Modelling Water and Carbon Canopy Fluxes

by

Rhys James Whitley
B.Sc in Applied Physics (Hons)

in the
Faculty of Science
Department of Environmental Sciences

A thesis submitted in fulfillment for the degree of Doctor of Philosophy

February 2011
Declaration of Authorship

I, RHYS JAMES WHITLEY, declare that this thesis titled, ‘MODELLING WATER AND CARBON CANOPY FLUXES’ and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:
The thing the ecologically illiterate don’t realize about an ecosystem is that it’s a system. A system! A system maintains a certain fluid stability that can be destroyed by a misstep in just one niche. A system has order, a flowing from point to point. If something dams the flow, order collapses. The untrained miss the collapse until too late. That’s why the highest function of ecology is the understanding of consequences.

Kynes in "Appendix I: The Ecology of Dune"

Excerpt from Dune by Frank Herbet
Acknowledgements

I must first express my gratitude and thanks to my supervisors, Prof Derek Eamus, Dr Belinda Medlyn, Dr Melanie Zeppel and Dr Cate Macinnis-Ng, who have provided me with the utmost support, encouragement, criticisms and friendship in undertaking this cyclopean project. I am also deeply grateful to my previous supervisor Dr Nicholas Armstrong, who helped to start me on the road of mathematical modelling and has provided support in his own time. I also express my thanks to my friends and fellow colleagues Dr Daniel Taylor, Dr Isa Yunusa and Dr Remko Duursma (University of Western Sydney) who have also provided invaluable support and advice in completing this work.

I would like to thank Dr Jason Berringer (Monash University), Dr Lindsay Hutley (Charles Darwin University), Dr Anthony O’Grady (University of Tasmania) and Dr Oula Ghannoun (University of Western Sydney) for supplying the data that has made this work possible.

I am grateful to Dr Mathew Williams (Edinburgh University) for supplying the source code for the Soil-Plant-Atmosphere model, and who has also made his support available in a number of ways. This thesis would not have been possible without his assistance.

I would also like to show my gratitude to Dr Gab Abramowitz (University of New South Wales) for introducing me to artificial neural networks and for supplying the necessary resources to run it.

Additionally, I would like to thank my parents, Jim and Rita Whitley, my brother Tristan Whitley and my grandmother Eva Parry for their love and support during this period. Finally, my deepest gratitude and thanks goes to the love of my life Helen Gough, whose support, encouragement and patience has made this thesis possible.

To those who I have not mentioned, I offer my regards and blessings for your support and respect during the completion of this project.
For Helen, whose patience and love was undying in completing an equally undying thesis.
Contents

Declaration of Authorship i

Acknowledgements iii

List of Figures x

List of Tables xviii

Abbreviations xxi

Physical Constants xxiii

Symbols xxiv

Abstract xxviii

1 Introduction 1
 1.1 The Australian continent ... 1
 1.2 The water and energy balance of a catchment 3
 1.2.1 Water- and energy-limited ecosystems 7
 1.2.1.1 Budyko curve .. 7
 1.2.1.2 Choudhury curve ... 9
 1.2.1.3 Zhang curve ... 9
 1.3 Evapotranspiration ... 11
 1.3.1 Surface evaporation ... 11
 1.3.2 Transpiration ... 12
 1.3.3 The Penman equation .. 13
 1.3.4 The Penman-Monteith equation 15
 1.3.5 Methods for estimating canopy conductance 16
 1.3.5.1 The Jarvis-Stewart model 16
 1.3.5.2 The Tardieu-Davies model 17
 1.3.6 Application of the Penman-Monteith equation to remote sensing ... 18
1.3.6.1 The Cleugh model .. 19
1.3.6.2 The Mu model .. 20
1.3.6.3 The Leuning model .. 21
1.4 Leaf gas-exchange .. 22
1.4.1 The Ball-Woodrow-Berry model 26
1.4.2 The Ball-Berry-Leuning model 26
1.4.3 The Dewar model .. 28
1.4.4 The Cowan and Farquhar optimisation hypothesis 28
1.5 A Soil-Plant-Atmosphere continuum model 31
1.6 Work to be presented in this thesis 33

2 Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration .. 37
2.1 Introduction .. 38
2.2 Methods .. 41
 2.2.1 Site description .. 41
 2.2.2 Water use by individual trees 41
 2.2.3 Scaling to stand transpiration 42
 2.2.4 Models ... 42
 2.2.4.1 The Penman-Monteith model 43
 2.2.4.2 The modified Jarvis-Stewart model 45
 2.2.4.3 Model parameterisation 46
 2.2.4.4 Artificial neural network 48
 2.2.4.5 Filtering the data set .. 50
 2.3 Results .. 51
 2.3.1 Meteorological and sap-flow data 51
 2.3.2 Modelled stand water-use 51
 2.4 Discussion .. 58
 2.5 Conclusions .. 63

3 Application of the modified Jarvis-Stewart model across five contrasting Australian ecosystems .. 64
3.1 Introduction .. 64
3.2 Methods .. 67
 3.2.1 Site descriptions and data ... 67
 3.2.2 The modified Jarvis-Stewart model 72
 3.2.3 Site-specific parameterisation 74
 3.2.4 Site-average parameterisation 75
 3.2.5 Model validation .. 77
 3.3 Results .. 79
 3.3.1 Model fitting and convergence 79
 3.3.2 Response of canopy transpiration to environmental drivers 80
 3.3.2.1 Response to solar radiation 80
 3.3.2.2 Response to vapour pressure deficit 81
3.3.2.3 Response to soil water content .. 85
3.3.2.4 Relationship of model parameters with site characteristics . 86
3.3.3 Model performance .. 87
 3.3.3.1 Paringa ... 89
 3.3.3.2 Castlereagh ... 89
 3.3.3.3 Benalla ... 91
 3.3.3.4 Pittwater ... 94
 3.3.3.5 Gnangara .. 95
3.4 Discussion ... 97
 3.4.1 Model performance across the five sites 98
 3.4.2 The response of canopy water-use to solar radiation and vapour pressure deficit among species 100
 3.4.3 The response of canopy water-use to solar radiation and vapour pressure deficit across sites 101
3.5 Conclusion ... 105

