

University of Technology, Sydney

Faculty of Engineering and Information Technology

Synchroniser analysis and shift dynamics of powertrains equipped with dual clutch transmissions

A thesis submitted for the degree of

Doctor of Philosophy

Paul David Walker

July 2011

CERTIFICATE OF ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Paul David Walker

July 2011

ACKNOWLEDGEMENTS

I'd like to take this opportunity to thank the following people for their assistance and support during my candidature.

My supervisor Professor Nong Zhang, his knowledge and guidance has been invaluable, and together with co-supervisors Dr Jeku Jeyakumaran and Dr Jinchen Ji have guided me through this research and supported my work.

The team at NTC Powertrains – Ric Tamba and Simon Fitzgerald – whose ideas imitated this project and provided information critical to the success of this work.

My UTS colleagues whose advice, humour, and knowledge has helped me focus and provided entertainment through this journey. Salisa Abdulrahman, Yoo-shin Kim, Robert Heal, Lifu Wang, Nga Hoang, Jin Zhang, Jing Zhao and many others along the way.

Most importantly, my wife, Hoeun, who stuck with me through thick and thin, I couldn't have done this without you babe; and daughter, Abbygail, my pride and joy. My parents, Gary and Sue, for advice, and sister, Leigh, and brother, Ryan for entertainment.

Financial support for this project is provided jointly by the Australian Research Council (Linkage ID number LP0775445) and NTC Powertrains.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	xi
LIST OF TABLES	xviii
GLOSSARY OF TERMS AND NOTATION	xix
ABSTRACT	xxviii

СНАРТ	TER 1:	INTRODUCTION	.1
1.1	PROJ	ECT STATEMENT	.2
1.2	PROJ	ECT OBJECTIVES	3
1.3	PROJ	ECT SCOPE	3
1.4	PRES	ENTATION OF THIS THESIS	3
1.5	PUBL	ICATIONS	. 8
СНАРТ	TER 2:	BACKGROUND INFORMATION AND LITERATURE	
REVIE	W	•••••••••••••••••••••••••••••••••••••••	, 9
2.1	INTR	ODUCTION	.9
2.2	BACK	KGROUND INTO DCT EQUIPPED POWERTRAINS	.9
2.2.	1 P	owertrains1	0
2.2.	2 E	ngine1	0
2.2.	3 F.	lywheel1	1
2.2.	4 T	he dual clutch transmission1	1
2.2.	5 P	owertrain nonlinearities1	2
2.2.	6 S	ynchroniser and drag torque1	3
2.2.	7 C	Control systems 1	4
2.2.	8 D	Privetrain and differential1	5
2.3	DCT I	POWERTRAINS, SIMULATIONS, MODELLING AND CONTROL 1	15
2.3.	1 D	Designs and state-of-the-art 1	15
2	.3.1.1	Wet Vs Dry clutches 1	15

2.3.1	.2	Electro-hydraulic or electromechanical control systems	16
2.3.1	1.3	Applications	17
2.3.2	Μ	odelling, simulations, and analysis	17
2.3.3	С	ontrol methods employed in DCTs	
2.3.4	A	ssumptions and limitations of current research	
2.3.4	I.1	Hydraulic control system models	
2.3.4	1.2	Engine torque models	
2.3.4	1.3	Synchroniser	22
2.3.4	1.4	Gear mesh nonlinearities	23
2.3.4	1.5	Temperature	
2.3.4	1.6	Mechanical losses	
2.3.5	Α	final note on DCT control and assumptions	
2.3.6	Sy	ynchroniser dynamics and modelling	
2.3.6	5.1	Fundamental studies of synchronisers	
2.3.6	5.2	Failure modes in the synchroniser	
2.3.6	5.3	Numerical simulations of synchronisers	
2.3.7	D	rag torque	
2.3.7	7.1	Simulations of combined drag torques	
2.3.7	7.2	Sources of drag	
2.3.7	7.3	A final note on drag torque	
2.3.8	H	ydraulics	
2.3.9	Eı	ngine models	
2.3.10	D	ual Mass Flywheel	
2.3.11	Po	owertrain modelling methods	
2.3.12	Po	owertrain control	
2.3.13	Ba	acklash modelling	
2.4 SU	JMN	IARY AND CONCLUSION	
СНАРТЕВ	R 3:	HYDRAULIC CONTROL SYSTEM MODELLING AND	
ANALYSI	S	•••••••••••••••••••••••••••••••••••••••	41
3.1 IN	TRO	DDUCTION	41
3.2 B/	ACK	GROUND	
3.3 DI	EVE	LOPMENT OF HYDRAULIC SYSTEM MODELS: GENERAL	
MODEL	FOF	RMULATION	43

