UNIVERSITY OF TECHNOLOGY, SYDNEY

MANGROVE ALGAE IN THE ASSESSMENT OF ESTUARINE POLLUTION

FELICITY MELVILLE, BSc (Hons)

Submitted April, 2005

CERTIFICATE

I certify that the work in this thesis has not been previously submitted for a degree, nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Production Note: Signature removed prior to publication.

This project could not have been undertaken without the help of many people. For this help I give my utmost thanks.

Firstly, thank you to my supervisors. Dr Alex Pulkownik, my principal supervisor, continually provided assistance with every aspect of the whole project, particularly in the preparation of this thesis. Alex also assisted with the preparation of seminars, conference presentations and papers for publication, in addition to providing friendly support and I am very grateful for her understanding and help. Thank you to Dr Jenny Stauber who made me feel very welcome at the CSIRO laboratories. Jenny also assisted with the design of the whole project, particularly the microalgal sections, with very helpful advice both in the field and laboratory. I also wish to thank Jenny for her editorial comments during the preparation of this study and providing feedback during the thesis writing process. Professor Meg Burchett also provided help throughout the whole experimental process, particularly with her tireless reading of many thesis drafts. Thank you Meg, for your help during this project and the last few years.

I would also like to thank Edwina Laginestra, and the Sydney Olympic Park Authority for providing generous funding for this project. In addition, Edwina contributed many ideas about the experimental design and the further application of the findings of this study. For the provision of a stipend during the project, I would like to thank the Institute of Water and Environmental Resource Management and the Faculty of Science at the University of Technology, Sydney. Thank you also to the Department of Environmental Sciences at UTS and CSIRO for ongoing financial support of this project.

Thank you to the laboratory staff at the Department of Environmental Sciences, UTS. Narelle Richardson was always a friend, with a great deal of expertise in every laboratory procedure you could think of. Gemma Armstrong has always been there to answer my questions and help with the analyses. I would also like to thank Sue Fenech, whose experience with microalgae made her a very useful laboratory ally. Finally, thank you to my lovely research assistant Janine Wech. Your enthusiasm about even the most routine and laborious tasks was infectious!

A big thank you also to the people at the Centre for Environmental Contaminants Research laboratories at CSIRO. Monique Binet and Merrin Adams were my mentors in the art of microalgal isolation and culturing, toxicity testing and flow cytometry. Thank you to both of you for helping me so much, and making me feel welcome at CSIRO. Thank you also to Gustaaf Hallegraff at the University of Tasmania, for identifying the isolated microalgae to species level.

Finally, I would like to thank the two most important people in my life. My mother, Margaret Melville, for providing emotional and financial support whenever it was needed. Margaret also came with me while I collected samples on several occasions to ensure that I literally did not get stuck in the mud! Last but not least, I wish to thank Ralph Alquezar. Ralph came on every fieldtrip, assisted in much of the labwork, advised on statistical analyses and helped generate the maps for this thesis. Ralph also provided ideas on experimental design and procedures, read thesis drafts and was a wonderful and supportive partner during the whole study.

List of Tables	vi
List of Figures	ix
List of Photographs	xi
Abstract	XII
1.0 INTRODUCTION	1
1.1 AIMS AND RATIONALE	1
1.2 CONTAMINATION IN ESTUARIES	2
1.2.1 Metal Contamination	2
1.2.2 Elevated Nutrient Concentrations	3
1.2.3 Organic Compound Contamination	3
1.3 METAL POLLUTION AND BIOTA	4
1.3.1 Uptake of Metals by Biota	4
1.3.2 Responses of Estuarine Biota to Metal Contamination	6
1.3.3 Development of Tolerance to Pollution	6
1.4 ASSESSMENT OF CONTAMINANT IMPACTS	7
1.4.1 Environmental Assessment and Ecotoxicology	7
1.4.2 Quantifying Contaminant Impacts	8
1.4.5 Use of Blota in Environmental Assessment	ð 10
1.5 PRIMARY PRODUCERS IN CONTAMINATION ASSESSMENT	10
1.5.1 Suitability of Primary Producers	10
1.5.2 Containmation Assessment using Algae	11
1.6 APPROACHES TO ESTUARINE MANAGEMENT	11
1 7 STIDV SITES	10
	12
1.7.1 COOKS River	14
1.7.2 Fallallatta Kiver 1.7.3 Hawkesbury River	15
1.7.4 Clyde River	16
1.8 OBJECTIVES OF STUDY	17
2.0 PHYSICOCHEMICAL CHARACTERISATION OF FIELD SITES	19
2.1 INTRODUCTION	19
2.1.1 Water and Sediment Characteristics of Estuaries	19
2.1.2 Metal Contamination in Australian Estuaries	20
2.1.3 Assessment of Metal Contamination in Estuaries	22
2.1.4 Nutrients as Estuarine Pollutants	22
2.1.5 Metals and Nutrients in Mangrove Sediments	24
2.1.0 Monitoring Estuarme water and Sedment Quanty 2.1.7 Experimental Objectives	24
2 2 MATERIALS AND METHODS	20
2.2.1 Study Site Selection and Sampling Design	20 77
2.2.2 Field Measurements and Sampling Design	27

