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Abstract

This paper reports on the construction and predictive models for an engineered tethered membrane. A key feature of the
engineered membrane is that it provides a controllable and physiologically relevant environment for the study of the elec-
troporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane
is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the mem-
brane there is an electrolyte solution, and a counter gold electrode. A voltage is applied between the gold electrodes and the
current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore.
Modelling the membrane as a dielectric and elastic continuum, we construct a free energy model for pores in the membrane.
The free energy model is constructed using the Poisson-Nernst-Planck (PNP) system of equations with an activity coefficient
to model the steric effects of ions in the electrolyte. The electrical energy required to form a pore is estimated using the PNP
system of equations coupled to the Maxwell stress tensor. The tethers are modelled as Hookean spring anchors to the mem-
brane surface. The conductance of pores in the membrane are estimated using the generalized PNP equations to account for
the finite size of ions, multiple ionic species, and the Stern and diffuse layers present. The population and radii of pores in the
membrane are estimated using asymptotic approximations to the Smoluchowski-Einstein equation that are dependent on the
energy required to form the pores. Using an equivalent circuit model of the tethered membrane, the current is predicted using
the estimated pore population, radii, and the conductance of the pores, and compared with experimentally measured current
for different tethering densities.

*Correspondence: vikramk@ece.ubc.ca

Introduction

Electroporation is a technique that causes the permeability of a biological membrane to increase in response to an applied
electric field. The application of electrochemotherapy for antitumor treatment, protein insertion, gene and drug delivery are all
of significant interest to the pharmaceutical industry (1). Over the past three decades the complex process of electroporation
has been studied both experimentally and theoretically; however, the process is still poorly understood (1, 2). The electro-
poration process can be described as having two stages: the first is the nucleation and destruction of aqueous pores, and the
second is the dynamics of formed pores. The nucleation of pores is currently an active area of research employing stochastic
methods and molecular dynamics simulations (2, 3). The dynamics of created pores are governed by the free energy of the
pores.

Experimental validation of theoretical models of electroporation is very difficult as the size of pores is on the nm scale and
typical electroporation measurements are on the length scale of µm. Since the dynamics of pore radii can not be measured, the
validation of the models is carried out using conductance measurements of the membrane. The validation of the theoretical
models using synthetic bilayer lipid membranes is useful but is not a good representation of physiological systems as effects
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caused by the cytoskeletal network are not present. Using cells in vitro provides a physiological system for validation; how-
ever, it is impossible to fully define the physiological environment which effects properties associated with electroporation.
In this work, the novel engineering and predictive modelling of a tethered lipid membrane platform is presented for the study
of electroporation in a physiologically relevant environment. The key feature of the engineered tethered membrane is that the
experimentalist can select the desired density of tethers and membrane composition (4–7). Using the rapid solvent exchange
technique to construct the membrane also reduces the defect density as compared with membranes constructed using the
frequently used vesicle fusion technique allowing the engineered membrane to have a lifetime of several months (6, 8, 9).

A schematic of the engineered tethered bilayer lipid membrane is given in Fig. 1. The engineered tethered membrane is
composed of a self-assembled monolayer of mobile lipids, and a self-assembled monolayer of tethered and mobile lipids.
The tethered lipids are anchored to the gold electrode via polyethylene glycol chains. Spacer molecules are used to ensure
the tethers are evenly spread over the gold electrode. The intrinsic spacing between tethers and spacers is maintained by the
benzyl disulfide moieties which bond the spacers and tethers to the electrode surface. The ratio of the total number of tethers to
spacers and tether molecules in the engineered tethered membrane is given by the tethering density (i.e. a 10% tether density
defines that for every 9 spacer molecules there is 1 tether molecule). In the special case of 100% tethering, the engineered
tethered membrane is composed of a tethered archaebacterial based monolayer with no spacer molecules. As experimentally
illustrated in (8), it is not possible to construct a 0% tethered membrane as any formed membrane binds to the gold surface.
As the electrolyte reservoir separating the membrane and electrode surface is required for the normal physiological function
of the membrane, and noting that all prokaryotic and eukaryotic cell membranes contain cytoskeletal supports with a 1%
to 10% tether density, the inability to construct a 0% tethered membrane does not inhibit the study of the electroporation
process in a physiologically relevant environment. A time-dependent voltage potential is applied between the electrodes to
induce a transmembrane potential of electrophysiological interest; this results in a current I(t) related to the charging of the
double-layers and the nucleation and destruction of aqueous pores in the engineered tethered membrane.

FIGURE 1: Overview of the engineered tethered membrane, model, and measured and predicted current I(t). The “Electron-
ics” block represents the electronic system which produces the drive potential between the electrode and counter electrode, and
records the current response I(t). The test chamber contains the synthetic tethered membrane. The tethered membrane layer is
composed of the lipid components: zwitterionic C20 diphytanyl-ether-glycerophosphatidylcholine, denoted as DphPC, (grey),
C20 diphytanyl-diglyceride ether (white), benzyl disulfide diphytanyl bis-tetra-ethyleneglycol (black). Spacer molecules (i.e.
benzyl disulfide tetra-ethyleneglycol) are used to control the spacing between the tethered lipids (cross-hatch fill). The mobile
lipid layer (square fill) is composed of the DphPC lipids. Note that for the 100% tether density the membrane is composed
of a membrane spanning lipid, the structure is provided in (10), with no spacer molecules. The tethered membrane does not
contain any ion channels; therefore, all current passing through the tethered membrane takes place via conducting aqueous
pores with an electrical conductance denoted by Gp.