4 Investigating C_3 and C_4 gas-exchange in a savanna ecosystem in northern Australia using a Soil-Plant-Atmosphere model 107
 4.1 Introduction ... 107
 4.2 Methods .. 111
 4.2.1 Study site .. 111
 4.2.2 Eddy covariance data .. 112
 4.2.3 Photosynthesis models incorporated into the SPA model . 114
 4.2.3.1 C_3 photosynthesis .. 115
 4.2.3.2 C_4 photosynthesis .. 117
 4.2.4 Model Parameterisation .. 123
 4.2.4.1 Model canopy structure .. 123
 4.2.4.2 Leaf biochemical parameters 126
 4.2.4.3 Stomatal efficiency parameters 127
 4.2.4.4 Root and soil hydraulic parameters 130
 4.2.5 Canopy simulations to compare photosynthesis models . 130
 4.3 Results ... 131
 4.3.1 C_3 and C_4 thresholds for stomatal opening 131
 4.3.2 Comparison between canopy simulations 133
 4.3.2.1 Hourly comparisons ... 135
 4.3.2.2 Daily comparisons .. 137
 4.3.2.3 Residual analysis .. 139
 4.3.2.4 Comparison of modelled and measured period totals . . 141
 4.3.3 Modelled contributions to savanna fluxes of the C_3 overstorey and C_4143
 4.3.3.1 Intra-daily patterns over a one year period 144
 4.3.3.2 Seasonal patterns over the 2001 to 2005 period 151
 4.3.3.3 Annual patterns over the 2001 to 2005 period 156
 4.4 Discussion ... 162
 4.4.1 Modelled C_3 and C_4 stomatal efficiency 162
4.4.2 Comparison of C_4 photosynthesis models 164
4.4.3 The contribution of C_3 and C_4 vegetation to savanna productivity and water-use 167
4.4.4 Environmental factors influencing savanna productivity and water-use 169
4.5 Conclusion ... 171
5 Stomatal regulation of photosynthesis and transpiration during drought 173
 5.1 Introduction .. 173
 5.2 Methods ... 176
 5.2.1 Model theory and structure 176
 5.2.1.1 Biochemistry framework 176
 5.2.1.2 Hydrologic framework 178
 5.2.1.3 Control of stomatal opening 181
 5.2.2 Modelling approach 184
 5.3 Results .. 187
 5.3.1 Time-series of decreasing leaf and soil water potential and its impact on leaf gas-exchange 187
 5.3.2 Diurnal course of leaf gas-exchange in the two schemes .. 188
 5.3.3 Relationships among leaf gas-exchange quantities ... 192
 5.3.3.1 Between leaf gas-exchange quantities and environmental drivers 192
 5.3.3.2 Between stomatal conductance, assimilation and transpiration 194
 5.3.3.3 Between leaf water potential, assimilation and transpiration 196
 5.3.4 Sensitivity analysis 197
 5.3.4.1 Sensitivity of gas-exchange to stomatal efficiency and the cost of water 197
 5.3.4.2 Sensitivity of gas-exchange to vapour pressure deficit 201
 5.4 Discussion .. 205
 5.4.1 Performance of the SPA model using two descriptions of stomatal regulation 205
 5.4.2 Response of stomata to transpiration and vapour pressure deficit 206
 5.4.3 Response of assimilation to stomatal conductance and transpiration 207
 5.4.4 The level of stomatal efficiency and the cost of water ... 208
 5.4.5 Effects of leaf water potential on gas-exchange ... 209
 5.5 Conclusion ... 210
6 Conclusions ... 212
 6.1 Modelling water fluxes from a forest canopy 213
 6.1.1 Developing a simple model to estimate canopy water-use ... 214
 6.1.2 Applicability of the modified Jarvis-Stewart model ... 215
 6.2 Modelling canopy gas-exchange using a Soil-Plant-Atmosphere model .. 217
 6.2.1 Investigating savanna canopy and water fluxes ... 217
 6.2.2 Parameterising the stomatal efficiency .. 220
6.2.3 Improving the leaf-level process in the Soil-Plant-Atmosphere model 221
6.3 Empirical versus process-based modelling ... 223
6.4 Further research ... 224
 6.4.1 Future applications of the MJS model ... 224
 6.4.2 Improvements and further testing of the SPA model 225

A Expressions for light- and enzyme- limited photosynthesis 227

B SPA stomatal model source code .. 230
 B.1 Main file ... 230
 B.2 Leaf module .. 233

Bibliography .. 257
List of Figures

1.1 Illustration of site water and energy balances, using the analogy of a bucket: (a) water enters the "bucket" system through precipitation (P_{pt}) and leaves through evapotranspiration (E_{T}), ground water recharge (D_{w}) or surface run-off (Q_{w}); (b) energy enters the system as net solar energy (R_n) and leaves through latent energy (\lambda E_{T}) or sensible heat (H) and soil heat flux (G). The storage in the "bucket" system is shown as (a) S_w (representing stored water) and (b) S_e (representing stored energy).

1.2 The Budyko framework and curve, where the curve (red line) is defined by Equation 1.9, describes the relationship between the dryness index (\Phi = R_n/([\lambda P_{pt}]) and the evaporative index (\epsilon = E_{T}/P_{pt}). Line AB defines the energy-limit to evapotranspiration, and line CD defines the water-limit.

1.3 The Budyko curve (grey line), as compared with the Choudhury curve (orange lines) and the Zhang curve (red lines) at different spatial scales. The \alpha values in the Choudhury curve represent the effect of the spatial scale on E_{T}; where \alpha = 1.8 is a basin, and \alpha = 2.6 is an entire site. The \omega values in the Zhang curve represent the role of vegetation in E_{T}; where \omega = 0.1 represents bare soil, \omega = 0.5 represents grasses or crops, and \omega = 2.0 represents a forest. Line AB defines the energy-limit to evapotranspiration, and line CD defines the water-limit.

1.4 Water balance of an ecosystem. Rainfall (P_{pt}) which is partitioned into soil water storage (\theta_s), deep drainage (D_{w}), and evapotranspiration (E_{T}). E_{T} is further divided into canopy transpiration (E_t) and soil evaporation (E_s). E_t is determined by incident solar radiation (R_s), turbulent transport (U), the supply of water to the canopy (J_{w}) and the vapour pressure deficit.

1.5 The predominant drivers of transpiration (E_t) from a plant are a) net radiation (R_n), b) vapour pressure deficit (D_v) and c) volumetric soil water content (\theta_s).

1.6 A schematic representation of a partial cross-section of a leaf, showing the mass and energy fluxes in leaf gas-exchange. Fluxes are shown by the red arrows, where C, e and T stands for the CO_2 concentration, H_2O vapour concentration and temperature respectively. The subscripts a, s and i, refer to properties in ambient air, at the leaf surface and in the intercellular air space of the leaf, respectively. R_n specifies the net radiation input from the sky and R_s represents solar radiation. The diagram is from Collatz et al. (1991).
1.7 The soil-plant-atmosphere model partitions the forest canopy and below-ground root system into 10 layers each respectively. The canopy layers describes the vertical distributions in sunlit and shaded leaf area, distribution of foliar nitrogen (N), absorbed photosynthetically active radiation (APAR) and the rate of photosynthesis and transpiration. The soil layers describe below-ground energy and water balance, as well as root distribution and hydraulic properties, such as the initial soil water content (SWC) and the particle size distribution (PSD) of the soil (percentage of sand and clay).

2.1 Diagram of the self-organising linear optimisation (SOLO) artificial neural network (ANN). The grey square denotes the self-organising feature map (SOFM) which contain nodes (red circles) of grouped input information, i.e. solar radiation, vapour pressure deficit and soil moisture content (yellow circles; x_1, x_2 ... x_n), where the data contained in each node are linearly related. Nodes in the SOFM network are compared with measurements of the desired output, i.e. canopy transpiration (green circles; y_1, y_2 ... y_n) through a multivariate linear regression in the linear mapping network. This allows functional relationships between the input and output information to be developed. Further input data can then be fed into SOLO to reconstruct the desired output (z_1).

