2.9.1 IFM on SU557 (GFP-ZapA) confirms the absence of an extended helix	
4.3 Discussion	138
4 3 1 A new model for midcell Z ring formation	
4.3.2 FtsA may act as a tether to the membrane for both Z rings and Z helices.	141
4.3.3 What is involved in the dynamic regulation of FtsZ?	
4.3.4 FtsZ assembly and its regulation by the Min system and nucleoid occlusion	143
4.3.5 The relationship between the FtsZ helix and the rod-shaped cell	144
Supplementary DVD figure legends:	
Chapter 5. Investigations into the Regulation of the FtsZ Helix by the	Min
System	149
5.1 Introduction	149
5.1.1 Division regulation: the Min system	150
5.1.1.1 MinC, MinD and the MinCD complex	
5.1.1.2 The topological regulator, DivIVA	153
5.1.1.3 The Min system and Z ring precision	155
5.1.2 Chapter aims	156
5.2 Results	158
5.2.1 Construction of MinCD over-expression strain SU573	158
5.2.1.1 Strain construction	
5.2.1.2 Confirmation of MinCD over-expression phenotype	
5.2.2 Controlling the amount of MinCD overproduced during vegetative growth	

 5.2.2.1 Western blot detection of the MinD protein in vegetatively growing cells
expression170
5.2.5 Construction of MinCD deletion strains
5.2.6 MinCD ⁻ strains form minicells and polar Z rings
5.2.7 Immunofluorescence microscopy (IFM) of vegetative cells to examine FtsZ in the
absence of the Min system
5.2.7.1 3D deconvolution of FtsZ helical localization in the absence of the Min system 178
5.2.8 FtsZ localization using outgrown spores of SU556 (MinCD FtsZ-YFP) and SU560
(MinCD ⁻)
5.2.8.1 Examination of FtsZ localization by IFM in SU560 (MinCD ⁻) cells 180
5.2.8.2 Live visualisation of FtsZ-YFP localization in SU556 (MinCD FtsZ-YFP) 183
5.2.9 Dynamic localization revealed through time-lapse studies of EtsZ-VFP in the absence
of the Min system
5.2.9.1 Short-interval time-lanse of EtsZ-VFP in the absence of the Min system 185
5.2.9.2 FtsZ-FYP in the absence of the Min system assembles into a polar Z ring via a short
helical intermediate
5.2.10 Do the polar Z rings go on to constrict and facilitate cell division?
5.2.10.1 Extended imaging in SU556 (MinCD FtsZ-YFP) outgrowing spores 194
5.2.10.2 Time-lapse imaging in SU556 (MinCD ⁻ FtsZ-YFP) vegetatively growing cells 196
5.2.11 Summary of time-lanse analysis of FtsZ-VFP dynamics in the absence of the Min
system
5.2.12 Further assessment of Ets7 localization (using Ets7 (EED) in live vegetatively
growing colls over expressing MinCD
5.2.12 Using automatic GUISO2 (AC OD ⁺⁺ D Z ODD) to a single D Z
5.2.15 Using outgrown spores of SU393 (MINCD FtsZ-GFP) to examine FtsZ
localization during the first cell cycle in live cells
5.2.13.1 Is MinCD over-expressed at early time points in outgrown spores?
5.2.13.2 FtsZ localization in live SU593 spores germinated and outgrown without IPTG
5.2.15.5 Live SU595 spores germinated and outgrown with IPTG to induce MinCD over-
5.2.14 Dynamic localization of EtaZ CED in SU(502 (MinCD ⁺⁺ EtaZ CED) outcomes
5.2.14 Dynamic localization of Fisz-GFP in SU393 (MinCD Fisz-GFP) outgrown
5.2.14.1 Control time large in antenna SUS02 (AC OD ⁺⁺ Et Z ODD) (4.1.1) (1.1.1)
S.2.14.1 Control time-tapse in outgrown SUS93 (MINCD Fisz-GFP) without induction of
5.2.14.2 Time lance studies in outgrown SUS02 (MinCD ⁺⁺ Ete7 CED) with 1 mM IDTC to induce
over expression of MinCD 214
5.2.14.3 Summary of time-lanse analysis of Ets7-GEP dynamics in the presence and absence of
MinCD over-expression 210
5.2.15 Examination of the localization of MinC/D by IFM 221
5.2.15 Examination of the localization of White/D by It William Million 221
5.3 Discussion
5.3.1 Further evidence for a new model of Z ring formation
5.3.2 The Min system and FtsZ
5.3.3 The emerging importance of lateral associations between FtsZ protofilaments 228
5.3.4 A model for the relationship between the short FtsZ helix and the Z ring involving
lateral associations
5.3.5 What is the purpose of the extended helix? 231
Supplementary DVD figure legends:
Suppontenting D + D inguie regenue
Chapter 6. Investigating Advanced Techniques in Bacterial Microscopy . 237
6.1 Introduction

