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Abstract

Identification of protein-ligand binding site is an important task in structure-based drug design and docking

algorithms. In the past two decades, different approaches have been developed to predict the binding site, such

as the geometric, energetic and sequence-based methods. When scores are calculated from these methods, the

algorithm for doing classification becomes very important and can affect the prediction results greatly. In this

paper, the Support Vector Machine (SVM) is used to cluster the pockets that are most likely to bind ligands

with the attributes of geometric characteristics, interaction potential, offset from protein, conservation score and

properties surrounding the pockets. Our approach is compared to LIGSITE, LIGSITEcsc, SURFNET, Fpocket,

PocketFinder, Q-SiteFinder, ConCavity, and MetaPocket onthe dataset LigASite and 198 drug-target protein

complexes. The results show that our approach improves the success rate from 60% to 80% at AUC measure

and from 61% to 66% at top-1 prediction. Our method also provides more comprehensive results than the others.
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I. INTRODUCTION

Bioinformatics has been an active research area in the last three decades. It concerns the application of

computational methods to biological problems. Recently, prediction has become a very popular issue in bioinfor-

matics. Example problems include gene’s structure prediction [1] , function prediction [2], protein functional site

identification [3]–[4], and disease classification [5]. Computational approaches have started to take an important

role in bioinformatics for the past two decades because of their ability to handle a huge data size at a relatively

low cost, and the rapid increase of computational power. Theidentification of protein-ligand binding site using

computational approaches is the focus of this paper.

The drug discovery process starts with target identification and validation. This operation searches the causes

of the phenotype of the disease. Protein plays a critical role in causing the symptoms of a human disease.

Activating or inhibiting its function can have a positive effect on the disease [6]. After the relationship between

the target and disease has been found, the next operation of drug discovery is found a method to modify that

target. This consists of protein-protein and protein-ligand (small chemical molecule) interactions.

Taking advantage of the three-dimensional (3D) structure of the protein, structure-based drug design (SBDD)

attempts to contribute to drug discovery [7]. The 3D structure of protein can be obtained experimentally with

x-ray crystallography or Nuclear Magnetic Resonance (NMR)spectroscopy. Another method is to construct the

protein based on its amino acid sequence and a similar protein with a known 3D structure. All this information

can be found from the Protein Data Bank (PDB) [8] or Protein Quaternary Structure file server (PQS) [9], which

show the atomic coordinates and the quaternary structure ofprotein respectively. This has made the SBDD

more and more feasible because the 3D atoms’ arrangements ofproteins allow the prediction of protein and

ligand binding sites, which is an important prerequisite ofSBDD [10]. One famous example use of SBDD is

the inhibition of the HIV protease. The drug is highly effective against HIV [11]. Different approaches can

be applied to find the ligand, such as virtual screening, docking and de novo drug design, when the protein’s
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structure is known [12].

The protein-ligand binding sites are located in the pockets(clefts) on the surface of proteins. The prediction

of pockets has been examined with the information regardingthe proteins’ sequence or structure. The sequence

conservation was analyzed to predict the residues involvedin ligand binding [13]–[14]. The structural informa-

tion includes the studies of geometry and interaction energy of proteins. In POCKET[15], LIGSITE[16], and

SURFNET[17], the studies only use the geometric characteristics and believe that the binding site is usually

located in the largest pocket. On the other hand, some methods like PocketFinder[18] and Q-SiteFinder[19]

focused on the energetic criteria by calculating the van derWaals interaction potential. However, the structure-

based methods are not so capable of tackling the multi-chainproblems of protein. The methods may treat the gaps

among the chains of protein as pockets incorrectly. Therefore, LIGSITEcsc[20] and ConCavity[21] suggeste that

the sequence conservation should be integrated with the structural pocket identification to get the more accurate

binding sites of proteins, particularly the multi-chain proteins.

There is a drawback when binding sites are identified from theabove approaches. The binding sites pre-

dictions of each method were based on different scores, which were calculated from the corresponding protein

characteristics. The simplest method was setting a threshold to help determining the binding sites [16]. If the

score of a point was greater than the threshold, that point would be identified as the binding site. In [18], mean

and standard deviation of the scores were considered on finding the threshold. The results of these approaches

are easily affected by the grid format and the threshold needed to be set carefully; otherwise the results would

not be satisfactory. Machine learning techniques have beenwidely applied in bioinformatics and have shown

satisfactory performance in the binding site prediction [22]–[25]. In this paper, support vector machine (SVM)

is proposed for handling this problem. Moreover, SVM [26]–[29] has shown its high applicability and advantage

on classifying high-dimensional and large datasets in [30]–[31].