3.4 DEVELOPMENT OF HYDRAULIC SYSTEM MODELS: SOLENOID CLUTCH HYDRAULICS	AND 47
3.5 SIMULINK® MODELLING AND INITIAL RESULTS	54
3.5.1 Solenoid response to basic inputs: Step	57
3.5.2 Solenoid response to inputs: Ramp	59
3.5.3 Combined system response to inputs: Step	59
3.5.4 Combined system response to inputs: Ramp	63
3.6 DEVELOPMENT OF HYDRAULIC SYSTEM MODELS:	
SYNCHRONISER	64
3.7 MATLAB MODELLING AND INITIAL RESULTS	67
3.8 CHAPTER SUMMARY AND CONCLUSION	69
3.8.1 Summary of contributions	70
CHAPTER 4: SYNCHRONISER MECHANISM RIGID BODY MODELL	ING
AND ANALYSIS	72
4.1 INTRODUCTION	72
4.2 BACKGROUND	72
4.3 PROCESS DESCRIPTION	74
4.3.1 Important considerations for synchronisers	76
4.3.1.1 Failure modes	76
4.3.1.2 Limitations to design parameters	77
4.3.1.3 Multi-cone Synchronisers	78
4.3.1.4 Cone friction coefficient and materials	79
4.4 DCT APPLICATION AND COMPARISON TO MANUAL	
TRANSMISSION	79
4.5 MODEL DEVELOPMENT	80
4.5.1 Model Parameters and initial conditions	92
4.6 NUMERICAL SIMULATIONS	93
4.6.1 Basic simulations	93
4.6.2 Up and down shift synchronisations for all gears	95
4.6.3 Variation of chamfer alignment	97
4.6.4 Effect of varying sleeve rotational speed	98
4.6.5 Influence of maximum hydraulic pressure	99
4.6.6 Simulations with varied nominal transmission temperature	100
4.6.7 Summation of simulation results	101

4.7	DIMI	ENSIONLESS TORQUE ANALYSIS	
4.8	DESI	GN PARAMETER STUDY	107
4.9	CHA	PTER SUMMARY AND CONCLUSION	111
4.9	9.1 5	Summary of contributions	112
СНАР	TER 5:	BRAG TORQUE MODELLING AND ANALYSIS	113
5.1	INTR	ODUCTION AND BACKGROUND	
5.2	SOU	RCES OF DRAG	114
5.3	EFFE	CTS OF DRAG	115
5.4	DRA	G TORQUE MODELLING	117
5.4	4.1 H	Bearing drag	117
5.4	4.2 0	Gear tooth friction drag	118
	5.4.2.1	Gear tooth friction coefficient	119
5.4	4.3 (Gear windage drag	120
5.4	4.4 \	Wet Clutch drag	
5.4	4.5 (Concentric shaft drag	124
5.4	4.6 5	Summary of modelling methods	124
5.4	4.7 I	Drag torque modelling parameters	
5.5	APPI	LICATION TO THE DCT FOR DYNAMICS MODELS	
5.5	5.1 I	inearisation of drag torques for finite element models	126
5.6	APPI	LICATION TO THE SYNCHRONISER	129
5.6	5.1 N	Model verification	131
5.6	5.2 N	Numerical simulations of drag torque	
	5.6.2.1	Breakdown of drag torques	
:	5.6.2.2	Drag torque variation between gears	137
5.7	CHA	PTER SUMMARY AND CONCLUSION	139
5.7	7.1 S	Summary of contributions	140
CHAP	TER 6:	POSITIVE CONTROL OF DETRIMENTAL CHAMFI	ER
ALIG	NMENT	FS IN SYNCHRONISERS	141
6.1	INTR	ODUCTION	
6.2	CON	TROL OF DETRIMENTAL CHAMFER ALIGNMENT	142
6.2	2.1 H	Baseline simulations	143
6.3	FEEI	BACK CONTROL OF THE SYNCHRONISER	146
6.3	3.1 5	Simulations	

6.4	DIST	URBANCE METHOD SIMULATIONS	151
6.4	4.1 C	Case 1: Externally applied torque	152
6.4	4.2 0	Case 2: Impulse from inertia change	155
6.5	MINI	MISATION OF SLIP REGENERATION	159
6.6	CON	CLUSIONS	162
6.6	5.1 S	ummary of contributions	163
СНАР	TER 7:	INVERTED SYNCHRONISER MECHANISM DESIGN.	164
7.1	INTR	ODUCTION	164
7.2	RAT	ONALE FOR SYNCHRONISER IMPROVEMENTS	164
7.3	IMPA	ACT OF INCREASING CONE RADIUS	165
7.4	CHA	MFER DESIGN IMPROVEMENTS	168
7.5	THE	INVERTED CONE DESIGN	172
7.5	5.1 S	imulations	174
7.6	CON	CLUSIONS	177
7.6	5.1 S	ummary of contributions	178
CHAP	TER 8:	DYNAMIC MODELLING OF A DCT POWERTRAIN W	ITH
INTEC	GRATE	D SYNCHRONISERS	179
INTEC 8.1	G RATE INTR	D SYNCHRONISERS	1 79 179
8.1 8.2	GRATE INTR LUM	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION	179 179 180
8.1 8.2 8.2	GRATE INTR LUM 2.1 F	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION ree vibration analysis	179 179 180 181
8.1 8.2 8.2	GRATE INTR LUM 2.1 F 8.2.1.1	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION ree vibration analysis Undamped free vibration	179 179 180 181 181
8.1 8.2 8.2	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration	179 179 180 181 181 182
8.1 8.2 8.2 8.2 8.3	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration ERTRAIN STATES	179 179 180 181 181 182 183
8.1 8.2 8.2 8.2 8.3 8.3 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL	179 179 180 181 181 182 183 185
INTEC 8.1 8.2 8.2 8.2 8.3 8.3 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models	179 180 181 181 182 183 185 186
INTEC 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel	179 179 180 181 181 182 183 185 186 187
INTEC 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I 4.3 7	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel Transmission and synchroniser model	179 179 180 181 181 182 183 185 186 187 189
INTEC 8.1 8.2 8.2 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 F 4.3 T 4.4 F	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel Fransmission and synchroniser model	179 179 180 181 181 182 183 185 186 187 189 191
INTEC 8.1 8.2 8.2 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I 4.3 7 4.4 F 4.5 F	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel 'ransmission and synchroniser model 'ropeller shaft model	179 179 180 181 181 182 183 185 186 187 189 191 192
INTEC 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I 4.3 7 4.4 F 4.5 F 4.6 I	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration Damped free vibration ERTRAIN STATES ERTRAIN STATES ERTRAIN MODEL Cangine, flywheel and clutch drum models Dual mass flywheel Transmission and synchroniser model Propeller shaft model	179 179 180 181 181 182 183 185 185 186 187 189 191 192 192
INTEC 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I 4.3 7 4.4 F 4.5 F 4.6 I 4.7 N	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel Transmission and synchroniser model Tropeller shaft model Differential, axle, and wheels and tyre models Aodel Parameters	179 179 180 181 181 181 182 183 185 185 186 187 189 191 192 192 194
INTEC 8.1 8.2 8.2 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	GRATE INTR LUM 2.1 F 8.2.1.1 8.2.1.2 POW POW 4.1 F 4.2 I 4.3 7 4.4 F 4.5 F 4.6 I 4.7 N LUM	D SYNCHRONISERS ODUCTION PED MASS MODELLING THEORY AND APPLICATION Free vibration analysis Undamped free vibration Damped free vibration Damped free vibration ERTRAIN STATES ERTRAIN MODEL Engine, flywheel and clutch drum models Dual mass flywheel Transmission and synchroniser model Transmission and synchroniser model Tropeller shaft model Differential, axle, and wheels and tyre models Model Parameters PED INERTIA MODEL MATRICES AND FREE VIBRATION	179 179 180 181 181 181 182 183 185 185 186 187 189 191 192 192 194