6.1.1	4Pi Microscopy increases axial resolution	238
6.1.2	STED Microscopy increases lateral resolution	239
6.1.3	Chapter aims	243
6.2 Re	sults	245
6.2.1	4Pi Microscopy	245
6.2.1.1	4Pi slide preparation	
6.2.1.2	2 Testing slides for transportation to Germany	
6.2.1.3	4Pi imaging in Germany	
6.2.2	Testing a new fluorescent conjugate, Alexa 488	249
6.2.3	STED Microscopy	251
6.2.3.1	Preparation of the ATTO antibody conjugate	252
6.2.3.2	2 Testing the fluorescence of the ATTO 647N dye	254
6.2.3.3	B Determining the optimal mounting media for STED imaging	256
6.2.4	Imaging using the STED super-resolution microscope	257
6.2.4.1	Analysis of STED images using intensity graphs.	259
6.2.4.2	2 Fourier transform analysis of STED images	
6.2.5	Is the discontinuous FtsZ helix an artifact?	265
6.2.5.1	TDE as an effective mounting medium	
6.2.6	Comparison of theoretical STED parameters and actual parameters	268
6.3 Di	scussion	270
6.3.1	4Pi microscopy reveals unexpected bleaching	270
6.3.2	STED microscopy provides further detail for the new model of Z ring and heli	х
formatio	n	271
6.3.3	STED microscopy reveals enhanced resolution of the FtsZ helix	
6.3.4	Further advances in microscopical imaging	276
Chapter 7.	General Discussion	279
References	5	287

Table of Figures

Figure 1.1 Electron micrograph of <i>B. subtilis</i> undergoing cell division
Figure 1.2 The cell cycle of <i>B. subtilis</i>
Figure 1.3 Simplified <i>B. subtilis</i> cell cycle, depicting one round of DNA replication
Figure 1.4 Simplified representation of initiation of DNA replication in <i>B. subtilis</i>
Figure 1.5 Simplified cartoon portraving elongation of DNA replication in <i>B. subtilis</i> 10
Figure 1.6 Z ring morphology in a wild type <i>B. subtilis</i> cell.
Figure 1.7 FtsZ and the formation of the Z ring.
Figure 1.8 Proteins involved in cell division and their assembly pathway in <i>E. coli</i> and <i>B</i>
subtilis.
Figure 1.9 Ribbon plot of the crystal structure of FtsA from <i>Thermotoga maritima</i> 20
Figure 1.10 Model for the function of ZapA in Z ring formation 22
Figure 1.11 Schematic of the Min system and nucleoid occlusion (NO) in <i>B</i> subtilis 23
Figure 1.12 The Min system in B subtilis and E coli 26
Figure 1.13 A schematic overview of the major events during one cycle of bacterial cell
division
Figure 1.14 Model for shape control by MreB and Mbl 32
Figure 1.15 Outline of the multiple points of coordination that exist between cell cycle
events
Figure 3.1 Schematic of how HPUra derives its inhibitory ability. 60
Figure 3.2 DNA sequencing of the HPUra mutation site in the <i>polC</i> gene
Figure 3.3 DAPI staining of <i>B. subtilis</i> strains SU8 and SU473 (HPUra ^R) in the absence and
presence of HPUra
Figure 3.4 DAPI staining of <i>B. subtilis</i> strain SU5 in the absence and presence of HPUra. 67
Figure 3.5 Graph of thymine incorporation into SU5 and SU473 (HPUra ^R)
Figure 3.6 IFM images of <i>B. subtilis</i> strains SU8 and SU473 (HPUra ^R) in the absence and
presence of HPUra
Figure 3.7 Z ring positioning of <i>B. subtilis</i> strains SU8, SU5 and SU473 (HPUra ^R) in the
absence and presence of HPUra
Figure 3.8 Diagram of the <i>B. subtilis</i> replication fork in the absence and presence of
HPUra
Figure 3.9 Position of the genes on the circular <i>B. subtilis</i> chromosome
Figure 3.10 Demonstrative nucleoid conformations in <i>B. subtilis</i> cells where DNA
replication is inhibited
Figure 3.11 Midcell Z ring positioning in rod-shaped bacteria
Figure 4.1 FtsZ assembly model
Figure 4.2 Helix formation in <i>E. coli</i> with the mutant temperature sensitive protein FtsZ26
at the permissive temperature
Figure 4.3 FtsZ helices in <i>E. coli</i>
Figure 4.4 FtsZ helices during entry into sporulation in <i>B. subtilis</i>
Figure 4.5 Immunofluorescence analysis of FtsZ localization in vegetative wild type B.
subtilis
Figure 4.6 Projected two-dimensional images of FtsZ structures in cells obtained by 3D
deconvolution

