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Abstract

Identification of protein-ligand binding site is an importdask in structure-based drug design and docking
algorithms. In the past two decades, different approaches been developed to predict the binding site, such
as the geometric, energetic and sequence-based methods) $tbres are calculated from these methods, the
algorithm for doing classification becomes very importandl @an affect the prediction results greatly. In this
paper, the Support Vector Machine (SVM) is used to cluster gbckets that are most likely to bind ligands
with the attributes of geometric characteristics, intBoscpotential, offset from protein, conservation score an
properties surrounding the pockets. Our approach is cordplr LIGSITE, LIGSITESS SURFNET, Fpocket,
PocketFinder, Q-SiteFinder, ConCavity, and MetaPockethen dataset LigASite and 198 drug-target protein
complexes. The results show that our approach improvesuteess rate from 60% to 80% at AUC measure

and from 61% to 66% at top-1 prediction. Our method also giesvimore comprehensive results than the others.
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I. INTRODUCTION

Bioinformatics has been an active research area in the lase tdecades. It concerns the application of
computational methods to biological problems. Recentigdjttion has become a very popular issue in bioinfor-
matics. Example problems include gene’s structure priedi¢l] , function prediction [2], protein functional site
identification [3]—[4], and disease classification [5]. Gmutational approaches have started to take an important
role in bioinformatics for the past two decades because aif Hbility to handle a huge data size at a relatively
low cost, and the rapid increase of computational power. i@batification of protein-ligand binding site using
computational approaches is the focus of this paper.

The drug discovery process starts with target identificatiod validation. This operation searches the causes
of the phenotype of the disease. Protein plays a critica molcausing the symptoms of a human disease.
Activating or inhibiting its function can have a positivfegdt on the disease [6]. After the relationship between
the target and disease has been found, the next operatiorugfdiscovery is found a method to modify that
target. This consists of protein-protein and proteindigigsmall chemical molecule) interactions.

Taking advantage of the three-dimensional (3D) structdirh® protein, structure-based drug design (SBDD)
attempts to contribute to drug discovery [7]. The 3D struetaf protein can be obtained experimentally with
x-ray crystallography or Nuclear Magnetic Resonance (NMpgctroscopy. Another method is to construct the
protein based on its amino acid sequence and a similar pratigh a known 3D structure. All this information
can be found from the Protein Data Bank (PDB) [8] or Proteirat@tnary Structure file server (PQS) [9], which
show the atomic coordinates and the quaternary structungrai€in respectively. This has made the SBDD
more and more feasible because the 3D atoms’ arrangememioigins allow the prediction of protein and
ligand binding sites, which is an important prerequisiteS&DD [10]. One famous example use of SBDD is
the inhibition of the HIV protease. The drug is highly efigetagainst HIV [11]. Different approaches can

be applied to find the ligand, such as virtual screening, thgcknd de novo drug design, when the protein’s



structure is known [12].

The protein-ligand binding sites are located in the pocketfts) on the surface of proteins. The prediction
of pockets has been examined with the information regartliegoroteins’ sequence or structure. The sequence
conservation was analyzed to predict the residues invalvdigand binding [13]-[14]. The structural informa-
tion includes the studies of geometry and interaction gnefgproteins. In POCKET[15], LIGSITE[16], and
SURFNET[17], the studies only use the geometric charatiesi and believe that the binding site is usually
located in the largest pocket. On the other hand, some methkal PocketFinder[18] and Q-SiteFinder[19]
focused on the energetic criteria by calculating the vanWilaals interaction potential. However, the structure-
based methods are not so capable of tackling the multi-girainlems of protein. The methods may treat the gaps
among the chains of protein as pockets incorrectly. ThegefdGSITES920] and ConCavity[21] suggeste that
the sequence conservation should be integrated with thetstal pocket identification to get the more accurate

binding sites of proteins, particularly the multi-chairof@ins.

There is a drawback when binding sites are identified fromaheve approaches. The binding sites pre-
dictions of each method were based on different scores,hwiere calculated from the corresponding protein
characteristics. The simplest method was setting a thigéshchelp determining the binding sites [16]. If the
score of a point was greater than the threshold, that poinddvoe identified as the binding site. In [18], mean
and standard deviation of the scores were considered omdirttle threshold. The results of these approaches
are easily affected by the grid format and the threshold eged be set carefully; otherwise the results would
not be satisfactory. Machine learning techniques have lédaly applied in bioinformatics and have shown
satisfactory performance in the binding site predictiog[f25]. In this paper, support vector machine (SVM)
is proposed for handling this problem. Moreover, SVM [2@B] has shown its high applicability and advantage

on classifying high-dimensional and large datasets in—{31]].