	8.5.	1	DAMPED FREE VIBRATION ANALYSIS	196
8	.6	МО	DELLING INPUT TORQUES	200
	8.6.	1	Engine models	200
	8.	.6.1.1	Mean torque model	200
	8.	.6.1.2	2 Harmonic engine torque model	201
	8.	.6.1.3	3 Harmonic engine control method	203
	8.6.	2	Clutch torque model	205
	8.6.	3	Synchroniser model	206
	8.6.	4	Vehicle torque model	208
8	.7	CH	APTER SUMMARY AND CONCLUSIONS	208
	8.7.	1	Summary of contributions	210
СН	АРТ	ER	9: SHIFT CONTROL OF DCTS – ISSUES AFFECTING SHI	FT
QU	ALI	TY		211
9	.1	INT	RODUCTION	211
9	.2	SHI	FT CONTROL OF DUAL CLUTCH TRANSMISSIONS	212
	9.2.	1	Power shifting process in a DCT	212
	9.2.	2	Shift requirements	213
9	.3	4/3	DOF MODELLING OF THE POWERTRAIN FOR CLUTCH CON	FROL
		214		
	9.3.	1	Integration with hydraulic control system	217
	9.3.	2	Parameter estimation	218
	9.3.	3	Free vibration analysis	221
9	.4	TO	RQUE BASED CONTROLLER DEVELOPMENT FOR THE DCT	224
	9.4.	1	Sensitivity of controller to estimated torque	225
	9.4.	2	Torque orientated clutch control	225
	9	.4.2.1	Preshift control	227
	9.	.4.2.2	2 Torque phase control	227
	9	.4.2.3	3 Inertia phase control	228
	9.4.	3	Alternate engine control methods	228
9	.5	GEI	NERAL SIMULATION CONTROL SIGNAL RESULTS	231
9	.6	BA	SIC TORQUE ORIENTATED SHIFTING	233
	9.6.	1	Simulations with ideal actuators	233
	9.6.	2	Simulations with basic control methodology	235

9.6.3	Simulations with addition of engine torque control	237
9.6.4	Simulations of the influence of error in torque estimation	238
9.6.5	Shift transient simulations with transient engine model	239
9.7 CO	MPENSATION FOR TIME DELAY IN HYDRAULIC CONTROL	
SYSTEM		241
9.8 CO	DNCLUSIONS	242
9.8.1	Summary of Contributions	244
CHAPTER	10: SHIFT TRANSIENT STUDY OF DCT EQUIPPED	
POWERTR	RAINS	245
10.1 IN	TRODUCTION	245
10.2 DY	NAMICS OF SYNCHRONISER ENGAGEMENT IN A DCT	
POWERT	RAIN	245
10.2.1	Modified synchroniser model	246
10.2.2	Comparison of rigid body and lumped mass models for analysis	246
10.2.3	Transient simulations with ideal engine torque model	248
10.2.4	Transient simulations with unsteady engine model	251
10.2.5 engine 1	Comparison of responses during synchronisation for steady and unsta models	eady 253
10.3 DY POWERT	NAMICS OF POWER-ON CLUTCH-TO-CLUTCH SHIFTS IN A DO	CT 255
10.3.1	Comparison of 4DOF and 15DOF models	257
10.3.2	Application of transient engine torque model	259
10.3.3	Inclusion of DMFW	261
10.4 TH	IE COMBINED SYNCHRONISER ENGAGEMENT AND SHIFTING	; IN
A DCT PO	OWERTRAIN	262
10.5 CO	ONCLUSIONS	267
10.5.1	Simulations of synchroniser engagement	267
10.5.2	Simulations of Shift transient	268
10.5.3	Simulations of combined synchronisation and gear shift	269
10.5.4	Summary of contributions	269
CHAPTER	11: TRANSIENT SIMULATIONS WITH BACKLASH IN GEA	RS
AND SYNC	CHRONISER	270
11.1 IN	TRODUCTION	270
11.2 ME	ESH NONLINEARITIES	271

