CONTENTS

2 FOREWORD
Reforming the water industry
Ian Hunter, South Australian Minister for Water and the River Murray

4 INTRODUCING WARDIA
Driving the future of wastewater for regions
Andy Roberts, CEO, Water Industry Alliance

17 COMMUNITY ENGAGEMENT IN ALTERNATIVE WATER INITIATIVES IN AUSTRALIA
Dr. Matthew Kearnes and Prof. Judy Motion
Environmental Humanities
School of Humanities and Languages
University of New South Wales

22 SYDNEY WATER
Sydney Water and Oxyzone Collaborate to Develop an Innovative Ozone Trailer for Disinfection of Water Mains
Sydney Water

28 SUSTAINABLE ASSET MANAGEMENT AND AUSTRALIAN WATER
The Asset Management Council

34 USING MEMBRANES TO SECURE URBAN WATER SUPPLIES: ACHIEVEMENTS AND CHALLENGES
Greg Leslie, UNESCO Centre for Membrane Science and Technology, University of New South Wales

38 MAKING BETTER RECYCLED WATER INVESTMENTS
Learning from case studies in balancing the costs, benefits, and risks
Jamiya Mota, Research Consultant
Professor Cynthia Mitchell, Deputy Director
Institute for Sustainable Futures, University of Technology, Sydney

42 GOING WITH THE FLOW?
Water storages in the Murray-Darling Basin
Murray-Darling Basin Authority

46 MAJOR PROJECT
Agnes Water/Seventeen Seventy – Trilby Pty Ltd

50 WATER CORPORATION
Desalination in WA

52 GROUNDWATER
The benefits from mine water:
Regulations and strategies – Golder Associates

56 WATER MANAGEMENT IN MINING
The Hamersley Agricultural Project
Rio Tinto

58 Effective collaboration – a key innovation to delivering productivity gains under constrained industry circumstances
Chris Moran AssMM, Director, Sustainable Minerals Institute, The University of Queensland

62 Securing Australia’s groundwater future
National Centre for Groundwater Research and Training (NCGRT)

68 40 YEARS OF WIDA
Water Industry Operators Australia

72 INTELLIGENT WATER SOLUTIONS
The changing role of the urban water sector
Professor Tony Wong, CEO, CRC for Water Sensitive Cities

76 Water connectivity project brings forward creation of new operations control centre
SA Water

80 THE RIGHT PUMP FOR YOUR JOB
Pump Industry Association

86 WATER QUALITY
Water Quality Monitoring Technology and Information Collection System – CSIRO

91 COMPANY PROFILES
MAKING BETTER RECYCLED WATER INVESTMENTS:
LEARNING FROM CASE STUDIES IN BALANCING THE COSTS, BENEFITS, AND RISKS
Over the past decade, driven by a confluence of interrelated factors such as drought, subsidies, and sustainability imperatives, Australia has seen significant developments in water recycling. However, we rarely look back at these investments to see how differently things played out from what had been initially planned or anticipated, and how the real costs, benefits and risks were balanced and distributed across different stakeholders. Learning from these experiences is essential if effective recycled water investments are to be made in the future.

The Institute for Sustainable Futures (ISF), at the University of Technology Sydney has recently completed a two-year national collaborative research project for the Australian Water Recycling Centre of Excellence aimed at filling this knowledge gap, and enabling the sector to build better business cases.

The project investigated eight diverse case studies of water recycling schemes from across Australia.

Key reflections

The stories revealed by the project case study investigations illustrate why context matters in every situation, and how the practical assessment of success or otherwise goes beyond economics. Often recycled water investments do not 'stack up' by themselves financially. These get over the line either through scheme investors having access to government subsidies or the means to accept the financial gap in return for the less tangible outcomes. For example, one utility was able to spread the costs across its entire customer base and the scheme provided significant organisational learning and development outcomes. In another example, investment in water recycling by a private developer to ensure the highest sustainability rating of a new building secured a premium tenant on a long-term lease, at the height of the Global Financial Crisis.