To draw quantitative conclusions about the electroporation process using the engineered tethered membrane requires a
predictive model. The first models of electroporation were based on using statistical physics of stochastic processes that are
dependent on the energy required to form a pore. The most widely used model for the statistics of aqueous pores formed via
electroporation is the Smoluchowski-Einstein equation derived from statistical mechanics (11–13). Several models governing
the pore energy have been presented in the literature (14–21). The membrane is generally modelled as a dielectric and elastic
continuum (14, 22–27). Aqueous pore formation involves the creation of a hydrophilic pore, generally assumed to by a water
filled cylinder with a free energy given in terms of modified Bessel’s functions, which either spontaneously converts to a sta-
ble hydrophilic pore or spontaneously collapses (21, 28, 29). Although different pore shapes and corresponding pore energies
can be considered for the hydrophobic pore, typically a toroidal pore is assumed (18, 20, 30). Note that the toroidal structure
corresponds to the estimated hydrophilic pore shape obtained from molecular dynamics simulations (3, 31, 32). The classical
free energy model for a hydrophobic aqueous pore W (r, Vm) in the membrane consists of four energy terms: the pore edge

Biophysical Journal 00(00) 1–16
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Engineered Tethered Membrane 3

energy γ, the membrane surface tension σ, the electrostatic interaction between lipid heads, and the transmembrane potential
energy contribution Wes(r, Vm). Several other contributions have been considered in the literature including effects from the
cytoskeletal network (19), osmotic pressure contributions (33), electrocompressive forces (34), and bound peptides (35, 36).
The classical pore energy typically used is given by (20):

W (r, Vm) = 2πγr − πσr2 + (
C

r
)4 +Wes(r, Vm) +Wm, (1)

with the energy contribution from the mechanobiological properties of the cell included as Wm (i.e. cytoskeleton). With the
energy of a pore defined by Eq. 1, the key element that couples the experimental measurements with the predicted model is
the aqueous pore conductance Gp (29, 30, 37–39). Discussion of Gp, Wes, and Wm is provided below.

Estimates of Gp model the conduction of aqueous pores as originating from two contributions: one from the internal con-
ductance of the pore which includes effects from steric hindrance, and the external “spreading conductance” (12, 38, 40, 41).
Near the pore entrance significant nonlinear potential gradients are present which restrict the current flowing through the
pore, this effect is denoted as the spreading conductance. Assuming an infinite electrolyte bath on both sides of the membrane
and neglecting electrodiffusive effects, the spreading conductance for a pore of radius r and electrolyte conductivity ςe is
given by 2ςer, computed from the Laplace equation for electrostatics (39, 41, 42). The total pore conductance, neglecting
electrodiffusive effects, is given by (12, 38, 40):

Gp =
2πr2ςeςp

πrςp + 2hmςe
, (2)

where hm is the membrane thickness and ςp is the pore conductance which implicitly includes the steric effects of ions
entering the pore. Recent models for computing Wes utilize the Maxwell stress tensor with the electric field computed from
the solution of the Laplace equation for electrostatics (18). As we show in this paper, including electrodiffusive effects is
important when estimating the pore conductance Gp and electrical energy required to form a pore Wes.

The mechanobiological properties of the membrane directly effect the electroporation process, as seen in (1). Neglect-
ing the energy contribution from the cytoskeleton network, Wm, can introduce severe errors in the estimated energy (1).
Experimental evidence shows that the cytoskeletal network provides a degree of mechanical integrity to the cell mem-
brane and is therefore a vital component of the pore energy (44–50). The linkages of the cytoskeleton to the membrane
are analogous to “springs” and act to restrain the enlargement of aqueous pores. Modelling the mechanical properties of the
membrane as an elastic continuum and assuming a permanent cytoskeletal network anchorage, the effect of these anchors
are accounted for via the energy required to deform the Hookean springs–formally, the energy contribution can be modelled
using Wm = 0.5Kcytor

2 with Kcyto denoting the spring constant of the cytoskeleton network (19). The accuracy of this model
for the anchoring of a membrane have not been studied quantitatively as a result of the complexities associated with the
experimental measurements (46–49).

In this paper we report on the construction and predictive models of the engineered tethered membrane that includes
contributions from asymmetric electrolytes, multiple ionic species, and the Stern and diffuse electrical double layers present.
The models are constructed by assuming the membrane behaves as a dielectric and elastic continuum. The electrodiffusion
properties of the electrolyte are modelled using a Generalized Poisson-Nernst-Planck (GPNP) system of equations with a
“Langmuir type” activation coefficient (51–53). To estimate Gp, we use the GPNP in a toroidal pore geometry. Based on the
GPNP and Maxwell stress tensor we construct a model for the electrical energy required to form a pore Wes that includes
electrodiffusive effects. The energy required to deform the tethers is accounted for using the energy model Wm = 0.5Ktr

2.
Modelling the engineered tethered membrane system as an equivalent circuit model, shown in Fig. 3, and using asymptotic
approximations to the Smoluchowski-Einstein equation for electroporation, we construct a predictive model for the current
I(t) in Fig. 1 that is dependent on the energy to form a pore W, defined in Eq. 1. Numerical results and experimental measure-
ments with different tethering densities and lipid compositions are used to validate the accuracy of the models and exemplify
the application of the engineered tethered membrane to quantify the contribution the tethers and bioelectronic interface have
on the electroporation process. Specifically, we estimate the electroporation parameters of the engineered tethered membrane
in Fig. 1 for the membrane tether densities of 1% and 10% for the tethered DphPC lipid bilayer, and the 100% tethered DphPC
monolayer membrane.

Materials and Methods

Novel features, construction, and predictive models of the engineered tethered membrane are provided in this section. The
accuracy of the models are verified using experimental measurements of the engineered tethered membrane with different
tethering densities.

Biophysical Journal 00(00) 1–16
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Formation of the Engineered Tethered Membrane

The engineered tethered membrane structure is illustrated in Fig. 1. The membrane is supported by a 25mm×75mm×1mm
polycarbonate slide onto which is patterned a 100 nm sputtered gold electrode array possessing six 0.7mm×3mm active areas
of membrane each of which is enclosed in a flow cell with a common gold return electrode. The formation of the tethered
membrane is performed in two stages. The first stage anchors the inner layer of the membrane to the gold surface via benzyl
disulphide groups. The inner layer components are introduced to the freshly deposited gold surface as ethanolic solutions of
370 µM benzyl disulphide concentrations in engineered ratios of tethers and spacers. For example the inner layer solution for
the 10% tethering density is prepared by co-dissolving benzyl disulphide C20 diphytanyl bis-tetra-ethylene glycol and benzyl
disulphide tetra-ethylene glycol in the ratio 1:10. The solution is exposed to the coating solution for 30 min and the electrode
is then rinsed in ethanol and air dried for approximately two minutes. The coated slide is immediately assembled into a flow
cell cartridge comprising six individual membranes with a common large area gold return electrode facing the membranes
and separated by a 100 µm laminate defining the flow cell chamber height. The second stage of the membrane formation
now occurs with the addition of 8 µL of 3 mM C20 diphytanylether lipids comprising a 70:30 mole ratio of C20 diphy-
tanylether glycerophosphatidylcholine: C20 diphytanylether diglyceride being added to each of the flow chambers covering
the membrane areas. The solution is incubated for two minutes at 20oC following which, 300 µL of phosphate buffered saline
was flushed through each flow cell which forms the tethered bilayer. The quality of the bilayer is measured continuously
using an SDx tethered membranes tethaPodTM swept frequency impedance reader operating at frequencies of 1000, 500,
200,100,40,20,10,5,2,1,0.5,0.1 Hz and an excitation potential of 20 mV (SDx Tethered Membranes, Roseville, Sydney). The
membrane was equilibrated for 30 min prior to the electroporation measurements. The electroporation measurements were
performed using an eDAQTM ER466 potentiostat (eDAQ, Doig, Denistone East) and a SDx tethered membrane tethaPlateTM

