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Diversity of peptide toxins from stinging ant venoms
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Abstract 
Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defense against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, hemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.


1. Stinging ant biodiversity
Hymenopterans are among the most speciose group of venomous animals. With approximately 120,000 currently described species (van Emden, 2013), they are significantly more diverse than the major venomous phyla including spiders (44,906 species), snakes (3,496 species), cone snails (3,253 species), sea anemones (3,248 species) and scorpions (1,454 species) (Fautin, 2014; Hallan, 2005; Kohn and Anderson, 2009; Platnick, 2014; Uetz and Hošek, 2014). Among the stinging aculeate Hymenoptera, ants and wasps (superfamily Vespoidea) and bees together with sphecoid wasps (superfamily Apoidea) are sister groups (Johnson et al., 2013). Ants (family Formicidae) evolved from wasp-like ancestors between 115 and 135 million years ago (Brady et al., 2006) and became a diverse taxonomical group with ~13,000 extant species belonging to 21 subfamilies (Agosti and Johnson, 2005; AntWeb, 2014). Due to their ubiquitous nature in terrestrial environments, and the fact that they constitute 15–20% of the animal biomass in tropical rainforests (Hölldobler and Wilson, 1990; Wilson, 1990), ants are arguably amongst the most abundant venomous animals. 
Ants that belong to the subfamilies Formicinae, Dolichoderinae, Aneuretinae and Dorylinae lost their ability to sting during evolution (Fig. 1). Instead, they usually spray their venoms or have a residual, but non-functional, abdominal stinger. Also, it is unclear if the recently discovered subfamily Aenictogitoninae is venomous or not, as only male castes have been seen and females (workers and queens) are yet to be described (Brady et al., 2006). The remaining 16 subfamilies are all stinging ants (Fig. 1) and comprise of ~9,100 extant species. This makes ants taxonomically more diverse than scorpions, snakes and cone snails. However, this biodiversity is not equally distributed within stinging ant subfamilies (Figs. 1 and 2). For example, Myrmicinae is the most speciose ant subfamily, with ~6,500 extant species, with a widespread distribution throughout the world. However, ponerine ants that belong to the subfamily with the second highest number of ants, Ponerinae (~1,200 species), are mainly confined to tropical rainforests (AntWeb, 2014; Johnson et al., 2013). Furthermore, the subfamilies Paraponerinae and Martialinae only contain a single ant species both of which are found in Neotropical areas. Thus, taxonomic diversity varies within each ant subfamily however there is little doubt that ant venoms likely constitute a vast source of unique bioactive toxins.


2. Ant venom functions
Ant venom is composed of a complex mixture of chemicals such as proteins, enzymes, biogenic amines, peptides, hydrocarbons, formic acid and alkaloids (Davies et al., 2004; Kem et al., 2004; Yi et al., 2003). All these compounds are produced by the venom gland, which consists of two free cylindrical elongated and convoluted tubes, linked to a venom reservoir (Ortiz and Mathias, 2006). The venom secreted by the tubular glands is stored in the reservoir, linked to the delivery apparatus and, for example, can deliver up to 130 micrograms of venom after each sting (Schmidt, 1990). The stinger itself is a modified ovipositor located at the distal base of the abdomen. Ants use their venom for several purposes such as a defense against predators/competitors and microbial pathogens, for predation, as well as for social communication (Orivel et al., 2001; Schmidt, 1982). Hence, ant venoms have evolved to carry out many different functions. 
2.1. Offensive venoms
Ants are one of the leading predators of invertebrates in most ecosystems (Brady et al., 2006). They have developed, through natural selection, a vast arsenal of behavioural adaptations and weapons to subdue their prey including trap-mandibles and potent venoms (Casewell et al., 2013). Ant venom has paralytic and lethal effects on many arthropods (Maschwitz et al., 1979; Orivel and Dejean, 2001) and many ants are generalist predators, preying on numerous classes of invertebrates. Nevertheless, many ants are specialised predators and only feed on a restricted group of species. Such specialized hunters prey exclusively on earthworms, isopods, centipedes, millipedes, polyxena, collembolan, termites, other ants or even spider eggs (Cerdá and Dejean, 2011). Solitary hunting is the most common hunting behavior employed by primitive ants such as ponerines. However, many ants have also developed a cooperative hunting behaviour such as army ants exhibiting extreme group hunting behaviour. 
The ecological diversity of ants is also revealed in their preference for various nesting habitats. Predatory ants are primarily ground, or litter-dwelling, predators. However, some ants have evolved predatory behaviors adapted to foraging in trees (arboreal ants) and exhibit adaptions to prevent their prey from escaping by flying away, jumping or dropping. Accordingly, venoms of solitary-foraging, arboreal predatory ants are believed to be more efficient than ground-dwelling species at rapidly immobilising prey (Orivel and Dejean, 2001). Thus, the use of venom as an offensive weapon is likely to be the major driver of the venom composition during evolution. This has been shown with the differing composition and toxicity of venoms from arboreal versus ground-dwelling species of Pseudomyrmex and Pachycondyla (Dejean et al., 2014; Orivel and Dejean, 2001; Touchard et al., 2014b). The wide ranging diet and hunting behaviours of ants are therefore likely to drive major differences among ant venom toxins. 
2.2. Defensive venoms
Eusociality within hymenopteran colonies offers a range of evolutionary advantages including the capability of a mounting a collective defence against vertebrate and other arthropod predators, the ability to gather and store food and nutrients more efficiently, and to specialize in specific tasks, such as to care cooperatively for offspring (Wilson, 1971). Nevertheless, these benefits can only be realized if the colony can defend against large predators who find the large biomass of the colony a potential food source worth their effort, in contrast to preying upon solitary hymenopterans. The evolution of venom in hymenopterans therefore provided a mechanism of defense against large intelligent vertebrate predators and enabled them to develop complex societies. The combination of algesic and lethal actions of ant venom is therefore thought to be critical in the long term evolutionary success of insect stings to deter large predators (Schmidt, 2014). For example, some ant stings are known to be extremely painful for humans. These include stings by fire ants (Solenopsis spp.), ponerine ants (Pachycondyla spp.) or the bullet ant (Paraponera clavata). In particular, bullet ants have been classified as producing the most painful sting among all hymenoptera and the third most painful sting of all venomous animals (Schmidt et al., 1983; Starr, 1985).