2.2 Day-to-day variation in canopy transpiration and its driving variables at Paringa. Data shown is the (a) daily maximum incident solar radiation (R_s), daily maximum vapour pressure deficit (D_v), (b) total soil water content to a depth of 60 cm (θ_s), daily rainfall and (c) total daily stand transpiration (E_c) for the periods of (left) January - February and (right) July - September 2004.

2.3 The functional dependencies based on the optimised parameters of canopy transpiration (E_c) on: (a) solar radiation (R_s), (b) vapour pressure deficit (D_v) and (c) soil water content at a depth of 60 cm (θ_s); and canopy conductance (g_c) on (d) R_s, (e) D_v and (f) θ_s. Relationships are given by white circles for summer (○) and black diamonds for winter (□). The red lines are the functional response curves ($f_{1...3}$) that describe non-limiting relationships between the quantities of E_c and g_c, and its environmental drivers.

2.4 Weighted residuals (measured – modelled) for (a) the Penman-Monteith (PM) equation and (b) their distribution of error, and the weighted residuals for (c) the modified Jarvis-Stewart (MJS) model and (d) their distribution of error. The dashed lines show the regions for which the residuals fall between ±1 standard deviations, representative of the 68% confidence region. Both models conform to the assumption of a normally distributed error about a mean 0 and standard deviation 1.

2.5 Canopy transpiration (E_c) measured with sapflow sensors (data points) and estimated E_c from the modified Jarvis-Stewart (MJS) (blue line), the Penman-Monteith (PM) equation (red line), and the statistical benchmark created using an artificial neural network (ANN; gold line) over the sampling periods in (a) January, (b) February, (c) July and (d) September 2004.
2.6 Diurnal variation in canopy transpiration (E_c) measured with sapflow sensors and modelled with the Penman-Monteith (PM) equation (red line), the modified Jarvis-Stewart (MJS) model (blue line) and the statistical benchmark created using an artificial neural network (ANN; gold line) for (a) 20th January, (b) 7th February, (c) 21st July and (d) 6th September 2004. 57

2.7 Summer (white circles, a-c) and winter (black diamonds, d-f) comparisons between measured and modelled stand transpiration (E_c) from (a) modified Jarvis-Stewart (MJS) model, (b) Penman-Monteith (PM) equation and (c) the statistical benchmark created using an artificial neural network (ANN). The 1:1 line is given by a black dashed line, and the regression lines are given in red (for summer) and blue (for winter) 58

3.1 Functional response of canopy transpiration (E_c) to variations in solar radiation (R_s), vapour pressure deficit (D_v) and soil moisture content (θ_s) for the (a) Paringa, (b) Pittwater, (c) Gnangara, (d) Benalla and (e) Castlereagh sites. The red line represents the modelled non-limiting site-specific (SS) response, and the blue line represents the modelled non-limiting site-average (SA) response. The plots have been separated to distinguish between the sites that have sandy (a,b,c) and clay (d,e) soil profiles. 82

3.2 Relationships between the site potential-maximum transpiration rate ($E_{c,max}$) and (a) basal area (BA), (b) leaf area index (LAI), (c) rainfall; the site solar radiation response parameter (k_R) and (d) BA, (e) LAI, (f) rainfall; site vapour pressure deficit (VPD) shape parameter 1 (k_{D1}) and (g) BA, (h) LAI, (i) rainfall; site VPD shape parameter 2 (k_{D2}) and (j) BA, (k) LAI, (l) rainfall; site peak VPD (D_{peak}) and (m) BA, (n) LAI, and (o) rainfall. Symbols are represented for Paringa (○), Castlereagh (■), Benalla (♦), Pittwater (▲) and Gnangara (▼). Linear regressions were fitted with five (red line) and four (dashed blue line) sites, in order to determine relationships with the model parameters across site. The P values refer to the F tests of the null hypothesis that the regression coefficient is zero. 88

3.3 Monthly ensembles of mean measured canopy transpiration (E_c, black line) and the distribution of error around the mean (grey shaded region) for the (a) Paringa, (b) Benalla, (c) Gnangara, (d) Castlereagh, (e) Pittwater sites. The red and blue lines represent the modelled mean diurnal course of E_c using the site-specific (SS) and site-average (SA) model parameters respectively. The yellow line represents the best statistical fit that is possible by the MJS model using the meteorological data provided by each data-set; this statistical benchmark is constructed using the artificial neural network. 90

3.4 Time-series of the daily sum of measured and modelled canopy transpiration (E_c) for the (a) Paringa, (b) Castlereagh, (c) Benalla, (d) Pittwater and (e) Gangarrra sites. The black line represents the daily time-course of measured E_c, while the red and blue lines represent the daily time-course of modelled E_c using the site-specific (SS) and site-average (SA) model parameters respectively. The yellow line represents the best statistical fit that is possible by the MJS model using the meteorological data provided by each data-set; this statistical benchmark is constructed using the artificial neural network. 92
3.5 Regression plots showing the relationship between measured canopy transpiration (E_c) and modelled E_c for the (a) Paringa, (b) Castlereagh, (c) Benalla, (d) Pittwater and (e) Gnangara sites. Regression plots are shown for modelled E_c using site-specific and site-average model parameters. Additionally, regression plots for the statistical benchmark constructed using the artificial neural network are shown for each site. The red line indicates the line of best fit (LoBF) and the yellow line represents the one-to-one (1:1) line between the modelled and measured quantities.

3.6 A comparison between the period totals of measured and modelled canopy transpiration (E_c) for the (a) Paringa (4 months), (b) Castlereagh (6 months), (c) Benalla (4 months), (d) Pittwater (1 year) and (e) Gnangara (2 months) sites. Total measured E_c (OBS) is shaded grey, while total modelled E_c using site-specific (SSM) and site-average (SAM) model parameters are shaded in red and blue respectively. The statistical total of estimated E_c derived from an artificial neural network (ANN) is shaded in yellow.

3.7 Representative response surface of normalised canopy transpiration (E_c) to variation in solar radiation (R_s) and vapour pressure deficit (D_v), where the shape of the response curve is subject to change due to variations in site defining characteristics, such as leaf area index, basal area and soil type. The response surface was constructed using Equations 3.3 and 3.5.

4.1 Five years of meteorological data collected for Howard Springs.

4.2 Representation of (a) savanna total leaf area index (LAI) at Howard Springs over the 5 year study period (2001–2005); (b) a one year example of the partitioning of total savanna LAI into the C$_3$ canopy overstorey and mid-term stratum and understorey C$_4$ grasses; (c) the percentage contribution of the 10 modelled canopy layers to total LAI during the wet season, where layers 1–10 represent the layers from the top of the tree canopy to the grasses on the surface. Yellow shaded regions represent the dry season period.

4.3 Measured stomatal conductance (g_s) for (a) C$_3$ and (b) C$_4$ species fitted with the Ball-Berry-Leuning (BBL) model to determine the parameter a_1 (the slope). Predicted g_s is plotted as a function of the BBL relationship at different stomatal efficiencies (ι_{op}) using (c) a C$_3$ photosynthesis model and (d) a C$_4$ photosynthesis model. The blue lines represent the ι_{op} that is equivalent to the a_1 derived from the measured data.