Figure 4.7 Three-dimensional maximum image projections of FtsZ structures in cells obtained by confocal microscopy
Figure 4.12 Visualisation of FtsZ-YFP in cells outgrown from spores.103Figure 4.13 Immunofluorescence analysis of FtsZ localization to confirm helical pattern in cells expressing FtsZ-YFP.105Figure 4.14 Phase contrast time-lapse microscopy of outgrown spores.106Figure 4.15 Time-lapse microscopy showing dynamics of FtsZ-YFP localization in outgrown spores.108Figure 4.16 Short interval time-lapse microscopy of FtsZ-YFP localization in outgrown spores.108
Figure 4.17 Time-lapse microscopy of FtsZ-YFP localization over an entire cell cycle in outgrown spores
Figure 4.21 Time-lapse images of FtsZ-YFP short helical localization in SU434vegetatively growing cells.116Figure 4.22 Live fluorescence analysis of FtsZ-GFP localization.119Figure 4.23 Visualisation of FtsZ-GFP in cells outgrown from spores.120Figure 4.24 Time-lapse images of FtsZ-GFP localization in SU570 (FtsZ-GFP) in outgrown121
Figure 4.25 Time-lapse images of FtsZ-GFP localization in SU570 (FtsZ-GFP) in outgrown spores at 25°C
Figure 4.27 Immunofluorescence visualisation of FtsA in Vegetatively growing cells 126 Figure 4.28 FtsZ and FtsA localization by immunofluorescence
Figure 4.33 Immunofluorescence staining using anti-GFP antibodies of methanol fixedSU557 (GFP-ZapA) outgrown spores.136Figure 4.34 Model for the pathway of FtsZ polymerisation during the cell cycle, leading toestablishment of the Z ring at the division site at midcell.139Figure 4.35 Lipid helices in <i>B. subtilis</i> .145Figure 5.1 Crystal structure of the MinC dimer from <i>Thermotoga maritima</i> .151Figure 5.2 Localization of MinD in live <i>B. subtilis</i> cells.