The prediction of the binding site can be formulated as a problem of binary classification: discriminating

whether a location is likely to bind the ligand or not. SVM is one of the tools that use supervised learning for

doing classification. It mainly applies two techniques to solve the classification problem: the formulation of a
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large-margin hyperplane and the use of a kernel function. SVM can construct an(n−1)-dimensional hyperplane

in ann-dimensional space to separate the data, where each datum isrepresented by ann-dimensional vector.

We train the SVM to generate the hyperplane by using 29 proteins’ attributes, including the geometric charac-

teristics, interaction energy, sequence conservation, distance from protein, and the properties of the surrounding

grid points. A radial basis function (RBF) is used as the SVM kernel since a non-linear classification model is

needed and RBF is a common kernel to handle this problem. Likemost of the datasets in bioinformatics, the

data of the binding sites have the problem of being imbalanced and in large data scales [32]. Therefore, down

sampling and filtering are also be applied to reduce the data size.

Two experiments are used to evaluate our approach. The first one uses LigASite [33] as the dataset which

is suggested in ConCavity. The predicted binding sites are represented as grid points in this experiment. Our

approach is compared with four other methods. They are LIGSITE, SURFNET, PocketFinder and ConCavity. The

other experiment uses 198 drug-target dataset which is developed in MetaPocket [34]. Only the top three largest

binding sites are predicted and represented as one center point of each site in this experiment. Our approach is

compared with six other methods. They are LIGSITEcsc, SURFNET, Fpocket [35], Q-SiteFinder, ConCavity, and

MetaPocket. Two different measurements are applied since the representations of the binding sites are different

in these experiments.

This paper is organized as follows. In Section II, the prediction methods for binding sites with consideration

of the proteins’ sequence and geometrical structure, and the problem of the evaluation methods are described.

In Section III, the details of SVM and the selected attributes are introduced. The adopted evaluation method is

discussed in Section IV. Section V shows the result of our proposed method and a conclusion will be drawn in

Section VI.

II. PREDICTION OFPROTEIN-L IGAND BINDING SITE

This section describes the three most common approaches of binding site prediction. Then, the problems of

their evaluation methods, which are tackled by our proposedmethod, are discussed.
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A. POCKET and LIGSITE

POCKET [15] is one of the geometry-based methods to define thebinding sites. Firstly, a 3D grid is generated.

Secondly, a distance check is applied on the grid to make surethe atoms of protein do not overlap with the grid

point. All the grid points, which do not overlap with the atoms of protein, are labeled as solvent. If the grid

points outside the protein are enclosed by the protein surface in opposite directions of the same axis (i.e. the

grid points are enclosed by pairs of atoms within the protein), it is called a protein-solvent-protein (PSP) event

(Fig. 1).

Fig. 1. PSP event used to describe the geometric feature of a grid point. It counts the number scanning directions that thepair of protein

atoms can enclose the grid point. For POCKET method, the maximum number of PSP event is three while it is seven for LIGSITE

method.

LIGSITE [16] is an extension to POCKET [15] with the scanningdirections being different. Both of them

considered the identification of PSP events on the basis of atom coordinates. LIGSITE scans for the pockets

along three axes and four cubic diagonals while POCKET only scans three axes. Some value will be assigned

to each grid point, which is actually the number of PSP eventsoccurred in the scanning directions. That means,

the higher the value of a grid point, the more likely the grid point will be a pocket. Fig. 1 shows the PSP events

of two enclosed grid points. This method only focuses on the geometric characteristics and does not consider

any other properties of the protein.
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B. SURFNET

SURFNET [17] is another geometry-based method to define the binding sites. Like LIGSITE, a 3D grid is

generated first. The grid values of SURFNET are calculated bycounting the number of constructed spheres.

Firstly, pairs of relevant atoms are taken within the protein. Then, the testing spheres are formed between the

pairs. If the sphere overlaps with other atoms, the radius decreases until no overlapping occurs (Fig. 2). Only

the distance between two atoms within 10Å is considered. The sphere of radius smaller than 1.5Å is also

ignored. If the grid points are out of the pockets, the distances between pairs of atoms are very large or cannot

be found. On the contrary, if the grid points are inside the pockets, more than one sphere can be formed.

Fig. 2. SURFNET. There are three solid line circles and several dotted line circles in each graph. The top and bottom solidline circles

represent the pair of relevant atoms and the middle one showsthe constructed sphere of a grid point. The dotted line circles represent

the other atoms that surround the testing gris point. The initial sphere in the upper graph overlaps with other atoms. Therefore, its radius

decreases until no overlapping occurs to form the final sphere in the lower graph.
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C. PocketFinder

PocketFinder [18] is an energy-based method of ligand binding site prediction. It uses the van der Waals

interaction energy between the protein and a simple atomic probe to locate the binding sites with high energy. A

3D grid potential map is generated first. The potential at grid pointp is calculated by the Lennard-Jones formula:

V (p) =
N∑

i=1

(
Ci
12

r12pi
−

Ci
6

r6pi
) (1)

whereCi
12 andCi

6 are constants, which are the typical 12-6 Lennard-Jones parameters used to model the van der

Waals interaction energy between the carbon atom placed at the grid pointp and the protein atomi; N is the

total number of protein atoms.r12pi andr6pi are the powers 12 and 6 ofrpi respectively, whererpi is the distance

between the grid pointp and the protein atomi. The first term describes the repulsion between atoms when they

are very close to each other. The second term describes the attraction between atoms at long distance.