4.4 Simulated stomatal conductance (g_s) plotted against simulated net assimilation rate (A_n) for C$_3$ and C$_4$ model canopy layers for the 2001 year. The white circles denote the C$_3$ relationship using a stomatal efficiency ($\iota_{op} = 0.07\%$), while the black circles denote the C$_4$ relationship using an $\iota_{op} = 0.20\%$.

113

125

133

134
4.5 The three model canopies that have been used to simulate diurnal patterns of (a) evapotranspiration (ET) and (b) gross primary productivity (GPP) at the Howard Springs savanna site over the October 2002 to November 2003 wet season. The difference between the three different canopy simulations is the photosynthesis model assumed for the grass understory: in Canopy 1 it is C$_3$ and in Canopies 2-3 it is C$_4$. Diurnal modelled and measured ET and GPP have been binned according to month, in order to show the mean diurnal responses over the test period. The mean modelled canopy outputs of ET and GPP (distinguish by colour) are compared against the mean measured diurnal responses (black line) derived from eddy-covariance (EC). The standard deviation of diurnal measured ET and GPP for each month is denoted by the gray shaded region. 136

4.6 The three model canopies that have been used to simulate daily patterns of evapotranspiration (ET) and gross primary productivity (GPP) at the Howard Springs savanna site over the October 2002 to November 2003 wet season. The difference between the three different canopy simulations is the photosynthesis model assumed for the grass understory: in Canopy 1 it is C$_3$ and in Canopies 2-3 it is C$_4$. The gray lines and points represent measured ET and GPP derived from eddy-covariance (EC), while the coloured lines represent the three different canopy simulations. 138

4.7 Regression plots that compare modelled and measured evapotranspiration (ET) for (a) Canopy 1, (b) Canopy 2 and (c) Canopy 3 simulations. Additionally, modelled and measured gross primary productivity (GPP) for (d) Canopy 1, (e) Canopy 2 and (c) Canopy 3 are compared. The yellow dotted line represents the 1:1 line, while the solid blue and red lines represent the fitted regression lines. The difference between the three different canopy simulations is the photosynthesis model assumed for the grass understory: in Canopy 1 it is C$_3$ and in Canopies 2-3 it is C$_4$. 139

4.8 Residual analysis between modelled and measured evapotranspiration (ET) and gross primary productivity (GPP) for the three canopy simulations. The residuals for ET are plotted against (a) time, to determine periods of model failure, (b) model predictions, in order to determine model bias, (c) daily total solar radiation, (d) daily maximum vapour pressure deficit (VPD), (e) daily soil water content (SWC) and f) leaf area index (LAI) to determine the influence of the environmental drivers. For the same reasons, residuals of GPP are plotted against (g) time, (h) model predictions, (i) total solar radiation, (j) VPD, (k) SWC and (l) LAI. For the GPP model residuals, Canopy 1 is given by black circles and Canopies 2 and 3 are given by green circles. The red and yellow lines denote a regression fit to determine a pattern in the residuals. 142

4.9 The cumulative sum of eddy-covariance (EC) measured evapotranspiration (ET) and gross primary productivity (GPP) compared with the cumulative sum of estimated ET and GPP derived from the three canopy simulations. These sums are taken over the October 2002 to April 2003 test period. The difference between the three different canopy simulations is the photosynthesis model assumed for the grass understory: in Canopy 1 it is C$_3$ and in Canopies 2-3 it is C$_4$. 143
List of Figures xv

4.10 Binned monthly diurnal patterns of modelled (a) evapotranspiration (ET) and (b) gross primary productivity (GPP) compared with measurements derived from eddy-covariance (EC) for 2001. The mean measured responses of ET and GPP are given as black lines, while model predictions are given as red lines. The shaded gray regions denote the standard deviation of the measured mean ET and GPP. .. 146

4.11 Binned monthly diurnal patterns of the simulated C3 tree canopy and C4 grass averaged leaf-scale gas-exchange quantities in 2001. These quantities include (a) the weighted stomatal conductance \(g_s \), (b) transpiration \(E_t \), (c) net assimilation \(A_n \) and (d) leaf water potential \(\Psi_l \). The red lines denote the C3 tree canopy, while the blue lines represent the C4 grasses. ... 147

4.12 Relationships between modelled wet and dry season estimates of C3 and C4 net assimilation \(A_n \) and transpiration \(E_t \) and the primary environmental drivers of solar radiation (a-d) \(R_s \), (e-h) vapour pressure deficit \(D_v \), (i-l) soil water content \(\theta_s \) and (m-p) leaf area index \(LAI \). The black circles show model estimates for the C3 trees, and the white circles show the model estimates for the C4 grasses. Quantile regression is used to fit the upper boundaries of the relationships in order to determine the underlying non-limiting responses, where the red and blue lines represent the quantile fits for C3 and C4 vegetation respectively. ... 150

4.13 A comparison of estimated (red line) evapotranspiration (EC) and gross primary productivity (GPP) using the Soil-Plant-Atmosphere (SPA) model with the measured (black line) ET and GPP derived from eddy-covariance (EC) for the 2001 to 2005 study period. The yellow shaded regions denote the dry season period for each year. .. 153

4.14 Correlation plots between modelled and measured evapotranspiration (ET; black circles), as well as modelled and measured gross primary productivity (GPP; white circles). Regressions are performed for (a) 2001, (b) 2002, (c) 2003, (d) 2004, (e) 2005 and (f) all years. The yellow line denotes the 1:1 line, while the red and blue lines represent the regressions lines for ET and GPP respectively. The relationship between modelled and measured GPP is plotted on a negative scale. .. 155

4.15 Modelled total canopy (grey lines) transpiration and gross primary productivity for the 2001 to 2005 period. Total canopy fluxes are partitioned into the C3 tree overstorey (pink lines) and C4 grass understorey (light-blue lines). Spline functions were applied to show the moving average for the total (black line), C3 (red line) and C4 (blue line) canopy fluxes. Yellow shaded regions represent the dry season. 157

4.16 Modelled and measured period totals of savanna water-use (ET) and gross primary productivity (GPP) for the 2001 to 2005 study period. Modelled savanna fluxes are estimated from the Soil-Plant-Atmosphere (SPA) model, while measured fluxes are derived from eddy-covariance (EC). Totals derived from EC and SPA are given at the (a) annual (T), wet (W) and dry (D) season time-steps. Estimated (b) wet and (c) dry season totals of transpiration and GPP are partitioned from total canopy (C) into C3 (O) and C4 (U) components. .. 159
4.17 Two scenarios are simulated using the 2001 year to determine whether leaf area index (LAI) or soil water content (SWC) drives the seasonal variation in transpiration and gross primary productivity (GPP). These scenarios are (a) SWC is variable and LAI is held constant at 2.4 \(m^{-2} \) (blue line) and (b) LAI is variable, while SWC is held constant at approximately 0.30 \(m^{-3} \) (red line) over the entire year. The black line in both cases represents a normal simulated year where both LAI and SWC are variable. The yellow shaded region denotes the dry season.