It is also clear that some ants, such as the Pogonomyrmex group of harvester ants, have developed venoms primarily for defence against vertebrates (Schmidt and Snelling, 2009). For example, the venom of Pogonomyrmex badius is highly toxic towards mice, but not very toxic towards insects. Therefore, Pogonomyrmex ants do not appear to employ their venom to hunt, but use it exclusively as a deterrent against vertebrate predators (Schmidt and Blum, 1978a, b), akin to the defensive role of bee venom against vertebrates. Some Pseudomyrmecine ants have also evolved a ‘defensive venom’ as part of a mutualistic relationship with myrmecophytes. Myrmecophytes are plants that provide a nesting place for a limited number of ant species, whilst the ants protect the myrmecophyte from defoliating arthropods and browsing mammals by stinging them. Natural selection has allowed ants that are known to have a painful sting to survive in such a habitat to the extent that some ants from the genera Pseudomyrmex and Tetraponera are obligate inhabitants of myrmecophytes. In some cases, ants use their venom in unusual ways. For example, Pachycondyla tridentata ants produce a foaming venom when disturbed and use their venom to paralyze their prey. This release of foam is a defense mechanism which is very effective against other small ants (Maschwitz et al., 1981). 
It is therefore clear that ants have evolved venoms containing numerous toxins to induce pain, discomfort, paralysis and/or death in vertebrate and arthropod predators or prey. This is because protection of the nest, particularly protection of the brood and the queen, is a major concern for worker ants.
2.3. Antimicrobial properties of ant venoms
Ants are eusocial insects that typically live in colonies of relatives with a high population density. This increases the risk of introduction and spread of microbial pathogens. Consequently, ants have evolved strategies to inhibit microbial infections including the development and use of antimicrobial peptides. Firstly, predatory ant species may use their venom to inhibit internal pathogens present in captured prey that are brought back to the colony. In this way, the venom may protect the colony from infections following consumption of the prey species. In the ant venoms studied so far, this activity has been attributed to abundant linear, polycationic cytolytic peptides (see Section 3.1) that demonstrate potent antibacterial activity against both Gram-positive and Gram-negative bacteria (Cologna et al., 2013; Davies et al., 2004; Inagaki et al., 2004; Johnson et al., 2010; Kuhn-Nentwig, 2003; Mackintosh et al., 1995; Mackintosh et al., 1998; Orivel et al., 2001; Rifflet et al., 2012; Viljakainen and Pamilo, 2008; von Sicard et al., 1989; Zelezetsky et al., 2005). More recently, similarity searches of ant genomes have revealed a number of tachystatins (antimicrobial chitin-binding peptides) with an inhibitor cystine knot (ICK) fold, as well as proline-rich abaecin-like, glycine-rich hymenoptaecin-like, insect defensin-like, and crustin-like antimicrobial peptides (Zhang and Zhu, 2012). These peptides may be part of the uncharacterized antimicrobial secretions from the thoracic metapleural or other glands that are spread over certain ants and the nest (Mackintosh et al., 1999; Yek and Mueller, 2011). Nevertheless, there is no evidence that these peptides are present in ant venoms. 
3. Ant venom peptides
Alkaloid-rich ant venoms have been well-studied, particularly among the genera Solenopsis (Brand, 1978; Jones et al., 1996) and Monomorium (Jones et al., 1982; Jones et al., 2003; Jones et al., 2009; Jones et al., 1988). However, proteinaceous venoms remain highly understudied despite the fact that they appear to be very common in both the Poneroid and Formicoid clades of ant venoms. Thus, venoms from Poneroid ants have been shown to be rich in peptides especially venoms from the subfamilies Ponerinae (Cologna et al., 2013; Johnson et al., 2010; Orivel et al., 2001; Torres et al., 2014; Touchard et al., 2014a) and Paraponerinae (Piek et al., 1991a; Piek et al., 1991b; Rykaczewska-Czerwinska et al., 2008). Peptides have also been characterized from the venoms of Formicoid ants belonging to the subfamilies Myrmicinae (Bouzid et al., 2013; Rifflet et al., 2012), Myrmeciinae (Davies et al., 2004; Inagaki et al., 2004; Inagaki et al., 2008a; Lewis et al., 1968; Mackintosh et al., 1998; Wiese et al., 2006; Wu et al., 1998), Pseudomyrmecinae (Touchard et al., 2014b) and Ectatomminae (Arseniev et al., 1994; Nolde et al., 1995; Pluzhnikov et al., 1999).
Peptides are the dominant compounds in most animal venoms and they represent a huge source of structurally diverse and biologically active toxins with high potency and selectivity for a range of targets (King and Hardy, 2013). Despite the clear potential that ant venom peptides represent, their investigation and characterisation remains highly underexplored. To date, only 72 ant venom peptides, from 11 ant species, have been fully sequenced (Fig. 3). This is a very small number in comparison to snakes, cone snails, scorpions or spiders. For example, 922 spider peptide toxins have currently been sequenced from 86 spider species and are available in the ArachnoServer 2.0 (Herzig et al., 2011). Therefore, it has been estimated that more than 98% of arachnid venoms remain completely uncharacterized (Quintero-Hernández et al., 2011), and with ant venoms this figure would be closer to 99.9%.
Until recently, the main reason for the limited number of studies on ant venoms is the small size of ants, and hence the small yield of venom. However, advancements in analytical techniques, particularly in mass spectrometric technologies, has resulted in higher sensitivity and resolving power, allowing for a more extensive exploration of the ant venom peptidome. This review summarizes the current knowledge on the biochemical and pharmacological properties of all peptide toxins sequenced from ant venoms to date. For the purposes of this review, these peptides have been classified based on their structure and classified into three main groups; (i) linear, (ii) dimeric and (iii) inhibitor cystine knot (ICK)-like peptides.