Figure 5.3 Localization of DivIVA-GFP in germinating B. subtilis spores
Figure 5.4 Phase contrast image of wild type and SU573 (MinCD ⁺⁺) cells160
Figure 5.5 Western blot to test the polyclonal MinD antibody against wild type and MinCD
deletion strains
Figure 5.6 Anti-FtsZ immunofluorescence staining of SU573 (MinCD ⁺⁺) outgrown B.
subtilis spores in the absence of inducer
Figure 5.7 Anti-FtsZ immunofluorescence staining of SU573 (MinCD ⁺⁺) outgrown B.
subtilis spores in the presence of IPTG.
Figure 5.8 Immunofluorescence analysis of FtsZ localization in SU573 (MinCD ⁺⁺)170
Figure 5.9 Projected two-dimensional images of FtsZ structures in SU573 (MinCD ⁺⁺) cells
obtained by 3D deconvolution
Figure 5.10 Experimental strategy for the construction of a MinCD ⁻ strain of B. subtilis. 174
Figure 5.11 Ethanol fixation of MinCD ⁻ strains and SU8 wild type
Figure 5.12 Immunofluorescence analysis of FtsZ localization in wild type and MinCD-
null cells
Figure 5.13 Projected two-dimensional images of FtsZ structures in MinCD-null cells
obtained by 3D deconvolution
Figure 5.14 Z ring positioning and immunofluorescence images of MinCD-null and wild
type outgrown spores
Figure 5.15 Short interval time-lapse images of FtsZ-YFP localization in outgrowing spores
of SU556 (MinCD ⁻ FtsZ-YFP)186
Figure 5.16 Time-lapse images of FtsZ-YFP localization in outgrowing spores of SU556
(MinCD ⁻ FtsZ-YFP) showing extended FtsZ helix
Figure 5.17 Time-lapse images of FtsZ-YFP localization in outgrowing spores of SU556
(MinCD FtsZ-YFP) showing polar short FtsZ helix
Figure 5.18 Graph of FtsZ-YFP localization during the first cell cycle in outgrowing spores
of SU556 (MinCD- FtsZ-YFP)191
Figure 5.19 Time-lapse images of FtsZ-YFP localization in outgrowing spores of SU556
(MinCD ⁻ FtsZ-YFP) showing polar and midcell Z ring formation192
Figure 5.20 Graph of FtsZ-YFP localization during the first cell cycle in an outgrown
spore
Figure 5.21 Extended time-lapse imaging of FtsZ-YFP localization in outgrowing spores of
SU556 (MinCD ⁻ FtsZ-YFP) showing minicell formation
Figure 5.22 Time-lapse images of FtsZ-YFP localization in vegetatively growing SU556
(MinCD ⁻ FtsZ-YFP) showing minicell formation
Figure 5.23 Time-lapse images of FtsZ-YFP localization in outgrowing spores of SU556
(MinCD ⁻ FtsZ-YFP) showing relocation of the Z ring200
Figure 5.24 Z ring positioning of SU593 (MinCD ⁺⁺ FtsZ-GFP) in the absence of IPTG203
Figure 5.25 Live fluorescence analysis of FtsZ-GFP localization in SU593 (MinCD ⁺⁺ FtsZ-
GFP) cells
Figure 5.26 Western blot against the MinD protein in outgrowing wild type and SU593
(MinCD ⁺⁺ FtsZ-GFP) spores
Figure 5.27 Visualisation of FtsZ-GFP in SU593 (MinCD ⁺⁺ FtsZ-GFP) outgrown spores
not over-expressing MinCD
Figure 5.28 Visualisation of FtsZ-GFP in SU593 (MinCD ⁺⁺ FtsZ-GFP) outgrown spores
over-expressing MinCD