adaptor to connect to the assembled electrode and cartridge. Individual triangular voltage ramps were applied from zero to
500 mV with a period of 2 ms. Current waveforms were recorded.

GPNP for the Electrodiffusive Behaviour in the Engineered Tethered Membrane

In this section we define the electrodiffusion model for the movement of ions in the engineered tethered membrane system
illustrated in Fig. 1. The model provides the basis for computing the pore conductance Gp, and the electrical energy of an
aqueous pore Wes in the membrane.

The ionic concentrations and electric potential dynamics in an electrolyte solution are classically modelled using the
Poisson-Nernst-Planck (PNP) system of equations (54). A known weakness of the PNP model is that it does not suitably
model the electrical double layers present at the membrane surface or at the electrode-electrolyte interface where Stern and
diffuse charge layers are present (54). To overcome these limitations, (51) used a modified “Langmuir type” activity coeffi-
cient to account for the steric effects of ions in the electrolyte, termed the Generalized PNP (GPNP) model. The constructed
GPNP model for electrodiffusion is given by (51):

∂ci

∂t
= −∇ · (J i),

J i = −Di∇ci − Fziquimci∇φ

−Dici∇ ln
(
1−

N∑
i=1

NAa
3
i c

i
)
, (3a)

−∇ · (ε∇φ) = −
∑
i

Fzici. (3b)

In Eq. 3a, J i is the concentration flux, ci is the concentration, φ is the electrical potential, Di is the diffusivity, NA is Ava-
gadro’s number, ai is the effective ion size, and uim is the ionic mobility with i denoting the ionic species. In Eq. 3b, F is
Faraday’s constant where the superscript defines the chemical species i, q is the elementary charge, zi is the charge valency,
and ε is the electrical permittivity. The electrodiffusive model Eq. 3 is able to account for asymmetric electrolytes, multiple
ionic species, and the Stern and diffuse electrical double layers present at the surface of the electrodes and membrane. Note
that for

∑N
i=1NAa

3
i c

i � 1, the steric effects are negligible in Eq. 3 and the standard PNP formulation can be used to model
the electrolyte dynamics.

The membrane surface is assumed to be perfectly polarizable (i.e. blocking) such that the normal ionic flux vanishes at
the surface of the membrane. There are no surface reactions present at the gold electrode to electrolyte interface; therefore,
we have a no-flux boundary condition present at the gold surface. Formally these no-flux interface and boundary conditions

Biophysical Journal 00(00) 1–16
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are given by
n · J i = 0 in ∂Ωm ∪ ∂Ωe ∪ ∂Ωec (4)

with n the normal vector pointing into the electrolyte solution and J i defined below Eq. 3. The diffusion coefficient Di in
Eq. 3a is spatially dependent as the tethering reservoir has a lower diffusion then the bulk electrolyte solution with no tethers
present. We define this condition as:

Di(x) =

{
Di

r if x ∈ Ωr

Di
w if x ∈ Ωw,

(5)

where Ω defines the respective domain.
The dielectric permittivity in Eq. 3b is spatially dependent as defined below:

ε(x) =

{
εw if x ∈ Ωr ∪ Ωw

εm if x ∈ Ωm.
(6)

To ensure the well-posedness of the Poisson equation Eq. 3b, the internal boundary conditions on the membrane to electrolyte
interface are satisfied by the following (55):

φm − φw = 0 in ∂Ωm,

εm∇φm · n− εw∇φw · n = 0 in ∂Ωm. (7)

At the electrode surface a compact Stern layer exists with a capacitance per unit are given by Cs. The Stern layer adjacent
to the electrodes is modelled using the following boundary conditions

Cs(φe − φ) + εwn · ∇φ = 0 in ∂Ωe,

Cs(φec − φ) + εwn · ∇φ = 0 in ∂Ωec, (8)

with φe and φec the prescribed potentials at the respective electrodes. The ambient boundary conditions of the axi-symmetric
pore are given by:

ci = cio in ∂Ωw ∪ ∂Ωr,

n · ∇φ = 0 in ∂Ωhm (9)

with cio the initial concentration, refer to Fig. 2.
Using equations Eq. 3, with the material properties defined by Eq. 5 and 6, and the boundary conditions Eq. 4, 7, 8, and

9, all that the remains is to define the geometry of the aqueous pores in the engineered tethered membrane.
Initially, stable pores that form in the membrane are approximately cylindrical (56). As expansion occurs, the pores

become toroidal in nature. In this paper we consider the toroidal pore structure illustrated in Fig. 2 to compute the conductance
of a pore. The current travelling through the pore is computed using:

Ip = F
∑
i

r∫
0

J i2πrdr, Gp =
Ip
Vm

, (10)

where J i and Vm are computed using Eq. 3 with the geometry given in Fig. 2.
To compare the numerical accuracy of the GPNP model with the previously developed model in (39), we assume elec-

troneutrality (i.e.
∑

i z
ici = 0) and no steric effects ai = 0 (39). The governing equations of φw, the electrical potential in the

electrolyte solution Ωw, in the limit of electroneutrality and no steric effects, can be derived by substituting the time derivative
of Eq. 3b into Eq. 3a for charge neutrality resulting in the elliptic equation:

