
                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              1 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

Using an ICN Approach to Support Multiple 

Controllers in OpenFlow 

Ameen Banjar, Pakawat Pupatwibul, Abdallah AL Sabbagh, and Robin Braun 
Centre for Real-Time Information Networks (CRIN) 

University of Technology, Sydney 

Sydney, Australia 

{ameem.r.banjar, pakawat.pupatwibul}@student.uts.edu.au, {abdallah.alsabbagh, robin.braun}@uts.edu.au

 

Abstract—  Information Centric Networking (ICN) is an 

innovative direction for next generation networks. It is a concept 

of networking paradigm which is considered as a new technique 

for future search activities. ICN is based on caching contents in 

several nodes and replicating these contents. It provides contents 

requested by users from the nearest node instead of creating a 

communication channel between sender and receiver just for 

calling information. This paper aims to scale OpenFlow network 

in traffic engineering by reducing number of transactions, 

predicting and pre-populating flow entries using the ICN 

approach. In addition, the paper shows the advantages of 

implementing ICN designs within OpenFlow. The proposed 

approach aims to implement ICN concepts to enhance OpenFlow 

network. This will enable the deployment of networking solutions 

in the existing network infrastructure and will lead to more 

flexibility in OpenFlow network. In addition, OpenFlow will have 

a global management view for all connected networks managed 

by different controllers. The proposed solution can fulfill current 

management and utilization of network demands. The paper then 

debates the implementation of ICN’s design and features based 

on Software Defined Networking (SDN).  

Index Term— Named Data Object; Information Centric 

Networks; Software-Defined Networks; Next Generation 

Network.  

I.   INTRODUCTION 

Software Defined Networking (SDN) has become an 

interesting research area where OpenFlow instantiates the first 

standard implementation of this paradigm [1], [2]. SDN offers 

the network to be programmable. It allows programmers to 

change the network behaviour by implementing applications on 

the network’s control plane which is called as a controller [3], 

[4]. This controller is logically centralized; however, it controls 

the connected distributed switches using its applications which 

can operate on a global network view [1]. SDN architecture 

provides three type of abstractions which are global 

management, state distribution and forwarding abstraction [5]. 

The global abstraction allows programmers to interact with the 

entire network instead of interacting with each individual node. 

The other abstraction is the state distribution, where a 

computational algorithm is created the central controller for the 

network process. The forwarding abstraction is provided to 

program network hardware through a common Application 

Programming Interface (API) [5], [6]. A challenging question 

is that, can the performance of the centralized controller 

achieve proper responsiveness and scalability. This paper 

argues that the control plane should be physically distributed to 

achieve those goals. This is because that the physical 

centralized controller is insufficient and has some limitations in 

terms of responsiveness and scalability [7], [8].  

The main focus of this paper is to propose an approach that 

can improve the velocity process of forwarding, which is based 

on flow table that contains flow entries. The flow entries guide 

the flows to reach their destinations [9], [10], [2]. In addition, 

these flow entries can be updated by two methods: proactive 

and reactive [11]. The proactive rule starts when OpenFlow 

switches initiate connection with the controller which can pre-

populate the flow table with all possible ingress and egress 

ports; therefore, the flows will be processed to reach their 

destinations [11]. However, when the OpenFlow switch 

receives an unknown flow, it will follow the reactive rule, 

which sends the flow to the connected controller where it 

processes and updates the flow entries [9], [2]. The 

implemented flow rules are performing properly. Therefore, the 

paper discusses the process of sending flows to another 

network managed by a different controller. In this scenario, the 

connection between controllers is not an OpenFlow protocol 

[9].  

The increasing number of flows transaction between 

switches and controllers need to be resolved [8], [12]. When 

the flows are traversing to a different network managed by a 

different controller, it needs to be processed if there are no 

matching rules. This will lead to network traffic issues. 

Therefore, the Information Centric Networking (ICN) solution 

has been proposed to scale OpenFlow network. 

The proposed approach has been motivated by the 

following advantages of OpenFlow. Firstly, the capability of 

experimenting new protocols in OpenFlow environment 

without disturbing existing organization network [2]. Secondly, 

OpenFlow has the flexibility on disturbances and failures [2]. 