11.2.1	Clonk	271
11.3 MC	DDIFICATIONS TO LUMPED INERTIA MODEL	272
11.3.1	Backlash model	274
11.3.2	Model parameters	275
11.4 SI	MULATIONS	276
11.4.1	Synchroniser Engagement	277
11.5 SH	IFT TRANSIENT WITH GEAR AND SYNCHRONISER BACKLA	ASH
••••		280
11.6 TI	P-IN TIP-OUT OF THROTTLE	282
11.6.1	Throttle tip-in/tip-out modelling	283
11.6.2	Mean torque model simulations	284
11.6.3	Transient engine vibration and DMFW	286
11.7 CC	NCLUSIONS	288
11.7.1	Summary of contributions	289
CHAPTER	12: THESIS CONCLUSIONS AND RECOMMENDATIONS.	290
12.1 SU	MMARY OF THESIS	290
12.2 SU	MMARY OF FINDINGS AND CONTRIBUTIONS	291
12.3 LI	MITATIONS TO RESEARCH	295
12.4 FU	RTHER RESEARCH	296
12.5 CC	NCLUSION	298
APPENDIX	X A – UNBLOCKING TIME	300
APPENDIX	X B – DISPLACEMENT DERIVATION	301
APPENDIX	X C – MATRIX EQUATIONS OF MOTION FOR POWERTRA	IN
MODEL	••••••	302
REFEREN	CES	313

LIST OF FIGURES

Figure 1.1: Relationship of different Chapter components of this thesis	4
Figure 2.1: General DCT powertrain layout	10
Figure 2.2: Dual lay shaft dual clutch transmission, where "C" represents clutches, "B" signifies bea	ıring,
"G" is for a gear pair, and "S" identifies synchronisers.	12
Figure 2.3: Typical synchroniser mechanism schematic	14
Figure 2.4: Mesh phases during indexing of the synchroniser [65]	29
Figure 2.5: Figure of sleeve displacement with varying chamfer alignments from Liu & Tseng [60]	31
Figure 3.1: Single degree of freedom mass with damping	43
Figure 3.2: Detail of flow area for open port	45
Figure 3.3: Schematic of clutch control system	48
Figure 3.4: Variable force solenoid schematic with integrated damper	48
Figure 3.5: Solenoid and damper control volumes	49
Figure 3.6: Schematic of clutch pack and piston	52
Figure 3.7: Clutch pack control volume	52
Figure 3.8: Nonlinear spring model for clutch pack	53
Figure 3.9: Characteristic Curve for VFS	55
Figure 3.10: Spool displacement and time delay for VFS	55
Figure 3.11: Solenoid release spool displacement and time delay curves for step down	56
Figure 3.12: Normally low VFS response to step input	57
Figure 3.13: Normally high VFS response to step input	58
Figure 3.14: VFS response to ramp input	59
Figure 3.15: Hydraulic system response to step input for clutch 1, I=0.6A	60
Figure 3.16: Hydraulic system response to step input for clutch 1, I=0.7A	61
Figure 3.17: Hydraulic system response to step input for clutch 2, I=0.6A	62
Figure 3.18: Hydraulic system response to step input for clutch 2, I=1.4A	62
Figure 3.19: Simulation of clutch 1 and VFS combined using a ramp input	63
Figure 3.20: Hydraulic shift mechanisms for the DCT synchroniser control including four on/off	
solenoids and a sequencing solenoid	65
Figure 3.21: Hydraulic shift arrangement for typical DCT synchronisers	66
Figure 3.22: Solenoid output pressure and cylinder response pressure	68
Figure 3.23: Idle cylinder response pressure	68
Figure 4.1: Steps of synchroniser engagement	76

Figure 4.2: Typical transmission Layout for DCT, including synchronisers	80
Figure 4.3: Simplified synchroniser model components for drag and inertia, studying 4 th gear	81
Figure 4.4: Ring free body diagram during speed synchronisation	86
Figure 4.5: Possible variations in chamfer alignment	90
Figure 4.6: Resultant forces on the chamfers	91
Figure 4.7: Synchronisation process modelling summary	91
Figure 4.8: Synchronisation process breakdown, showing cone slip speed (top), sleeve displacement	
(middle), and hydraulic pressure (bottom)	94
Figure 4.9: Up shift synchroniser engagement simulations for all gears, (left) sleeve displacement of	gears
2-6 with sleeve speed of 1500RPM, (right) duration for each step	95
Figure 4.10: Sleeve displacement for downshifts of gears 1-5 with sleeve speed of 1500RPM	96
Figure 4.11: Demonstration of variation associated with chamfer alignment	97
Figure 4.12: Variation in chamfer alignment simulations focusing on indexing only	97
Figure 4.13: Influence of sleeve speed on engagement for a 3 rd -4 th gear upshift synchronisation	99
Figure 4.14: 3 rd -4 th gear upshift synchronisation with variations in control pressure from 0.4-2MPa, ((a)
cylinder pressure and (b) sleeve displacement	99
Figure 4.15: Sleeve displacement with variation in ambient transmission temperature	101
Figure 4.16: Cone slip speed with variation in ambient transmission temperature	101
Figure 4.17: Dimensionless cone torque	104
Figure 4.18: Dimensionless blocking/indexing torque	105
Figure 4.19: Dimensionless drag torque for downshifts	106
Figure 4.20: Dimensionless drag torque for up shifts	106
Figure 4.21: Parameter modification to cone angle	108
Figure 4.22: Parameter modification to friction coefficient	109
Figure 4.23: Chamfer angle parameter modification	110
Figure 4.24: Parameter modification to chamfer friction	110
Figure 5.1: DCT transmission layout	114
Figure 5.2: Transmission and differential finite element layout	126
Figure 5.3: Linearised damping for even gears	127
Figure 5.4: Linearised data for odd gears	127
Figure 5.5: Linearised data for coupling drag	128
Figure 5.6. Linearised data for final drive 1	128
Figure 5.7: Linearised data for final drive 2	128