∇ · (ς∇φ+∇κ) = 0

ς =

N∑
i=1

(qzi)2Di

kBT
ci, κ =

N∑
i=1

qziDici. (11)

with the parameters defined below Eq. 3. The boundary conditions of Eq. 11 at the electrode surfaces ∂Ωe and ∂Ωce, and at the
ambient boundary ∂Ωw, ∂Ωhm, and ∂Ωr are given by Eq. 8 and 9 respectively, refer to Fig. 2. In the membrane domain Ωm

Biophysical Journal 00(00) 1–16
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FIGURE 2: The aqueous pore is modelled as axisymmetric with dimensions given by r, lr, hr, hm, and he for the cylindrical
and toroidal geometries. The tethered membrane platform is modelled with three distinct regions: the electrolyte solution Ωw,
the electrolyte reservoir Ωr, and the membrane Ωm. The electrode to electrolyte interface is denoted by ∂Ωe and ∂Ωec for
the electrode and counter electrode respectively. ∂Ωm denotes the interface between the membrane and electrolyte solution.
The boundary conditions ∂Ωw and ∂Ωr define the ambient conditions of the electrolyte and membrane. The potentials at
each electrode are defined by φe and φec respectively. The electrolyte has an electrical permittivity εw and the membrane an
electrical permittivity εm. The electrical force acting on the membrane is denoted by f and is defined in (15). n is the normal
vector pointing from the membrane domain to the electrolyte domain.

the electrostatic potential φm is governed by Laplace’s equation for electrostatics ∇ · (εm∇φ) = 0. The interface conditions
between the domains Ωw and Ωm are given by:

n · ∇φw = 0 in ∂Ωm,

φm = φw in ∂Ωm. (12)

From the continuity of potential on ∂Ωm Eq. 12, there exists a surface charge on the membrane given by ρs = εmn · ∇φm −
εwn · ∇φw; therefore, the system of equations Eq. 11 with boundary conditions Eq. 12 implicitly includes the membrane
surface charge ρs (18, 39, 57).

We denote the governing equations Eq. 3a with ai = 0 coupled with Eq. 11, the materials defined by Eq. 5 and 6 and the
boundary conditions Eq. 4, 8, 9, and 12 as the Electroneutral Model (EM). Given the solution of the EM system of equations,
the conductance Gp, Eq. 10, can be estimated assuming negligible steric effects and electroneutrality.

Electrical Energy Required to Form a Pore

In this section we construct a model for the electrical energy of a pore, Wes, in the engineered tethered membrane by mod-
elling the membrane as a dielectric continuum in an electrolyte solution. The computation of Wes involves computing the
force that causes a displacement of the pore structure. Consider the pore structure presented in Fig. 2. The pore boundary is
assumed to only expand in the radial direction r. If we denote F (r) as the total force acting on the pore boundary of radius r,
then the electromechanical energy can be computed using (18, 43, 58):

Wes(r) = −
r∫

0

F (r)dr. (13)

Using the Maxwell stress tensor we show how F (r) can be computed for the pore structures in Fig. 2.
The electric field induces a stress on the membrane surface. The total stress on the surface of the membrane can be

computed using the Maxwell stress tensor T given by (18, 43, 59–65):

T = ε(
1

2
|∇φ|2I −∇φ⊗∇φ), (14)

Biophysical Journal 00(00) 1–16
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where ε and φ are defined below Eq. 3, I denotes the identity matrix, and⊗ is the dyadic product. The stress on the membrane
from the electrolyte pw, and the stress on the electrolyte from the membrane pm are given by:

pw = −Twn = −εw(
1

2
|∇φw|2I −∇φw ⊗∇φw)n,

pm = Tmn+ f

= −εm(
1

2
|∇φm|2I −∇φm ⊗∇φm)n+ f, (15)

where f is the stress induced from all other elastic properties of the membrane (66–68). Note that f denotes the electrical
force density acting on the membrane surface.

The membrane is assumed to be at local mechanical equilibrium at the pore surface such that f = (Tw−Tm)n. Therefore,
to maintain local equilibrium the total force acting on the pore boundary F (r) is given by:

F (r) =

∫
S

n · (pw − pm)dS, (16)

with pw and pm defined in Eq. 15, and the surface S and normal vector n given in Fig. 2. Given φ computed using Eq. 3, we
can compute F (r) using Eq. 16. Substituting F (r) into Eq. 13 gives the electrical energy contribution to pore formation in
the membrane. Note that F (r) includes electrical double layer and electrodiffusive effects caused by asymmetric electrolytes.

Note that for narrow cylindrical pores ∂φ/∂r ≈ 0 and ∂φ/∂z ≈ Vm/hm on S; substituting into Eq. 15 and 16 we
see that F (r, Vm) ∝ V 2

m with Vm the transmembrane potential. The proportionality of F (r, Vm) ∝ V 2
m, whch also implies

Wes(r, Vm) ∝ V 2
m, is critical for the derivation of the electrical energy required to form a pore in (18, 28, 40). This allow the

computation of F (r, Vm) to be conducted using a single instance of F (r) for a given transmembrane potential Vm which is
used to estimate the proportionality constant.

For numerical comparison to previously published results (18), we estimate the pore energy Wes, Eq. 13, assuming elec-
troneutrality, negligible steric effects, and steady-state current (i.e.∇ci = 0). With these assumptions the electrical potential φ
is governed by Laplace’s equation∇ · (ε∇φ) = 0 with ε defined by Eq. 6, and the interface and boundary conditions defined
by Eq. 8, 9, and 12. We denote this as the Laplace Model (LM).

Equivalent Circuit Electroporation Model of the Engineered Tethered Membrane

The electrophysiological properties of the engineered tethered membrane are modelled using an equivalent circuit model (5, 8,
10, 69, 70). Note that for a sufficiently low applied potential (i.e. less then 50 mV) the effects of electroporation are negligible.
This allows the circuit parameters to be estimated with a sinusoidal excitation potential with magnitude less then 50 mV.