2.2.3 Laboratory Analyses	32 34
2.3. RESULTS	34
2.3.1 Physicochemical Characteristics of Water and Sediment 2.3.2 Nutrient Concentrations in Water and Sediment 2.3.3 Metal Concentrations in Water and Sediment 2.3.4 Correlations among Parameters	34 42 44 48
2.4 DISCUSSION	53
 2.4.1 Variation in Water and Sediment among Estuaries 2.4.2 Variation within Estuaries 2.4.3 Assessment of Nutrient Contamination 2.4.4 Assessment of Metal Contamination 2.4.5 Potential Impacts on Estuarine Biota 2.4.6 Summary 	53 55 56 57 61 63
3.0 FIELD STUDIES OF MANGROVE MICROALGAE	64
3.1 INTRODUCTION	64
 3.1.1 Microalgae in Estuarine Environments 3.1.2 Environmental Factors affecting Microalgal Distribution and Abundance 3.1.3 Effect of Metals on Microalgae 3.1.4 Microalgae as Bioindicators 3.1.5 Experimental Objectives 	64 66 68 70 71
3.2 MATERIALS AND METHODS	72
3.2.1 Field Collection and Sample Preparation3.2.2 Algal Identification and Enumeration3.2.3 Statistical Analysis	72 72 73
3.3 RESULTS	73
3.3.1 Microalgal Distribution and Abundance3.3.2 Influence of Abiotic Parameters	73 78
3.4 DISCUSSION	84
 3.4.1 Seasonal Variation: Influence of Temperature 3.4.2 Variation within Estuaries: Influence of Salinity 3.4.3 Variation among Estuaries: Influence of Contaminants and Nutrients 3.4.4 Outcomes: Microalgae as Bioindicators 3.4.5 Outcomes: Selection of Microalgae for Laboratory Toxicity Testing 3.4.6 Summary 	84 86 86 88 89 90
4.0 TOXICITY TESTING USING MICROALGAE	91
4.1 INTRODUCTION	91
 4.1.1 Laboratory Toxicity Tests using Microalgae 4.1.2 Linking Field Assessment and Laboratory Toxicity Testing 4.1.3 Copper in Toxicity Testing 4.1.4 Factors affecting Metal Toxicity in Microalgal Bioassays 4.1.5 Flow Cytometry in Microalgal Toxicity Testing 4.1.6 Experimental Objectives 	91 93 94 95 97 97
4.2 MATERIALS AND METHODS	98
4.2.1 Materials 4.2.2 Cells Targeted for Isolation	98 98