3.1. Linear peptides
Most of the proteomic studies on ant venoms have so far revealed that the majority of the proteinaceous component of ant venoms are small, polycationic linear peptides with masses below 5 kDa (Cologna et al., 2013; Johnson et al., 2010; Orivel et al., 2001; Rifflet et al., 2012). This is consistent with studies performed on other hymenopteran (wasp and bee) venoms (Argiolas and Pisano, 1985; Baptista-Saidemberg et al., 2011; de Souza et al., 2004; Dias et al., 2014; Favreau et al., 2006; Gomes et al., 2014; Mendes et al., 2004; Qiu et al., 2012). Many of these linear peptides have antimicrobial properties and some possess additional insecticidal activity. Examples include ponericins from the neotropical ant Pachycondyla goeldii (Orivel et al., 2001), certain dinoponeratoxins (from Dinoponera australis) (Cologna et al., 2013) and pilosulins from the Australian jack jumper ant Myrmecia pilosula, which have been shown to have antimicrobial activity (Inagaki et al., 2004; Zelezetsky et al., 2005). These antimicrobial peptides demonstrate broad spectrum antibacterial activity and include α-helix antimicrobial peptides, and peptides with homology to the antimicrobial mucroporins, cecropins, brevinins, gaegurins, temporins and demaseptins (Cologna et al., 2013; Davies et al., 2004; Inagaki et al., 2004; Johnson et al., 2010; Kuhn-Nentwig, 2003; Mackintosh et al., 1995; Mackintosh et al., 1998; Orivel et al., 2001; Viljakainen and Pamilo, 2008; von Sicard et al., 1989; Zelezetsky et al., 2005).
3.1.1. Poneratoxin
In 1991, the first ant venom peptide toxin, poneratoxin, was isolated and sequenced (Piek et al., 1991b). Poneratoxin is a 25-residue peptide neurotoxin derived from the bullet ant Paraponera clavata (subfamily Paraponerinae) with no apparent homology to other known peptides (Fig. 4Aa) (Piek et al., 1991a). The 3D NMR structure of poneratoxin has also been determined (Szolajska et al., 2004) and revealed a ‘V’-shaped peptide with two α-helices connected by a β-turn (Fig. 4Ab). It has been shown to modulate voltage-gated sodium (NaV) channels of both vertebrates and invertebrates and blocks synaptic transmission in the insect CNS. Poneratoxin induces long-lasting plateau action potentials and repetitive firing due to the presence of a slowly developing inward sodium current that activates at hyperpolarising potentials. This results from a potential toxin-induced interconversion between a fast and a slow conducting state of the NaV channel (Duval et al., 1992; Hendrich et al., 2001; Szolajska et al., 2004).
3.1.2. Ponericins
Ponericins are a group of 27 peptides characterised from the venom of the ponerine ants, Pachycondyla goeldii (Orivel et al., 2001), P. apicalis, P. inversa (Orivel, 2000) and P. commutata (Touchard and Aili, unpublished data). Ponericins possess amphipathic α-helical structures in polar environments, and have been shown to exhibit haemolysis, antibacterial activity against both Gram-positive and Gram-negative bacteria, as well as insecticidal activity (Orivel et al., 2001). Ponericins have been classified into three different families (‘G’, ‘W’ and ‘L’) based on sequence homology (Fig. 5). The ponericins show considerable sequence homology with other previously characterised peptides. For example, ponericin G peptides show homology to cecropin-like peptides from moths, flies, beetles and butterflies (Lee et al., 2013); ponericin W peptides have homology with the cytolytic peptide bee peptide melittin and gaegurins from frogs (Lee et al., 2011; Palma, 2013); and ponericin L peptides with dermaseptins isolated from the skin of Phasmahyla and Phyllomedusa frogs (Amiche and Galanth, 2011; Nicolas and Amiche, 2013). Given the known actions of these other peptides as cytolytic agents, ponericins may also form amphipathic α-helical structures in cell membranes, although only ponericin W peptides appear to have additional haemolytic actions. This function maybe important in preventing the spread of microbial pathogens in ant colonies following ingestion of contaminated prey or their introduction into their colony following paralysis and subsequent transport of the prey into the colony (Lai et al., 2012).
3.1.3. Dinoponeratoxins
The giant Neotropical hunting ant Dinoponera australis (subfamily Ponerinae) is a solitary foraging, predatory ant whose venom paralyses invertebrates and causes a range of systemic effects in vertebrates (Haddad Junior et al., 2005). Envenomation in humans is rare, although stings have been reported to produce rapid and excruciating pain, diaphoresis, nausea, vomiting, tachycardia and lymphadenopathy (Haddad Junior et al., 2005). Liquid chromatography–mass spectrometry (LC-MS) analysis of the venom identified over 75 proteinaceous components with numerous small mass peptides (429–3214 Da) and a wide range of hydrophobicity and abundance. The six most abundant peptides were sequenced by tandem MS and Edman degradation and named dinoponeratoxins (‘Da’ toxins) (Johnson et al., 2010). Subsequently similar dinoponeratoxin peptides have been isolated and sequenced from the related ant Dinoponera quadriceps - henceforth known as ‘Dq’ toxins (Cologna et al., 2013). All 21 Dq and Da dinoponeratoxins show various degrees of homology with existing linear peptides, and can be separated into six groups (Fig. 6). 
Group I are short 7–9 residue Dq peptides forming a three-member orphan peptide family with no homology to existing peptides (Fig. 6A), and no known biological activity (Cologna et al., 2013). Group II has only one member, Da-1039 (Fig. 6B), with only very limited homology to the uperin family of antibacterial frog skin secretions (Bradford et al., 1996; Steinborner et al., 1997). Group III comprise three 9–11 residue Dq toxins with moderate homology with the temporin family of antibacterial frog skin secretions (Abbassi et al., 2008; Rinaldi and Conlon, 2013; Simmaco et al., 1996). Temporins are one of the largest groups of antimicrobial peptides within the cationic host defence peptide family. They were originally isolated from skin secretions of the frog Rana temporaria, and are amphipathic α-helical peptides of 8–19 residues with a low net positive charge (0 to +3) and C-terminal amidation (Mangoni et al., 2007; Suzuki et al., 2007). The reasonably high homology of the temporin-like Dq toxins would suggest potentially similar biological activity, especially given the conservation of the common Pro and Leu residues found in temporin peptide families (Simmaco et al., 1996; residues in green boxes in Fig 6C). This leucine-rich tail has previously been shown to be important for membrane interaction (Avitabile et al., 2013). The antimicrobial activity of temporins is associated with an alteration of the cytoplasmic membrane permeability, without destruction of cell integrity (Mangoni et al., 2004). Temporins are particularly active against Gram-positive bacteria but most do not affect eukaryotic cells. However, they may act in a more complex way to inhibit various metabolic functions of the cell (Epand and Vogel, 1999; Park et al., 1998).