Demand for recycled water is likely to increase in the future, not least from the drive to improve urban livability and the benefits of retaining greater amounts of water in the landscape. However, subsidies are less likely in the future, so to enable public investments in water recycling other approaches may be necessary. These include for example, accepting the additional costs in return for the less tangible or direct benefits, facilitating shifts in the distribution of costs and benefits across the different stakeholders, and allowing recycled water to operate on a same basis as other sources, i.e. through postage stamp pricing.

Clear articulation of the benefits, including the ones that are hard to monetize, is important in that it can help proponents of recycling schemes determine whether pursuing these schemes justifies accepting the financial gap.

In such considerations, careful thought about the location and scale of recycled water provision is also important as it can facilitate access to certain benefits such as avoided infrastructure upgrade costs.

Moves toward cost reflective pricing of water and sewage services, alongside improving the capacity to access both of these revenue streams and streamlined regulations will improve the opportunity for private players to enter the market.

Another key reflection emerging from the project is that the treatment of risk in recycling needs to expand dramatically. This needs to incorporate a broader range of business risks associated with the decision to invest in recycling, extending well beyond the historical focus around technical issues to ensure the product meets public and environmental health standards (Figure 1). For example, case study investigations highlighted that demand risk is significant in recycled water planning and investment. Deviations from demand forecasts are common across quite different recycled water schemes, often leading to unanticipated financial and operational consequences.

![Types of risks](image)

Figure 1: Different categories of risk

The reason why overestimating demand is widespread is because it is rooted in human cognitive and behavioural biases. Avoiding these pitfalls is possible and requires both explicit attention to these psychological traps and a corporate culture that values failure and learning from experience. The project’s thematic paper ‘Demand forecasting: a risky business’ expands on this and the project’s guidance materials - *Making better recycled water investment decisions: Shifts Happen* - show how to approach the whole subject differently.

It requires a structured practical process to uncover and assemble all the relevant sources of risks and uncertainty, from political shifts to changes in the market. The project identified six areas where significant shifts can happen in practice. Each of these areas requires attention from the earliest stages of a proposed scheme, so that the risks can either be managed or planned for.
The project

The project case studies were selected via a participatory process with the project partners, who represent a diversity of stakeholder groups in the water sector including utilities, regulators, technology providers, developers, and councils (Figure 2).

These were selected to reflect the diversity and range of reused schemes that are designed, implemented, and operated in Australia. They represent a broad spectrum of situations across a wide-ranging range of dimensions.

The depth of the case studies is expanded in a number of documents exploring cross-cutting themes that emerged from the detailed investigation of the case studies and insights from the water sector.

These include:

- Navigating the institutional maze – draws on the experience of a NSW metropolitan Council to illustrate the messy and often interwoven process of establishing council schemes, where water recycling regulations are unclear.
- Saving water and spending energy? – explores energy consumption issues and trade-offs faced by recycled water schemes.
- Demand forecasting: a risky business – demonstrates that deviations from demand forecasts are common across the recycled water industry and provides guidance on how to notice and mitigate this risk.
- Matching treatment to risk – demonstrates how the perception of water recycling health and environmental risks is interwoven with other business and organisational risks, and how this can often lead to multiple water recycling schemes.
- Water conservation: when is the right time? – illustrates the strong relationship between the drivers and outcomes of water recycling schemes and the public or private nature of the proponents.
- Water recycling: is it for the future? – illustrating the strong relationship between the drivers and outcomes of water recycling schemes and the public or private nature of the proponents.

Project outputs

The project outputs are documented in a suite of 16 concise, engaging, and interwoven deliverables. In addition to the case studies and the cross-cutting theme papers, an investment guide and a policy paper were also developed. The investment guide collates all the learnings from the project and help potential help potential investors assess these learnings in their own projects. More specifically, it assists with making the questions that matter to identify and assess risks and uncertainties involved, when planning a water recycling scheme.

The policy paper in turn discusses how policy and regulatory settings around environmental protection, water security, infrastructure charges, and approvals and licensing impacted on the case studies.

This bold approach has been well received with enthusiastic feedback from industry leaders such as Dave Gough, the Chair of WaterReuse Australia, who said: I am really excited about the potential of this tool to help policy makers, practitioners and service providers better understand what makes a good recycled water project, and how to overcome barriers to their implementation.