Figure 5.8: highlighted sources of drag torque that will affect the synchronisation of 2nd 4th and 6th gears
Figure 5.9: Synchronisation time for upshifts and downshifts
Figure 5.10: Synchronisation energy for upshifts and downshifts
Figure 5.11: Assumed and numerical mean drag torques at the synchroniser
Figure 5.12: Unblocking time variation based on different drag torques
Figure 5.13: Drag torques for a 3-4 upshift. (a) Synchroniser sleeve displacement, (b) absolute drag
torque, (c) relative drag torque
Figure 5.14: Drag torques for a 5-4 downshift. (a) Synchroniser sleeve displacement, (b) absolute drag
torque, (c) relative drag torque
Figure 5.15: Drag torques developed during synchronisation for downshifts
Figure 5.16: Drag torques developed during synchronisation for upshifts
Figure 6.1: Example of good and poor chamfer alignments during synchroniser engagement
Figure 6.2: Example of tip-on-tip alignment condition
Figure 6.3: Demonstration of different alignment issues for wet clutches, fourth gear is synchronised with
third gear engaged (top) and fifth gear engaged (bottom)
Figure 6.4: Demonstration of different alignment issues for dry clutches, fourth gear is synchronised with
third gear engaged (top), and fifth gear engaged (bottom)145
Figure 6.5: Synchroniser engagement override control algorithm
Figure 6.6: Sleeve displacement results for closed loop alignment control of wet clutches for upshift (top)
and downshift (bottom)
Figure 6.7: Active and idle cylinder pressures for closed loop alignment control of wet clutches for
upshift (top) and downshift (bottom)
Figure 6.8: Sleeve displacement results for closed loop alignment control of dry clutches for upshift (top)
and downshift (bottom)
Figure 6.9: Active and idle cylinder pressures for closed loop alignment control of dry clutches for upshift
(top) and downshift (bottom)
Figure 6.10: Schematic for Case 1, external excitation through an applied torque
Figure 6.11: control of chamfer alignment in a wet clutch DCT using an externally applied torque for
upshift (top) and downshift (bottom)
Figure 6.12: Control of chamfer alignment in a dry clutch DCT using an externally applied torque for
upshift (top) and downshift (bottom)
Figure 6.13: Example model of Inertia change system for Case 2
Figure 6.14: Control of chamfers for a wet clutch DCT using torque impulse for upshift (top) and
downshift (bottom)

 downshift (bottom) Figure 6.16: Detailed cross section of double contact thrust piece Figure 6.17: Simulations of engagement with double contact thrust piece in wet clutch DCT, (top) upshifts and (bottom) downshifts Figure 7.1: Synchroniser engagement simulations with variation to the cone clutch mean radius, (top) Cone clutch slip speed during synchronisation of gear, and (bottom) sleeve displacement simulation Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change Eigure 7.3: dimensionless chamfer torque as a function of chamfer angle and operating radius. 	.158 .160 .161 .167 .169 .169
Figure 6.16: Detailed cross section of double contact thrust piece	.160 .161 .167 .169 .169
Figure 6.17: Simulations of engagement with double contact thrust piece in wet clutch DCT, (top) upshifts and (bottom) downshifts Figure 7.1: Synchroniser engagement simulations with variation to the cone clutch mean radius, (top) Cone clutch slip speed during synchronisation of gear, and (bottom) sleeve displacement simulation Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change Figure 7.3: dimensionless chamfer torque as a function of chamfer angle and operating radius.	.161 .167 .169 .169
upshifts and (bottom) downshifts Figure 7.1: Synchroniser engagement simulations with variation to the cone clutch mean radius, (top) Cone clutch slip speed during synchronisation of gear, and (bottom) sleeve displacement simulation Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change Figure 7.3: dimensionless chamfer torque as a function of chamfer angle and operating radius	161 .167 .169 .169
Figure 7.1: Synchroniser engagement simulations with variation to the cone clutch mean radius, (top) Cone clutch slip speed during synchronisation of gear, and (bottom) sleeve displacement simulation Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change	.167 .169 .169
Cone clutch slip speed during synchronisation of gear, and (bottom) sleeve displacement simulation Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change	.167 .169 .169
Figure 7.2: sleeve displacement variation with chamfer angle and pitch radius change	.169 .169
Figure 7.3: dimensionless chamfer torque as a function of chamfer angle and operating radius	.169
Figure 7.5. dimensionless channel torque as a function of channel angle and operating fadius	
Figure 7.4: Variation of sleeve displacement with modification to the chamfer pitch radius and number	r of
chamfers at a chamfer angle of 50 degrees	.170
Figure 7.5: Variation of sleeve displacement with modification to the chamfer angle at a constant pitch	h
radius of 40mm	.170
Figure 7.6: Synchroniser engagement simulations with variation to chamfer design according to Table	e 2,
(top) cone clutch slip speed, and (bottom) Sleeve displacement	.171
Figure 7.7: Typical section of inverted synchroniser mechanism	.173
Figure 7.8: Detail of thrust piece and detents	.173
Figure 7.9: Detailed thrust piece positions, from left to right (1) neutral position, (2) at end of initial	
displacement before sleeve and ring chamfers engaged, (3) During synchronisation with sleeve and rin	ng
chamfers engaged and thrust piece detent retracted, and (4) at full displacement with thrust piece dent	ed
fully retracted and gear completely engaged.	.174
Figure 7.10: Simulations of the inverted cone synchroniser mechanism, (top) above 3rd to 4th gear	
synchronisations, and (bottom) below 5th to 4th gear synchronisations	.176
Figure 8.1: Semi-definite two degree of freedom system	.180
Figure 8.2: Layout of dual clutch transmission	.184
Figure 8.3: Simplified powertrain dynamic model with clutches and synchronisers	.186
Figure 8.4: Engine, flywheel, and clutch drum model elements	.186
Figure 8.5: Dual mass flywheel elements	.187
Figure 8.6: Clutch and simple transmission model elements	.189
Figure 8.7: final drive and reduced differential model elements	.191
Figure 8.8: Shafts model elements	.192
Figure 8.9: Differential and axle elements	.193
Figure 8.10: Hub and tyre model elements	.193
Figure 8.11: Engine torque map	.200
Figure 8.12: 5 degree of freedom transient engine torque model	