In addition, the implemented solution will allow OpenFlow to 

have a global management view for all connected networks, 

including the networks connected to different controllers. 

Therefore, it is important to reduce the number of transactions 

between switches and controllers in order to provide faster 

delivery to the desired destination [12], [8].  

Some approaches debate the limitation of current 

OpenFlow network such as HyperFlow [13]. However, 

HyperFlow is not sufficient in regards to forwarding flows in 

large scaled networks like data centers. Therefore, this 

proposed approach provides new type of communication 

between controllers, which is not supported by OpenFlow 



                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              2 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

protocol [10]. The communication in the proposed approach 

carries the ICN concept which is replicating flow entries 

among controllers. This will improve OpenFlow’s global 

network management. 

Because ICN is the concept of a new networking paradigm, 

many researchers used ICN in their approaches to replicate the 

data contents such as Data-Oriented Network Architecture 

(DONA) [14], Content-Centric Networking (CCN) and 

Publish-Subscribe Internet Technology (PURSUIT) projects 

[15], [16]. Whereas in our approach, the data objects is 

different than previous approaches where their data contents 

are web pages, video and documents, etc. The differentiation in 

the proposed approach is that the networking information such 

as packets is used instead of normal contents [16]. The packet 

will be embedded with an ICN-ID for the synchronization with 

the other connected controllers. 

Adopting ICN concepts can provide enhancement in the 

forwarding process by synchronizing the network information 

between controllers. In ICN, a number of components can 

fulfill global network management such as Named Networking 

Objects (NNO), routing by ICN-ID, API, and ICN Database. 

The remainder of the paper is organized as follows. Section 

II presents the related works to address the limitations of 

distribute network state upon control plane. In section III, the 

concept, components and some advantages of ICN approach is 

explained. The proposed approach for augmented OpenFlow 

network which is supported by using ICN is introduced in 

Section IV. This will lead to enhance traffic engineering and 

reduce transactions between switches and controllers. Finally, 

the paper is concluded in Section V. 

II. EVALUATION OF MULTIPLE CONTROLLER APPROCHES  

Several approaches in the literature have attempted to 

enhance the control plane by focusing on network global view. 

However, these approaches have limitations. In this paper, we 

introduce a number of factors that could impact on distributed 

control plane, such as timescale and number of interactions 

between switch and controller. In addition, the matching rules 

of micro and macro flows are discussed [17]. Moreover, 

proactive versus reactive flow regarding to populate flow table 

are considered [11]. Those impacts can be considered as 

motivation of our proposal.  

This solution provides a new application that could be 

implemented on the controllers and over the API to 

communicate between controllers. In contrast, the related work 

falls in application and updated synchronization for optimizing 

functionality [18]. As an example, HyperFlow approach has 

multiple controllers to manage the entire network, where each 

controller is respectable for switches assigned to them [13]. 

HyperFlow is an application implemented on top of the NOX 

controller, using some concept of load balancer if one of the 

controllers fails. In addition, HyperFlow reuses an existing 

NOX application with minor modifications [19].  

HyperFlow is based on passive synchronization of events 

between connected controllers for the network global view 

[13]. As a result, HyperFlow gives ability to each controller to 

manage the whole network. It duplicates the controllers rather 

than distributed state management of the control plane. 

HyperFlow is adequate for proactive rules and pre-populating 

flow table; however there are other challenges have not been 

covered [11]. For example, the reactive rules for updating flow 

entry need to be processed by the other controllers, if packet 

needs to. Moreover, HyperFlow focus on synchronizing events 

passively between controllers, which is limit to process the 

micro and macro, flows if it sends to a deferent controller [13], 

[17]. 

Likewise, Onix approach aims to have distributed controllers 

[20]. It provides programming API to communicate between 

network applications. It can also access the network by 

providing control logic using cluster environment that is 

responsible of distributing state of the network. Onix contents 

are distributed by using applications on top of controllers to 

coordinate for management and scalability purposes [20].  Onix 

deals with register per-packet instead of dealing with events 

such as HyperFlow, for less frequent in synchronization. 