5.1 A circuit diagram of the soil-plant-atmosphere continuum (SPAC) showing the relative resistances to water flow along the pathway. Water is supplied from the soil (\(\theta_s \)) and travels along the SPAC, where the flow of water (\(E_t \)), driven by a potential difference between the leaf (\(\Psi_l \)) and the soil (\(\Psi_s \)). This flow of water experiences resistance at the soil (\(R_{soil} \)), root (\(R_{root} \)) and plant (\(R_{plant} \)) interfaces. Once this water has reached the leaf, it moves to the atmosphere through transpiration (\(E_t \)), where \(E_t \) experiences resistance from the stomata (\(r_s \)) and from the boundary layer of air at the surface of the leaf (\(r_b \)). A portion of the water moving along the SPAC is stored within the plant tissue (\(C_l \)).

5.2 Diurnal course of solar radiation (\(R_s \)), vapour pressure deficit (\(D_v \)), air temperature (\(T_a \)) and wind speed (\(U \)) used in the simulation to test both leaf gas-exchange models. The diurnal course of these drivers are repeated over the 30 day simulation period.

5.3 Simulated gas-exchange and soil water dynamics of Schemes 1 and 2 over the 30 day drying period. Shown above is the time course of (a-b) soil water storage, plant (\(R_{plant} \)) and soil (\(R_{soil} \)) resistance, as well as (c-d) the leaf (\(\Psi_l \)) and soil (\(\Psi_s \)) water potentials, and the minimum leaf water potential (\(\Psi_{min} \)). Estimates of leaf gas-exchange quantities are given along this trace for (e-f) stomatal conductance (\(g_s \)), (g-h) net assimilation rate (\(A_n \)), (i-j) latent energy (\(\lambda E_t \)) and (k-l) the ratio of intercellular and atmospheric CO\(_2\) (\(C_i/C_a \)). The dotted maroon lines and the change in colour (blue to light blue), denote the transition from well-watered to water-stressed conditions. Modelled \(A_n \) and \(E_t \) have been multiplied by \(LAI \) to scale from leaf to canopy.

5.4 Diurnal course of leaf gas-exchange variables for days 1, 14, 18, 22, 26 and 30 during the 30 day drying period. Show above are (a) stomatal conductance (\(g_s \)), (b) net assimilation rate (\(A_n \)), (c) latent energy (\(\lambda E_t \)) and (d) the ratio of intercellular and atmospheric CO\(_2\) (\(C_i/C_a \)) in Scheme 1, and (e) \(g_s \), (f) \(A_n \), (g) \(\lambda E_t \) and (h) \(C_i/C_a \) in Scheme 2. The red line denotes gas-exchange that is operating under non-limiting soil water conditions. Modelled \(A_n \) and \(E_t \) has been multiplied by \(LAI \) to scale from leaf to canopy.

5.5 Shows the responses of Scheme 1 and 2 (a-d) stomatal conductance (\(g_s \)), (e-h) net assimilation rate (\(A_n \)), (i-l) latent energy (\(\lambda E_t \)) and (m-p) the ratio of intercellular and atmospheric CO\(_2\) (\(C_i/C_a \)), against solar radiation (\(R_s \)) and vapour pressure deficit (\(D_v \)) respectively. Relationships between these quantities are shown over the 30 day drying period for days 1, 18, 22, 25 and 30.
5.6 Plotted relationships between (a-b) stomatal conductance (g_s) and net assimilation rate (A_n), as well as (c-d) g_s and latent energy (λE_t) for Schemes 1 and 2 respectively. The effects of soil drying on these relationships is shown for a selection of days (1, 18, 22, 25 and 29) during the 30 day drying period.

5.7 Plotted relationships between (a-b) leaf water potential (Ψ_l) and net assimilation rate (A_n), as well as (c-d) Ψ_l and latent energy (λE_t) for Schemes 1 and 2 respectively. The effects of soil drying on these relationships is shown for a selection of days (1, 18, 22, 25 and 29) during the 30 day drying period.

5.8 Sensitivity of daily mean (a) stomatal conductance (g_s), (b) latent energy (λE_t), (c) net assimilation rate (A_n) and (d) the daily minimum ratio between intercellular and atmospheric CO$_2$ ($C_{i,min}/C_a$) to stomatal efficiency ($\tau_{op} = 0.03, 0.07, 0.2, 0.5$ and 1.0%) in Scheme 1, and (e) g_s, (f) λE_t, (g) A_n and (h) $C_{i,min}/C_a$ to the cost of water ($\lambda_{cw} = 30, 75, 150, 300$ and 500μmol m$^{-2}$ s$^{-1}$) in Scheme 2. A run using the default operating points is given in red, while changes in τ_{op} and λ_{cw} are given in shades of blue.

5.9 The sensitivity of (a-b) soil water potential (Ψ_s), (c-d) cumulative carbon gain and (e-f) cumulative water loss to variation in stomatal efficiency ($\tau_{op} = 0.3, 0.7, 0.2, 0.5$ and 1.0%) in Scheme 1 and the cost of water ($\lambda_{cw} = 30, 75, 150, 300$ and 500μmol mol$^{-1}$) in Scheme 2. A run using default operating points is given in red, while changes in τ_{op} and λ_{cw} are given in shades of blue.

5.10 Sensitivity of daily mean (a-b) stomatal conductance (g_s), (c-d) latent energy (λE_t), (e-f) net assimilation rate (A_n) and (g-h) the daily minimum ratio between intercellular and atmospheric CO$_2$ ($C_{i,min}/C_a$) to variation in daily maximum vapour pressure deficit ($D_{v,max}$) for Schemes 1 and 2 respectively. The values of $D_{v,max}$ that were simulated are 1.0, 3.0, 4.0, 5.0 and 6.0 kPa, given in shades of blue, while the default $D_{v,max}$ of 2.0 kPa is given in red.

5.11 The sensitivity of (a-b) soil water potential (Ψ_s), (c-d) cumulative carbon gain and (e-f) cumulative water loss to variation in daily maximum vapour pressure deficit ($D_{v,max}$) for Schemes 1 and 2 respectively. The values of $D_{v,max}$ that were simulated are 1.0, 3.0, 4.0, 5.0 and 6.0 kPa, given in shades of blue, while the default $D_{v,max}$ of 2.0 kPa is given in red.
List of Tables

2.1 Parameter estimations resulting from an optimisation of the modified Jarvis-Stewart (MJS) model and Penman-Monteith (PM) equations using a genetic algorithm. Parameters defined here are both maximum reference values for maximum canopy conductance ($g_{c,max}$; m s$^{-1}$) and canopy transpiration ($E_{c,max}$; mm hr$^{-1}$), environmental functional dependencies on solar radiation (R_s), (k_1; W m$^{-2}$), vapour pressure deficit (D_v), (k_2 and k_3; kPa), and soil water content (θ_s) at wilting (θ_w), and critical points (θ_c; mm2 mm$^{-2}$), the constant of proportionality associated with error (b) and explained variance (R^2). Standard errors (S.E.) are given as a fraction of the parameter value in brackets. 56