Group IV is the largest group of dinoponeratoxins and have masses between 1837 and 1984 Da with 17–19 residues. These have significant homology (53–63% similarity) with the antibacterial cationic host defense peptides BmKb (caerin-like) and mucroporin originally isolated from the venom of the scorpions Mesobuthus martensii and Lychas mucronatus, respectively (Dai et al., 2008; Zeng et al., 2004). These antimicrobial peptides are now found in a range of scorpion species and are being investigated as novel anti-infective drugs or lead compounds, for treating antibiotic-resistant microbial infections (Harrison et al., 2014).
Group V is a recently discovered collection of 15 dinoponeratoxins from the venom of Dinoponera quadriceps sequenced from a total of 354 peptides found in this venom (Cologna et al., 2013). These were found to share homology with the ponericin W family, dinoponeratoxins (from D. australis) and poneratoxin. These peptides also revealed both antimicrobial and antifungal activities (Cologna et al., 2013).
Group VI comprises of the ant venom peptides Da-3105 and Da-3177, from the giant Neotropical hunting ant D. australis, which show considerable homology to ponericin G2 and may possess similar bioactivity.
3.1.4. Bicarinalins
Two novel peptides, bicarinalin 1 and P17 (bicarinalin 2) have been isolated and characterised from the venom of the ant Tetramorium bicarinatum (Myrmicinae) from a total of 31 peptides identified in this venom (Rifflet et al., 2012). Interestingly, these peptides show very low homology with known peptide toxins (Fig. 5). Bicarinalin 1 exhibits all the characteristics of an amphipathic helical peptide and has broad and potent antibacterial activity similar to melittin, pilosulin and defensin but with weaker hemolytic activity (Rifflet et al., 2012; Téné et al., 2014). Accordingly, it is being investigated as an anti-infective agent for use against emerging antibiotic-resistant pathogens. Recently the venom gland transcriptome of Tetramorium bicarinatum, one of the world’s most broadly distributed ant species, has also been published (Bouzid et al., 2013). Transcribed T. bicarinatum venom gland ESTs revealed allergenic/cytotoxic peptides, with homology to pilosulins 1, 3 and 5, and paralytic peptide toxins, one of which possesses homology with the insect cytokine precursor uENF2. These allergenic/cytotoxic and paralytic toxins contributed close to 70% of the total EST cDNAs.
3.2. Dimeric peptides
Dimeric peptides are peptides with two subunits that are linked covalently with a disulfide bond (Sarray et al., 2013) and peptide dimerization is currently being investigated as a potential way to increase the activity of certain peptide toxins (Vizzavona et al., 2009). Except for snake venoms (Osipov et al., 2008), a dimeric scaffold in peptides is quite rare in venomous animals, although it has occasionally been reported in the venoms of some scorpions (Zamudio et al., 1997), spiders (Santos et al., 1992) and marine cone snails (Loughnan et al., 2006). In the case of ant venoms, dimeric peptides seem to be common in the subfamilies Ectatomminae, Myrmeciinae and Pseudomyrmecinae (see below), but have not yet been described in other subfamilies. The amino acid sequences and disulfide connectivity of the known dimeric peptide-toxins are reported in Figs. 7–9.
3.2.1. Ectatomins
One of the most potent neurotoxic peptides isolated from ant venoms, is ectatomin (Et-1), from the venom of the ant Ectatomma tuberculatum (Ectatomminae) (Pluzhnikov et al., 1994) and its homologue, ectatomin Et-2 (Pluzhnikov et al., 2000). These peptides are highly basic heterodimeric complexes consisting of two highly homologous amphiphilic polypeptide chains linked together by one inter-chain disulfide bond (Arseniev et al., 1994). Each chain also possesses an intra-chain disulfide bond (Fig. 7A-B). Disulfide bonds render venom peptides resistant to a number of different proteases and environmental extremes resulting in stable peptide toxins (King and Hardy, 2013). The three dimensional structure of Et-1 was determined by NMR and revealed that each ectatomin chain comprises two anti-parallel α-helices linked by a hinge region of four amino acid residues and a disulfide bridge (Fig. 4B) (Nolde et al., 1995). Two other ectatomins (Eq-1 and Eq-2) have also been isolated from the venom of Ectatomma brunneum (previously E. quadridens). These novel Eq ectatomins are also dimeric and linked by one inter-chain disulfide bond. However, they lack the intra-chain disulfide bond present in Et-1 and -2 (Pluzhnikov et al., 2000).
Et-1 appears to account for the major toxic effect of Ectatomma tuberculatum venom causing toxic effects in both mammals and insects (Pluzhnikov et al., 1999). At high concentrations (0.50–1 µM), Et-1 is a pore-forming peptide that inserts into cellular and artificial membranes but is not internalized. It produces hemolytic and cytolytic effects on rabbit erythrocytes, Xenopus laevis oocytes, rat cardiomyocytes and both insect and vertebrate cell lines. In X. laevis oocyte membranes, this arises due to the formation of nonselective cationic channels by two Et-1 molecules and appears to involve binding to lipids rather than a specific receptor. The increase in cell permeability with resultant ion leakage results in cell death (Pluzhnikov et al., 1994; Pluzhnikov et al., 1999). At much lower concentrations (1–10 nM), Et-1 is capable of inhibiting whole-cell L-type calcium currents in isolated rat ventricular myocytes. Importantly, it prevents β-adrenoceptor or adenylate cyclase mediated activation of calcium currents suggesting that Et-1 interacts directly or allosterically with agonist-bound β-adrenoceptors preventing activation of calcium channels further down the signal transduction cascade. The modulation of calcium channels and possibly β-adrenoceptors by Et-1 may underlie its potent toxicity by interfering with the process of muscle contraction, neurotransmitter release and neuromodulation (Pluzhnikov et al., 1999).