The tethered membrane platform is composed of three distinct regions: the electrical double layers at the gold electrodes,
the bulk electrolyte reservoir, and the tethered membrane. The bulk electrolyte solution is modelled as completely ohmic
with resistance Re. The electrical double-layers contain a tightly bound region of ions on the order of an atomic radii, and a
diffuse region of length on the order of the Debye-Hückel thickness. The Stern layer and diffuse charge layers are modelled
using an overall capacitance Ctdl, and Cbdl for the counter electrode and electrode respectively. The tethered membrane is
modelled as a uniformly polarized structure such that the charging dynamics of the membrane are represented by a capaci-
tance Cm. The tethered membrane conductance Gm(t, Vm) is both time and membrane voltage dependent with Vm denoting
the transmembrane potential. The dependency of Gm is a result of the process of electroporation that takes place to gener-
ate/destroy aqueous pores in the membrane. The excitation potential Vs(t) applied across the two electrodes closes the circuit.
The equivalent circuit model of the tethered membrane platform is given in Fig. 3.

The governing equations of the tethered membrane system are given by:

dVm
dt

= −(
1

CmRe
+
Gm

Cm
)Vm −

1

CmRe
Vdl +

1

CmRe
Vs,

dVdl
dt

= − 1

CdlRe
Vm −

1

CdlRe
Vdl +

1

CdlRe
Vs,

I =
1

Re

(
Vs − Vm − Vdl

)
, (17)

where Cdl is the total capacitance of Ctdl and Cbdl in series. Given Vs(t), and the static circuit parameters Ctdl, Cbdl, Re, Cm,
and the membrane conductance Gm can be estimated from the measured current I(t). However, for drive potentials below

Biophysical Journal 00(00) 1–16
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Cbdl

+
− Vs

Gm Cm

+

−
Vm

Re

Ctdl

I(t)

FIGURE 3: Schematic of the lumped circuit model with Re the electrolyte resistivity, Cm is the membrane capacitance,
Gm is the membrane conductance, Cbdl is the electrode capacitance, Ctdl is the counter electrode capacitance, and Vm is the
transmembrane potential.

approximately 50 mV, the membrane conductance is approximately constant and is assumed at its equilibrium value Go such
that Gm(t, Vm) ≈ Go.

How can we experimentally verify that the formed membrane does not contain significant defects? Possible membrane
defects include patches with the gold electrode directly exposed to the bulk electrolyte, or with portions of bilayer sandwiched
together. Using the measured current response resulting from an excitation potential below 50 mV, we can compute the mean
squared error (MSE) between the predicted current from Eq. 17 and the experimentally measured current. If a significant MSE
is obtained then the model of a homogeneous membrane Eq. 17 is not suitable and the membrane is concluded to contain inho-
mogeneities (i.e. defects). A major concern when performing electroporation experiments is the detection of the catastrophic
voltage breakdown of the membrane causing separated areas of membrane to degrade. This effect can be detected by a high
MSE and a significant increase in the estimated membrane conductance Cm resulting from the electrode surface capacitance
coming into contact with the bulk electrolyte. Typical values for membrane capacitance and conductance are 0.5-1.3 µF/cm2

and 0.5-2.0 µS for an intact 1%-100% tethered membrane with surface area 2.1 mm2.
For transmembrane potentials above 50 mV, the TMP conductance Gm can be estimated by

Gm =

bN(t)c∑
i=1

Gp(ri),

dri
dt

= − D

kBT

∂W (r)

∂ri
for ri ∈ {1, 2, . . . , bN(t)c},

dN

dt
= αe

( Vm
Vep

)2(
1− N

No
e
−q( Vm

Vep
)2)
. (18)

In Eq. 18, α is the pore creation rate coefficient, Vep is the characteristic voltage of electroporation,No is the equilibrium pore
density at Vm = 0, and q = (rm/r∗)

2 is the squared ratio of the minimum energy radius rm at Vm = 0 with r∗ the minimum
energy radius of hydrophilic pores (56, 71–73). The parameters α, Vep, No, and γ are estimated by fitting the measured current
response I to the predicted current response from Eq. 17 and Eq. 18 given the drive voltage Vs.

The derivation of Eq. 18 is based on making physiologically relevant approximations to the Smoluchowski-Einstein equa-
tion for electroporation. The Smoluchowski-Einstein equation governs the distribution of pores as a function of their radius r
and time t (11–13). If we denote n(r, t) as the pore density distribution function, then the Smoluchowski-Einstein equation is
given by:

∂n

∂t
= D

∂

∂r

[ n

kBT

∂W

∂r
+
∂n

∂r

]
+ S(r), (19)

where D is the diffusion coefficient of pores, kB is the Boltzmann constant, T is the temperature, W is the pore energy, and
S(r) models the creation and destruction rate of pores. Making the physiologically relevant assumption that diffusion term in
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Eq. 19 is negligible, and the characteristic time scale of W is longer then 0.1 µs, then the process of electroporation can be
modelled by Eq. 18. Note that Eq. 18 has been used by several authors for modelling DNA translocation into cells (56, 71–75).

Numerical Methods

The governing equations Eq. 3 with boundary conditions Eq. 4, and 7-9 are solved numerically with the commercially avail-
able finite element solver COMSOL 4.3a (Comsol Multiphysics, Burlington, MA). To solve the GPNP and PNP models
the COMSOL modules Transport of Diluted Species and Electrostatics are utilized; and to solve the EM model the mod-
ules Nernst-Planck and Electrostatics are utilized. Eq.(10) is used to compute the pore conductance with the integration
done in the region defined in Fig. 2. The simulation domain is meshed with approximately 270,000 triangular elements con-
structed using an advancing front meshing algorithm. The GPNP and PNP are numerically solved using the multifrontal
massively parallel sparse direct solver (76) with a variable-order variable-step-size backward differential formula (77). The
conductance is computed for a finite number of equally spaced radii between 0.5-10 nm with a step-size of 0.25 nm. The
steady-state conductance Gp, Eq. 10, is estimated when the percentage change in conductance between successive steps (i.e.
|(Gp(ti+1) − Gp(ti))/Gp(ti)|) is less then 1%. The total force acting on the toroidal pore F (r), Eq. 16, is computed using
the results from the conductance computation. Substituting F (r) into Eq. 13, the total electrical energy required to form the
pore Wes is computed. The numerical estimate of I(t) is computed using Eq. 17 and 18 assuming there are a finite number of
possible pore radii using the algorithm presented in (56, 71).

Results and Discussion

In this section we apply the electroporation model for the engineered tethered membrane. The predictive accuracy of the
electroporation model is verified using experimental measurements of tethered DphPC membranes with a tethering density of
1%, 10%, and 100%.