Concluding remarks

This project began with the title ‘Building better business cases for recycled water,’ and an intention to explore and learn from on-the-ground experience. The future value to the sector of this research project lies in improving the investment landscape for water recycling by helping to raise the visibility of the opportunities and risks that matter, and how to identify them, enabling the development of better cost-sharpening arrangements and influencing policy and institutional settings.

Find out more about the project here: http://waterrecyclinginvestment.com.
Table 1: Characteristics of the water recycling schemes investigated

<table>
<thead>
<tr>
<th>Case study</th>
<th>Jurisdiction</th>
<th>Scale</th>
<th>Water source</th>
<th>End-use</th>
<th>Delivery model</th>
<th>Year operation started</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darling Quarter</td>
<td>NSW</td>
<td>0.17 ML/d</td>
<td>Sewage (sewer mining)</td>
<td>Commercial building reuse for toilet flushing, irrigation, and cooling towers</td>
<td>Privately owned and operated</td>
<td>2011</td>
</tr>
<tr>
<td>Roseville</td>
<td>NSW</td>
<td>26 ML (Dam capacity)</td>
<td>Stormwater</td>
<td>Urban golf course and oval irrigation, and toilet flushing</td>
<td>Private-public collaboration between a golf club and a council</td>
<td>2003/10</td>
</tr>
<tr>
<td>Wide Bay Water</td>
<td>QLD</td>
<td>14.3 ML/d (3 plants)</td>
<td>Sewage</td>
<td>Cane farms, hardwood plantations, council open spaces, golf course,</td>
<td>Owned and operated by a public utility/ local government authority</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hervey Bay airport and dust suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosehill</td>
<td>NSW</td>
<td>20 ML/d</td>
<td>Sewage</td>
<td>Industrial processes and irrigation</td>
<td>Private-public partnership between a private consortium and a public utility</td>
<td>2011</td>
</tr>
<tr>
<td>Aurora</td>
<td>VIC</td>
<td>3.5 ML/d</td>
<td>Sewage</td>
<td>Greenfield residential reuse for toilet flushing, garden watering, car washing and irrigation of public open space</td>
<td>Owned and managed by public utility</td>
<td>2009</td>
</tr>
<tr>
<td>Wagga Whoga</td>
<td>NSW</td>
<td>23.26 ML/d (3 plants)</td>
<td>Sewage</td>
<td>Sports ground; lawn cemetery; Agricultural non-food crop</td>
<td>Owned and managed by a council</td>
<td>mid-1980s</td>
</tr>
<tr>
<td>Yatala</td>
<td>QLD</td>
<td>1.5 - 2 ML/d</td>
<td>Industrial effluent (brewery)</td>
<td>Industrial reuse (cooling towers, cleaning processes, toilet flushing, and irrigation)</td>
<td>Privately owned and operated</td>
<td>2005</td>
</tr>
<tr>
<td>Willunga</td>
<td>SA</td>
<td>5.8 GL/yr</td>
<td>Sewage</td>
<td>Irrigation</td>
<td>Private-public partnership between a private joint venture and a public utility</td>
<td>mid-1990s</td>
</tr>
</tbody>
</table>

Authors
Janina Marta, Research Consultant
Professor Cynthia Mitchell, Deputy Director
Institute for Sustainable Futures, University of Technology, Sydney

Institute for Sustainable Futures
The Institute for Sustainable Futures (ISF) is a flagship research institute at the University of Technology, Sydney. ISF’s mission is to create change toward sustainable futures through independent, project-based research with government, industry and community. For further information visit www.isf.uts.edu.au

Acknowledgements
This project was undertaken with the generous financial support from the Australian Water Recycling Centre of Excellence and 12 partner organisations representing diverse interests, roles and responsibilities in water recycling: UTS, Sydney Water Corporation, Yarra Valley Water, Ku-ring-gai Council, NSW Office of Water, Land Leases, Independent Pricing and Regulatory Tribunal (IPART), QLD Department Environment & Resource Management, Siemens, WSP Solutions, Sydney Coastal Councils Group, and Water Services Association of Australia (WSAA).

ISF also wishes to acknowledge the generous contributions of the project’s research participants — approximately 80 key informants from our 12 project partners and 50 other participating organisations.