Figure 8.13: Piston head pressure map over 4 strokes
Figure 8.14: Transient engine torque simulation results
Figure 8.15: Calculated cylinder pressures for assumed 0% and 10% throttle angles
Figure 9.1: General DCT powertrain layout
Figure 9.2: 4DOF model of powertrain with both clutches open
Figure 9.3: 3DOF dynamic model of powertrain with clutch one closed
Figure 9.4: friction coefficient representation as a function of slip speed
Figure 9.5: Simulink - Stateflow representation of reduced order powertrain with integrated control
modules
Figure 9.6: Powertrain control logic
Figure 9.7: Sensitivity study of clutch torque response to variation in estimated torque
Figure 9.8: Typical torque profiles of both clutches during shifting
Figure 9.9: Engine control methods. Showing both speed control (left) and torque control (right) 230
Figure 9.10: Engine control responses from simulation showing throttle angle (above) and engine speed
(below)
Figure 9.11: Clutch control responses, showing control signal (top), spool position (middle), and clutch
pressure (bottom)
Figure 9.12: Simulation results for a 3-4 up-shift showing speeds for (a) Clutch drum and clutch 2, (b)
vehicle acceleration, and (c) clutch pressures during shifting using ideal clutch torques
Figure 9.13: Simulation results for a 3-4 up-shift with minimised time delay showing speeds for (a) clutch
drum and clutch 2, (b) vehicle acceleration, and (c) clutch pressures during shifting using engine speed
control and Clutch 2 average torque estimation
Figure 9.14: Simulation results for a 3-4 up-shift showing speeds for (a) clutch drum and clutch, (b)
vehicle acceleration and (c) clutch pressures during shifting using engine speed and torque control, and
clutch 2 average torque estimation
Figure 9.15: Simulation results for a 3-4 up-shift with variance in estimated torque for controller input
showing speeds for (a) clutch drum and clutch, (b) vehicle acceleration, and (c) clutch pressures 238
Figure 9.16: Gear shift simulation results for 3 rd to 4 th upshift using 4DOF model with transient engine
torque, (a) clutch drum and hub speeds, and (b) clutch 2 output and total vehicle torques
Figure 9.17: Gear shift simulation results for 3 rd to 4 th upshift using 4DOF model with transient engine
torque, (a) clutch drum and hub speeds, and (b) clutch 2 output and total vehicle torques
Figure 10.1: Synchroniser sleeve displacement for rigid body model and lumped mass model engagement
simulations
Figure 10.2: Synchroniser engagement responses, showing (top) sleeve displacement during engagement
and, (bottom) effective synchroniser torque
Figure 10.3: Synchroniser hub and sleeve speeds (top), and synchroniser relative speed (bottom)