Numerically Predicted Aqueous Pore Conductance and Electrical Energy Required to form a Pore

To estimate the conductance Gp, Eq. 10, and the electrical energy required to form a pore Wes, Eq. 13, we utilize the GPNP,
Eq. 3, PNP, EM, and LM models defined in the Materials and Methods section.

In Fig. 4 the estimated pore conductance computed using the GPNP, PNP, and EM models is presented. As seen the pore
conductance numerically predicted using the GPNP follows a Gp ∝ r relationship. For membranes with sufficiently large
electrolyte baths and pore radii (i.e. electrolyte bath is hundreds of nm thick and r > tm), the pore conductance follows
Gp ∝ r (12, 38–40), in agreement with the spreading conductance derived from Laplace’s equation in (42, 78). Note that the
effect Gp ∝ r for r < tm and hr = 4 nm is only numerically predicted when the effects caused by asymmetric electrolytes,
finite ion size, and Stern and diffuse layers are accounted for. In Fig. 4 A, the GPNP and PNP models produce differing con-
ductance estimates as a result of the steric effects present. Recall that for

∑N
i=1NAa

3
i c

i � 1 the steric effects are negligible
and the estimated conductance using the GPNP and PNP models would be identical. As seen by comparing the estimated con-
ductance Gp in Fig. 4 A, the assumption of electroneutrality causes a noticeable decrease in the computed conductance Gp.
As discussed in the Introduction the pore conductance Gp may be dominated by the spreading conductance, which follows
a Gp ∝ r proportionality, when the electrolyte solution is sufficiently geometrically constrained. From Fig. 2, the tethering
reservoir is hr = 4 nm, and from Fig. 4 A we see thatGp ∝ r; therefore, we conclude that the conductance of an aqueous pore
in the engineered tethered membrane is dominated by the spreading conductance. As the diffusivity in the tethering reservoir,
Dr, decreases the pore conductance decreases, as seen in Fig. 4 B. This is expected as less ions can flow through the pore as
a result of reduced ion mobility.

Fig. 5 compares the numerically estimated electrical energy required to form a pore computed using the GPNP, PNP, EM,
and LM defined in the Materials and Methods section. For small pores below 1 nm all the models provide similar estimated
for Wes, as seen in Fig. 5 A. The PNP and EM models provide a significantly lower estimate of Wes compared to the GPNP
and LM models for large pore radii above 4 nm. The discrepancy between the estimated Wes is a result of the assumption
of negligible steric effects in the PNP model, and the assumption of negligible steric effects and electroneutrality in the EM
model. Note that although the GPNP and LM models provide similar predictions of Wes, the LM assumes negligible steric
effects, electroneutrality, and steady-state current (i.e. ∇ci = 0) which results in the estimated voltage distribution on the
surface of the membrane to differ with the voltage distribution predicted from the GPNP. Qualitatively at the surface of the
membrane the GPNP model has the interface condition Eq. 7 such that εm∇φm · n = εw∇φw · n; however, the interface
condition for the LM model Eq. 12 causes εm∇φm · n 6= εw∇φw · n on the surface. This results in the LM overestimating
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BA

FIGURE 4: Numerically predicted pore conductance Gp, defined in Eq. 10. (A) provides the predicted pore conductance Gp

computed using the GPNP, PNP, and EM models. (B) is the predicted Gp for different tethering reservoir diffusivities. The
geometry of the pore is given in Fig. 2 with the parameters of the governing equations and boundary conditions provided in
Table S1 in the Supporting Material.

the voltage potential when compared with the GPNP. From Eq. 15, the overestimated potential causes the computed Wes to
be larger when using the LM model as compared with the GPNP model. As discussed, the assumption of Wes(r, Vm) ∝ V 2

m

is typically invoked to simplify the computation of Wes(r, Vm) (18, 28, 40). From Fig. 5 B, we compute Wes(r, Vm) explic-
itly for several transmembrane potentials and find that the proportionality follows a fractional power law. This illustrates the
importance of including effects caused be electrodiffusion. As illustrated in Fig. 5 C, reducing the diffusion coefficient in
the tethering reservoir Dr causes a slight reduction in the estimated Wes. In comparing Fig. 5 B with Fig. 5 C, the main
contribution to the change in Wes results from a change in transmembrane potential.

BA

C

FIGURE 5: Numerically predicted electrical energyWes, Eq. 13, required to form an aqueous pore. (A) compares the predicted
Wes computed using the GPNP, PNP, EM, and LM models defined in the Materials and Methods section for the transmem-
brane potential of Vm = 500 mV. (B) presents estimates of Wes computed using the GPNP for the transmembrane potentials
listed. (C) provides estimates of Wes computed using the GPNP for Vm = 500 mV for different tether reservoir diffusivities.
The parameters of the governing equations and boundary conditions can be found in Table S1.

Experimental Verification of Predictive Models

In this section we use the numerically predicted pore conductance Gp, Eq. 10, and electrical energy Wes, Eq. 13, estimated
using the GPNP model with the electroporation model given by Eq. 17 and 18 to predict the current response of the engineered

Biophysical Journal 00(00) 1–16
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tethered membrane. The predicted current response is compared to experimentally measured data to validate the accuracy of
the model. Note that all electroporation processes were reversible and did not cause permanent damage to the membrane.

From Eq. 17 and 18, if the drive potential Vs is applied and the resulting current is Is; then if the drive potential −Vs
is applied the resulting current must be −Is if only the process of electroporation is present. For all the tethering densities
and membrane compositions tested this relation was observed in all experimental current measurements and therefore we
concluded that the only process present is that of electroporation. The drive potential Vs(t) used to produce the results in
Fig. 6 and 7 is defined by a linearly increasing potential of 100 V/s for 5 ms proceeded by a linearly decreasing potential of
-100 V/s for 5ms.

The experimental measurement and predicted voltages, pore radii, membrane resistance, and current are presented in Fig.6
for the 10% tethered DphPC bilayer membrane. From Fig. 6 A, the experimentally measured and numerically predicted cur-
rent are in excellent agreement. As seen in Fig. 6 B, the application of the voltage excitation immediately causes an increase
in the double-layer voltage Vdl as a result of the charge increase in the charge distribution at the electrode surface. The trans-
membrane potential Vm simultaneously increases as a result of the excitation potential. The increase in Vm results in the
formation of pores. As seen in Fig. 6 C, a dramatic change in the resistance results after the application of the drive potential.
In Fig. 6 D the maximum radius rmax and mean radius r̄ are provided to illustrate the spread in pore radii. As Vm increases,
pores are generated and expand according to Eq. 18. From Eq. 18, all pores diffuse to the minimum-energy pore radius given
by ∂W/∂ri = 0 with an advection velocity proportional to D/kBT . As seen in Fig. 6 D, generated pores rapidly expand to
the minimum-energy pore radius as the spread between rmax and r̄ is negligible.