3.2.2. Myrmexins
In vitro and clinical studies have shown that Pseudomyrmex triplarinus (Pseudomyrmecinae) ant venom decreases pain and inflammation in patients with rheumatoid arthritis and reduces swelling in animal models of inflammation (Altman et al., 1984; Hink and Butz, 1985; Schultz and Arnold, 1984). Myrmexins are a family of six related polypeptides (myrmexins I-VI) that have been purified from the venom of Pseudomyrmex triplarinus. These peptides are heterodimeric complexes comprising a combination of a short subunit of 29 residues (SS1, SS2 or SS3) and a long subunit of 33 residues (LS1 or LS2) stabilized by two inter-chain disulfide bonds (Pan and Hink, 2000) (Fig. 8). Unfortunately, it is not known at present which of the myrmexin peptides are associated with the anti-inflammatory activity observed with whole venom. Three additional myrmexin-like polypeptides from the venom of the related ant Pseudomyrmex penetrator (one heterodimeric and two homodimeric) have also been identified, however, they are yet to be sequenced (Touchard et al., 2014b). These myrmexins may represent a new class of toxins present in Pseudomyrmecine ants.
3.2.3. Pilosulins
Australian ants of the Myrmecia pilosula species complex (Myrmeciinae), also known as jack jumper ants, have a painful sting that is responsible for around 90% of life-threatening ant sting allergies in Australia (Brown et al., 2003; Douglas et al., 1998; Street et al., 1994). In South Eastern Australia around 2.7% of the population are allergic to Myrmecia pilosula venom, with approximately 50% of allergic people experiencing life-threatening reactions (Brown et al., 2003). The toxicity of the venom appears to result from the presence of a variety of histamine-like, hemolytic and eicosanoid-releasing factors, peptides such as pilosulins, and enzymes including phospholipases, hyaluronidase, and phosphatases (Matuszek et al., 1994a; Matuszek et al., 1992, 1994b; McGain and Winkel, 2002). 
Using cDNA sequencing, two major protein allergens from Myrmecia pilosula sharing a common leader sequence have been identified (Donovan et al., 1993; Donovan et al., 1995; Donovan et al., 1994; Street et al., 1996). They encode the 112 and 75 amino acid prepropeptides Myr p 1 and Myr p 2, respectively (Fig. 9A-B). Pilosulin 1, the mature peptide product from residue 57 to 112 of Myr p 1 (Myr p 1 57 → 112), is a 6048 Da linear allergenic basic peptide that exhibits hemolytic and cytotoxic activity and is one of the major allergens that have been identified in this venom (Donovan et al., 1993; Donovan et al., 1994; Wu et al., 1998). However, pilosulin 1 exists mainly, and sometimes exclusively, as a Val5Ile substituted isoform known as [Ile5]pilosulin 1 (Davies et al., 2004) (Fig. 9A). Pilosulin 1 is also cleaved to form four additional N-terminally truncated isoforms with varying degrees of cytotoxic activity (Fig. 9A).
Pilosulin 2 (Myr p 2 49 → 75) has never been detected in whole venom in its monomeric form (Donovan and Baldo, 1997). However, a des-Gly27 pilosulin 2 peptide (renamed pilosulin 3a) has been found as part of the 5603 Da heterodimeric peptide pilosulin 3. The additional subunit of pilosulin 3 from Myrmecia pilosula is the 23 residue pilosulin 3b (Davies et al., 2004), or the variant pilosulin 3.1b from Myrmecia banksi (Inagaki et al., 2004), thought to be part of the Myrmecia pilosula species complex (Imai et al., 1994) (Fig. 9C). Pilosulin 3 displays antimicrobial activity, and is the major allergen in M. pilosula venom, along with [Ile5]pilosulin 1 accounting for 80% of the total venom peptide content. Pilosulin 4a peptide was originally identified via cDNA cloning (Inagaki et al., 2004) but was not detected in venom, while its Asp31Glu variant pilosulin 4.1a was found to be present only as a homodimeric peptide, pilosulin 4.1 (Wiese et al., 2006) (Fig. 9D). cDNA cloning also revealed the presence of a novel bioactive dimeric peptide pilosulin 5 connected by a single disulfide bond. Synthetic pilosulin 5 dimer causes significant histamine release that maybe related to the weak homology of the peptide to the wasp peptide mastoparan (Inagaki et al., 2008a).
Although the monomeric pilosulin peptides (pilosulin 2, 3.2b, 4 and 5) all show antibacterial and histamine-releasing activities (Inagaki et al., 2004; Inagaki et al., 2008a) and some pilosulins, particularly 3a and to a lesser extent 4.1 and [Ile5]pilosulin 1, are known to be highly allergenic (Wiese et al., 2007), the biological activities of these peptides have not been fully investigated.
3.3. ICK-like peptides
The inhibitor cystine knot (ICK) structural motif is an evolutionary conserved structure that has been found in plants, fungi, viruses, antimicrobial peptides from horseshoe crabs (tachystatins) and the venoms of many organisms such as spiders, scorpions, cone snails, insects (bees) and sea anemones (Barbault et al., 2003; Bloch and Cohen, 2014; Cammue et al., 1992; Gilly et al., 2011; Osaki et al., 1999; Pallaghy et al., 1994; Rodríguez et al., 2014; Zhu et al., 2003). The ICK motif is defined as an embedded ring formed by two disulfide bonds Cys(I-IV) and Cys(II-V) and their connecting backbone segments through which is threaded a third disulfide bond Cys(III-VI), forming a cystine knot. It is invariably associated with a nearby anti-parallel β-sheet and appears to be a highly effective motif for stabilizing peptide structures (Fig. 4D). Peptides with an ICK motif represent attractive scaffolds in drug design because of their inherent chemical stability and resistance to proteases provided by the fold and the wide range of amino acid sequences that can be accommodated in the structure (Craik et al., 2001; Norton and Pallaghy, 1998; Pallaghy et al., 1994; Zhu et al., 2003). While large numbers of ICK peptide toxins have been reported from other arthropod venoms such as spiders and scorpions, only two types of ant venom peptides displaying this structural motif are currently known – Dinoponera ICK-like peptide and SKTXs.