ii

	iii
4.2.3 Algal Collection	98
4.2.4 Algal Isolation and Culture	99
4.2.5 Verification of Flow Cytometry Analysis	100
4.2.6 Test Procedures	101
4.2.7 Analysis of Test Results	102
4.3 RESULTS	102
4.3.1 Microalgal Isolation	102
4.3.2 Verification of Flow Cytometry	105
4.3.2 Microalgal Toxicity Testing	106
4.4 DISCUSSION	112
4.4.1 Variation among Algal Genera: Influence of Morphology and	
Physiology	112
4.4.2 Variation within Algal Genera: Adaptation/Acclimation to Toxicants 4.4.3 Comparison with Freshwater and Marine Species: Effect of Salinity	113
Variation	114
4.4.4 Comparison with Water Quality Guidelines	116
4.4.4 Outcomes: Implications for Estuarine Monitoring	117
4.4.5 Summary	118
5.0 FIELD STUDIES OF MANGROVE MACROALGAE	120
5.1 INTRODUCTION	120
5.1.1 Macroalgae in Estuarine Environments	120
5.1.2 Environmental Factors affecting Macroalgal Distribution and Abundance	122
5.1.3 Intertidal Variation in Macroalgal Distribution and Abundance	122
5.1.4 Effect of Metals on Macroalgae	125
5.1.5 Macroalgae as Biomonitors and Bioindicators	126
5.1.6 Experimental Objectives	127
5.2 MATERIALS AND METHODS	128
5.2.1 Pneumatophore Characteristics in Sites	128
5.2.2 Collection of Pneumatophores	128
5.2.3 Determination of Algal Distribution and Biomass	128
5.2.4 Analysis of Macroalgal Metal Accumulation	129
5.2.5 Statistical Analysis	130
5.3 RESULTS	131
5.3.1 Pneumatophore Characteristics	131
5.3.2 Macroalgal Diversity and Abundance among Estuaries	132
5.3.3 Macroalgal Distribution and Abundance within Estuaries	137
5.3.4 Influence of Abiotic Parameters	152
5.3.5 Macroalgal Metal Accumulation	153
5.4 DISCUSSION	156
5.4.1 Variation among Estuaries: Influence of Contaminants and Nutrients	156
5.4.2 Mangrove Environment: Influence of Light and Availability of	157
Attachment Substrate	157
5.4.5 Variation within Estuaries	159
5.4.5 Outcomes: Macroalgae as Rigindicators and Rigmonitors	161
5.4.6 Summary	165

6.0 TOXICITY TESTING USING MACROALGAE	167
6.1 INTRODUCTION	167
6.1.1 Macroalgae as Toxicity Test Organisms	167
6.1.2 Effects of Metals on Respiration and Photosynthesis	169
6.1.3 Experimental Objectives	170
6.2 MATERIALS AND METHODS	171
6.2.1 Materials	171
6.2.2 Collection and Acclimation of Macroalgae	171
6.2.3 Test Procedures: Dark Respiration	172
6.2.4 Test Procedures: Net Photosynthesis	172
6.2.5 Test Procedures: Photosynthetic Pigments	173
6.2.6 Analysis of Test Results	173
6.3 RESULTS	174
6.3.1 Macroalgal Respiration	174
6.3.2 Macroalgal Net Photosynthesis	177
6.3.3 Macroalgal Photosynthetic Pigments	181
6.4 DISCUSSION	182
6.4.1 Endpoint Sensitivity	182
6.4.2 Macroalgal Sensitivity	184
6.4.3 Comparison with Water Quality Guidelines	186
6.4.4 Outcomes: Implications for Estuarine Monitoring	186
6.4.5 Summary	188
7.0 INVERTEBRATES ASSOCIATED WITH MANGROVE MACROALGAE	190
7.1 INTRODUCTION	190
7.1.1 Invertebrates and Mangrove Macroalgae	190
7.1.2 Effect of Estuarine Contaminants on Invertebrates	191
7.1.3 Invertebrates as Indicators of Contamination	191
7.1.4 Experimental Objectives	192
7.2 MATERIALS AND METHODS	192
7.2.1 Specimen Collection	192
7.2.2 Statistical Analysis	192
7.3 RESULTS	193
7.3.1 Distribution of Invertebrates	193
7.3.2 Influence of Biotic and Abiotic Parameters	197
7.4 DISCUSSION	198
7.4.1 Invertebrate Distribution and Abundance	198
7.4.2 Outcomes: Implications for Higher Trophic Levels	200
7.4.3 Summary	201
8.0 OUTCOMES AND IMPLICATIONS FOR ESTUARINE MONITORING	202
8.1 MAJOR FINDINGS	202
8.1.1 Study Estuaries	203
8.1.2 Seasonal and Spatial Variation in Algal Distribution and Abundance	204
8.1.3 Using Mangrove Algae in Contaminant Assessment 8.1.4 Mangrove Algae as Laboratory Test Organisms	205 207