D

BA

C

FIGURE 6: The measured and predicted current, voltage potentials, membrane resistance, and pore radii for the drive potential
Vs(t), defined at the beginning of this section, for the 10% tether density DphPC bilayer membrane. (A) is the measured and
predicted current, (B) the predicted transmembrane Vm and double-layer potential Vdl defined in Eq. 17, (C) is the estimated
membrane resistance, and (D) the estimated maximum rmax radius, and mean pore radius r̄. All predictions are computed
using Eq. 17 and Eq. 18 with the parameters defined in Table S2 of the Supporting Material.

As seen from Fig.6 the predictive model is able to estimate the current response of the engineered tethered membrane;
however an immediate question arises: how sensitive is the predicted current response to errors in the model parameters of
Eq. 17 and Eq. 18? To reduce the number of free parameters we set γ, σ, C,D to the experimentally measured values given
in (13, 20, 29, 34, 56, 71). The estimated values of Go, Cm, Cdl, and Re are provided in Table S2 of the Supporting Material
and correspond to a homogeneous membrane with negligible defects, as discussed in the Materials and Methods section. Note
that all errors in Table S2 are estimated by computing the range of values in good agreement with the experimentally mea-
sured current using Eq. 17 and Eq. 18. As seen, the electrolyte resistance Re has a negligible effect on the current response
as the membrane conductance and capacitive charging dominate the current flow. Using a triangular drive potential allows
the estimate of Cm, Rm, and Cdl using specific sections of the measured current. The initial jump in current at the start of
the triangular pulse is dominated by Cm. The current response proceeding the initial jump is dominated by Go with the slope
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proportional to the membrane conductance Go. Note that any deviation from a linear current response in this region is a result
of the electroporation process. The double layer capacitance Cdl effect dominates the current response as the triangular drive
potential decreases. By estimating each of the circuit parameters using specific regions of the current response allows the
circuit parameters to be reliably estimated, as seen in Table S2. The pore creation rate Eq. 18 is not significantly effected by
α and No because dN/dt is exponentially dependent on Vm, Vep, and q. This dependence can be seen by referring to Table
S2 where the estimated error of α and No is significantly larger then Vep and q. The estimated values for No, α, V ep, q are in
excellent agreement with experimentally estimated values found in the literature (29, 74, 79).

Fig. 7 provides the experimental current measurement and the predicted current and membrane resistance Rm = 1/Gm

for the 1% and 10% DphPC bilayer, and the 100% DphPC monolayer membrane. In comparing the resulting current between
the 1%, 10%, and 100% tethered case, Fig. 7 A, we see that as the tethering density increases the effects of electroporation
decreases. This is an expected result as the tethers provide structural support hindering the nucleation of pores reducing the
equilibrium pore densityNo and increasing the characteristic voltage of electroporation Vep. As seen in Fig. 7 B, the resistance
begins to change at approximately 1 ms when the transmembrane potential reaches a sufficiently high to cause the nucleation
of pores. The estimated spring constant Kt for the 1%, 10%, and 100% tethering density are: 0 mN/m, 2±0.5 mN/m, and
20±4 mN/m. For the 1% tether density the spring constant is negligible as expected. For the 100% tethering case pores can
not expand as a result of the spring constant Kt, therefore the decrease in resistance is primarily a result of pore nucleation
and destruction governed by Eq. 18. For the 100% tether density membrane, it may be the case that all pores in the membrane
are hydrophilic as the tethers may prevent the transition from the hydrophilic to hydrophobic structure. If only hydrophilic
pores are present, the membrane resistance would be dominated by the nucleation of pores and not the dynamics of the pores.
Note that the molecular structure of the aqueous pores can not be reliably inferred using continuum theory models and would
require the use of molecular dynamics or similar non-continuum models. Interestingly, for the 1% membrane structures the
resistance begins to decrease at 9.2 ms, and for the 10% membrane at 9.4 ms after the initial application of the drive potential
Vs(t) defined at the beginning of this section. This is a result of the charge accumulation in the electrical double layers at the
gold electrode surface, Vdl, discharging causing an increase in the magnitude of the transmembrane potential Vm. This illus-
trates the importance of including electrical double-layer effects when modelling gold electrodes. Note that when using Eq. 17
and Eq. 18 for estimating the effects of electroporation for rapidly changing drive potentials, the double-layer capacitance in
Eq. 17 can become time dependent (51). In such cases the dynamics of the time dependent capacitance can be estimated using
the GPNP model defined in Eq. 3 using the method outlined in (51) with the electroporation model developed in this paper.
The thickness of the membrane can be estimated using hm = εmAm/Cm with Am = 1.2 mm2, the area of the membrane
surface, and εm and Cm given in Table S1 and S2 in the Supporting Material. For the 1%, 10%, and 100% membranes we
obtain a thickness of: 3.54 nm, 3.54 nm, 3.40 nm. These values are in excellent agreement with NMR measurement of similar
DphPC based tethered membranes (8). As seen, the thickness of the tethered DphPC membrane is approximately constant
between the 1% and 10% tether densities. The 100% DphPC monolayer is slightly thinner then the 1% and 10% DphPC
bilayer membrane. The reduction in thickness between the 100%, and the 1% and 10% is a result of the combined effect of
an increased tether density and the dibenzyl group that binds the phytanyl tails in the tethered DphPC monolayer.

BA

FIGURE 7: Experimentally measured and numerically predicted current I(t) (A), and membrane resistance Rm = 1/Gm (B)
for the drive potential Vs(t) defined at the beginning of this section. The tethering densities 1% and 10% correspond to the
DphPC bilayer and the 100% corresponds to the DphPC monolayer. All predictions are computed using Eq. 17 and Eq. 18
with the parameters defined in Table S2.