Figure 5.29 Z stacks of FtsZ-GFP in SU593 (MinCD ⁺⁺ FtsZ-GFP) outgrown B. subtilis
spores
Figure 5.30 Time-lapse images of FtsZ-GFP localization in SU593 (MinCD FtsZ-GFP)
Eigure 5.21 Time lange images of Ets7 GEP localization in SU503 (MinCD ⁺⁺ Ets7 GEP) in
Figure 5.51 Time-tapse images of Fisz-OFF localization in SU395 (MINCD Fisz-OFF) in outgrown spores with MinCD over-expression 214
Figure 5.32 FtsZ-GFP localization during two cell cycles in an SU593 (MinCD ⁺⁺ FtsZ-GFP)
outgrown spore over-expressing MinCD
Figure 5.33 Time-lapse images of FtsZ-GFP localization in SU593 (MinCD ⁺⁺ FtsZ-GFP)
outgrown spores over-expressing MinCD, showing extended dynamics of the short midcell
FtsZ helix
Figure 5.34 Immunofluorescence analysis of MinC and MinD localization
Figure 5.35 Model for the pathway of FtsZ polymerisation during the cell cycle in the
absence of the Min system, leading to establishment of the Z ring at the polar division site.
Eigure 5.26 Two alternative models proposing how the 7 ring arises from a short belical
Figure 5.50 Two alternative models proposing now the 2 ring arises from a short nerveal Ets7 intermediate 231
Figure 6.1 Comparison of the PSF of confocal and 4Pi microscopes
Figure 6.2 Shrinking the Focal Spot by STED microscopy
Figure 6.3 Depiction of the excitation and depletion lasers used to enhance resolution in
STED microscopy
Figure 6.4 Focal spots of confocal and STED and testing photo-bleaching
Figure 6.5 Samples showing an increase of resolution when imaged with STED
Eigure 6 6 Propagative stops for 4Pi semple
Figure 6.7 1-photon 4Pi image of SU5 <i>B</i> subtilis wild type cells 248
Figure 6.8 Rate of bleaching of the Alexa 488 dve in four separate regions in <i>B. subtilis</i>
cells
Figure 6.9 Characteristics of the ATTO 647N dye 252
Figure 6.10 Absorbance graph of the antibody and dye conjugation reaction
Figure 6.11 Immunofluorescence analysis of FtsZ localization using the ATTO 647N dye
Eigene 6.12.7 ring againting of SUIS using the ATTO 647N secondary antibody (Sigma)
Figure 0.12 Z mig positioning of SOS using the ATTO 04/N secondary antibody (Sigma) 256
Figure 6.13 Immunofluorescence analysis of FtsZ localization using both confocal and
STED imaging
Figure 6.14 Immunofluorescence analysis and characterisation of FtsZ localization using
STED microscopy
Figure 6.15 Analysis of STED images using fluorescence intensity graphs of wild type B.
<i>subtilis</i> cells
Figure 6.16 An example of fast Fourier transform (FFT) analysis on a non-biological
Figure 6.17 Immunofluorescence analysis of Ets7 localization using STED microscopy and
fast Fourier transform (FFT) analysis showing 156-157 nm spacing
Figure 6.18 Immunofluorescence analysis of FtsZ localization using STED microscopy and
fast Fourier transform (FFT) analysis
Figure 6.19 Binding possibilities of primary and secondary antibodies to FtsZ

Figure 6.20 Immunofluorescence analysis using STED microscopy of FtsZ localization
with various secondary antibody concentrations
Figure 6.21 Calculation of the distances between the slide and the coverslip when using the
STED setup
Figure 6.22 Calculation of actual FWHM of images resolved with STED microscopy269
Figure 6.23 Model for FtsZ helix and ring formation in B. subtilis
Figure 6.24 Schematics of possible helical paths for FtsZ assembly within B. subtilis276
Figure 6.25 Comparison of the focal spots of STED verses 4Pi, and the focal spot of a
combined 4Pi/STED system
Figure 6.26 Image of membrane-labelled (with the styryl dye RH414) bacteria Bacillus
megaterium