3.3.1. Dinoponera ICK-like toxin
The recent transcriptome analysis of the venom glands of the ant Dinoponera quadriceps (Ponerinae) has confirmed the presence and sequence of the first ICK-like peptide in ant venoms (Torres et al., 2014). This Dinoponera ICK-like peptide is a minor component of the venom of Dinoponera quadriceps but has a VI/VII cysteine framework (–C–C–CC–C–C–) consistent with other ICK toxins (Fig. 4C). This peptide shows limited homology to the ICK toxins ω-theraphotoxin-Hh1a and µO-conotoxin MrVIB peptides found in tarantula and cone snail venoms, respectively, both of which exhibit neurotoxic activity via activity on voltage-gated ion channels (Liu et al., 2006; McIntosh et al., 1995) (Fig. 10).
3.3.2. SKTXs
The venom of the ant Strumigenys kumadori (Myrmicinae) also possesses ICK-like peptides which have been named SKTXs (Inagaki et al., 2008b). SKTXs are thought to modulate NaV channels of Drosophila, however, this study remains unpublished and sequences of these peptides are still unknown.
4. Conclusion and perspectives
Until recently, the low yield of venom from ant species has severely restricted the biochemical and pharmacological characterisation of ant venom peptides. However, advances in the development of miniaturized bioassays and improvements in the sensitivity of mass spectrometry and NMR spectroscopy now allow broader investigations of the small quantities of venom peptides provided by small animals, especially ants. Indeed, mass spectrometry has been used as a method to improve the accuracy of taxonomic findings to reveal cryptic ant species within species complexes (Touchard et al., 2014a). This chemotaxonomic tool can therefore contribute to more rapid species identification and more accurate taxonomies.
The limited number of studies to date has revealed a number of unique structures across a broad range of ant subfamilies that differ from those described in other animal venoms. Given the diversity in ant species and distribution, ant venoms therefore represent vast sources of potentially novel bioactive toxins that could be exploited in drug and bioinsecticide discovery programs. For example, there is increasing awareness that peptides represent an under-utilized source of lead compounds for new therapeutics. Arguably, the largest source of chemical diversity comes from peptides derived from animal venoms. In animal venoms the evolutionary pressure for improved prey capture and/or defence has resulted in complex preoptimised combinatorial peptide libraries with extremely diverse pharmacologies that interact with a wide range of molecular targets. The discovery that these peptides bind to their cognate receptors and ion channels with high affinity and selectivity means that many are now being investigated as sources of lead compounds in therapeutic discovery pipelines (Bosmans et al., 2009; Escoubas and King, 2009; Lewis and Garcia, 2003; Vetter et al., 2011; Vetter and Lewis, 2012). Hence, there is a growing number of novel peptide or peptidomimetic therapeutics appearing on the drug market, or in clinical trials, which are derived from toxins from the venoms of cone snails, snakes, Gila monster, scorpions, spiders and sea anemones. Ants could also provide a unique source of potential therapeutic leads, especially antimicrobials and neuroactive compounds.
Since some venomous animals, particularly arachnids and ants, prey upon insects their venom contains large numbers of insecticidal peptide toxins that have evolved to kill or paralyze insect prey. These toxins often modulate the function of their targets with high insect selectivity, lacking any overt toxicity against their vertebrate counterparts (Bende et al., 2013; Gurevitz et al., 2007; Karbat et al., 2004; Wang et al., 2000; Wang et al., 2001; Windley et al., 2011), which can even extend to unique insect family selectivity (Bende et al., 2014). Hence, many of these toxins are being explored as novel insecticides in biopesticide discovery programs (King and Hardy, 2013; Smith et al., 2013; Windley et al., 2012). The limited number of studies on ant venoms would indicate that potential insect-selective peptide neurotoxins are present in their venoms and could be exploited as novel insecticides leads.
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Fig. 1. Ant subfamily relationships as inferred from molecular phylogenetic studies. Phylogenetic relationships were generated from the S1573 TreeBASE data file (Moreau et al., 2006) using the FigTree v1.4.2 software package (http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic relationships for the subfamilies Aenictogitononae and Martialinae are currently unavailable. During evolution, four subfamilies lost their capacity to sting (blue text). Remaining subfamilies represent stinging ants (brown text). Ant clades are shaded green (Formicoids), red (Poneroids) and yellow (Leptanilloids). Females of subfamily Aenictogitoninae (black text) remain undiscovered and so this subfamily cannot be classified as either stinging or non-stinging. For clarification of colours in this figure, refer to the web version of this article.
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Fig. 2. (A) Species richness of ant subfamilies. Ants have been grouped according to three clades, where LC represents the single genus Leptanilloid clade. Stinging ants are represented by cyan bars and comprise around 70 % of all ant species. Non-stinging ant subfamilies are depicted by brown bars. The total number of species in each subfamily is noted at right of each bar. The Aenictogitoninae subfamily is currently unclassified. (B) Cumulative total number of peptide-toxin sequences reported from ant venom studies since the first described venom peptide (poneratoxin) in 1991, showing the three main structural classes: cyan, linear peptides; brown, dimeric peptides; teal, ICK-like peptides. Ant venom peptides remain barely investigated with only 72 peptides sequenced to date. For clarification of colours in this figure, refer to the web version of this article.
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Fig. 3. (A) Bimodal mass distribution of the 72 characterized peptide toxins from ant venoms. Linear peptides range in mass from 761 to 5275 Da (except pilosulin 1, 6048 Da and [Ile5]pilosulin 1, 6062 Da), while dimeric peptides range from 5603 to 9419 Da. (B) Ant peptide toxin classes. In both panels: cyan, linear peptides; beige, dimeric peptides; teal, ICK-like peptides. For clarification of colours in this figure, refer to the web version of this article.