8.1.5 Macroalgae as a Habitat for Estuarine Invertebrates	208
8.1.6 Algal Adaptation/Acclimation to Contamination	209
8.2 SIGNIFICANCE FOR ESTUARINE MONITORING	210
8.2.1 Using Mangrove Macroalgae to Assess Ecological Integrity	210
8.2.2 Using Mangrove Microalgae to Assess Ecological Integrity	212
8.2.3 Case Study: Ecological Assessment in Sydney Olympic Park	213
8.3 FUTURE DIRECTIONS	214
8.3.1 Microalgae	214
8.3.2 Macroalgae	215
8.4 SUMMARY OF STUDY FINDINGS	216
REFERENCES	218
APPENDICES	249
Appendix I	249
Appendix II	250
Appendix III	264
Appendix IV	266
Appendix V	283
Appendix VI	285
Appendix VII	288

V

LIST OF TABLES

Table	Title	page
Table 1.1	Biological functions of common metals in plants and animals	5
Table 2.1	Australian and New Zealand Water Quality Guidelines for metals in marine waters	25
Table 2.2	Australian and New Zealand Interim Sediment Quality Guidelines for metals	26
Table 2.3	Transect lengths at study sites	30
Table 2.4	Summary of estuarine water and sediment characteristics	36
Table 2.5	Physico-chemical characteristics of water.	38
Table 2.6	Physico-chemical characteristics of sediment.	41
Table 2.7	Particle size distribution in sediments.	42
Table 2.8	Nutrient concentrations in waters.	43
Table 2.9	Nutrient concentrations in sediments.	45
Table 2.10	Metal concentrations in waters.	46
Table 2.11	Metal concentrations in sediments.	49
Table 2.12	Correlations among water and sediment characteristics	52
Table 2.13	Summary of abiotic differences among study estuaries	54
Table 2.14 Table 2.15	Ratios of nitrogen to phophorus in the estuarine waters.	57
1 able 2.15	Guidelines.	58
Table 2.16	Comparison of metal concentrations in sediment with Interim Sediment Quality Guidelines.	59
Table 2.17	Metal enrichment relative to background concentrations	59
Table 2.18	Metal enrichment relative to iron concentrations	60
Table 2.19	Comparison of metal concentrations in mangrove and coastal sediments around the world	62
Table 3.1	Distribution of microalgae in the study estuaries	75
Table 3.2	Location of microalgal genera not common to all estuaries	77
Table 3.3	Microalgal abundance in the Cooks River	80
Table 3.4	Microalgal abundance in the Parramatta River	81
Table 3.5	Microalgal abundance in the Hawkesbury River	82
Table 3.6	Microalgal abundance in the Clyde River	83
Table 3.7	Ranking of abiotic parameters as factors of influence in microalgal composition and abundance	84
Table 3.8	Correlations among the abundances of individual genera and environmental parameters	05
		83
Table 4.1	Composition of algal growth media	99
Table 4.2	Growth of unialgal cultures isolated from the study estuaries	102
Table 4.3	Sensitivity of algal isolates to copper	106
Table 4.4	Sensitivity of microalgae to conner	113
1 avic 4.3	Sensitivity of intervargae to copper	115

Table 5.1	Distribution of common mangrove macroalgal species associated with temperate mangrove forests of south-eastern Australia	121
Table 5.2	Site and pneumatophore characteristics	132
Table 5.3	Frequency of macroalgal species in study estuaries	135
Table 5.4	Biomass of macroalgal species within each study estuary	136
Table 5.5	Seasonal variation in macroalgal frequency	140
Table 5.6	Seasonal variation in macroalgal biomass	140
Table 5.7	Site variation in macroalgal frequency	143
Table 5.8	Site variation in macroalgal biomass	143
Table 5.9	Intertidal variation in macroalgal frequency	146
Table 5 10	Intertidal variation in macroalgal biomass	147
Table 5.11	Variation in macroalgal frequency along vertical pneumatophore segments.	150
Table 5.12	Variation in macroalgal biomass along vertical pneumatophore segments	151
Table 5.13	Correlations between frequency and biomass of the macroalgal species	151
Table 5.14	Significant correlations among species	152
Table 5.15	Ranking of abiotic parameters as factors of influence on macroalgal frequency and abundance	152
Table 5.16	Significant correlations between macroalgae and environmental	
	parameters	154
Table 5.17	Metal concentrations in macroalgal tissue	155
Table 5.18	Metal concentration factors for macroalgal species	155
Table 5.19	Distribution and abundance of macroalgal species among intertidal	
	zones.	160
Table 5.20	Concentration factors of metals in macroalgal tissues	164
Table 6.1	Respiration rates of <i>C. leprieurii</i> and <i>C. nipae</i> from the Parramatta and Hawkesbury Rivers	174
Table 6.2	Net photosynthesis in <i>C. leprieurii</i> and <i>C. nipae</i> from the Parramatta and Hawkesbury Rivers	171
Table 6.3	Photosynthetic pigments in <i>C. leprieurii</i> and <i>C. nipae</i> from the Parramatta and Hawkesbury Rivers	181
Table 6.4	Comparison of species sensitivities to copper.	183
Table 6.5	Copper concentrations in waters and sediments of the study estuaries	185
Table 7.1 Table 7.2	Distribution and abundance of invertebrates on pneumatophores Ranking of biotic and abiotic parameters as factors of influence on invertebrate abundance	194
		198
Table 8.1	Comparison of study estuaries based on their metal and nutrient concentrations.	204
Table 9 2	Comparison of temporal and anotial variation in manageous algoe	204
1 able 0.4	Mangrove algae as notantial bioindicators	203
I able 8.3	Viangrove algae as potential bioindicators	200
1 adle 8.4	C. <i>teprieurit</i> as a biomonitor	20 M
APPENDICES	8	
Table I.1	Detection limits of metal concentrations in water and sediment	249
Table I.2	Recovery of certified sediment reference material	249
Table I.3	Recovery of certified plant reference material	249