The prediction of the binding site can be formulated as a Iprabof binary classification: discriminating
whether a location is likely to bind the ligand or not. SVM iseoof the tools that use supervised learning for

doing classification. It mainly applies two techniques téveche classification problem: the formulation of a



large-margin hyperplane and the use of a kernel functiorM®¥n construct arin — 1)-dimensional hyperplane

in an n-dimensional space to separate the data, where each dateprésented by an-dimensional vector.

We train the SVM to generate the hyperplane by using 29 prstaittributes, including the geometric charac-
teristics, interaction energy, sequence conservatictamice from protein, and the properties of the surrounding
grid points. A radial basis function (RBF) is used as the SVMnel since a non-linear classification model is
needed and RBF is a common kernel to handle this problem. migst of the datasets in bioinformatics, the
data of the binding sites have the problem of being imbaldraoel in large data scales [32]. Therefore, down
sampling and filtering are also be applied to reduce the data s

Two experiments are used to evaluate our approach. The fisstuees LigASite [33] as the dataset which
is suggested in ConCavity. The predicted binding sites epeesented as grid points in this experiment. Our
approach is compared with four other methods. They are LTEGSBURFNET, PocketFinder and ConCavity. The
other experiment uses 198 drug-target dataset which idajma in MetaPocket [34]. Only the top three largest
binding sites are predicted and represented as one certgrgbeach site in this experiment. Our approach is
compared with six other methods. They are LIGSFFESURFNET, Fpocket [35], Q-SiteFinder, ConCavity, and
MetaPocket. Two different measurements are applied simeedpresentations of the binding sites are different
in these experiments.

This paper is organized as follows. In Section I, the prealicmethods for binding sites with consideration
of the proteins’ sequence and geometrical structure, aadgtbblem of the evaluation methods are described.
In Section lll, the details of SVM and the selected attrisuége introduced. The adopted evaluation method is
discussed in Section IV. Section V shows the result of ouppsed method and a conclusion will be drawn in

Section VI.

Il. PREDICTION OFPROTEIN-LIGAND BINDING SITE

This section describes the three most common approachegadindy site prediction. Then, the problems of

their evaluation methods, which are tackled by our propasethod, are discussed.



A. POCKET and LIGSITE

POCKET [15] is one of the geometry-based methods to definbittding sites. Firstly, a 3D grid is generated.
Secondly, a distance check is applied on the grid to maketheratoms of protein do not overlap with the grid
point. All the grid points, which do not overlap with the ateraf protein, are labeled as solvent. If the grid
points outside the protein are enclosed by the protein cgiriia opposite directions of the same axis (i.e. the

grid points are enclosed by pairs of atoms within the prdtetrnis called a protein-solvent-protein (PSP) event

(Fig. 1).
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Fig. 1. PSP event used to describe the geometric feature 1afl @@jnt. It counts the number scanning directions thatghie of protein
atoms can enclose the grid point. For POCKET method, the maxi number of PSP event is three while it is seven for LIGSITE

method.

LIGSITE [16] is an extension to POCKET [15] with the scannitdigections being different. Both of them
considered the identification of PSP events on the basisowh &ioordinates. LIGSITE scans for the pockets
along three axes and four cubic diagonals while POCKET oofns three axes. Some value will be assigned
to each grid point, which is actually the number of PSP eveotairred in the scanning directions. That means,
the higher the value of a grid point, the more likely the granp will be a pocket. Fig. 1 shows the PSP events
of two enclosed grid points. This method only focuses on thengetric characteristics and does not consider

any other properties of the protein.



B. SURFNET

SURFNET [17] is another geometry-based method to define itndirty sites. Like LIGSITE, a 3D grid is
generated first. The grid values of SURFNET are calculated¢danting the number of constructed spheres.
Firstly, pairs of relevant atoms are taken within the prterhen, the testing spheres are formed between the
pairs. If the sphere overlaps with other atoms, the radiusedeses until no overlapping occurs (Fig. 2). Only
the distance between two atoms within AQis considered. The sphere of radius smaller thanAL.% also
ignored. If the grid points are out of the pockets, the distgnbetween pairs of atoms are very large or cannot

be found. On the contrary, if the grid points are inside thekpts, more than one sphere can be formed.
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Fig. 2. SURFNET. There are three solid line circles and sdwdwtted line circles in each graph. The top and bottom dul&i circles
represent the pair of relevant atoms and the middle one shmsvsonstructed sphere of a grid point. The dotted line esrckpresent
the other atoms that surround the testing gris point. Th&irdphere in the upper graph overlaps with other atomsrefbee, its radius

decreases until no overlapping occurs to form the final sphrethe lower graph.