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Fig. 4. Structures of ant peptide toxins. (Aa) Poneratoxin is a 2754.60 Da linear peptide (UniProtKB Accession POTX_PARCV) with no sequence homology to other peptides. The red star represents C-terminal amidation. (Ab) NMR structure of poneratoxin (PDB Accession 1G92) shows it comprises of two α-helices. (B) NMR structure of ectatomin (PDB Accession 1ECI), a heterodimeric peptide that forms a four-α-helical bundle structure. The intra- and interchain disulfide bonds are labeled for clarity. (C) Homology model of Dinoponera ICK-like peptide modeled on µO-conotoxin MrVIB from the venom of the cone snail Conus marmoreus (PDB Accession 1RMK; UniProtKB Accession CO16B_CONMR). In all panels, the peptide backbone is shown as a gray tube; β-sheets are represented by cyan arrows, α-helices are depicted as green/yellow spirals and disulfide bonds are shown as yellow tubes. The N-terminus (N) and C-terminus (C) of each peptide are also labeled. (D) Schematic representation of an ICK-like peptide. The pseudo knot is formed when one disulfide bridge (CIII-CVI) crosses through a ring formed by two other disulfides (CI-CIV and CII-CV) and the intervening backbone. For clarification of colours in this figure, refer to the web version of this article.
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Fig. 5. Sequence alignment of bicarinalin and three ponericin families of linear peptides. Toxin names boxed in light gray are derived from ants. Identical residues in the peptide sequences are boxed in yellow while conservative substitutions are shown in red italic text. Cysteines are highlighted in black while red stars represent C-terminal amidation. Gaps were introduced to optimize the alignments. Percentage identity (%I) is relative to the first peptide of each family, while percentage similarity (%S) includes conservatively substituted residues. Mcalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. For clarification of colours in this figure, refer to the web version of this article.
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Fig. 6. Alignment of the dinoponeratoxin families of linear peptides. Toxin names boxed in light grey are derived from ants. Identical residues are boxed in yellow while conservative substitutions are shown in red italic text. Numbering is according to the first peptide in each family. Gaps were introduced to optimize the alignments. Red stars indicate an amidated C-terminus and cysteines are highlighted in black. Percentage identity (%I) is relative to the first peptide in each alignment while percentage similarity (%S) includes conservatively substituted residues. Apart from uperin peptides in panel B, only homologies greater than 50% are displayed. MCalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. (C) Residues Leu5, Pro6, and Leu8-11 (numbering from Dq-1288), a common motif within temporin peptide families, are highlighted in green. (D) The residues K(V/L/I)IPS within the red boxes are thought to be critical for function in the scorpion antimicrobial peptide pandinin 2 and the scorpion peptides in panel D (Harrison et al., 2014). (E) Dinaponeratoxin Da-2501 is cleaved at the position marked to generate Da-1585. The blue Met18 in Dinoponeratoxin Dq-1837 (panel D) and Met20 in Dinoponeratoxin Dq-3178 (panel F) indicate residues that are probably oxidized. For clarification of colours in this figure legend, refer to the web version of this article. 
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Fig. 7. Sequences and structures of the ectatomin family of dimeric ant peptides. Identical residues are boxed in yellow while conservative substitutions are shown in red italic text. Cysteines are highlighted in black and the predicted disulfide-bonding pattern is shown in green between the sequences. Gaps were introduced to optimize the alignments. Percentage identity (%I) is relative to the longer (upper) chain for each peptide while percentage similarity (%S) includes conservatively substituted residues. MCalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. The heterodimeric ectatomin Et peptides (A-B) are from Ectatomma tuberculatum while ectatomin Eq peptides (C-D) are from Ectatomma brunneum (formerly E. quadridens). (A) Sequences for ectatomin Et-1 toxins are from UniProtKB Accessions ECAA_ECTTU and ECAB_ECTTU. (B-D) Remaining sequences are from Pluzhnikov et al. (2000). For clarification of colours in this figure, refer to the web version of this article.
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Fig. 8. Sequences and structures of the myrmexin family of heterodimeric peptides from the venom of the ant Pseudomyrmex triplarinus. Each myrmexin is composed of a short subunit (SS1, SS2 or SS3; grey boxes) and a long subunit (LS1 or LS2; grey boxes) linked by two disulfide bonds. Identical residues are boxed in yellow while conservative substitutions are shown in red italic text. Cysteines are highlighted in black and the predicted inter-chain disulfide-bonding pattern is shown in green between the sequences. Gaps were introduced to optimize the alignments. Percentage identity (%I) is relative to myrmexin I while percentage similarity (%S) includes conservatively substituted residues. MCalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. Sequences are taken from Pan and Hink (2000). For clarification of colours in this figure, refer to the web version of this article.
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Fig. 9. Sequences and structures of the pilosulin family of linear and dimeric ant peptides. (A-B) Translated sequences of the linear peptides pilosulin 1 (A; from Myrmecia pilosula; UniProtKB accession MYR1_MYRPI) and pilosulin 2 (B; from Myrmecia pilosula; UniProtKB accession MYR3A_MYRPI). Sequences represent complete prepropeptides, where signal peptides are boxed in white and in lowercase, propeptide sequences are boxed in gray and the mature peptides are boxed in yellow. (A) In addition to the natural variant [Ile5]pilosulin 1, pilosulin 1 undergoes cleavage at the sites marked above the mature peptide sequence to yield four additional peptides, while the residues important for cytotoxic activity and IgE binding are highlighted beneath the sequences. (B) Pilosulin 2 does not appear to be found in venom but undergoes post-translational modification to yield the monomer pilosulin 3a (des-Gly27-Pilosulin 2) that forms the heterodimer pilosulin 3 (C) with the monomer pilosulin 3b (MYR3B_MYRPI). A natural variant, pilosulin 3.1b, can be found in the venom of Myrmecia banksi (MYR3_MYRBA). (D-E) Pilosulin 4.1 (Wiese et al., 2006) and pilosulin 5 (MYR5_MYRBA) are homodimers from Myrmecia banksi. In the case of pilosulin 4.1, cDNA cloning predicted a homodimer of pilosulin 4a (MYR4_MYRBA), but this was not detected in venom and the [Glu31]pilosulin 4 variant (pilosulin 4.1) found in venom is shown. For the dimeric peptides (C-E), cysteines are highlighted in black and the predicted disulfide-bonding pattern is shown in green between the sequences. Red stars indicate an amidated C-terminus. MCalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. For clarification of colours in this figure, refer to the web version of this article.