3.1 Site-specific information about the canopy, soil and climate for the Paringa, Castlereagh, Benalla, Pittwater and Gnangara sites used in this study; BA is basal area, LAI is leaf area index, T_a is the mean annual temperature and PPT is the annual precipitation. The initials for the species names are Eucalyptus (E), Callitris (C) and Banksia (B). The asterisk (*) denote the soil-types that are of a duplex nature. 69

3.2 The settings used to construct the statistical benchmark using the artificial neural network (ANN). Given are the number of variables considered to influence canopy transpiration (E_c) at each site (Vars), the number of nodes which the driver data are to be clustered into (Nodes) using the self-organising feature map (SOFM), the number of data available at each site (Data), the number of iterations used to create the SOFM, and finally the maximum (Max) and minimum (Min) values for solar radiation (R_s), vapour pressure deficit (D_v) and soil water content (θ_s) that are used to train the ANN in the self-organising linear optimisation (SOLO). 79

3.3 Estimated parameter values that equate to the site-specific and species-specific functional responses of canopy transpiration (E_c) to solar radiation - $f_1(R_s|k_R)$, vapour pressure deficit - $f_2(D_v|k_D1, k_D2, D_{peak})$, and soil water content - $f_3(\theta_s|\theta_w, \theta_c)$. The functional responses that were used to parametrise the model for each site are listed. The values given here are those that were found to give the best fit of the model to the measured data, and were determined using the differential evolution genetic algorithm. Standard errors (σ) are given as a fraction of its respective parameter value . 83
3.4 Estimated model parameter values that have been derived by fitting the modified Jarvis-Stewart (MJS) model to all sites simultaneously at the stand scale (site-average) and to two sites (Castelreagh and Benalla only) simultaneously at the species scale species-average. Given below are the site-average parameter values that describe the functional responses of canopy transpiration ($k_{S,0...4}$) to solar radiation (k_R) and vapour pressure deficit (k_{D1}, k_{D2} and D_{peak}), as well as the species-average responses of canopy transpiration ($k_{T,0...3}$) to the same environmental drivers. Soil water content was incorporated into the optimisation as a known quantity and so θ_{aw} and θ_{ac} are not calibrated. The value listed here represent those that give the best fit of the MJS model to the measured E_c data determined from the nonlinear dummy regression. Standard errors (σ) are given as a fraction of the parameter values. 84

3.5 Regression statistics for the site-specific, site-average models and the statistical benchmark that was determined using an artificial neural network (ANN) applied at each of the five sites. Listed are the R^2, the root mean-square error (RMSE; mm hr$^{-1}$), model efficiency (ME), and the number of data points (at the hourly time-step) that the data-sets consisted of (N). 94

4.1 This table lists the model variables and parameters that were used to describe and simulate the savanna ecosystem at the Howard Springs site. Descriptions of the model variables and parameters are given along with the symbols, SI units, values (if constant), as well as the reference source from which they have been taken. 128

4.2 The resulting slopes (a_1) and intercepts (g_0) from fitting the Soil-Plant-Atmosphere (SPA) model to a Ball-Berry-Leuning (BBL) relationship derived using leaf-scale measurements for C$_3$ and C$_4$ vegetation. The stomatal efficiency (ι_{op}) in SPA that determines an a_1 that matches a value determined by the BBL model is the ι_{op} for that species at that particular site. 132

4.3 Statistics of model performance for the three canopies that were used to simulate evapotranspiration (ET; mm d$^{-1}$) and gross primary productivity (GPP; gC m$^{-2}$ d$^{-1}$) in the Soil-Plant-Atmosphere (SPA) model. The statistics listed here are the explained variance (R^2), model efficiency (ME) and root mean square error (RMSE), slope and intercept of the regression line. 140

4.4 Statistics of model performance in estimating evapotranspiration (ET; mm d$^{-1}$) and gross primary productivity (GPP; gC m$^{-2}$ d$^{-1}$) for the 2001 to 2005 simulation period. Listed are the explained variance (R^2), model efficiency (ME) and root mean square error (RMSE), as well as the slope and intercept of the regression line. 154

4.5 Table of modelled annual, wet and dry season totals of water-use and carbon uptake for the 2001 to 2005 period. Additionally, canopy water-use (WUE) and light-use efficiency (LUE) are given. Totals are partitioned from the total ecosystem (Eco), to total vegetation (Can), and into C$_3$ overstorey (Ovr) and C$_4$ understorey (Und). 160
5.1 Parameters used to describe the system’s vegetation and soil profile. Parameter descriptions, symbols, units and values are given for the 30 day simulation period. .. 186
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>APAR</td>
<td>Absorbed Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>BA</td>
<td>Basal Area</td>
</tr>
<tr>
<td>CUE</td>
<td>Carbon Use Efficiency</td>
</tr>
<tr>
<td>EC</td>
<td>Eddy Covariance</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GENOUCE</td>
<td>GENetic Optimisation Using Derivatives</td>
</tr>
<tr>
<td>GPP</td>
<td>Gross Primary Productivity</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LUE</td>
<td>Light Use Efficiency</td>
</tr>
<tr>
<td>LWP</td>
<td>Leaf Water Potential</td>
</tr>
<tr>
<td>ME</td>
<td>Model Efficiency</td>
</tr>
<tr>
<td>MJS</td>
<td>Modified Jarvis-Stewart model</td>
</tr>
<tr>
<td>MNDR</td>
<td>Multivariate-Nonlinear-Dummy Regression</td>
</tr>
<tr>
<td>NPP</td>
<td>Net Primary Productivity</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>PEP</td>
<td>Phosphoenolpyruvate</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle Size Distribution</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RuBisCO</td>
<td>Ribulose Bisphosphate Carboxylase-Oxygenase</td>
</tr>
<tr>
<td>RuP₂</td>
<td>Ribulose Bisphosphate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SA</td>
<td>Site-Average model</td>
</tr>
<tr>
<td>SOFM</td>
<td>Self Organising Feature Map</td>
</tr>
<tr>
<td>SOLO</td>
<td>Self Organising Linear Optimisation</td>
</tr>
<tr>
<td>SPA</td>
<td>Soil Plant Atmosphere model</td>
</tr>
<tr>
<td>SPAC</td>
<td>Soil Plant Atmosphere Continuum</td>
</tr>
<tr>
<td>SS</td>
<td>Site-Specific model</td>
</tr>
<tr>
<td>SWC</td>
<td>Soil Water Content</td>
</tr>
<tr>
<td>SWP</td>
<td>Soil Water Potential</td>
</tr>
<tr>
<td>VPD</td>
<td>Vapour Pressure Deficit</td>
</tr>
<tr>
<td>WUE</td>
<td>Water Use Efficiency</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
</tbody>
</table>
Physical Constants