C. PocketFinder

PocketFinder [18] is an energy-based method of ligand bindiite prediction. It uses the van der Waals
interaction energy between the protein and a simple atonoioepto locate the binding sites with high energy. A

3D grid potential map is generated first. The potential at gointp is calculated by the Lennard-Jones formula:

N i i
vip) =SSz - S, 1)

i=1 Tpi Tpi

whereC?, andC§ are constants, which are the typical 12-6 Lennard-Jonesypters used to model the van der
Waals interaction energy between the carbon atom placeteagrid pointp and the protein atom; N is the
total number of protein atomsg%i2 and rgi are the powers 12 and 6 of; respectively, where,; is the distance
between the grid poing and the protein atom The first term describes the repulsion between atoms when th

are very close to each other. The second term describestthetiain between atoms at long distance.

D. Sequence Conservation

As not all residues in protein are equally important, coveton analysis is a very useful method to predict
those functionally important residues in the protein segee/36]-[38]. Sequence conservation has also been
shown to be strongly correlated with ligand binding site8]{[iL4]. Therefore, [21] suggested combining the
seqguence conservation and the structure of protein togirtrdé protein ligand binding sites by weighting every

pair of protein atoms.

E. Problems of evaluation methods

There are several evaluation methods to determine thergjruitie after the corresponding values are calculated
by the above approaches. The simplest one is to apply a tiideshthe grid point value to determine if the grid
points belong to a pocket [16]. This threshold is set to alitgins and does not consider the difference among
them. A poor scenario may cluster most of the grid points akgis if the threshold is too low, or the number
of pockets is much smaller than that of binding sites if theshold is too large.

Another method calculates the mean and standard devidtitwe grid points’ values to determine the threshold

for each protein [18]. Although this approach calculatesttireshold for different proteins, the threshold depends



on the grid points’ values. If the grids embedded in the pnotary, the mean and standard deviation of the
grid points’ values will be different. That means, the thras and the number of pockets could be varying for

a particular protein used.

In [21], a binary search for the grid threshold is perform&Hde binary search produces a culled set of pockets,
which have specified properties based on the sizes and sbéples pockets. When the method iterates, the
grid points are adjusted until the set of pockets meet allpttoperties. Although this approach can consider the
sizes and shapes of the pockets, all the grid thresholdseafdgyshe users, and we do not know which values

of thresholds are suitable for a given protein.

We make use of the characteristics of the above three agmeawhich can describe the properties of the
protein-ligand binding sites. To overcome the weakneshefdifferent evaluation methods, we employ the SVM

to achieve the goal. The process of SVM is discussed in thewfirlg section.

[Il. METHODOLOGY

In order to alleviate the problems mentioned above, the S¥Mpiplied. This section explains the collection
of datasets and attributes used in this paper first. Thelgletaihe SVM classifier follow. Then the overall flow

of our method is described.

A. Datasets

We have used two sets of proteins to evaluate our method. ®iefie is the non-redundant LigASite (v9.4)
dataset [33], which is suggested in [21]. The other one isl®® drug-target complexes, which are developed
in [34]. For the dataset of LigASite, only six main classesafyme (categorized for 272 protein complexes)
from the dataset are selected. They are transferase, hgdraxidoreductase, lyase, ligase and isomerase, which
occupied around 70% of LigASite. Fig. 3 shows the percerstarjehe number of proteins distributed among

these six enzyme classes. Fig. 4 shows the number of chatdbdied in the selected proteins of LigASite.
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Fig. 4. Distribution of the number of chains in the selecteotgins of LigASite. Most of the proteins have less than ¢hchains.

B. Protein Properties Used for Training and Testing

The structure of proteins with bound ligands are obtainednfithe Protein Data Bank (PDB) [8], which
is a collection of atomic coordinates and other informattscribing proteins and other important biological
macromolecules. Structural biologists use methods suctiray crystallography, NMR spectroscopy, and cryo-
electron microscopy to determine the location of each atelative to each other in the molecule.

After the structure of each protein is retrieved, the 3D ggidenerated by covering the free-space surrounding
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the proteins. The program is based on the source of ConCawiigh is available on its website. The attributes
of each grid point used in SVM are calculated based on thesjppr@roperties in the following:

1) Grid values: These are the two values of each grid point that are calallael IGSITE and SURFNET.
They can represent the binding site preference based onajgormharacteristics.

2) Interaction potential:This energy is the same as the van der Waals interaction ttehan atomic probe
with the protein [18]. The calculation is done by the Pocka&iEr method, which is mentioned in Section II.
The Lennard-Jones formula (1) is used to estimate the irtterapotential between the protein and a carbon
atom placed at the grid point.

3) Conservation scoreConservation score is obtained from a residue-level aizagsdentify which residues
in a protein are responsible for its function. The score @hegrid point is the conservation score of the nearest
residue. Jensen-Shannon divergence (JSD) method is ctmsefculate the score since it has been shown to
provide an outstanding performance in identifying resgduear bound ligands in [38]. It is an open source
program which is freely available in its webpage [38].