Moreover, it provides a Network Information Base (NIB), 

which gives access to several state synchronization frameworks 

with different consistency and availability requirements. Thus, 

using the per-packet registration can scale large networks and 

provide flexibility for production deployments [20]. On the 

other hand, Onix approach lacks of timescale because of long 

processing time when sending the whole packet to other 

controller, which is not faster than transaction between switch 

and controller. Also, it does not support proactive rules where it 

uses per-packet registration [11]. Onix just focus on processing 

the micro and macro flows as distributed state management 

[17]. 

Light upon these two approaches, distributed control plane 

in HyperFlow and Onix are not reliable in large data centers, as 

they are not focused on reducing the timescale and the number 

of transactions between switches and controller [13], [20]. 

Thus, our approach instantiation the centralized paradigm with 

centralized benefits. However, it is scalable and physically 

distributed with the capability of distributed state management 

of controllers. In addition, we use updated synchronization that 

can operate on events, packets, and flows with considering the 

proactively and reactively, micro and macro flow management 

and timescale for transactions.  

 

III. INFORMATION CENTRIC NETWORKING FOR STATE 

DISTRIBUTION MANAGEMENT 

OpenFlow can solve the problems of current networking 

paradigms by deploying the concepts of ICN, in terms of 

scalability and responsiveness. 

Flow processing is the core function of the OpenFlow 

switch, and the independent process by the OpenFlow switch 

and controller will be more flexible by integrating ICN 

concepts [9]. Thus, the core idea is to distribute the network 

state to different networks managed by other controllers, 

aiming to achieve the goals [21]. 

Integrating the 12 matching fields of OpenFlow with ICN-

ID by wrapping them for synchronization purposes will 

enhance the packet processing in the current OpenFlow 



                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              3 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

network. Moreover, there are two ways of matching a packet, 

one is matching micro flow and the other is matching macro 

flow [17]. Where fields assigned by the controller, in macro for 

example can be just IP distention and the rest are wildcard. 

However, for the micro flows every field assigned specifically 

for matching [9]. Thus, the significant impact on packet 

processing is done by the control plane, so our approach aims 

to enhance that without caring about hardware.  

For distributed network state, we employ the ICN approach 

to establish communication between controllers, and use the 

following basic ICN functionality: NNO, routing by ICN-ID, 

API, and ICN Database. These main elements are implemented 

using application hosted within each controller. This section 

will describe these main components, which were the most 

important aspects of the proposed design and other ICN 

approaches. Firstly, the Named Networking Objects (NNO) is 

considered as the main abstraction of ICN. For example, the 

MAC addresses, IP addresses, Ethernet type and all network 

information required for networking that can be accessed from 

the global management view. NNO has a unique name and 

place in the database. Each copy of the same NNO will have its 

own name and location in a deferent database and can serve 

any requests and inform other controllers. Secondly, in this 

approach the ICN-ID is directly routed to the request message 

from the requester to one or multiple controller within the 

network. The routing algorithm is also explained. After the 

source has received the request message, the data is routed 

back to the controllers, which requested those messages. 

Thirdly, API (Application Programming Interface) – this 

defines the request and respond messages to NNO. The other 

controllers create the NNO to be ready for any requests from 

other controllers. In this approach, the synchronization and 

corresponding happens if any new state is available including 

ICN-ID and location for accurate matching for the flows 

arrival. Finally, the ICN Database will store all network state 

and NNOs and accumulate processes for ICN approach, where 

all controllers has its own database and can serve all other 

controllers at initialization phase.  

     ICN can bring many advantages to OpenFlow networks. For 

example, ICN can provide network scalability by distributing 

the flow information and network state across different 

networks managed by multiple controllers. Moreover, in case 

of controller failure, all the affected switches can be 

reconfigured to any active nearby controller. Individual 

controller will directly manage the connected switches as well 

as indirectly programs or queries the rest of network state not 

only in the initialization phase but also upon unknown packet 

arrives. 

IV. OPENFLOW CONTROLLER ENHANCEMENT ALGORITHM   

This section proposes an algorithm by adopting the ICN 

concepts for distributed network state among multiple 

OpenFlow controllers. It also describes a simulation scenario of 

the approach including flowcharts of initialization phase and 

packet processing.    

 

A. The proposed simulation scenario 

This subsection demonstrates the forwarding capabilities of 

multiple OpenFlow controllers by deploying the ICN 

framework to synchronize the events in run time at a line rate. 

