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ABSTRACT 

Membrane technology for water and wastewater treatment offers many advantages over 

other conventional treatment systems. However, membrane process is usually hampered 

by the problem of membrane fouling which restricts its widespread application. 

Membrane fouling decreases permeate flux and plant productivity, increases hydraulic 

resistances thereby increasing energy consumption and increases the operational and 

maintenance costs ultimately affecting the overall plant economy. Pretreatment of feed 

water is considered one of the most effective means to reduce membrane fouling. 

Pretreatment increases the membrane lifetime and reduces membrane deterioration. 

Although several pretreatment options are available, only few studies have been 

reported so far for electrocoagulation (EC) as an attractive pretreatment method for 

membrane filtration. 

The main objectives of this study are i) to evaluate water treatment by EC usmg 

aluminium and iron electrodes, ii) to evaluate the performance of microfiltration (MF) 

with EC as pretreatment, iii) to determine the EC operating conditions favouring 

removal of organic matter and turbidity, iv) to optimise EC-MF hybrid system for water 

treatment, v) to investigate the feasibility of solar powered electrocoagulation (SPEC) 

for applications in remote communities of Australia, vi) to access the feasibility of 

SPEC as a sustainable pretreament option for MF and finally vii) to identify the fouling 

mechanisms involved in the cross flow MF system when EC is used as pretreatment for 

the feed water. 

EC pretreatment of synthetic water using iron electrodes did not reduce MF fouling due 

to the release of soluble ferrous ions (Fe2+) as it was not capable of colloidal 

destabilisation and Fe2
+ -organic matter complexation prevents Fe(OH)3 precipitation 

and floe formation. However, EC pretreatment with aluminium electrodes significantly 

improved the performance of MF. The permeate flux for pretreated feed water was 

more than 55% higher than the feed water without pretreatment under optimum EC 

operating conditions. The isoelectric point for EC with aluminium electrodes occurred 

at pH 8. The highest removal efficiency (dissolved organic carbon (DOC) by 78%, UV 

abs by 85% and turbidity by 88%) occurred at the isoelectric point, where charge 

neutralisation occurred. Similarly, the highest organics and turbidity removal by 
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chemical coagulation using aluminium sulphate also occurred at the isoelectric point 

(pH 6.5). 

The potential for usmg solar powered electrocoagulation (SPEC) as an attractive 

technology for small and decentralised water purification system was explored. SPEC 

offered a suitable candidate for applications in the remote communities where 

renewable solar energy such as solar power is abundant. SPEC reactor was designed by 

connecting to photovoltaic panel (PV) either directly or through a set of batteries and 

charge control system. SPEC process system was observed sensitive to variation of 

solar irradiation when connected directly with PV panels and without any charge 

control system. SPEC reactor operated for five different times in a day ( 4 April 2010), 

yielded the highest organics removal at around midday i.e. between 10:00 AM-2:00 PM 

(DOC by 75%, UV abs by 85% and turbidity by 87%) under optimum EC operating 

conditions. However, when SPEC process was supported by batteries and charge 

control system, the process removal efficiency improved and also became more 

consistent. The variation in organic and turbidity removal was within the range of 10% 

for experiments conducted on three different times in a day (9 April 2010) with the 

highest removals at 10:30 AM in the morning. 

The feasibility for SPEC as a sustainable pretreatment option, SPEC-MF hybrid system 

was evaluated. SPEC pretreatment using PV panel only without the charge control 

system improved the flux however the flux performance fluctuated due to the variation 

in the solar irradiation. The connection to batteries and charge control system improved 

the performance of MF permeate flux and also became more stable. 

The fouling mechanism of crossflow MF was studied comparatively with feed water 

containing kaolin suspension with and without EC pretreatment. When the feed water 

was pretreated by EC, the fouling was found to follow both standard law of filtration 

and classical cake filtration model. 
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