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The thing the ecologically illiterate don’t realize about an ecosystem is that it’s a system.

A system! A system maintains a certain fluid stability that can be destroyed by a misstep

in just one niche. A system has order, a flowing from point to point. If something dams

the flow, order collapses. The untrained miss the collapse until too late. That’s why the

highest function of ecology is the understanding of consequences.

Kynes in ”Appendix I: The Ecology of Dune”

Excerpt from Dune by Frank Herbet
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CO2 compensation point @ 25◦C Γ∗ 36.5 μmol mol−1

Psychometric constant γ 0.066 kPa ◦C−1
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Latent heat of vaporisation of water λ 2.3845 MJ kg−1
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Cs CO2 concentration in the bundle sheath cells μmol mol−1

Dv Vapour pressure deficit kPa

Dvmax Daily maximum vapour pressure deficit kPa

Dpeak Position of peak vapour pressure deficit kPa

D0 Lohammer constant for Dv kPa

d0p Zero plane displacement height m

droot Depth of roots m

dsoil Depth of soil m

E0 Potential evaporation mm hr−1

Ec Canopy transpiration mm hr−1

Ecmax Maximum canopy transpiration mm hr−1

Es Soil evaporation mm hr−1

xxiv
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Et Tree transpiration mm hr−1

ET Evapotranspiration mm hr−1

ga Aerodynamic conductance mmol m−2 s−1

gb Boundary layer conductance mmol m−2 s−1

gbs Bundle sheath conductance mmol m−2 s−1

gc Canopy conductance mmol m−2 s−1

gcmax Maximum canopy conductance mmol m−2 s−1

gplant Whole plant hydraulic conductance mmol m−2 MPa−1

gs Stomatal conductance to H2O mmol m−2 s−1

gsc Stomatal conductance to CO2 mmol m−2 s−1

gs0 Residual stomatal conductance mmol m−2 s−1

gsmax Maximum stomatal conductance mmol m−2 s−1

gsmin Minimum stomatal conductance mmol m−2 s−1

gt Total conductance to H2O mmol m−2 s−1

Hs Relative humidity %

h Height of canopy m

Je Potential rate for electron transport μmol m−2 s−1

Jmax Maximum rate for electron transport μmol m−2 s−1

Jw Flow of water to the xylem mm t−1

K Soil hydraulic conductivity MPA m−2 s−1

Kc Enzyme catalytic activity for CO2 μmol mol−1

Ko Enzyme catalytic activity for O2 μmol mol−1

Km Combined enzyme catalytic activity μmol mol−1

Kp Enzyme catalytic activity for PEP μmol mol−1

kD1 vapour pressure deficit shape parameter 1 kPa

kD2 vapour pressure deficit shape parameter 2 kPa

kT C4 first order rate constant for PEP carboxylase unitless

kR Solar radiation constant W m−2

L Rate of CO2 leakage from the bundle sheath to the μmol m−2 s−1

mesophyll cells

LSA Specific leaf area m2 m−2
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Mcj C4 CO2 flux determined by Ac and Aj μmol m−2 s−1

mroot Root biomass kg m−3

Nf Total leaf nitrogen content g m−2

NLA Nitrogen per leaf area g m−2

Oi Intercellular O2 concentration μmol mol−1

Os O2 concentration in the mesophyll cells μmol mol−1

Os O2 concentration in the bundle sheath cells μmol mol−1

Qp Quantum flux density (PAR) μmol m−2 s−1

Ra,b Total above and below-ground resistance MPa m2 s mol−1

Rd Dark respiration μmol m−2 s−1

Rm Mitochondrial respiration μmol m−2 s−1

Rn Net radiation W m−2

Rs Solar radiation W m−2

Rplant Plant resistance MPa m2 s mol−1

Rroot Root resistance MPa m2 s mol−1

Rsoil Soil resistance MPa m2 s mol−1

rb Boundary layer resistance s m−1

rroot Fine root radius m

rs Stomatal resistance s m−1

S% Percentage of sand (PSD) %

SA Sapwood area m2 ha−1

Ta Ambient air temperature ◦C

Tamax Daily maximum air temperature ◦C

Tl Leaf temperature ◦C

Uz Windspeed m s−1

Vcmax Maximum rate for RuBisCO carboxylation μmol m−2 s−1

Vo Rate for RuBisCO oxygenation μmol m−2 s−1

Vp Rate for PEP carboxylation μmol m−2 s−1

Vpr PEP regeneration rate μmol m−2 s−1

Vpmax Maximum rate for PEP carboxylation μmol m−2 s−1

x̄root Mean distance between roots m
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zh Height of humidity measurement m