Relative diffusivity of water vapour to CO$_2$ in air a_c 1.56 unitless
Specific heat capacity of the air c_p 1.013 MJ kg$^{-1}$ °C$^{-1}$
Gravitational constant g 9.807 m2 s$^{-1}$
Molecular mass of air M_a 28.96440 g mol$^{-1}$
Molecular mass of water M_w 18.01528 g mol$^{-1}$
Atmospheric Pressure P_a 101300.0 Pa
Universal gas constant \mathcal{R} 8.1344 J K$^{-1}$ mol$^{-1}$
Emissivity of the earth’s surface ϵ 0.96 unitless
CO$_2$ compensation point @ 25°C Γ^* 36.5 μmol mol$^{-1}$
Psychometric constant γ 0.066 kPa °C$^{-1}$
von Kármán constant κ 0.41 unitless
Latent heat of vaporisation of water λ 2.3845 MJ kg$^{-1}$
π 3.14159265 unitless
Density of air ρ_a 1.204 kg m$^{-3}$
Density of water ρ_w 998.2 kg m$^{-3}$
Stephen-Boltzmann constant σ 5.6703×10^{-8} W m$^{-2}$ K$^{-4}$
Symbols

\(A_{cat} \) Catchment area \(m^2 \)
\(A_c \) RuBisCO activity-limited assimilation \(\mu mol \ m^{-2} \ s^{-1} \)
\(A_d \) Rate of CO\(_2\) diffusion \(\mu mol \ m^{-2} \ s^{-1} \)
\(A_g \) Gross assimilation \(\mu mol \ m^{-2} \ s^{-1} \)
\(A_j \) Light-limited assimilation \(\mu mol \ m^{-2} \ s^{-1} \)
\(A_n \) Net assimilation \(\mu mol \ m^{-2} \ s^{-1} \)
\(C\% \) Percentage of clay (PSD) \%
\(C_a \) Ambient CO\(_2\) concentration \(\mu mol \ mol^{-1} \)
\(C_i \) Intercellular CO\(_2\) concentration \(\mu mol \ mol^{-1} \)
\(C_{leaf} \) Leaf capacitance \(\text{mmol m}^{-2} \text{ MPa}^{-1} \)
\(C_m \) CO\(_2\) concentration in the mesophyll cells \(\mu mol \ mol^{-1} \)
\(C_s \) CO\(_2\) concentration in the bundle sheath cells \(\mu mol \ mol^{-1} \)
\(D_v \) Vapour pressure deficit \(\text{kPa} \)
\(D_{vmax} \) Daily maximum vapour pressure deficit \(\text{kPa} \)
\(D_{peak} \) Position of peak vapour pressure deficit \(\text{kPa} \)
\(D_0 \) Lohammer constant for \(D_v \) \(\text{kPa} \)
\(d_{0p} \) Zero plane displacement height \(\text{m} \)
\(d_{root} \) Depth of roots \(\text{m} \)
\(d_{soil} \) Depth of soil \(\text{m} \)
\(E_0 \) Potential evaporation \(\text{mm hr}^{-1} \)
\(E_c \) Canopy transpiration \(\text{mm hr}^{-1} \)
\(E_{cmax} \) Maximum canopy transpiration \(\text{mm hr}^{-1} \)
\(E_s \) Soil evaporation \(\text{mm hr}^{-1} \)
E_t Tree transpiration
E_T Evapotranspiration
g_a Aerodynamic conductance
g_b Boundary layer conductance
g_{bs} Bundle sheath conductance
g_c Canopy conductance
g_{cmax} Maximum canopy conductance
g_{plant} Whole plant hydraulic conductance
g_s Stomatal conductance to H$_2$O
g_{sc} Stomatal conductance to CO$_2$
g_{s0} Residual stomatal conductance
g_{smax} Maximum stomatal conductance
g_{smin} Minimum stomatal conductance
g_t Total conductance to H$_2$O
H_s Relative humidity
h Height of canopy
J_e Potential rate for electron transport
J_{max} Maximum rate for electron transport
J_w Flow of water to the xylem
K Soil hydraulic conductivity
K_c Enzyme catalytic activity for CO$_2$
K_o Enzyme catalytic activity for O$_2$
K_m Combined enzyme catalytic activity
K_p Enzyme catalytic activity for PEP
k_{D_1} vapour pressure deficit shape parameter 1
k_{D_2} vapour pressure deficit shape parameter 2
k_T C_4 first order rate constant for PEP carboxylase
k_R Solar radiation constant
L Rate of CO$_2$ leakage from the bundle sheath to the mesophyll cells
L_{SA} Specific leaf area
Symbols