Figure 10.4: Cone slip speed demonstrating stick - slip during final stages of speed synchronisation	250
Figure 10.5: Synchroniser engagement responses using dynamic engine model, showing (top) sleeve	
displacement during engagement and, (bottom) effective synchroniser torque	251
Figure 10.6: Synchroniser hub and sleeve speeds (top), and synchroniser relative speed (bottom) using	g
dynamic engine model	252
Figure 10.7: Demonstration of stick-slip phenomena using a dynamic engine model	253
Figure 10.8: Relative vibration synchroniser sleeve during actuation of the synchroniser mechanism.	For
the ideal engine models (a) during synchronisation and (b) during indexing, and using the unsteady	
engine model (c) during synchronisation and (d) during indexing	254
Figure 10.9: Fast Fourier Transforms of sleeve relative vibration during synchronisation	255
Figure 10.10: Enlarged view of FFT results in figure 10.9, focus on frequencies less than 500Hz	255
Figure 10.11: Clutch 1, clutch 2, and throttle angle control signals (arrows used to indicate different s	teps
of the shift process)	256
Figure 10.12: Gear shift simulation results for 3 rd to 4 th upshift using 4DOF model with mean engine	
torque, (a) clutch drum and hub speeds, and (b) clutch 2 and vehicle torques	258
Figure 10.13: Gear shift simulation results for 3 rd to 4 th upshift using 15DOF model with mean engine	e
torque, (a) clutch drum and hub speeds, and (b) clutch 2 and vehicle torques	259
Figure 10.14: Gear shift simulation results for 3 rd to 4 th upshift using 15DOF model with transient eng	gine
torque, (a) clutch drum and hub speeds, and (b) clutch 2 and vehicle torques	260
Figure 10.15: Clutch 1 slip speed showing stick slip introduced during pre-shift period in the 15DOF	7
powertrain with transient torque model	261
Figure 10.16: Gear shift simulation results for 3 rd to 4 th upshift using 15DOF model with transient eng	gine
torque and linearised DMFW, (a) clutch drum and hub speeds, and (b) clutch 2 and vehicle torques	262
Figure 10.17: Linear shift process in DCTs	262
Figure 10.18: combined shift transient engine and clutch 1 and 2 control signals	263
Figure 10.19: combined 4th gear synchronisation and upshift from 3 rd to 4 th gear simulation	264
Figure 10.20: Stick-slip simulations (a) drum speed, (b) clutch 1 stick-slip	265
Figure 10.21: acceleration of clutch 2 hub at different stages of synchronisation and gearshift (a) duri	ng
speed synchronisation, (b) completion of synchronisation, (c) during clutch-to-clutch shift, and (d) af	ter
lockup	266
Figure 11.2: mesh contact model for synchroniser splines	272
Figure 11.1: Transmission lumped inertia model	272
Figure 11.3: Mesh contact model for gear pair	273
Figure 11.4: Mesh stiffness model for gear and synchroniser contact nonlinearity	274
Figure 11.5: Shift control signals for transient simulations	277
Figure 11.6: Synchroniser sleeve displacement (top) and engagement torque (bottom)	278

Figure 11.7: Synchroniser hub and sleeve speeds (top), and synchroniser relative speed (bottom) 278
Figure 11.8: Phase plots of target gear mesh during different stages of synchronisation. (a) during speed
synchronisation, (b) during ring unblocking, (c) during second displacement, and (d) during indexing.
The hexagram indicates the starting point
Figure 11.9: Shift transient simulations with nonlinear gear and synchroniser mesh, clutch hub and drum
speeds (a), and clutch 2 and net vehicle torque (b)
Figure 11.10: Stick slip present in clutch 2 at lockup
Figure 11.11: Mesh relative displacement plots of both gears during shift transients
Figure 11.12: Mesh relative displacement plots of both synchronisers during shift transients
Figure 11.13: Throttle angle tip-in/tip-out according to equation 11.19
Figure 11.14: Time history of tip-in/tip-out simulation with mean engine torque model
Figure 11.15: Relative displacement plots of (a) Gear 1 and (b) synchroniser 1 during throttle
manipulation for tip-in/tip-out simulations with mean engine torque model
Figure 11.16: Relative velocity-displacement phase plots of (a) Gear 1 and (b) Synchroniser 1 during the
lash period with the mean engine torque model
Figure 11.17: Time history of tip-in/tip-out simulation with harmonic engine torque model
Figure 11.18: First lash transitions for (a) gear 1 with harmonic engine model, (b) gear 1 with mean
engine model, (c) synchroniser 1 with harmonic engine model, and (d) synchroniser 1 with mean engine
model
Figure 12.1: Failed simulation of combined synchroniser engagement and gearshift

LIST OF TABLES

Table 3.1: Hydraulic model parameters
Table 3.2: Synchroniser hydraulic system properties 67
Table 4.1: Synchroniser model parameters 92
Table 4.2: Steady state gear speeds for engaged speed of 1500RPM (157.1 rad/s)
Table 4.3: ATF parameters 100
Table 4.4: Parameters and initial conditions for parameter variation simulations 108
Table 5.1: Drag torque data for gear modelling
Table 5.2: Summary of damping coefficients 129
Table 6.1: Simulation model properties for excitation method
Table 7.1: Simulation parameters 171
Table 7.2: Inverted cone design simulation parameters and dimensionless parameters
Table 8.1: System states for shifting of DCT, "O" signifies open, "X" signifies closed
Table 8.2: Transmission and final drive gear ratios
Table 8.3: Powertrain parameters to be applied to the nDOF models
Table 8.4: Free vibration analysis of powertrain with 3rd gear and clutch 1 engaged, synchroniser two
engaged with 4 th gear. Results show natural frequencies, damping ratios and modal shapes198
Table 8.5: Free vibration analysis of powertrain with 4th gear and clutch 2 engaged, synchroniser one
engaged with 3 rd gear. Results show natural frequencies, damping ratios and modal shapes199
Table 8.6:Transient engine model parameters 201
Table 9.1: Natural frequencies and damping ratios for parameter estimation, for clutch 1 in 3rd gear and
clutch 2 in 4th gear218
Table 9.2: Estimated system parameters for a 3 rd to 4 th gear upshift
Table 9.3: 4DOF and 15DOF system natural frequencies 221
Table 9.4: Normalised modal shapes and natural frequencies of 4DOF model engaged in 3 rd gear222
Table 9.5: First four normalised modal shapes and natural frequencies of the 15DOF system engages in
3 rd gear
Table 11.1: Nonlinear contact model parameters 276