4) Distance from proteiniThe squared distance from each grid point to the closest paithe van der Waals
surface of the protein is calculated. When the grid poinéstap far from the atoms, they are not likely to be
a pocket. In the experiment, almost 90% of ligand atoms aratéml within & of the protein’s van der Waals
surface. Hence, the grid points with the squared distangerahat B are filtered out in order to reduce the
huge data size.

To explain the relationship between the binding sites amrdstilected attributes, graphs of probability density
for the normalized attribute values are shown in Fig. 5. Toledine represents the corresponding probability
density for non-binding sites (negative class) and theeddihe represents the corresponding probability density
for binding sites (positive class). Some of the attributesch as LIGSITE values, SURFNET values, and
interaction potential, show a very high density of smallueas when the grid points are located at non-binding
sites. On the other hand, these attributes show a smalletife on the density when the grid points are located
at binding sites. This difference is shown more clearly ig. 8. We can see that the values of these attributes

are relevant to the location of the binding sites. Howeueis difficult to use only one property to classify the



binding sites. Therefore, we propose to use all of them addhtrires of the training set for an SVM.
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Fig. 5. Probability density functions of protein propestie

5) Properties of surrounding grid pointsAll the binding sites are formed by many grid points (the aliste
between two grid points isAL[21]), so the properties of the grid points nearby are atdevant features to the

prediction. The six connected points (as shown in Fig. 7)satected and their properties (1) to (3) as described
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Fig. 6. A zoom-in version of Fig. 5 of properties: (a) LIGSITalues, (b) SURFNET values, and (c) Interaction potential.

above are used as the attributes. The point in the middleeottibe in Fig. 7 is the selected grid point to be

classified. There are totally 29 features assigned as the Stdutes.

C. Classification with Support Vector Machine

Machine learning methods have been applied to predictwtmtadites [22]-[39]. In this paper, one of the
machine learning tools, the support vector machine (SVKlemployed to predict the protein-ligand binding
sites.

To avoid the drawbacks mentioned in Section Il, SVM is emptbyo classify which grid points are most
likely to bind the ligands based on the properties of gridueal interaction potential, sequence conservation
score, distance from protein, and the surrounding grid teoidh common kernel, the radial basis function, is

used to construct a non-linear hyperplane. The progranec@VM9" is used, which is available from its
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of the classification.

website [40].
SVM basically is a binary classifier. Let a vectotbe denoted byz,], j = 1,...,m, wherem is the number
of attributes andz;| is a point in anm-dimensional vector space. The notationis thei-th vector in a dataset
{(xi,vi)}1-,, wherey; € {—1,1} is the condition label for a binary classification problend anis the number
of examples (grid points). To construct the SVM, all tragnisamples are first mapped to a feature space by a

non-linear functionp(x;). A separating hyperplane in the feature space can be eegrass

~

—~

XS
I

w, ¢(x)) +b 2

= wid(z;) +b
j=1

wherew is the weight vector and is the bias.

The optimal separating hyperplane is defined as a lineasitirswhich can separate the two classes of training
samples with the largest marginal width, and the solutior= [«;] is obtained by maximizing the following
function:

W) =) ai— % > gy (o(xi), d(x5)) ®3)
i=1

1,j=1
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subject to:
n
Zyiai:07 Z‘:17"'777‘7 (4)
=1

where0 < o; < C*Clqeror (for positive samples) andl < «; < C (for negative samplesy’ is the regularization
parameter controlling the tradeoff between training eamd margin. The larger the value ©f the larger penalty
is assigned to errorsCy, ., iS @ cost-factor, which makes the training errors on pasiggmples outweighing
the errors on negative sampled [41].

In the above optimization problem, only those items with> 0 can remain. The sampleg that lie along
or within the margins of the decision boundary (by Kuhn-Terctheorem) are called the support vectors. The

weight vector in (2) can be expressed in termxpfind the solutionsy; of the optimization function (3):
W= aip(x:) ()
i=1

wherea; > 0.

Then, the separating hyperplane in (2) becomes

F0) = cigi(d(xs), $(x)) + b (6)
i=1

To avoid the computation of the inner produgt(x;), ¢(x)) in the high dimensional space during the

optimization of (3), the kernel function that can satisfg thlercer’'s condition is introduced:

K(Xi7 X) = <¢(XZ)7 ¢(X)> (7)

The kernel function can be computed efficiently and solvepttodlem of mapping the samples to the potentially
high dimensional feature space.