\(M_{cj} \quad \text{C}_4 \text{CO}_2 \text{ flux determined by } A_c \text{ and } A_j \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(m_{\text{root}} \quad \text{Root biomass} \quad \text{kg m}^{-3} \)
\(N_f \quad \text{Total leaf nitrogen content} \quad \text{g m}^{-2} \)
\(N_{LA} \quad \text{Nitrogen per leaf area} \quad \text{g m}^{-2} \)
\(O_i \quad \text{Intercellular O}_2 \text{ concentration} \quad \mu \text{mol mol}^{-1} \)
\(O_s \quad \text{O}_2 \text{ concentration in the mesophyll cells} \quad \mu \text{mol mol}^{-1} \)
\(O_{si} \quad \text{O}_2 \text{ concentration in the bundle sheath cells} \quad \mu \text{mol mol}^{-1} \)
\(Q_p \quad \text{Quantum flux density (PAR)} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(R_{a,b} \quad \text{Total above and below-ground resistance} \quad \text{MPa m}^2 \text{s mol}^{-1} \)
\(R_d \quad \text{Dark respiration} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(R_m \quad \text{Mitochondrial respiration} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(R_n \quad \text{Net radiation} \quad \text{W m}^{-2} \)
\(R_s \quad \text{Solar radiation} \quad \text{W m}^{-2} \)
\(R_{\text{plant}} \quad \text{Plant resistance} \quad \text{MPa m}^2 \text{s mol}^{-1} \)
\(R_{\text{root}} \quad \text{Root resistance} \quad \text{MPa m}^2 \text{s mol}^{-1} \)
\(R_{\text{soil}} \quad \text{Soil resistance} \quad \text{MPa m}^2 \text{s mol}^{-1} \)
\(r_b \quad \text{Boundary layer resistance} \quad \text{s m}^{-1} \)
\(r_{\text{root}} \quad \text{Fine root radius} \quad \text{m} \)
\(r_s \quad \text{Stomatal resistance} \quad \text{s m}^{-1} \)
\(S\% \quad \text{Percentage of sand (PSD)} \quad \% \)
\(S_A \quad \text{Sapwood area} \quad \text{m}^2 \text{ ha}^{-1} \)
\(T_a \quad \text{Ambient air temperature} \quad ^\circ\text{C} \)
\(T_{\text{amax}} \quad \text{Daily maximum air temperature} \quad ^\circ\text{C} \)
\(T_{l} \quad \text{Leaf temperature} \quad ^\circ\text{C} \)
\(U_z \quad \text{Windspeed} \quad \text{m s}^{-1} \)
\(V_{cmax} \quad \text{Maximum rate for RuBisCO carboxylation} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(V_o \quad \text{Rate for RuBisCO oxygenation} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(V_p \quad \text{Rate for PEP carboxylation} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(V_{pr} \quad \text{PEP regeneration rate} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(V_{pmax} \quad \text{Maximum rate for PEP carboxylation} \quad \mu \text{mol m}^{-2} \text{s}^{-1} \)
\(x_{\text{root}} \quad \text{Mean distance between roots} \quad \text{m} \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_h</td>
<td>Height of humidity measurement</td>
<td>m</td>
</tr>
<tr>
<td>z_m</td>
<td>Height of wind measurement</td>
<td>m</td>
</tr>
<tr>
<td>z_{oh}</td>
<td>Roughness length governing heat transfer</td>
<td>m</td>
</tr>
<tr>
<td>z_{om}</td>
<td>Roughness length governing momentum transfer</td>
<td>m</td>
</tr>
<tr>
<td>α_j</td>
<td>Quantum yield of whole chain electron transport</td>
<td>mol mol$^{-1}$</td>
</tr>
<tr>
<td>α_{rf}</td>
<td>Combined constant: Quantum yield and absorbed photons used by the C$_4$ reaction process</td>
<td>mol mol$^{-1}$</td>
</tr>
<tr>
<td>β_e</td>
<td>Proportionality of error</td>
<td>unitless</td>
</tr>
<tr>
<td>β_{co}</td>
<td>Co-limitation between light, RuBisCO and CO$_2$ limited flux</td>
<td>unitless</td>
</tr>
<tr>
<td>Δ</td>
<td>Slope between vapour pressure and temperature</td>
<td>kPa °C$^{-1}$</td>
</tr>
<tr>
<td>ι_{op}</td>
<td>Stomatal efficiency parameter</td>
<td>unitless</td>
</tr>
<tr>
<td>λ_{cw}</td>
<td>Cost of water parameter</td>
<td>μmol mol$^{-1}$</td>
</tr>
<tr>
<td>Ψ_s</td>
<td>Soil water potential</td>
<td>MPa</td>
</tr>
<tr>
<td>Ψ_l</td>
<td>Leaf water potential</td>
<td>MPa</td>
</tr>
<tr>
<td>Ψ_{lpd}</td>
<td>Pre-dawn leaf water potential</td>
<td>MPa</td>
</tr>
<tr>
<td>Ψ_{lmin}</td>
<td>Minimum leaf water potential</td>
<td>MPa</td>
</tr>
<tr>
<td>θ_c</td>
<td>Critical point for transpiration</td>
<td>m3 m$^{-3}$</td>
</tr>
<tr>
<td>θ_f</td>
<td>Field capacity of the soil</td>
<td>m3 m$^{-3}$</td>
</tr>
<tr>
<td>θ_j</td>
<td>Shape coefficient for non-rectangular hyperbola</td>
<td>unitless</td>
</tr>
<tr>
<td>θ_{tr}</td>
<td>Transition between light-limited and RuBisCO limited CO$_2$ flux</td>
<td>unitless</td>
</tr>
<tr>
<td>θ_s</td>
<td>Soil water content</td>
<td>m3 m$^{-3}$</td>
</tr>
<tr>
<td>θ_{sat}</td>
<td>Saturated water content of the soil</td>
<td>m3 m$^{-3}$</td>
</tr>
<tr>
<td>θ_w</td>
<td>Wilting point for transpiration</td>
<td>m3 m$^{-3}$</td>
</tr>
</tbody>
</table>
Modelling the water and carbon fluxes from forest canopies provides useful insight into the dynamics of the exchange of water vapour for atmospheric CO$_2$ and the processes that govern this exchange. The work presented in this thesis aimed to answer four questions related to modelling of canopy gas-exchange. The first two questions involved the development of a simple empirical model of canopy water-use to see whether i) water fluxes from a canopy could be estimated without the need for canopy conductance and ii) could such a model be applied across multiple sites without the need for site-specific calibration? The remaining two questions involved the modification and improvement of a highly mechanistic and complex soil-plant-atmosphere (SPA) continuum model, which was done in order to iii) replicate canopy gas-exchange for a Australian tropical savanna and iv) to improve the simulated leaf gas-exchange process of a SPA model.

A simple empirical model of canopy water-use (E_c), a modified Jarvis-Stewart (MJS) model, was developed in order to circumvent the problem of requiring surface conductance as an input in order to calculate transpiration. This was accomplished by modelling an empirical relationship of the multivariate response of E_c to solar radiation (R_s), vapour pressure deficit (D_v) and soil moisture content (θ_s). The MJS model was shown to provide favourable short- and mid-term (annual) estimates of E_c that only required three more readily available abiotic inputs (R_s, D_v and θ_s) and a small set of site-calibrated model parameters. Predictions of E_c determined from the MJS model were able to replicate the observed data and compared favourably with the established Penman-Monteith (PM) equation and a statistical benchmark created using an artificial neural network (ANN).

In addition to this, the applicability of the MJS model was tested for five disparate Australian woodland sites, where model parameters were calibrated for each individual site and simultaneously for all sites. The result was that while MJS model was able to give a good representation of the measured data using site-specific parameters, using a parameter set that describes an average response of E_c to the environment performed equally well. This was despite each site being comprised of different tree species and occurring over different soil profiles. This showed that the MJS model is partially insensitive to variation in the values of the model parameters and that the number of inputs into the MJS can be
further reduced. The conclusion was that this model is broadly applicable for many sites in temperate Australia and one that can be used as a tool in the management of water resources.

While the MJS model provided a useful management tool, in order to investigate the dynamics of water and carbon gas-exchange from forest canopies, the more complex SPA model of Williams et al. (1996a) was used. While the SPA model has been applied in ecosystems globally with much success, the lack of C₄ photosynthesis has limited its application to savanna ecosystems. Modification of the SPA model was therefore undertaken in order to improve its applicability to savannas through incorporation of C₄ photosynthesis. This was an important improvement as savannas are dominated by C₄ grasses, which contribute significantly to ecosystem water and carbon fluxes. This modification allowed the SPA model to be parameterised to a savanna site in northern Australia, which was simulated over 5 years to replicate measurements of carbon and water fluxes derived from eddy-covariance. The SPA model allowed C₃ and C₄ water and carbon fluxes to be separated and this showed that the C₄ grasses contribute significantly to total savanna productivity (48%), but a much smaller amount to total water-use (23%). Additionally, it was determined the seasonal variation in leaf area index was driving the seasonality in productivity and water-use and the savanna site was determined to be energy-limited (limited by its light interception).

The modification and application of the SPA model to a savanna site highlighted important issues in the way leaf gas-exchange is represented in the model. An investigation into the leaf gas-exchange process handled by SPA showed that there was an imbalance between assimilation and transpiration, as a result of simulated stomatal conductance being increased to unreasonably high levels in order to maximise carbon gain. In order to correct this problem, the modelled gas-exchange was modified to follow the *optimality hypothesis* of Cowan and Farquhar (1977), such that carbon gain is maximised while water lost from the leaf is simultaneously minimised. This improvement was tested in a purely theoretical exercise, where leaf gas-exchange (default and improved schemes) was simulated over a drought. The result of this simulation was that the improved scheme produced a reduction in canopy water-use, while carbon gain remained high and comparable with that of the default scheme.