zm Height of wind measurement m

zoh Roughness length governing heat transfer m

zom Roughness length governing momentum transfer m

αj Quantum yield of whole chain electron transport mol mol−1

αrf Combined constant: Quantum yield and absorbed mol mol−1

photons used by the C4 reaction process

βe Proportionality of error unitless

βco Co-limitation between light, RuBisCO and CO2 limited flux unitless

Δ Slope between vapour pressure and temperature kPa ◦C−1

ιop Stomatal efficiency parameter unitless

λcw Cost of water parameter μmol mol−1

Ψs Soil water potential MPa

Ψl Leaf water potential MPa

Ψlpd Pre-dawn leaf water potential MPa

Ψlmin Minimum leaf water potential MPa

θc Critical point for transpiration m3 m−3

θf Field capacity of the soil m3 m−3

θj Shape coefficient for non-rectangular hyperbola unitless

θtr Transition between light-limited and RuBisCO unitless

limited CO2 flux

θs Soil water content m3 m−3

θsat Saturated water content of the soil m3 m−3

θw Wilting point for transpiration m3 m−3



Abstract

Modelling the water and carbon fluxes from forest canopies provides useful insight into

the dynamics of the exchange of water vapour for atmospheric CO2 and the processes that

govern this exchange. The work presented in this thesis aimed to answer four questions

related to modelling of canopy gas-exchange. The first two questions involved the devel-

opment of a simple empirical model of canopy water-use to see whether i) water fluxes

from a canopy could be estimated without the need for canopy conductance and ii) could

such a model be applied across multiple sites without the need for site-specific calibra-

tion? The remaining two questions involved the modification and improvement of a highly

mechanistic and complex soil-plant-atmosphere (SPA) continuum model, which was done

in order to iii) replicate canopy gas-exchange for a Australian tropical savanna and iv) to

improve the simulated leaf gas-exchange process of a SPA model.

A simple empirical model of canopy water-use (Ec), a modified Jarvis-Stewart (MJS)

model, was developed in order to circumvent the problem of requiring surface conductance

as an input in order to calculate transpiration. This was accomplished by modelling an

empirical relationship of the multivariate response of Ec to solar radiation (Rs), vapour

pressure deficit (Dv) and soil moisture content (θs). The MJS model was shown to provide

favourable short- and mid-term (annual) estimates of Ec that only required three more

readily available abiotic inputs (Rs, Dv and θs) and a small set of site-calibrated model

parameters. Predictions of Ec determined from the MJS model were able to replicate

the observed data and compared favourably with the established Penman-Monteith (PM)

equation and a statistical benchmark created using an artificial neural network (ANN).

In addition to this, the applicability of the MJS model was tested for five disparate Aus-

tralian woodland sites, where model parameters were calibrated for each individual site

and simultaneously for all sites. The result was that while MJS model was able to give a

good representation of the measured data using site-specific parameters, using a parameter

set that describes an average response of Ec to the environment performed equally well.

This was despite each site being comprised of different tree species and occurring over

different soil profiles. This showed that the MJS model is partially insensitive to variation

in the values of the model parameters and that the number of inputs into the MJS can be
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further reduced. The conclusion was that this model is broadly applicable for many sites

in temperate Australia and one that can be used as a tool in the management of water

resources.

While the MJS model provided a useful management tool, in order to investigate the dy-

namics of water and carbon gas-exchange from forest canopies, the more complex SPA

model of Williams et al. (1996a) was used. While the SPA model has been applied in

ecosystems globally with much success, the lack of C4 photosynthesis has limited its ap-

plication to savanna ecosystems. Modification of the SPA model was therefore undertaken

in order to improve its applicability to savannas through incorporation of C4 photosyn-

thesis. This was an important improvement as savannas are dominated by C4 grasses,

which contribute significantly to ecosystem water and carbon fluxes. This modification

allowed the SPA model to be parameterised to a savanna site in northern Australia, which

was simulated over 5 years to replicate measurements of carbon and water fluxes derived

from eddy-covariance. The SPA model allowed C3 and C4 water and carbon fluxes to be

separated and this showed that the C4 grasses contribute significantly to total savanna

productivity (48%), but a much smaller amount to total water-use (23%). Additionally,

it was determined the seasonal variation in leaf area index was driving the seasonality

in productivity and water-use and the savanna site was determined to be energy-limited

(limited by its light interception).

The modification and application of the SPA model to a savanna site highlighted impor-

tant issues in the way leaf gas-exchange is represented in the model. An investigation into

the leaf gas-exchange process handled by SPA showed that there was an imbalance be-

tween assimilation and transpiration, as a result of simulated stomatal conductance being

increased to unreasonably high levels in order to maximise carbon gain. In order to correct

this problem, the modelled gas-exchange was modified to follow the optimality hypothesis

of Cowan and Farquhar (1977), such that carbon gain is maximised while water lost from

the leaf is simultaneously minimised. This improvement was tested in a purely theoretical

exercise, where leaf gas-exchange (default and improved schemes) was simulated over a

drought. The result of this simulation was that the improved scheme produced a reduction

in canopy water-use, while carbon gain remained high and comparable with that of the

default scheme.
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