Table II.1	Sediment salinity in intertidal zones	250
Table II.2	Sediment pH in intertidal zones	251
Table II.3	Sediment organic content in intertidal zones	252
Table II.4	Particle size distribution in sediments of intertidal zones	253
Table II.5	Nitrogen concentrations of sediments in intertidal zones	254
Table II.6	Phosphorus concentrations of sediments in intertidal zones	255
Table II.7	Copper concentrations of sediments in intertidal zones	256
Table II.8	Zinc concentrations of sediments in intertidal zones	257
Table II.9	Lead concentrations of sediments in intertidal zones	258
Table II.10	Cadmium concentrations of sediments in intertidal zones	259
Table II.11	Chromium concentrations of sediments in intertidal zones	260
Table II.12	Nickel concentrations of sediments in intertidal zones	261
Table II.13	Manganese concentrations of sediments in intertidal zones	262
Table II.14	Iron concentrations of sediments in intertidal zones	263
Table IV.1	Frequency of algal species in Cooks River sites	266
Table IV.2	Biomass of algal species in Cooks River sites	266
Table IV.3	Frequency of algal species in Parramatta River sites	267
Table IV.4	Biomass of algal species in Parramatta River sites	269
Table IV.5	Frequency of algal species in Hawkesbury River sites	271
Table IV.6	Biomass of algal species in Hawkesbury River sites	274
Table IV.7	Frequency of algal species in Clyde River sites	276
Table IV.8	Biomass of algal species in Clyde River sites	279
Table V.1	Metal concentrations in pooled algal tissue, February 2002	283
Table V.2	Concentration factors of metals relative to water, February 2002	283
Table V.3	Concentration factors of metals relative to sediment, February 2002	283
Table V.3	Metal concentrations in algal tissue combined from each site	284
Table VI.1	Chlorophyll a and b content in C. leprieurii and C. nipae	285
Table VI.2	Total chlorophyll and chlorophyll <i>a</i> : <i>b</i> ratio in <i>C</i> . <i>leprieurii</i> and <i>C</i> . <i>nipae</i>	286
Table VI.3	Total caretenoids and chlorophyll:caretenoid ratio in <i>C. leprieurii</i> and <i>C. nipae</i>	287