D. Sequence Conservation

As not all residues in protein are equally important, conservation analysis is a very useful method to predict

those functionally important residues in the protein sequence [36]–[38]. Sequence conservation has also been

shown to be strongly correlated with ligand binding sites [13]-[14]. Therefore, [21] suggested combining the

sequence conservation and the structure of protein to predict the protein ligand binding sites by weighting every

pair of protein atoms.

E. Problems of evaluation methods

There are several evaluation methods to determine the binding site after the corresponding values are calculated

by the above approaches. The simplest one is to apply a threshold to the grid point value to determine if the grid

points belong to a pocket [16]. This threshold is set to all proteins and does not consider the difference among

them. A poor scenario may cluster most of the grid points as pockets if the threshold is too low, or the number

of pockets is much smaller than that of binding sites if the threshold is too large.

Another method calculates the mean and standard deviation of the grid points’ values to determine the threshold

for each protein [18]. Although this approach calculates the threshold for different proteins, the threshold depends
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on the grid points’ values. If the grids embedded in the protein vary, the mean and standard deviation of the

grid points’ values will be different. That means, the threshold and the number of pockets could be varying for

a particular protein used.

In [21], a binary search for the grid threshold is performed.The binary search produces a culled set of pockets,

which have specified properties based on the sizes and shapesof the pockets. When the method iterates, the

grid points are adjusted until the set of pockets meet all theproperties. Although this approach can consider the

sizes and shapes of the pockets, all the grid thresholds are set by the users, and we do not know which values

of thresholds are suitable for a given protein.

We make use of the characteristics of the above three approaches, which can describe the properties of the

protein-ligand binding sites. To overcome the weakness of the different evaluation methods, we employ the SVM

to achieve the goal. The process of SVM is discussed in the following section.

III. M ETHODOLOGY

In order to alleviate the problems mentioned above, the SVM is applied. This section explains the collection

of datasets and attributes used in this paper first. The details of the SVM classifier follow. Then the overall flow

of our method is described.

A. Datasets

We have used two sets of proteins to evaluate our method. The first one is the non-redundant LigASite (v9.4)

dataset [33], which is suggested in [21]. The other one is the198 drug-target complexes, which are developed

in [34]. For the dataset of LigASite, only six main classes ofenzyme (categorized for 272 protein complexes)

from the dataset are selected. They are transferase, hydrolase, oxidoreductase, lyase, ligase and isomerase, which

occupied around 70% of LigASite. Fig. 3 shows the percentages of the number of proteins distributed among

these six enzyme classes. Fig. 4 shows the number of chains distributed in the selected proteins of LigASite.
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Fig. 3. Percentages of distribution among six enzyme classes. Most of the proteins in LigASite belong to transferase type. The second

is hydrolase. The contribution of the other classes are almost the same.

Fig. 4. Distribution of the number of chains in the selected proteins of LigASite. Most of the proteins have less than three chains.

B. Protein Properties Used for Training and Testing

The structure of proteins with bound ligands are obtained from the Protein Data Bank (PDB) [8], which

is a collection of atomic coordinates and other informationdescribing proteins and other important biological

macromolecules. Structural biologists use methods such asX-ray crystallography, NMR spectroscopy, and cryo-

electron microscopy to determine the location of each atom relative to each other in the molecule.

After the structure of each protein is retrieved, the 3D gridis generated by covering the free-space surrounding
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the proteins. The program is based on the source of ConCavity, which is available on its website. The attributes

of each grid point used in SVM are calculated based on the protein properties in the following:

1) Grid values: These are the two values of each grid point that are calculated by LIGSITE and SURFNET.

They can represent the binding site preference based on geometric characteristics.

2) Interaction potential:This energy is the same as the van der Waals interaction potential of an atomic probe

with the protein [18]. The calculation is done by the PocketFinder method, which is mentioned in Section II.

The Lennard-Jones formula (1) is used to estimate the interaction potential between the protein and a carbon

atom placed at the grid point.

3) Conservation score:Conservation score is obtained from a residue-level analysis to identify which residues

in a protein are responsible for its function. The score of each grid point is the conservation score of the nearest

residue. Jensen-Shannon divergence (JSD) method is chosento calculate the score since it has been shown to

provide an outstanding performance in identifying residues near bound ligands in [38]. It is an open source

program which is freely available in its webpage [38].