Radial basis function is used as the kernel in this paperchwis defined by
1 2
K(xi, x) = exp(——xi —x]) 8)

whereo > 0 is the parameter to determine the width of the radial basistfan. It controls the flexibility of the
classifier. Wherv decreases, the flexibility of the resulting classifier inirfgtthe training data increases, and

this might easily lead to over-fitting.
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Around 15% of the proteins in LigASite (40 proteins) are stdd as the training set of SVM since we found
that the results are only slightly different with more piogeas training data. Moreover, since the number of
grid points of each protein is very large, more proteins wédlise the training time to increase greatly. Based
on the consideration of interpretability, only 15% (40 ios) are selected as the training set. The training data
are selected randomly with the same distribution of enzyype ts that of the whole dataset (shown in Fig. 3).

The protein used in the training set are shown in Table 1.

TABLE |

TRAINING DATA SET.

1pKj 3gd9 1If3 3lem 1llo
lybu 4tpi 3h72 2jde 1rn8
2v8l 1x2b 1997 2zhz 3a0t
1026 lrzu 1znz lojz 1sqf
2gga 3gh6 3d1g 2jgv 1dy3
Lyl 2elt 2ywm lkwc 2928

3d4p 2Wyw 2dtt 1tjw 2zal

2art lu7z 3gid lilh 2wla

Like most of the datasets in bioinformatics, the datased irs¢his paper also encounters the problem of being
imbalanced, i.e. the number of positive samples (the gridtp@f binding site) is much less than the negative
samples (the other grid points). Under-sampling is appitededuce this problem. After several experiments,
the one proper proportion between the negative sampleshanpasitive samples is 2:1. Therefore, the negative
samples are selected randomly to get this ratio in the trgiset.

The flowchart for the prediction of protein-ligand bindinitesis shown in Fig. 8. The training dataset is built
with the 29 attributes of each grid point by using ConCavitggram and the 3D grid space is set ad.1The
training set undergoes random under-sampling, so thatdtie 2:1 between the negative and positive samples

can be obtained. SVM is applied on the re-sampled trainingssérm the classification model. This model
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is used later to classify the grid points of the testing prste The prediction datasets of each testing protein
are also built with the 29 attributes by using ConCavity pamg. Both the learning and classifying process of
SVM are used in the SVI" program. From previous studies, the cavities with volumalsthan 10042 are

ignored since ligands are not likely to be bound in small tiewi

Generate 3D grid

v

Calculate the features of
each grid point

!

Apply under-sampling to
balance the training set

!

Execute SVM to form
classification model

!

Use the model to classify
the grid points of
testing dataset

!

Ignore the cavity with
too small volume (100 A3)

!

Calculate the results

Fig. 8. The flowchart for prediction of protein-ligand bindi site.
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IV. EVALUATION

To evaluate and compare our method to the others, the sarf@mpance measurement should be used. We

have applied two different measurements on different nustland datasets.

A. Dataset of LigAsite

For this dataset, grid points are used to represent the ftémnding sites. If a grid point is clustered as
not suitable for binding ligands, a zero value will be assmjto it. Therefore, the prediction of ligand binding
sites can be represented by non-zero values of the grid, peiith represent the potential of binding sites. The
prediction can be validated by computing the differencehwifite grid points of known ligands. We define the
grid points of the ligand atoms calculated from PDB as thetpessamples and the other grid points as the
negative samples.

The terms of precision and recall are introduced [42] to meashe performance of the classification of

imbalanced testing data. The definitions of precision awdllare given as follows:

. TP
Precision = m (9)
TP
R@CCL” = m (10)

whereT' P is the number of true positiveg, P is the number of false positives adV is the number of false
negatives. The high value of precision indicates that tlealipted positive samples are most likely relevant. The
high value of recall indicates that most of the positive slesmpgan be predicted correctly.

Another term calledF’ — measure [42], which is a function of precision and recall, is intraadl. It is a
popular evaluation metric for imbalanced problems. In gple, F' — measure represents a harmonic mean

between precision and recall. It is defined as follows:

9 .
* precision *x recall (11)

F — measure = —
precision + recall

The area under the receiver operating characteristic (RQ&e (AUC) is also commonly used to measure the

performance of classification. The AUC metric [43] is the lmbility of correctly identifying a random sample
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and can be defined as:

1+ Recall — F P,y

AUC = 5

(12)

where Recall is defined in (10) and? Pz = %, FP is the number of false positives afdV is the

number of true negatived: P..;. defines the percentage of true negatives cases misclassifipdsitives.

B. 198 Drug-target Complexes for Testing

After the grid points of potential binding sites are preditby SVM, the top three largest sites [34] are selected
and each site is represented by a grid point in the center {84] has also proved that most of ligands bind to
large pockets. Therefore, they suggested an evaluatiohatidbr comparing the top three largest sites only.