Each controller implements an application to collect its own 

network state and install them to the ICN Database. Source 

controller publishes the messages to other controllers via ICN 

interface. On the other hand, other controllers will reply to 

messages that are published in the source controller. 

 

 
 

Fig. 1. Forwarding scenario overview via ICN interface 

 

As shown in Fig. 1, Host A needs to send a packet to Host 

B, which belongs to a different network. When the first packet 

arrives at an OpenFlow switch (we name this first packet a 

“flow request”), the first packet is forwarded to the controller. 

This is because there are no flows configured in the switch's 

flow table that match the packet. The controller then sends 

flooding messages to all managed switches and retrieves the 

switches information for collecting the network state and install 

them in the ICN Database. Connected controllers then initialize 

communication and send Request/Response messages to 

synchronize network state according to each controller’s ICN 

Database. Therefore, at this stage each controller should have a 

network-wide state of all managed switches. Because the 

desired destination Host B is in a different network, the Source 

controller needs to inform other controller that the 

corresponding flow will arrive. As a result, when this flow 

reaches to another network, it does not need to send a flow 

request to the controller again because all the necessary flow 

entries were already installed to every switch along the chosen 

path. This can significantly reduce the number of transactions 

between the switches and the controller. 

 

B. Flow chart of packet processing  

The flowchart of integrating the ICN approach is presented 

in this subsection. It consists of two phases. More details on 

these phases are shown below. Multiple OpenFlow controllers 

which are managing different networks can be more scalable 

by updating wide network information and the ICN Database. 

 



                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              4 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

 
Fig. 2. Flowchart detailing the initialization phase. 

 

Each controller will perform initialize communication with 

the neighbor controllers by sending a Request_Info to get the 

neighbor’s network state and also to publish its own network 

state to neighbor controllers. The Source controller will publish 

NNO response via API using TCP or TLS to all request from 

other connected controllers. In more details, the corresponding 

controller on the other hand will grab its own network state 

from the ICN Database and send NNO response back. The 

same process in reverse will occur to other controllers. At this 

point, the received network state information will then be 

stored in each of the controller’s ICN Database. 

 

 
Fig. 3. Flowchart detailing the packet processes. 

 

Whenever an unknown packet arrives at a certain 

controller, it will first create an event and check the ICN 

Database whether the destination host belongs to its managed 

switches. If YES, the controller will compute the path and 

install the flow entries to their switches. If NO, the controller 

will send a message informing the other controller with the 

destination host that this particular flow will arrive. The 

destination controller will then compute the routing and install 

flow entries to its managed switches according to the network 

state stored in its ICN Database. As a result, when an incoming 

packet arrives at a switch of a different network, it does not 

need to send flow request to the controller again for high-level 

decision makings. The flow will be matched to the predefine 

rules installed earlier.   

 

C. Multiple OF controller application algorithm 

    The algorithm for exchanging network state between 

multiple controllers is presented in this subsection. More 

details on the algorithm of this application are shown below. 

Multiple OpenFlow controllers can be optimised to install 

necessary flow entries for the selected OpenFlow switches by 

initialising communication and exchanging network state 

between connected controllers. This algorithm can be tested in 

labs or can be experimented by using cloud service companies 

such as Amazon web service. 

 

Algorithm 1 Multiple OpenFlow Controllers Application   

# Gather (initialization) all state view for global networks  

Gathering 

      GatherSwitchesState (switches); 

      LearnedMAC (mac addresses); 

      Install networks state into each ICN database;  

      Request networks state from other ICN databases; 

      Update ICN database with the replied networks states; 

End Gathering 

# Packet Processing (sent by OpenFlow switch) 

for all p (where p is packet request sent by OpenFlow switch 

to the controller) 

   if packet is transmitted to a destination that belong to 

       another controller 

         send packet’s header to the destination’s controller; 

         update the destination’s controller’s ICN database; 

         create flow entries in the original controller; 

         install flow entries to chosen path switches within the  

                   original controller; 

         create flow entries in the destination’s controller; 

         install flow entries to chosen path switches within the  

                   destination’s controller; 

   else  

         create flow entries; 

         install flow entries to chosen path switches; 

   end if 

end for 

 