4) Distance from protein:The squared distance from each grid point to the closest point on the van der Waals

surface of the protein is calculated. When the grid points are too far from the atoms, they are not likely to be

a pocket. In the experiment, almost 90% of ligand atoms are located within 5̊A of the protein’s van der Waals

surface. Hence, the grid points with the squared distance larger that 5̊A are filtered out in order to reduce the

huge data size.

To explain the relationship between the binding sites and the selected attributes, graphs of probability density

for the normalized attribute values are shown in Fig. 5. The solid line represents the corresponding probability

density for non-binding sites (negative class) and the dotted line represents the corresponding probability density

for binding sites (positive class). Some of the attributes,such as LIGSITE values, SURFNET values, and

interaction potential, show a very high density of small values when the grid points are located at non-binding

sites. On the other hand, these attributes show a small difference on the density when the grid points are located

at binding sites. This difference is shown more clearly in Fig. 6. We can see that the values of these attributes

are relevant to the location of the binding sites. However, it is difficult to use only one property to classify the
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binding sites. Therefore, we propose to use all of them as thefeatures of the training set for an SVM.
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(a) Normalized grid values calculated by LIGSITE.
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(b) Normalized grid values calculated by SURFNET.
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(d) Normalized conservation score.
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(e) Normalized distance from protein.

Fig. 5. Probability density functions of protein properties.

5) Properties of surrounding grid points:All the binding sites are formed by many grid points (the distance

between two grid points is 1̊A [21]), so the properties of the grid points nearby are also relevant features to the

prediction. The six connected points (as shown in Fig. 7) areselected and their properties (1) to (3) as described
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(b) Normalized grid values calculated by SURFNET.
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(c) Normalized interaction potential.

Fig. 6. A zoom-in version of Fig. 5 of properties: (a) LIGSITEvalues, (b) SURFNET values, and (c) Interaction potential.

above are used as the attributes. The point in the middle of the cube in Fig. 7 is the selected grid point to be

classified. There are totally 29 features assigned as the SVMattributes.

C. Classification with Support Vector Machine

Machine learning methods have been applied to predict catalytic sites [22]-[39]. In this paper, one of the

machine learning tools, the support vector machine (SVM), is employed to predict the protein-ligand binding

sites.

To avoid the drawbacks mentioned in Section II, SVM is employed to classify which grid points are most

likely to bind the ligands based on the properties of grid values, interaction potential, sequence conservation

score, distance from protein, and the surrounding grid points. A common kernel, the radial basis function, is

used to construct a non-linear hyperplane. The program called SVMlight is used, which is available from its
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Fig. 7. Six connected grid points of a selected grid point. All the black spots in the graph represent the grid points. The middle one is

the selected gris point to be classified and the larger black spots are the connected grids points: their properties are used as the attributes

of the classification.

website [40].

SVM basically is a binary classifier. Let a vectorx be denoted by[xj ], j = 1, . . . ,m, wherem is the number

of attributes and[xj ] is a point in anm-dimensional vector space. The notationxi is the i-th vector in a dataset

{(xi, yi)}
n
i=1

, whereyi ∈ {−1, 1} is the condition label for a binary classification problem and n is the number

of examples (grid points). To construct the SVM, all training samples are first mapped to a feature space by a

non-linear functionφ(xi). A separating hyperplane in the feature space can be expressed as

f(x) = 〈w, φ(x)〉+ b (2)

=
m∑

j=1

wjφ(xj) + b

wherew is the weight vector andb is the bias.

The optimal separating hyperplane is defined as a linear classifier which can separate the two classes of training

samples with the largest marginal width, and the solutionα = [αi] is obtained by maximizing the following

function:

W (α) =

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyj〈φ(xi), φ(xj)〉 (3)
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subject to:
n∑

i=1

yiαi = 0, i = 1, . . . , n, (4)

where0 ≤ αi ≤ C ∗Cfactor (for positive samples) and0 ≤ αi ≤ C (for negative samples).C is the regularization

parameter controlling the tradeoff between training errorand margin. The larger the value ofC, the larger penalty

is assigned to errors.Cfactor is a cost-factor, which makes the training errors on positive samples outweighing

the errors on negative sampled [41].

In the above optimization problem, only those items withαi > 0 can remain. The samplesxi that lie along

or within the margins of the decision boundary (by Kuhn-Tucker theorem) are called the support vectors. The

weight vector in (2) can be expressed in terms ofxi and the solutionsαi of the optimization function (3):

w =
n∑

i=1

αiyiφ(xi) (5)

whereαi ≥ 0.