First, the real binding sites are defined from PDB and eachisitepresented by a grid point in the center
of it. These grid points of real binding sites are compareth e top three largest predicted sites. There are
sometimes more than one binding site within a protein. A jotexh is counted as a hit if at least one binding stie
in the given protein can be located correctly. Using the sapproach of [34], the top 1 to top 3 binding sites
are evaluated separately. The success rate is calculatidn bgllowing equation to compare the performance of

different methods:

N
success_rate = —1L (13)
Np

where Ny 7 is the number of proteins that at least one binding sites eaidated correctly and/p is the total

number of proteins in the dataset.

V. RESULTS

In this paper, the value ef in (8) is set to the usually chosen value of 1, the valu€’gf.., of ; in (4) is set
to 1, and the value of’ in (4) is equal ton/(>_} | x; - x;) = 0.7635, wherex; is thei-th vector in the training
dataset ana is the number of samples in the dataset. The reason of clgpthese SVM parameter values is as
follows. Table Il shows the validation results for diffetgrarameters of the SVM classifier. Six random proteins
from different enzyme classes are chosen to generate tfdatiah dataset. They are 2cwh, 1g6c, 3p0x, 1wxg,

3kco, and 1k54. In the experiment, the valuesradind C o differ from 0.5 to 2. The default value af' is
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TABLE I

PERFORMANCE OF THE PARAMETERS OSVM CLASSIFIER.

¢ Ctactor o F-measure AUC
0.3817 0.5 0.5 0.3089 0.6891
0.3817 0.5 1 0.3053 0.6883
0.3817 0.5 2 0.2991 0.6866
0.3817 1 0.5 0.2756 0.7289
0.3817 1 1 0.2733 0.7295
0.3817 1 0.2687 0.7316
0.3817 2 0.5 0.2358 0.7420
0.3817 2 1 0.2359 0.7416
0.3817 2 0.2345 0.7409
0.7635 0.5 0.5 0.3118 0.6928
0.7635 0.5 1 0.3081 0.6934
0.7635 0.5 2 0.3009 0.6933
0.7635 1 0.5 0.2784 0.7275
0.7635 1 1 0.2767 0.7269
0.7635 1 0.2731 0.7277
0.7635 2 0.5 0.2397 0.7410
0.7635 2 1 0.2409 0.7397
0.7635 2 0.2413 0.7377
1.1452 0.5 0.5 0.3125 0.6943
1.1452 0.5 1 0.3075 0.6940
1.1452 0.5 2 0.3014 0.6955
1.1452 1 0.5 0.2797 0.7260
1.1452 1 0.2781 0.7251
1.1452 1 0.2749 0.7247
1.1452 2 0.5 0.2416 0.7398
1.1452 2 1 0.2430 0.7370
1.1452 2 0.2443 0.7343

0.7635 and it differs from a half to double of the default \walThe results show that the increased F-measure
may lead to the decreasing of AUC and the difference betweemparameters is not significant. Therefore, the

default values of each parameter are set to get a balanced®tA-measure and AUC.

A. Dataset of LigASite

In the first experiment, six enzyme classes are selectednpae our method with four other methods. They

are LIGSITE, SURFNET, PocketFinder and ConCavity. Both &IGE and SURFNET used geometric charac-
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teristics to predict the ligand binding site. PocketFindsed energy criteria and ConCavity used both geometric
and sequence conservation properties to do the predidiionthe grid points determination, LIGSITE applied
a threshold with the value of 5.5, SURFNET and PocketFinééerthine the threshold value by considering the
mean and standard deviation of the grid values. ConCavitliepa binary search to the grid points. The search
was made by considering different specified properties dasethe sizes and shapes of the pockets. Only the
grid points, which met all the properties, were selected.
The success rate is calculated in terms of he- measure in (11) andAUC in (12). The F' — measure

and AUC of the training data set are shown in Table Ill. Both resuftsampled and non-sampled training
data are given. The results of sampled training data are ldssification outcome of the training set that is
used to learn the classification model of SVM. As mentionefbrige random under-sampling is applied before
the SVM training to tackle the problem of imbalanced datasée results of non-sampled training data are the
classification results of the training set provided by tlaned SVM without applying any under-sampling. The

other 85% of the selected proteins are then used as testingaltest the performance of our method.

TABLE 11l

SUCCESSRATE OF TRAINING DATA.

Dataset F-measure AUC
Sampled Training Data 0.8150 0.8585
Non-sampled Training Data 0.3360 0.8417

For testing data, the results in Table IV show that our metbawl classify the grid points correctly with a
high value of AUC. The other methods always define the pockets with 0 C since the thresholds of the
grid points are not always suitable to the proteins and onky property of protein is considered. The thresholds
may be wrongly set by the user. On the contrary, we do not defigethreshold for our method. We use SVM
to train the system and cluster the grid points which are rikstly to bind with ligands. The results also show
that the success rate is not sensitive to the enzyme cldssggsdteins belong to. Both — measure and AUC
show a small difference of values (around 10%) among the rsbyree classes.