V. CONCLUSION AND FUTURE WORKS 

     This paper proposes an algorithm to enhance multiple 

OpenFlow controllers by integrating ICN concept. The 

proposed approach aims to support the distributed network 

state for all connected networks, which uses different 

controllers for network management. It also aims to reduce the 

interaction between the switches and controllers in order to 

scale both physical distributed controllers and logical 

centralized paradigm. The paper has described the concepts of 



                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              5 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

ICN framework and shows how network state can be 

distributed between different networks managed by multiple 

controllers. The proposed packet migration solution will 

hopefully enhance these controllers to determine the 

appropriate switches that need the installation of flow entries. 

Therefore, it is expected to see a new generation of cloud 

computing for logically centralized controller which is flexible 

and easy to maintain and may even inspire interesting 

proposals from the OpenFlow community showing a wide 

range of innovation opportunities. The future work will be an 

implementation of the designed algorithm and a run of 

experiments using ICN approach in cloud services. 

ACKNOWLEDGMENT 

    This work is sponsored by the Centre for Real-Time 

Information Networks (CRIN) in the Faculty of Engineering & 

Information Technology at the University of Technology, 

Sydney (UTS). 

 

REFERENCES 

[1] S. Shenker, M. Casado, T. Koponen, and N. McKeown, "The future of 

networking, and the past of protocols," Open Networking Summit, 2011. 

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. 

Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation in 

campus networks," ACM SIGCOMM Computer Communication Review, 

vol. 38, pp. 69-74, 2008. 

[3] M. Canini, D. Kostic, J. Rexford, and D. Venzano, "Automating the 

Testing of OpenFlow Applications," in Presented at: The 1st 

International Workshop on Rigorous Protocol Engineering (WRiPE), 

2011. 

[4] P. Pupatwibul, A. Banjar, A. AL Sabbagh, and R. Braun, "An Intelligent 

Model for Distributed Systems in Next Generation Networks," in 

Advanced Methods and Applications in Computational Intelligence, 

Topics in Intelligent Engineering and Informatics, vol. 6, Springer 

International Publishing, Switzerland 2014, pp. 315-334. 

[5] G. Goth, "Software-Defined Networking Could Shake Up More than 

Packets," Internet Computing, IEEE, vol. 15, pp. 6-9, 2011. 

[6] A. Voellmy, A. Agarwal, and P. Hudak, "Nettle: Functional Reactive 

Programming for OpenFlow Networks," DTIC Document2010. 

[7] Z. Cai, A. L. Cox, and T. S. E. Ng, "Maestro: A System for Scalable 

OpenFlow Control," Technical Report TR10-08, 2010. 

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and 

S. Banerjee, "DevoFlow: scaling flow management for high-

performance networks," SIGCOMM-Computer Communication Review, 

vol. 41, p. 254, 2011. 
[9] Open Networking Foundation, "Openflow Switch Specification," 

version 1.3.0 (Wire Protocol 0x04), September 2012.  
[10] A. AL Sabbagh, P. Pupatwibul, A. Banjar and R. Braun, "Optimization 

of the OpenFlow Controller in Wireless Environments for Enhancing 
Mobility," in  13th IEEE International Workshop on Wireless Local 

Networks (WLN’13), in conjunction with the 38th IEEE Conference on 

Local Computer Networks (LCN 2013), Sydney, Australia, October 21-
24, 2013.   

[11] B. Salisbury. (2013, 20-04-2013). OpenFlow: Proactive vs Reactive 

Flows. Available: http://networkstatic.net/openflow-proactive-vs-

reactive-flows/ 

[12] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, "Scalable flow-based 

networking with DIFANE," ACM SIGCOMM Computer Communication 

Review, vol. 41, pp. 351-362, 2011. 

[13] A. Tootoonchian and Y. Ganjali, "HyperFlow: A distributed control 

plane for OpenFlow," in Proceedings of the 2010 internet network 

management conference on Research on enterprise networking, 2010, 

pp. 3-3. 

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. 

Shenker, and I. Stoica, "A data-oriented (and beyond) network 

architecture," in ACM SIGCOMM Computer Communication Review, 

2007, pp. 181-192. 