Table of Tables

Table 2.1 Commonly used aqueous buffers and solutions.37Table 2.2 B. subtilis strains38
Table 2.3 B. subtilis growth media
Table 2.4 Antibiotics used for selection in B. subtilis
Table 2.5 Primers used for PCR reactions
Table 2.6 Antibodies used for primary and secondary detection for both IFM and western
blot analysis
Table 3.1 Z ring positioning of SU8 and SU473 (HPUra ^R) in the absence and presence of
HPUra
Table 3.2 P values from the two sample t-test assuming unequal variances comparing the position of the Z ring in the strains SU8 and SU473 (HPUra ^R) in the absence and presence
of HPUra
Table 4.1 Cell length measurements of ethanol fixed cells. 118
Table 5.1 Cell length of SU5 and SU573 (MinCD ⁺⁺) with and without IPTG induction of
excess MinCD
Table 5.2 Cell lengths of ethanol fixed SU573 (MinCD ⁺⁺) cells grown in PAB with various
concentrations of IPTG inducing MinCD over-expression
Table 5.3 IFM against FtsZ on SU573 (MinCD ⁺⁺) outgrown <i>B. subtilis</i> spores without
IPTG (A), and with 1 mM IPTG (B) 168
Table 5.4 FtsZ localization in fixed IFM stained cells of SU560 (MinCD ⁻) outgrown spores, and the wild type control, SU8
Table 5.5 Live FtsZ-YFP in SU556 (MinCD FtsZ-YFP) outgrown spores with 0.2%
xylose
Table 5.6 Analysis of time-lapse microscopy in SU556 (MinCD ⁻ FtsZ-YFP)
Table 5.7 Cell length of live SU593 (MinCD ⁺⁺ FtsZ-GFP) with 1 mM IPTG inducing over- expression of MinCD analysing frequency of Z ring formation by EtsZ-GFP visualisation.
205
Table 5.8 Live FtsZ-GFP in SU593 (MinCD ⁺⁺ FtsZ-GFP) outgrown <i>B. subtilis</i> spores
without IPTG (A), and with 1 mM IPTG (B).
Table 5.9 Analysis of time-lapse microscopy in SU593 (MinCD ⁺⁺ FtsZ-GFP) without (wild
type) and with 1 mM IPTG (over-expressed)
Table 6.1 Analysis of STED images using fluorescence intensity graphs of wild type <i>B</i> .
subtilis cells

Publications

Journal articles

Phoebe C. Peters, Margaret D. Migocki, Carola Thoni and Elizabeth J. Harry. (2007). A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of *Bacillus subtilis*. *Molecular Microbiology* **64(2)**, 487-499

Phoebe C. Peters, Carola Thoni and Elizabeth J. Harry. (2006). Unexpected photobleaching of Alexa488 in a fixed bacterial sample occurring during 2-photon excitation. *Biotechnic and Histochemistry* **81**, 105-106

Conference proceedings

Peters, P.C. and Harry, E.J. (June 2008). Examining the relationship between the Min system and the FtsZ helix. **POSTER**, Gordon Cell Surfaces Conference, New London, New Hampshire, USA.

Peters, P.C. and Harry, E.J. (November 2007) Bacterial Cell Division: Identifying the Midcell Site. **SEMINAR-026**, 24th Annual Scientific Research Meeting, Sydney, Australia

Peters, P.C., Thoni C. and Harry, E.J. (July 2007) A Cell-Cycle Regulated Helical Structure of FtsZ in *B. subtilis*. **PLENARY SEMINAR-04-4**, ASM2007 Annual ASM Scientific Meeting, Adelaide, Australia.

Peters, P.C. Migocki, M.D., and Harry, E.J. (August 2006). A cell-cycle regulated helical structure of FtsZ in *B. subtilis*. **POSTER**, EMBO Cell Cycle and Cytoskeletal Elements in Bacteria, Copenhagen, Denmark.

Peters, P.C., Thoni, C. and Harry, E.J. (February 2006). A time-lapse microscopy revelation: The dynamic helical nature of the bacterial division protein FtsZ. **POSTER-4**, Biophotonics in Australia Showcase and Strategic Planning, Sydney, Australia

Peters, P.C., Migocki, M.D., and Harry, E.J. (November 2005). A new twist to bacterial cell division: spiral forms of FtsZ. **POSTER**, UTS Science Faculty Forum, Sydney, Australia (Recipient of poster prize).