In Fig.8 the experimentally measured and numerically predicted current I(t) is provided for several different linearly
increasing and decreasing drive potentials. As seen from Fig.8 A-D, we obtain excellent agreement between the experimen-
tally measured and numerically predicted current. For small magnitude drive potentials one would expect the membrane
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resistance to remain constant as the effects of electroporation, governed by Eq. 17 and Eq. 18, are negligible. Indeed from
Fig.8 A and D, we see that the electroporation effects are negligible for drive potentials from 50 to 80 V/s for the 1 ms
rise, and 10-40 V/s for the 5 ms rise. The reason the 5 ms rise, Fig.8 A and C, has larger relative electroporation effects as
compared with the 1 ms rise, Fig.8 B and D, is that the nucleation and dynamics of pore radii evolve for a longer period of
time at a sufficiently high transmembrane potential. As expected, the magnitude of the current response for the 10% tethered
membrane, Fig.8 A and B, is less then the current response for the 10% tethered membrane, Fig.8 C and D, as a result of the
tethers hindering the nucleation and expansion of pores. The estimated electrical double-layer capacitance used to compute
the current for the 10% membrane is Cdl = 65 nF, and that for the 1% tether density is Cdl = 39 nF. In reference to Table S3
of the Supporting Material, the expected value of Cdl ∈ [118, 137] nF. Despite this minor discrepancy, the estimated current,
using the model given in Eq. 17 and Eq. 18, is in excellent agreement with the experimentally measured current.

D

BA

C

FIGURE 8: Experimentally measured and numerically predicted current response I(t) for the 10% tethering density DphPC
membrane, panels (A) and (B), and the 1% tether density DphPC membrane, panels (C) and (D). In panels (A) and (C), the
drive potential Vs(t) is defined by a 1 ms linearly increasing with a rise time of 50 to 500 V/s in steps of 50 V/s proceeded
by a linearly decreasing potential of -50 to -500 V/s in steps of -50 V/s for 1 ms. In panels (B) and (D), the drive potential
Vs(t) is defined by a 5 ms linearly increasing potential for 10 to 100 V/s in steps of 10 V/s proceeded by a linearly decreasing
potential of -10 to -100 V/s in steps of -10 V/s for 5 ms. The numerical predictions are computed using Eq. 17 and Eq. 18
with the parameters defined in Table S3 of the Supporting Material.

Conclusion

The construction and predictive models for an engineered tethered membrane is presented in this paper. The self-assembled
membrane can be setup with ease and provides a physiologically relevant environment for the study of electroporation. The
analysis presented reveals several interesting features regarding how the Stern and diffuse double-layers, and tethers effect
the electroporation process. Numerically we found that the electrical energy required to form a pore has the property that
Wes(r, Vm) ∝ V 2.2

m and that the pore conductance has the propertyGp ∝ r, where Vm is the transmembrane potential and r is
the radius of the pore. As shown, the experimental results compare favourably with the results computed from the predictive
models.

SUPPORTING MATERIAL

Tables S1, S2, and S3 are available at www.biophys.org/biophysj/supplemental/S0006-3495(XX)XXXXX-X.
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TABLE S1: Parameter Values for Gp and Wes Numerical Predictions
Symbol Definition Value

cNa|t=0 Initial Na+ concentration 321.45 mol/m3

cK|t=0 Initial K+ concentration 13.39 mol/m3

cCl|t=0 Initial Cl− concentration 334.84 mol/m3

aNa Na+ effective ion size 4 Å
aK K+ effective ion size 5 Å
aCl Cl− effective ion size 4 Å
DNa

w Na+ electrolyte diffusion coefficient in Ωw 1.33× 10−9 m2/s
DK

w K+ electrolyte diffusion coefficient in Ωw 1.96× 10−9 m2/s
DCl

w Cl− electrolyte diffusion coefficient in Ωw 2.07× 10−9 m2/s
εw Electrolyte electrical permittivity 7.083× 10−10 F/m
εm Membrane electrical permittivity 1.771× 10−11 F/m
F Faraday constant 9.6485× 104 C/mol
Cs Stern layer capacitance 1 pF
kB Boltzmann constant 1.3806488× 10−23 J/K
T Temperature 300 K
φe Electrode potential 100-500 mV
φec Counter electrode potential 0 mV
lr Tether reservoir length 400 nm
hr Tether reservoir height 4 nm
hm Membrane thickness 4 nm
he Electrolyte height 60 nm



TABLE S2: Parameter Values for Current Predictions
Symbol Definition Value

γ Edge energy 1.8× 10−11 J/m
σ Surface tension 1× 10−3 J/m2

C Steric repulsion constant 9.67× 10−15 J1/4 m
D Radial diffusion coefficient 1× 10−14 m2/s
α Creation rate coefficient 1 Gs−1

[
10 Ms−1 − 0.1 Ts−1

]
q q = (rm/r∗)2 with the symbols defined below Eq. 17 2.46±0.07
DphPC Membrane Tether Density: 1% 10% 100%
G0 Initial membrane conductance 1.67±0.3 µS 0.91±0.04 µS 0.43±0.03 µS
Cm Membrane capacitance 10.5±0.8 nF 10.5±0.7 nF 11.0±0.2 nF
Re Electrolyte resistance 3.5±1 kΩ 3.5±1 kΩ 5.0±2.0 kΩ
Cdl Total electrode double-layer capacitance 136.3±6 nF 136.3±8 nF 118.2±8 nF
Vep Characteristic voltage of electroporation 430±5 mV 430±5 mV 580±10 mV
No Equilibrium pore density 1068 [120-15k] 582 [90-10k] 275 [42-43k]
Kt Spring constant 0 N/m 2±0.5 mN/m 20±5 mN/m
DphPC Membrane (Reservoir Double-Layer Effect) Tether Density: 1% 10%
G0 Initial membrane conductance 1.00±0.1 µS 1.00±0.1 µS
Cm Membrane capacitance 14.6±0.1 nF 16.0±0.4 nF
Re Electrolyte resistance 1.0±0.5 kΩ 1.0±0.5 kΩ
Cdl Total electrode double-layer capacitance 65±3 nF 39±2 nF
Vep Characteristic voltage of electroporation 366±6 mV 400±5 mV
No Equilibrium pore density 641 [100-2k] 641 [100-50k]
Kt Spring constant 0 N/m 2±0.5 mN/m