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, 

and R. L. Braynard, "Networking named content," in Proceedings of the 

5th international conference on Emerging networking experiments and 

technologies, 2009, pp. 1-12. 

[16] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, 

"A survey of information-centric networking," Communications 

Magazine, IEEE, vol. 50, pp. 26-36, 2012. 

[17] B. Salisbury. (2013, 20-04-2013). OpenFlow: Coarse vs Fine Flows. 

Available: http://networkstatic.net/openflow-coarse-vs-fine-flows/ 

[18] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, 

"Logically centralized?: state distribution trade-offs in software defined 

networks," in Proceedings of the first workshop on Hot topics in 

software defined networks, 2012, pp. 1-6. 

[19] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and 

S. Shenker, "NOX: towards an operating system for networks," ACM 

SIGCOMM Computer Communication Review, vol. 38, pp. 105-110, 

2008. 

[20] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. 

Ramanathan, Y. Iwata, H. Inoue, and T. Hama, "Onix: a distributed 

control platform for large-scale production networks," in Proceedings of 

the 9th USENIX conference on Operating systems design and 

implementation, 2010, pp. 1-6. 

[21] F. Long, Z. Sun, Z. Zhang, H. Chen, and L. Liao,   "Research on TCAM-

based Openflow switch platform," in Systems and Informatics (ICSAI), 

2012 International Conference on, 2012, pp. 1218-1221.  

 

Ameen Banjar received his B.Sc from Taibah University (Saudi Arabia) and 

M.I.T advanced from University of Wollongong (Australia). He is currently 

working towards Ph.D. degree in Computing and Communications, at 

University of Technology Sydney UTS, Faculty of Engineering and 

Information Technology. He began his working career as a database designer 

and programmer at Taibah University, Information Technology Centre (ITC) 

in Saudi Arabia, for two years. He has a research interest in network 

management, especially in the area of intelligent agent-based network 

management systems. 

 

Pakawat Pupatwibul is currently working towards the Ph.D. degree in 

Information Systems, faculty of Engineering and IT from University of 

Technology Sydney, Australia, having graduated from Naresuan University 

with a B.Sc. in Computer Science, and Master’s of Information Technology 

from UTS. He has worked attentively as a network administrator for Suan 

Dusit Rajabhat University, a government sponsored university in Thailand, for 

7 years. His research interests include next generation networks, data center 



                                      International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02                              6 

                                                                                                                            141902-6868-IJECS-IJENS © April 2014 IJENS                                                                                              
I J E N S 

network, QoS and network management, especially in the area of intelligent 

agent-based network management systems. 

 

Abdallah AL Sabbagh received his B.Sc in Information Technology and 

Computing (Hons) on 2006 from The Open University (UK), and a Master of 

Engineering Studies (MES) in Telecommunication Networks and a Ph.D. in 

Telecommunication Engineering on 2010 and 2013 respectively from the 

University of Technology, Sydney (UTS), Australia. He is currently a 

Lecturer at the School of Computing and Communications and a Research 

Engineer at the Centre for Real-time Information Networks (CRIN) within the 

faculty of Engineering and Information Technology (FEIT) at UTS. His recent 

research is in the area of networking and distributed computing systems 

including: next generation networks, heterogeneous wireless networks, 

Software Defined Networking (SDN), Information-Centric Networking (ICN) 

and mobile Internet Protocol (IP) networks.  

 

Robin Braun received his B.Sc (Hons) from Brighton University (UK), and 

his M.Sc and Ph.D from the University of Cape Town. He holds the Chair of 

Telecommunications Engineering in the Faculty of Engineering and 

Information Technology of the University of Technology, Sydney, Australia. 

He is an executive member of the Centre for Real Time Information Networks 

(CRIN) at the University of Technology, Sydney (UTS). Prof. Braun was a 

member of staff of the Department of Electrical Engineering of the University 

of Cape Town from 1986 to 1998. He was the founder, and Director of the 

Digital Radio Research Group at the University of Cape Town, which 

supervised over 50 research degree candidates in the years that he was 

attached to it. Prof. Braun is currently a Senior Member of the Institute of 

Electrical and Electronic Engineers of the United States (IEEE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