Table V shows theg” — measure and AUC of testing datasets in different numbers of chains. Theltesan



TABLE IV

SUCCESSRATE OF TESTING DATA IN SIX ENZYME CLASSES

Type Method F-measure AUC
Transferase Our Method 0.3338 0.8162
LIGSITE 0.1622 0.6615
SURFNET 0.2806 0.6516
PocketFinder 0.08970 0.6353
ConCavity 0.3195 0.6588
Hydrolase Our Method 0.3376 0.7548
LIGSITE 0.0982 0.6026
SURFNET 0.2577 0.6332
PocketFinder 0.07476 0.6132
ConCavity 0.2963 0.6562
Oxidoreductase Our Method 0.3895 0.8208
LIGSITE 0.2044 0.6705
SURFNET 0.3142 0.6467
PocketFinder 0.1255 0.6396
ConCavity 0.3314 0.6441
Lyase Our Method 0.3025 0.8464
LIGSITE 0.1507 0.7101
SURFNET 0.2709 0.6698
PocketFinder 0.06788 0.6349
ConCavity 0.3292 0.6933
Ligase Our Method 0.3453 0.8407
LIGSITE 0.1540 0.6831
SURFNET 0.2823 0.6612
PocketFinder 0.07515 0.63915
ConCavity 0.3750 0.6988
Isomerase Our Method 0.3442 0.7839
LIGSITE 0.1758 0.6685
SURFNET 0.2497 0.6341
PocketFinder 0.1205 0.6236
ConCavity 0.2519 0.6177
Overall Our Method 0.3422 0.8105
LIGSITE 0.1576 0.7993
SURFNET 0.2759 0.6494
PocketFinder 0.07133 0.6310
ConCavity 0.3172 0.6615
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be interpreted by separating into groups. The first groumisng 1 and 2 chains, which has the largest values of
F —measure. The second groups is having 3 and 4 chains while the valugs-ofreasure are in between 0.28
and 0.293. The last groups is having 6 or more chains, whistthw®lowest values af' — measure. Generally,
from the results of these three groups, F-measure decredmasthe number of chains increases, expect when
the number of chains is 5. Fig. 4 shows that there is only op&epr with 5 chains. Therefore, the result of the
case of 5 chains is not sufficient to reflect the trend. Theeshf AUC is insensitive to the number of chains.
The reason is that more chains of the proteins means morelicateg proteins’ structure and the number of
potential pockets on the proteins’ surface increases. Téibad predicts some extra pockets which are not true

binding sites.

TABLE V

SUCCESSRATE OF TESTINGDATA IN DIFFERENTNUMBERS OFCHAINS.

No. of Chains F-measure AUC
1 0.3427 0.7950
2 0.3674 0.8057
3 0.2803 0.7976
4 0.2933 0.8105
5 0.4416 0.8989
>=6 0.2575 0.7956

The grid points classified as binding sites are subject tthvdéurevaluation, which is carried out by computing
the difference with the known bound ligands. Since eachemotould be bound with more than one ligand,
which might be unknown, botli” — measure and AUC may not reach at 1.0 and the results of all methods
cannot reach a very high rate. Therefore, the comprehenssidts are more important. After the binding sites
are found, docking process and many medical experimentsiegded to find a correct ligand to bind to the

protein.

B. 198 Drug-target Complexes for Testing

In the second experiment, 198 drug-target protein complarke used and our method is compared with six other

approaches, based on the evaluation of top three largadingisites. The six other approaches are LIGSFTE
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SURFNET, Fpocket, Q-SiteFinder, ConCavity, and MetaPodK&SITE and PocketFinder are not applied in this
experiment since LIGSITE® and Q-SiteFinder is the extention of them respectively. LABSITE®S, SURFNET,
and Fpocket use geometric characteristics to predict ¢giaadl binding site. Q-SiteFinder uses energy criteria and
ConCavity uses both geometric and sequence conservatipenies to do the prediction. MetaPocket predictes
the binding site by combining eight other approaches. Figh®vs an example of binding sites prediction for
the protein 1p5j. The real ligand is shown in red sticks atabeter and the predicted pockets by all the seven

approaches are shown in spheres with different color.

Fig. 9. The real ligand (red) binding site and the predicteckpts for protein 1p5j. The pockets sites of MetaPocketr(ge), LIGSITE®*

(white), SURFNET (yellow), Fpocket (cyan), Q-SiteFinderagenta), ConCavity (purple), and our method (blue) arevshia spheres.