[image: ]
Fig. 10. Structure and sequence alignment of the Dinoponera ICK-like peptide. The upper panel shows the disulfide bonding connectivity and alignment with homologous peptides. Cysteines are highlighted in black and the predicted disulfide-bonding pattern, similar to other ICK peptides, is shown in green above the sequences. Identical residues are boxed in yellow while conservative substitutions are shown in red italic text. Gaps were introduced to optimize the alignments. Red stars indicate an amidated C-terminus while the blue O11 in conotoxin CaXVIIa indicates a hydroxyproline residue. The lower panel shows the percentage identity (%I) relative to Dinoponera ICK-like peptide while percentage similarity (%S) includes conservatively substituted residues. MCalc, Theoretical monoisotopic mass calculated using GPMAW 9.20 software. For clarification of colours in this figure, refer to the web version of this article.
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Ponericin W1 WLGSALKIGAKLLPSVVGLFKKKKQ 100 100 PCW1_PACGO  Pachycondylagoeidii _ Ant 210868
Ponericin W2 WLGSALKIGAKLLPSVVGLF[QK KKK 82 92 PCW2PACGO  Pachycondylagoeidii  Ant  2708.68
Ponericin Pa Il 2 FILG[ALILK I GAKLLPSVVGL FKK K[Q[Q] 84 88 Orivel, 2000 Pachycondyla apicalis Ant 2695.69
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Ponericin Pi 12 FLWG|AL /|K|[GAGIKL[I SRIVVG|S LIKKKK Q| 46 65 Orivel, 2000 Pachycondyla inversa Ant 2824.75
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Welitin G /l6|a ILklvL s TolLplaL i swilklrIKIR[QIE * 31 58 MELAPIDO  Apis dorsata Bee 284574
Brevinin-1 FILIP VL AG[TA[AK|V VIP|A L FEIK I TK K 28 56 BR1RANBP  Ranabrevipodaporsa  Frog 262748
Brevinin-1PTb FMGIGL /[K[A ATIKIA[L PIAA FEZA | TIKK 28 52 BR1PB_RANPC  Rana picturata Frog 2451.32
Ponericin L Fa 1 s 10 15 2 2 [ % EA_uniProtka 1D | rganism Mew. (02)
Ponericin L2 LLKELWTKIKGAGKAVLGK I|[--[KGL L|* 100 100 PCL2_PACGO Pachycondyla goeldii Ant 2575.67
Ponericin L1 LLKELWTKMKGAGKAVLGK I|--KGL L[* 96 100 PCL1_PACGO Pachycondyla goeldii Ant 2593.62
Ponericin Pi lll1 LLKELWHKKIKGAGKAVLGKI|--KGLL 96 96 Orivel, 2000 Pachycondyla inversa Ant 2603.70
Dermaseptin-J6 GILW|S|K | K[EJAGKA[A V -|K|A AG|K[AAILIGAV ADS V#* 39 48 DMS6_PHAJA Phasmahyla jandaia Frog. 2765.59
Dermaseptin-J5. GILW|SIK | KIE[AGKAIA V -|KIAAG|KIAAILIGAV ANSV#* 39 48 DMS5_PHAJA Phasmahyla jandaia Frog. 2764.61
Dermaseptin-DRG2 RGILW[SIK | KIE[AGK AA[L|-TAAGIKIAA[LIGAV SDAVxX 39 48 DRG2_PHYBI Phyllomedusa bicolor Frog. 2908.66
Dermaseptin-5 GILW|s|K | K|T[AGK[S[V]A ~[K]A A A[KIAAVKAVTNAV 35 45 DMSS_PHYSA _ Phyllomedusa sauvagei _Frog 283868
P17 (Bicarinalin 2) CIF[KE|/ LEK I KA KL * 2538 Rifflet etal, 2012 Totramorium bicarinatum Ant  1571.02
Ponericin Pa IVt GKEKDVFMD|K[L RD[AGIAIG I DYLKHFTHH IVKKKN 12 26 Orivel, 2000  Pachycondylaapicalis At 390.08
Bicarinalin 1 K I[K]I PW|GIK|VIKID FLVGGMK AV * 12 24 Rifflet et al., 2012 Tetramorium bicarinatum Ant 2212.33
1 s 10 15 20 25 | 1 BB UniProtks D _| Organism M. (0a)
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Ponericin G2 GWK D W|L|K|- -|K|GK -~ ---EWLKAIKGPG|/ VIKAAL|-QlA-|A 70 7 Pachycondylagooldii  Ant  3305.88
Ponericin Pi 11 GW[RID W|L N - -|K|GK -~ ---EWLKKKGPGMVIKAAL|-AA-A 70 7 Pachycondylainversa  Ant  3337.82
Ponericin Pi 14 GWK D W[LIK--T[AG|-----[GWLKKKGP[S / LIKA[VV-G|A|-|A 70 7 Pachycondylainversa  Ant  3193.81
Ponericin G4 D FIK DWMK|-~T/AG|-~~-~-~-EWLKKKGPG|/ LKAA[M-A[A|-A 63 73 PCG4_PACGO Pachycondyla goeldii Ant 3162.67
Ponericin Pa I G|FIK DWMK|- ~<[KAG(-~-~---SWLKKKGPAL IKAAM=-QE 60 73 Orivel, 2000 Pachycondyla apicalis Ant 3046.66
Ponericin Pa iz G| MD[L I|K|- ~|KAG|-----[GWLKKKGPAL IKAAL|-QE 60 70 Pachycondyla apicalis __Ant 291069
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Ponericin G7 G[L VID|[VLG=-=[K|V|G|- == ==|G|L /[KK|L L|P G| 30 33 PCG7_PACGO Pachycondyla goeldii Ant 1875.19
Ponericin G& G|L VID|[VLG=-=-K|V[G|- =~ ~==|G|L /KK|LL|P[* 27 30 PCG6_PACGO Pachycondyla goeldii Ant 1817.19
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