Then, the separating hyperplane in (2) becomes

f(x) =

n∑

i=1

αiyi〈φ(xi), φ(x)〉 + b (6)

To avoid the computation of the inner product〈φ(xi), φ(x)〉 in the high dimensional space during the

optimization of (3), the kernel function that can satisfy the Mercer’s condition is introduced:

K(xi, x) = 〈φ(xi), φ(x)〉 (7)

The kernel function can be computed efficiently and solve theproblem of mapping the samples to the potentially

high dimensional feature space.

Radial basis function is used as the kernel in this paper, which is defined by

K(xi, x) = exp(−
1

σ
‖xi − x‖2) (8)

whereσ > 0 is the parameter to determine the width of the radial basis function. It controls the flexibility of the

classifier. Whenσ decreases, the flexibility of the resulting classifier in fitting the training data increases, and

this might easily lead to over-fitting.
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Around 15% of the proteins in LigASite (40 proteins) are selected as the training set of SVM since we found

that the results are only slightly different with more proteins as training data. Moreover, since the number of

grid points of each protein is very large, more proteins willcause the training time to increase greatly. Based

on the consideration of interpretability, only 15% (40 proteins) are selected as the training set. The training data

are selected randomly with the same distribution of enzyme type as that of the whole dataset (shown in Fig. 3).

The protein used in the training set are shown in Table I.

TABLE I

TRAINING DATA SET.

1pkj 3gd9 1lf3 3lem 1llo

1ybu 4tpi 3h72 2j4e 1rn8

2v8l 1x2b 1g97 2zhz 3a0t

1o26 1rzu 1znz 1ojz 1sqf

2gga 3gh6 3d1g 2jgv 1dy3

1jyl 2e1t 2ywm 1kwc 2g28

3d4p 2wyw 2dtt 1tjw 2za1

2art 1u7z 3gid 1i1h 2w1a

Like most of the datasets in bioinformatics, the dataset used in this paper also encounters the problem of being

imbalanced, i.e. the number of positive samples (the grid points of binding site) is much less than the negative

samples (the other grid points). Under-sampling is appliedto reduce this problem. After several experiments,

the one proper proportion between the negative samples and the positive samples is 2:1. Therefore, the negative

samples are selected randomly to get this ratio in the training set.

The flowchart for the prediction of protein-ligand binding site is shown in Fig. 8. The training dataset is built

with the 29 attributes of each grid point by using ConCavity program and the 3D grid space is set as 1Å. The

training set undergoes random under-sampling, so that the ratio 2:1 between the negative and positive samples

can be obtained. SVM is applied on the re-sampled training set to form the classification model. This model



16

is used later to classify the grid points of the testing proteins. The prediction datasets of each testing protein

are also built with the 29 attributes by using ConCavity program. Both the learning and classifying process of

SVM are used in the SVMlight program. From previous studies, the cavities with volume small than 100Å3 are

ignored since ligands are not likely to be bound in small cavities.

Fig. 8. The flowchart for prediction of protein-ligand binding site.
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IV. EVALUATION

To evaluate and compare our method to the others, the same performance measurement should be used. We

have applied two different measurements on different methods and datasets.

A. Dataset of LigAsite

For this dataset, grid points are used to represent the potential binding sites. If a grid point is clustered as

not suitable for binding ligands, a zero value will be assigned to it. Therefore, the prediction of ligand binding

sites can be represented by non-zero values of the grid point, which represent the potential of binding sites. The

prediction can be validated by computing the difference with the grid points of known ligands. We define the

grid points of the ligand atoms calculated from PDB as the positive samples and the other grid points as the

negative samples.

The terms of precision and recall are introduced [42] to measure the performance of the classification of

imbalanced testing data. The definitions of precision and recall are given as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

whereTP is the number of true positives,FP is the number of false positives andFN is the number of false

negatives. The high value of precision indicates that the predicted positive samples are most likely relevant. The

high value of recall indicates that most of the positive samples can be predicted correctly.

Another term calledF − measure [42], which is a function of precision and recall, is introduced. It is a

popular evaluation metric for imbalanced problems. In principle, F − measure represents a harmonic mean

between precision and recall. It is defined as follows:

F −measure =
2 ∗ precision ∗ recall

precision+ recall
(11)

The area under the receiver operating characteristic (ROC)curve (AUC) is also commonly used to measure the

performance of classification. The AUC metric [43] is the probability of correctly identifying a random sample
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and can be defined as:

AUC =
1 +Recall − FPrate

2
(12)

whereRecall is defined in (10) andFPrate = FP
FP+TN

, FP is the number of false positives andTN is the

number of true negatives.FPrate defines the percentage of true negatives cases misclassifiedas positives.

B. 198 Drug-target Complexes for Testing

After the grid points of potential binding sites are predicted by SVM, the top three largest sites [34] are selected

and each site is represented by a grid point in the center of it. [34] has also proved that most of ligands bind to

large pockets. Therefore, they suggested an evaluation method for comparing the top three largest sites only.