The success rate of this experiment is calculated by (139. pradiction results of top 1 to top 3 binding sites
for all approaches are evaluated separately. Table VI shibgprediction results of our method and the other
six approaches on the 198 drug-target dataset. Our metho@dddeve the highest success rate among all the
methods. Table VII shows the number of hit proteins amongstven methods on the drug-target dataset. There

are 130 proteins that can have the binding sites correctigtified as the top 1 predictions. There are 37 and 7
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proteins that can have the binding sites correctly ideutifie the top 2 and top 3 predictions respectively. There
are 24 proteins that no associated binding sites can beifiddntorrectly in the top 3 predictions. Our method

can locate the highest number of binding sites among all oaisth

TABLE VI

SUCCESSRATE (%) OF TOP 3 BINDING SITES PREDICTIONS ON198 DRUG-TARGET DATASET.

Method Top 1 Top 1-2 Top 1-3
Our Method 66 84 88
MetaPocket 61 70 74
LIGSITE®® 48 57 61
SURFNET 24 30 34

Fpocket 31 48 57
Q-SiteFinder 40 54 62
ConCavity a7 53 56

TABLE VI

NUMBER OFHIT PROTEINS ON198 DRUG-TARGET DATASET.

Method Top 1 Top 2 Top 3 None
Our Method 130 37 7 24
MetaPocket 121 17 9 51
LIGSITE®™® 95 18 7 78
SURFNET 46 11 8 133

Fpocket 61 34 17 86
Q-SiteFinder 79 28 16 75
ConCavity 93 12 6 87

The reason why our method can outperform the other methottgtsno threshold is set to the grid points
to identify the binding sites. Our method forms a training w&h 29 different properties of some proteins
first, and then applies an SVM to train a classification mo#eially, this model is used to predict the binding
sites of other proteins. Besides, we have applied manyrdiffeproperties of protein, such as the geometric
characteristics, interaction energy between protein ambdon probe, and sequence conservation score, to make

the predictions; while some methods use only one propertgdate the binding sites.

Our method still has some limitations. In some proteins, maling sites can be predicted correctly. In the
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drug-target dataset, 24 proteins cannot have the bindieg kicated correctly. There is also one case in the
LigASite dataset. From these cases, we conclude with thngigations of our method. The first one is that
ligands may bind to a flat region. Since our method tends tdigr¢he binding sites inside a cavity or pocket,
the sites in a flat region are difficult to locate. Ten caseshin drug-target dataset and the case of LigASite
belong to this category. The second limitation is that lggmay bind to small cavities. Since only the top
three largest binding sites are considered in the drugtatgtaset, ligands in small cavities cannot be selected
. There are eleven cases in the drug-target dataset betptgithis category. The third limitation is that the
binding sites may be inside the proteins while only the ptxka the protein surface can be detected. There
are three cases in the drug-target dataset belonged toatt@isgry. Fig. 10 shows three examples of the difficult
structures mentioned above. The real ligands are showrdistieks. The predicted binding sites of our method

are shown in blue spheres.

(a) 1pk2. (b) le7a. (c) 3cog.

Fig. 10. Examples of the three limitations of our method. Thg ligand binds to a flat region. (b) The ligands bind to smallities.

(c) The binding sites are inside the protein.

VI. CONCLUSION

The determination of binding sites (pockets) is the preistgufor protein-ligand docking and an important
step of structure-based drug design. The prediction of thé&em-ligand binding site has been investigated in

this paper. SVM is employed to distinguish the binding sités makes use of the properties of geometric
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characteristics, interaction potential, distance frorotgin, conservation score and the grid points nearby to
identify the binding sites. Threshold assignment is no éongeeded to determine the pockets. Distance filter and
random under-sampling are also employed to reduce thet efféarge data size and imbalanced data respectively.
Our approach is compared to LIGSITE, LIGSIPE SURFNET, Fpocket, PocketFinder, Q-SiteFinder, ConCav-
ity, and MetaPocket on the datasets of LigASite and 198 dauget protein complexes. For the LigASite dataset,
the binding sites are represented as grid points and ouoapiprgets better results than the other approaches.
The sites are predicted correctly in 35 % and 80 %Fof measure and AUC respectively. The proposed
method is shown to offer more comprehensive results thaottiers since more proteins fail to have the binding
sites located when other approaches are used. For the 1§8atget dataset, only the top three largest binding
sites are considered and represented as one center poarttosige. The results show that our approach performs
better than the other approaches and predicts the bindiag @rrectly in 66% at top 1 prediction, 84% at top
1-2 prediction, and 88% at top 1-3 prediction. The bindirgssidentification can be treated as a preliminary
step of the docking process. This study can be further dpeelin the application of ligands finding by virtual

screening, docking or de novo drug design.
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