viii

LIST OF FIGURES

Figure	Title	page
Fig. 1.1	Location of study estuaries in south-east Australia	13
Fig. 2.1	Location of study sites in the Cooks River estuary	28
Fig. 2.2	Location of study sites in the Parramatta River estuary	28
Fig. 2.3	Location of study sites in the Hawkesbury River estuary	29
Fig. 2.4	Location of study sites in the Clyde River estuary	29
Fig. 2.5	Experimental design for sampling in the Parramatta, Hawkesbury and Clyde Rivers	30
Fig. 2.6	Experimental design for sampling in the Cooks River	32
Fig. 2.7	Mean estuarine sediment nutrient concentrations	44
Fig. 2.8	Total loads of common anthropogenic metals in sediments	48
Fig. 3.1	Seasonal microalgal diversity in the study estuaries	74
Fig. 3.2	Seasonal microalgal abundance in the study estuaries	74
Fig. 3.3	Ordination analysis of seasonal microalgal abundance in the study estuaries	76
Fig. 3.4	Similarity analysis of microalgal composition in the study estuaries	77
Fig. 3.5	Similarity analysis of microalgal abundance in the study estuaries	78
Fig. 3.6	Ordination analysis of microalgal abundance among sites in each study estuary	70
		19
Fig. 4.1	Comparison of cell counts determined by Flow Cytometry and Coulter Counter	105
Fig. 4.2	Growth inhibition due to copper of <i>N. closterium</i> isolated from the Clyde River	103
Fig. 4.3	Growth inhibition due to copper of <i>Chlorella</i> sp. isolated from the Clyde River	107
Fig. 4.4	Growth inhibition due to copper of <i>Chlorella</i> sp. isolated from the	100
T:- 4 5	Hawkesbury River	108
rig. 4.5	Parramatta River	108
Fig. 4.6	Growth inhibition due to copper of <i>N. paleacea</i> isolated from the Cooks River	109
Fig. 4.7	Growth inhibition due to copper of <i>Chlorella</i> sp. isolated from the Cooks River	109
Fig. 4.8	Comparative growth inhibition of all algal isolates by copper	110
Fig. 5.1	Similarity analysis of study estuaries as a function of macroalgal frequency	135
Fig. 5.2	Similarity analysis of study estuaries as a function of macroalgal biomass	137
Fig. 5.3	Ordination analysis of macroalgal frequency within the study estuaries as	120
Fig 5 A	a function of scasoff Ordination analysis of macroalcal biomass within the study estustics as a	138
1'Ig. J.4	function of season	139

Fig. 5.5	Ordination analysis of macroalgal frequency within the study estuaries as a function of intra-estuarine site	141
Fig. 5.6	Ordination analysis of macroalgal biomass within the study estuaries as a function of intra-estuarine site	142
Fig. 5.7	Ordination analysis of macroalgal frequency within the study estuaries as a function of intertidal zone	144
Fig. 5.8	Ordination analysis of macroalgal biomass within the study estuaries as a function of intertidal zone	145
Fig. 5.9	Ordination analysis of macroalgal frequency within estuaries based on vertical pneumatophore segments	148
Fig. 5.10	Ordination analysis of macroalgal biomass within estuaries based on vertical pneumatophore segments	149
Fig. 5.11	Observed relationship between the distribution of <i>C. nipae</i> and <i>C. leprieurii</i> and sediment metal concentrations	158
Fig. 6.1	Respiration of C. leprieurii from Parramatta River in the presence of copper	175
Fig. 6.2	Respiration of <i>C. leprieurii</i> from Hawkesbury River in the presence of copper	175
Fig. 6.3 Fig. 6.4 Fig. 6.5	Respiration of <i>C. nipae</i> from Parramatta River in the presence of copper Respiration of <i>C. nipae</i> from Hawkesbury River in the presence of copper Change in dissolved oxygen under light conditions using <i>C. leprieurii</i> and <i>C. nipae</i>	176 177 178
Fig 6.6	Net photosynthesis of <i>C. leprieurii</i> from Parramatta River in the presence of copper	179
Fig. 6.7	Net photosynthesis of <i>C. leprieurii</i> from Hawkesbury River in the presence of copper	179
Fig. 6.8	Net photosynthesis of <i>C. nipae</i> from Parramatta River in the presence of copper	180
Fig. 6.9	Net photosynthesis of <i>C. nipae</i> from Hawkesbury River in the presence of copper	180
Fig. 7.1 Fig. 7.2	Similarity analysis of invertebrate abundance in the study estuaries Ordination analysis of invertebrate abundance in the study estuaries	195 197
Fig. 8.1	Relationship between the frequency of <i>C. nipae</i> and total metal concentrations in sediments.	212