First, the real binding sites are defined from PDB and each site is represented by a grid point in the center

of it. These grid points of real binding sites are compared with the top three largest predicted sites. There are

sometimes more than one binding site within a protein. A prediction is counted as a hit if at least one binding stie

in the given protein can be located correctly. Using the sameapproach of [34], the top 1 to top 3 binding sites

are evaluated separately. The success rate is calculated bythe following equation to compare the performance of

different methods:

success rate =
NHIT

NP

(13)

whereNHIT is the number of proteins that at least one binding sites can be located correctly andNP is the total

number of proteins in the dataset.

V. RESULTS

In this paper, the value ofσ in (8) is set to the usually chosen value of 1, the value ofCfactor of αi in (4) is set

to 1, and the value ofC in (4) is equal ton/(
∑n

i=1
xi ·xi) = 0.7635, wherexi is thei-th vector in the training

dataset andn is the number of samples in the dataset. The reason of choosing these SVM parameter values is as

follows. Table II shows the validation results for different parameters of the SVM classifier. Six random proteins

from different enzyme classes are chosen to generate the validation dataset. They are 2cwh, 1g6c, 3p0x, 1wxg,

3kco, and 1k54. In the experiment, the values ofσ andCfactor differ from 0.5 to 2. The default value ofC is
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TABLE II

PERFORMANCE OF THE PARAMETERS OFSVM CLASSIFIER.

C Cfactor σ F-measure AUC

0.3817 0.5 0.5 0.3089 0.6891

0.3817 0.5 1 0.3053 0.6883

0.3817 0.5 2 0.2991 0.6866

0.3817 1 0.5 0.2756 0.7289

0.3817 1 1 0.2733 0.7295

0.3817 1 2 0.2687 0.7316

0.3817 2 0.5 0.2358 0.7420

0.3817 2 1 0.2359 0.7416

0.3817 2 2 0.2345 0.7409

0.7635 0.5 0.5 0.3118 0.6928

0.7635 0.5 1 0.3081 0.6934

0.7635 0.5 2 0.3009 0.6933

0.7635 1 0.5 0.2784 0.7275

0.7635 1 1 0.2767 0.7269

0.7635 1 2 0.2731 0.7277

0.7635 2 0.5 0.2397 0.7410

0.7635 2 1 0.2409 0.7397

0.7635 2 2 0.2413 0.7377

1.1452 0.5 0.5 0.3125 0.6943

1.1452 0.5 1 0.3075 0.6940

1.1452 0.5 2 0.3014 0.6955

1.1452 1 0.5 0.2797 0.7260

1.1452 1 1 0.2781 0.7251

1.1452 1 2 0.2749 0.7247

1.1452 2 0.5 0.2416 0.7398

1.1452 2 1 0.2430 0.7370

1.1452 2 2 0.2443 0.7343

0.7635 and it differs from a half to double of the default value. The results show that the increased F-measure

may lead to the decreasing of AUC and the difference between the parameters is not significant. Therefore, the

default values of each parameter are set to get a balance between F-measure and AUC.

A. Dataset of LigASite

In the first experiment, six enzyme classes are selected to compare our method with four other methods. They

are LIGSITE, SURFNET, PocketFinder and ConCavity. Both LIGSITE and SURFNET used geometric charac-
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teristics to predict the ligand binding site. PocketFinderused energy criteria and ConCavity used both geometric

and sequence conservation properties to do the prediction.For the grid points determination, LIGSITE applied

a threshold with the value of 5.5, SURFNET and PocketFinder determine the threshold value by considering the

mean and standard deviation of the grid values. ConCavity applied a binary search to the grid points. The search

was made by considering different specified properties based on the sizes and shapes of the pockets. Only the

grid points, which met all the properties, were selected.

The success rate is calculated in terms of theF − measure in (11) andAUC in (12). TheF − measure

andAUC of the training data set are shown in Table III. Both results of sampled and non-sampled training

data are given. The results of sampled training data are the classification outcome of the training set that is

used to learn the classification model of SVM. As mentioned before, random under-sampling is applied before

the SVM training to tackle the problem of imbalanced dataset. The results of non-sampled training data are the

classification results of the training set provided by the trained SVM without applying any under-sampling. The

other 85% of the selected proteins are then used as testing data to test the performance of our method.

TABLE III

SUCCESSRATE OF TRAINING DATA .