Peters, P.C., Migocki, M.D., and Harry, E.J. (September 2005). A new twist to bacterial cell division: spiral forms of FtsZ. **POSTER-MON-029**, ComBio2005, 49th Annual ASBMB Conference, Adelaide, Australia

Grants

Liz Harry, Carola Thoni and **Phoebe Peters** (late 2007). Bacterial Cell Biology: Investigating an optical revolution. From ARC network FABLS (Fluorescence Applications in Biotechnology and Life Sciences)

Abbreviations

A#	absorbance (# refers to the wavelength in nm)
А	alanine
aa	amino acid
Ab	antibody
AGRF	Australian Research Genome Facility
AP	alkaline phosphatase
ARC	Australian Research Council
ATM	atomic force microscopy
<i>B</i> .	Bacillus
β	beta
bp	base pair(s)
BP	band pass
BSA	bovine serum albumin
cm	centimeters
Cm ^R	chloramphenicol resistance
CCD	charged coupled device
DAPI	4'6-diamidino-2-phenylindole
dATP	deoxyadenosine 5'-triphosphate
dCTP	deoxycytidine 5'-triphosphate
dGTP	deoxyguanosine 5'-triphosphate
DIC	differential interference contrast
DOL	degree of labelling
DNA	deoxyribonucleic acid
DNA pol	DNA polymerase III holoenzyme
dpm	decays per minute
dsDNA	double stranded deoxyribonucleic acid
DTT	dithiothreitol
dTTP	deoxythymidine 5'-triphosphate
DVD	digital versatile disc
Ε.	Escherichia

ECT	electron cryotomography
et al.	and others
FABLS	Fluorescence Applications in Biotechnology and Life Sciences
FAD	flavin adenine dinucleotide
FFT	Fourier transform analysis
FITC	fluorescein isothiocyanate
FRAP	fluorescence recovery after photobleaching
FRET	fluorescence energy resonance transfer
fts	filamentation temperature sensitive
FWHM	full width half maximum
g	centrifugal force
g	gram(s)
GFP	green fluorescent protein
GMD	germination medium defined
hr	hour(s)
HPUra	6-(-p-hydroxyphenylazo)-uracil
HPUra ^R	HPUra resistant
IFM	immunofluorescence microscopy
IgG	Immunoglobulin G
IPTG	isopropyl-1-thio-β-D-galactopyranoside
kD	kilo Dalton(s)
L	litre(s)
LP	long pass
m	milli- (10 ⁻³)
М	moles per litre
min	minute(s)
MQW	Milli-Q purified water
MSA	mineral salts A
MTS	membrane targeting sequence
n	nano- (10 ⁻⁹)
NA	numerical aperture
N/A	not applicable

NHS	N-hydroxysuccinimide
NO	nucleoid occlusion
NS	nucleation site
OD	optical density
Р	probability
P _{spac}	IPTG-inducible promoter
P _{spac-hy}	IPTG-hyper-inducible promoter
P_{xyl}	xylose-inducible promoter
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
pers. comm.	personal communication
рН	power of Hydrogen
PSF	point spread function
RNA	ribonucleic acid
RNase	ribonuclease A
ROR	round of replication
ROW	reverse osmosis purified water
rpm	revolutions per minute
<i>S</i> .	Streptomyces
S	serine
sec	second(s)
SDS	sodium dodecyl sulfate
SEM	standard error of the mean
SMC	structural maintenance of chromosome
SMM	spizizen minimal medium
spp.	species
spec	spectinomycin
STED	Stimulated emission depletion
Т	thymine
TBAB	tryptose blood agar base
TBP	tributyl phosphate

TDE	2,2'-thiodiethanol
TEMED	N,N,N',N'-tetramethyl-ethylenediamine
tet	tetracycline
TFA	trifluoroacetic acid
thy	thymine auxotroph
Tris	tris(hydroxymethyl)methylamine
Trp	L-Tryptophan
ts	temperature sensitive
U	units (enzyme activity)
UV	ultraviolet
V	volt(s)
v/v	volume per volume
W	watt
w/v	weight per volume
YFP	yellow fluorescent protein
2D	2-dimensional
3D	3-dimensional
4D	4-dimensional
μ	micro- (10 ⁻⁶)
μCi	micro curie