LIST OF PHOTOGRAPHS

Photograph	Title	page
Photograph 2.1 Photograph 2.2	Retaining wall at rear of Site P3 in the Parramatta River Cooks River Site Ck3	31 31
Photograph 2.3	Position of Site C1 in a side embayment of the Cooks River	56
Photograph 4.1 Photograph 4.2	Nitzschia paleacea Grunov isolated from the Cooks River Nitzschia closterium (Ehrenberg) W. Smith isolated from the	103
Photograph 4.3	Minutocellulus polymorphus (Hargraves and Guillard) isolated	103
	from the Parramatta River	105
Photograph 5.1	Caloglossa leprieurii	133
Photograph 5.2	Catenella nipae	133
Photograph 5.3	Bostrychia moritziana	133
Photograph 5.4	Bostrychia tenella	134
Photograph 5.5	Bostrychia tenuissima	134
Photograph 5.6	Ulva australis	134
Photograph 5.7	Enteromorpha intestinalis	135
Photograph 5.8	Intertidal zonation of algae in the Hawkesbury River	160
Photograph 7.1	Arcitalitrus bassianus (Crustacea: Malecostracea).	195
Photograph 7.2	Buddelundia inaequalis (Crustacea: Malecostracea).	196
Photograph 7.3	Littorina sp. (Mollusca: Gastropoda).	196
Photograph 7.4	Tetraclitella sp. (Crustacea: Maxillopoda).	196
Photograph 7.5	Trochus sp. (Crustacea: Gastropoda).	196
Photograph 7.6	<i>Euspiria</i> sp. (Mollusca: Gastropoda).	196
Photograph 7.7	Spirorbis sp. (Annelida: Polychaeta).	196
Photograph 8.1	C. nipae on pneumatophores	211
APPENDICES		
Photograph III.1	Coscinodiscus sp. (Bacillariophyta)	264
Photograph III.2	Ceratium sp. (Dinophyta)	264
Photograph III.3	Gyrosigma sp. (Bacillariophyta)	265
Photograph III.4	Amphiprora sp. (Bacillariophyta)	265
Photograph III.5	Fragilaria sp. (Bacillariophyta)	265

Estuaries are highly degraded ecosystems throughout the world. The primary aim of this study was to investigate the biology and ecology, and the effects of contaminants on mangrove-associated micro and macroalgae, and assess their suitability in the biological assessment of estuaries.

Ecological surveys over two seasonal cycles, in four estuaries in New South Wales, Australia, the Cooks, Parramatta, Hawkesbury and Clyde Rivers, were used to examine the diversity, distribution and abundance of mangrove micro- and macroalgae, their seasonal and spatial variability and the role of sediment and water metal contaminants and nutrients in their distribution and abundance. Species that appeared to be impacted by contaminants were selected for toxicity testing in the laboratory to examine their sensitivity to the common pollutant metal, copper.

Thirty genera of microalgae and eight species of macroalgae were identified in this study. Microalgal diversity and abundance were significantly higher in summer, but no seasonal variation in the macroalgae was demonstrated. Intertidal variation in macroalgal distribution and abundance was evident, with each species growing optimally in different intertidal zones, possibly as a consequence of competition amongst the algae, and desiccation tolerance or intolerance. Variation in macroalgal distribution along the vertical length of pneumatophores was also evident for several species.

Both the micro- and macroalgal diversity differed between the contaminated Cooks and Parramatta Rivers, and the less contaminated Hawkesbury and Clyde Rivers, indicating that contamination was potentially impacting species survival. Distribution of the macroalgae *Catenella nipae*, was negatively correlated with contaminant concentrations indicating its potential as a bioindicator species. *Caloglossa leprieurii* distribution was higher in the more contaminated estuaries, suggesting that it may be a useful biomonitor species.

In laboratory toxicity tests using net photosynthesis as an endpoint, *C. nipae* was sensitive to copper at Australian and New Zealand Water Quality Guideline concentrations, further confirming its potential use as a bioindicators. In growth inhibition tests, microalgal species from the less contaminated Hawkesbury and Clyde Rivers were sensitive to copper at guideline values, indicating that these algae were potentially useful toxicity test species.

In both the micro- and macroalgal toxicity tests, similar species originating from the different estuaries displayed copper EC50 values that appeared to reflect the contaminant concentrations of their site of origin. Thus, adaptation and/or acclimation to contamination by the mangrove algae appeared to be operating.

This study has contributed to a better understanding of the seasonal and spatial factors affecting mangrove-associated algae in south-east Australia, on which there has been previous little research. This study has also identified organisms that could be potentially used in the monitoring and assessment of estuarine contamination, including bioindicator species, a biomonitor and several sensitive laboratory toxicity test species.