Dataset F-measure AUC

Sampled Training Data 0.8150 0.8585

Non-sampled Training Data 0.3360 0.8417

For testing data, the results in Table IV show that our methodcan classify the grid points correctly with a

high value ofAUC. The other methods always define the pockets with lowAUC since the thresholds of the

grid points are not always suitable to the proteins and only one property of protein is considered. The thresholds

may be wrongly set by the user. On the contrary, we do not defineany threshold for our method. We use SVM

to train the system and cluster the grid points which are mostlikely to bind with ligands. The results also show

that the success rate is not sensitive to the enzyme classes the proteins belong to. BothF −measure andAUC

show a small difference of values (around 10%) among the six enzyme classes.

Table V shows theF −measure andAUC of testing datasets in different numbers of chains. The results can
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TABLE IV

SUCCESSRATE OF TESTING DATA IN SIX ENZYME CLASSES.

Type Method F-measure AUC

Transferase Our Method 0.3338 0.8162

LIGSITE 0.1622 0.6615

SURFNET 0.2806 0.6516

PocketFinder 0.08970 0.6353

ConCavity 0.3195 0.6588

Hydrolase Our Method 0.3376 0.7548

LIGSITE 0.0982 0.6026

SURFNET 0.2577 0.6332

PocketFinder 0.07476 0.6132

ConCavity 0.2963 0.6562

Oxidoreductase Our Method 0.3895 0.8208

LIGSITE 0.2044 0.6705

SURFNET 0.3142 0.6467

PocketFinder 0.1255 0.6396

ConCavity 0.3314 0.6441

Lyase Our Method 0.3025 0.8464

LIGSITE 0.1507 0.7101

SURFNET 0.2709 0.6698

PocketFinder 0.06788 0.6349

ConCavity 0.3292 0.6933

Ligase Our Method 0.3453 0.8407

LIGSITE 0.1540 0.6831

SURFNET 0.2823 0.6612

PocketFinder 0.07515 0.63915

ConCavity 0.3750 0.6988

Isomerase Our Method 0.3442 0.7839

LIGSITE 0.1758 0.6685

SURFNET 0.2497 0.6341

PocketFinder 0.1205 0.6236

ConCavity 0.2519 0.6177

Overall Our Method 0.3422 0.8105

LIGSITE 0.1576 0.7993

SURFNET 0.2759 0.6494

PocketFinder 0.07133 0.6310

ConCavity 0.3172 0.6615
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be interpreted by separating into groups. The first group is having 1 and 2 chains, which has the largest values of

F −measure. The second groups is having 3 and 4 chains while the values ofF −measure are in between 0.28

and 0.293. The last groups is having 6 or more chains, which has the lowest values ofF −measure. Generally,

from the results of these three groups, F-measure decreaseswhen the number of chains increases, expect when

the number of chains is 5. Fig. 4 shows that there is only one protein with 5 chains. Therefore, the result of the

case of 5 chains is not sufficient to reflect the trend. The values ofAUC is insensitive to the number of chains.

The reason is that more chains of the proteins means more complicated proteins’ structure and the number of

potential pockets on the proteins’ surface increases. The method predicts some extra pockets which are not true

binding sites.

TABLE V

SUCCESSRATE OF TESTINGDATA IN DIFFERENTNUMBERS OFCHAINS.

No. of Chains F-measure AUC

1 0.3427 0.7950

2 0.3674 0.8057

3 0.2803 0.7976

4 0.2933 0.8105

5 0.4416 0.8989

>= 6 0.2575 0.7956

The grid points classified as binding sites are subject to further evaluation, which is carried out by computing

the difference with the known bound ligands. Since each protein could be bound with more than one ligand,

which might be unknown, bothF − measure andAUC may not reach at 1.0 and the results of all methods

cannot reach a very high rate. Therefore, the comprehensiveresults are more important. After the binding sites

are found, docking process and many medical experiments areneeded to find a correct ligand to bind to the

protein.

B. 198 Drug-target Complexes for Testing

In the second experiment, 198 drug-target protein complexes are used and our method is compared with six other

approaches, based on the evaluation of top three largest binding sites. The six other approaches are LIGSITEcsc,
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SURFNET, Fpocket, Q-SiteFinder, ConCavity, and MetaPocket. LIGSITE and PocketFinder are not applied in this

experiment since LIGSITEcsc and Q-SiteFinder is the extention of them respectively. AllLIGSITEcsc, SURFNET,

and Fpocket use geometric characteristics to predict the ligand binding site. Q-SiteFinder uses energy criteria and

ConCavity uses both geometric and sequence conservation properties to do the prediction. MetaPocket predictes

the binding site by combining eight other approaches. Fig. 9shows an example of binding sites prediction for

the protein 1p5j. The real ligand is shown in red sticks at thecenter and the predicted pockets by all the seven

approaches are shown in spheres with different color.

Fig. 9. The real ligand (red) binding site and the predicted pockets for protein 1p5j. The pockets sites of MetaPocket (orange), LIGSITEcsc

(white), SURFNET (yellow), Fpocket (cyan), Q-SiteFinder (magenta), ConCavity (purple), and our method (blue) are shown in spheres.