Abstract

As with all organisms, bacterial cells divide with amazing precision. The first stage of this process is marked by the polymerisation of the essential tubulin-like FtsZ protein at midcell into a ring, the Z ring. Understanding its formation and regulation provides an insight into how the crucial event of cell division is controlled. However, despite intense investigation, these molecular mechanisms are not fully understood. One factor believed to play a role in midcell Z ring placement is the coordination between DNA replication and cell division. Previously it has been shown that when initiation of DNA replication is allowed, but DNA synthesis is inhibited by two different methods (thymine starvation or addition of HPUra), Z rings are able to form at midcell in one case, and not in the other. Both conditions block DNA synthesis at the same stage, the beginning of DNA chain elongation. In an attempt to understand these incongruous results, the possibility of the drug HPUra playing a nonreplicative role, leading to displacement of the Z ring, was examined. It was found that Z ring positioning in an HPUra-resistant strain was not significantly different to that of wild type. Z rings formed at midcell in both conditions. Thus in the wild type strain, the effect of HPUra on Z ring positioning is dependant on its ability to inhibit replication. Hence the block to the elongation stage of DNA replication mediated by the addition of HPUra is capable of misplacing the Z ring, strong evidence for a link between these essential processes of DNA replication and cell division.

Ten years ago it was proposed that the Z ring forms by bidirectional growth from a midcell nucleation site. Work presented in this thesis now suggests this may not be the case. Using a modified immunofluorescence protocol it was discovered that, in addition to forming a Z ring, FtsZ forms a helical structure along the length of the cell in vegetatively growing wild type *Bacillus subtilis* cells. Time-lapse experiments in live cells using an inducible FtsZ-YFP fusion, showed that the helical FtsZ structure is highly dynamic and undergoes cell cycle-regulated changes in localization. The monitoring of a complete cell cycle revealed the early appearance of a pole-to-pole FtsZ helix, a subsequent short helix spatially restricted to midcell, and finally this redistributed to produce a sharp midcell Z ring. These observations led to the proposal of a novel assembly mechanism for Z ring formation

involving a cell-cycle mediated multi-step remodelling of FtsZ polymers. This was the first report of an FtsZ helix in *B. subtilis* during vegetative growth.

The new model for Z ring formation predicts that in order for the cell to assemble a Z ring, FtsZ must go through long helix-to-short helix-to-Z ring polymerisation changes. How is the Min system, a known negative regulator of FtsZ responsible for inhibiting aberrant Z ring assembly at the cell poles, involved in regulating these FtsZ polymerisation transitions? To address this, FtsZ polymer remodelling was examined whilst modifying the effect of the Min system. Time-lapse studies of a strain carrying a deletion of the *minCD* genes showed FtsZ polymerising at the poles in the same fashion as wild type; that is going through a short helical intermediate prior to Z ring formation. This indicated that the helical form of FtsZ is in fact a true intermediate, required for Z rings to form even at non-midcell locations. A minCD over-expression strain showed a marked decrease in Z ring formation and time-lapse imaging was conducted to assess at which transitional stage FtsZ assembly was affected. Interestingly, it was found that both the long and short helical polymerisations of FtsZ can actually form as wild type in the over-expression experiments. The excess of MinCD in the cell appeared to be able to severely impair division by hampering and prolonging the transition of the short midcell helix to a ring. It is proposed that this is mediated by the inhibition of lateral interactions of FtsZ protofilaments. Indeed a model is put forth emphasizing the importance of lateral interactions in the helix-to-ring remodelling, and thus in stable Z ring formation.

To examine the *in vivo* FtsZ helix with higher resolution, the advanced microscopic techniques of 4Pi and STED imaging were employed. Using alternative methods has the advantages of confirming the helical structure and extracts further information, for example is the helix continuous? STED microscopy breaks the diffraction barrier and lateral resolution is increased to ~100 nm, ~2.5 times that of normal confocal microscopy. Using STED, FtsZ localization showed a distinct periodicity, consistent with a helical conformation. Additionally FtsZ staining was revealed to be extremely punctate and discontinuous, suggesting that the helical structure of FtsZ may depend on a cellular track. Visualising cells and their sub-cellular structure in ever increasing detail ensures novel insights into the regulation of Z ring assembly in bacteria.