The success rate of this experiment is calculated by (13). The prediction results of top 1 to top 3 binding sites

for all approaches are evaluated separately. Table VI showsthe prediction results of our method and the other

six approaches on the 198 drug-target dataset. Our method can achieve the highest success rate among all the

methods. Table VII shows the number of hit proteins among theseven methods on the drug-target dataset. There

are 130 proteins that can have the binding sites correctly identified as the top 1 predictions. There are 37 and 7
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proteins that can have the binding sites correctly identified as the top 2 and top 3 predictions respectively. There

are 24 proteins that no associated binding sites can be identified correctly in the top 3 predictions. Our method

can locate the highest number of binding sites among all methods.

TABLE VI

SUCCESSRATE (%) OF TOP 3 BINDING SITES PREDICTIONS ON198 DRUG-TARGET DATASET.

Method Top 1 Top 1-2 Top 1-3

Our Method 66 84 88

MetaPocket 61 70 74

LIGSITEcsc 48 57 61

SURFNET 24 30 34

Fpocket 31 48 57

Q-SiteFinder 40 54 62

ConCavity 47 53 56

TABLE VII

NUMBER OF HIT PROTEINS ON198 DRUG-TARGET DATASET.

Method Top 1 Top 2 Top 3 None

Our Method 130 37 7 24

MetaPocket 121 17 9 51

LIGSITEcsc 95 18 7 78

SURFNET 46 11 8 133

Fpocket 61 34 17 86

Q-SiteFinder 79 28 16 75

ConCavity 93 12 6 87

The reason why our method can outperform the other methods isthat no threshold is set to the grid points

to identify the binding sites. Our method forms a training set with 29 different properties of some proteins

first, and then applies an SVM to train a classification model.Finally, this model is used to predict the binding

sites of other proteins. Besides, we have applied many different properties of protein, such as the geometric

characteristics, interaction energy between protein and carbon probe, and sequence conservation score, to make

the predictions; while some methods use only one property tolocate the binding sites.

Our method still has some limitations. In some proteins, no binding sites can be predicted correctly. In the
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drug-target dataset, 24 proteins cannot have the binding sites located correctly. There is also one case in the

LigASite dataset. From these cases, we conclude with three limitations of our method. The first one is that

ligands may bind to a flat region. Since our method tends to predict the binding sites inside a cavity or pocket,

the sites in a flat region are difficult to locate. Ten cases in the drug-target dataset and the case of LigASite

belong to this category. The second limitation is that ligands may bind to small cavities. Since only the top

three largest binding sites are considered in the drug-target dataset, ligands in small cavities cannot be selected

. There are eleven cases in the drug-target dataset belonging to this category. The third limitation is that the

binding sites may be inside the proteins while only the pockets on the protein surface can be detected. There

are three cases in the drug-target dataset belonged to this cateogry. Fig. 10 shows three examples of the difficult

structures mentioned above. The real ligands are shown in red sticks. The predicted binding sites of our method

are shown in blue spheres.

(a) 1pk2. (b) 1e7a. (c) 3cog.

Fig. 10. Examples of the three limitations of our method. (a)The ligand binds to a flat region. (b) The ligands bind to smallcavities.

(c) The binding sites are inside the protein.

VI. CONCLUSION

The determination of binding sites (pockets) is the prerequisite for protein-ligand docking and an important

step of structure-based drug design. The prediction of the protein-ligand binding site has been investigated in

this paper. SVM is employed to distinguish the binding sites. It makes use of the properties of geometric
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characteristics, interaction potential, distance from protein, conservation score and the grid points nearby to

identify the binding sites. Threshold assignment is no longer needed to determine the pockets. Distance filter and

random under-sampling are also employed to reduce the effect of large data size and imbalanced data respectively.

Our approach is compared to LIGSITE, LIGSITEcsc, SURFNET, Fpocket, PocketFinder, Q-SiteFinder, ConCav-

ity, and MetaPocket on the datasets of LigASite and 198 drug-target protein complexes. For the LigASite dataset,

the binding sites are represented as grid points and our approach gets better results than the other approaches.

The sites are predicted correctly in 35 % and 80 % ofF −measure andAUC respectively. The proposed

method is shown to offer more comprehensive results than theothers since more proteins fail to have the binding

sites located when other approaches are used. For the 198 drug-target dataset, only the top three largest binding

sites are considered and represented as one center point of each site. The results show that our approach performs

better than the other approaches and predicts the binding sites correctly in 66% at top 1 prediction, 84% at top

1–2 prediction, and 88% at top 1–3 prediction. The binding sites identification can be treated as a preliminary

step of the docking process. This study can be further developed in the application of ligands finding by virtual

screening, docking or de novo drug design.
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