GLOSSARY OF TERMS AND NOTATION

ABBREVIATIONS USED IN THIS THESIS

DCT	-	Dual clutch transmission
MT	_	Manual transmission
AMT	-	Automated manual transmission
AT		Automatic transmission
CVT		Continuously variable transmission
TCU	_	Transmission control unit
DOF	-	Degrees of freedom
VFS	_	Variable force solenoid
NVH	_	Noise vibration and harshness
DMFW	—	Dual mass flywheel

CHAPTER 3 NOTATION

General

β	—	Bulk modulus
μ	_	Viscosity
cr	_	Radial clearance
1	_	Sliding contact length
t	_	Time
A	_	Cross-sectional area
C_d	_	Damping coefficient
CD		Discharge coefficient
D	_	Diameter
F	_	Force
Ks	_	Spring constant
Μ	_	Mass
Р	_	Pressure
Q	_	Flow rate
V	_	Volume
X	_	Displacement

X – Velocity

Subscripts

0		initial condition
syn	_	synchroniser
С	_	Cylinder
Cl	_	Clutch
CV##	_	Control volume number for fluid system
Exh	_	Exhaust
IN	_	Inlet
L	_	Leak
MMF	_	Magneto-motive force
0	_	Orifice
Р	_	Piston or spool
V	_	Volume

CHAPTER 4 NOTATION

α		Cone angle
β	-	Chamfer angle
δ		Angular displacement between consecutive chamfers
θ_{D}	_	Detent contact angle
θ_{H}	-	Chamfer relative alignment
$\dot{ heta}_{ m s}$	_	Cone relative speed
$\ddot{\theta}_{\scriptscriptstyle FW}$		Freewheeling component acceleration
$\ddot{ heta}_{R}$		Ring acceleration
μ	-	Transmission fluid viscosity
μ_{C}	_	Cone dynamic friction
$\mu_{C,S}$	_	Cone static friction
μ_{DETEI}	NT —	Detent friction coefficient
μ_{I}		Chamfer friction coefficient
μ_R	_	Ring/sleeve sliding friction
λ	_	Chamfer flank contact

П	_	Dimensionless group
Λ	_	Empirical constant that is dependent on the lubrication case $(1>\Lambda>5)$
а	-	Grooved width
b	-	Semi-width of the contact generatrix in the cone [66]
h	_	Film thickness
ms	_	Sleeve mass
m _{S+R}	_	Sleeve and ring mass
n		Number of grooves
t _B	-	Unblocking time
t _S	_	Synchronisation time
x _s	_	Sleeve displacement
\ddot{x}_s	_	Sleeve acceleration
F _A	_	Net sleeve load
FDETEN	TI	Detent force
F _{FILM}	_	film squeezing force
FLOSS		Seel drag losses
F _R	_	Radial force
\mathbf{I}_{FW}	-	Inertia of the freewheeling components
I _R		Inertia of the ring
$\mathbf{I}_{\mathbf{V}}$	_	Vehicle inertia
K _{GR}	_	Groove coefficient
N _{CH}	_	Number of chamfers on one ring
R _C	_	Mean cone radius
R _H	-	RMS roughness of the hub
R _I	-	Pitch radius of chamfers
$\mathbf{R}_{\mathbf{m}}$		Cone mean radius
R _R		RMS roughness of the ring
T_B	_	Blocking torque
T _C	_	Cone torque.
T_D	_	Drag torque
T_{I}	_	Indexing torque
Ts	_	Synchronisation torque
T_V		Vehicle torque

CHAPTER 5 NOTATION

General

α		transverse operating pressure angle
β	_	operating helix angle
γ	-	gear ratio
ν	-	kinematic viscosity
μ	-	dynamic viscosity
ρ	_	density
ω	-	rotational velocity
ω _G		Gear speed
$\Delta\omega_{CL}$		Clutch slip speed
θ	_	Rotational displacement
b	_	Face width
d	_	Diameter
f	_	Friction
h	-	Fluid spacing
r	_	Radius (* denotes radius at critical Reynolds number)
С	_	Drag torque dimensionless coefficient
Е	_	Energy
Gr	—	Turbulent flow coefficient
Н	_	Sliding ratio at the start of the approach
Н	_	Sliding ratio at the end of the recess
\mathbf{I}_{FW}	-	Reflected inertia
KE	-	Kinetic energy
Μ	_	Mesh mechanical advantage
Ν		rotational speed (RPM)
Р	_	Mesh power loss (kW)
Re	_	Reynolds number (* denotes critical Reynolds number)
Q	_	Flow rate
Т	_	Torque
X	_	Profile coefficient
Z	_	module

Subscripts

01	-	pinion outside radius
o2	_	gear outside radius
S	_	Start of approach
t	_	End of approach
w1		pinion operating pitch radius
w2	_	gear operating pitch radius
A	_	Tooth tip
В	_	Bearing losses
CL	_	Clutch windage
D	_	Drag
F	_	Gear friction
Ι	_	Inside
М	_	Mesh
0	_	Outside
Р	_	Pitch point
SH	_	Inter-shaft shear
V	_	windage
W		Gear windage

CHAPTER 6 NOTATION*

*Any previously used terminology can be found in Chapter 4 or 5 notation

- θ_C Control system rotation DOF
- θ_P Pinion DOF
- I_C Control system inertia ($_0$ for initial, Δ for change in inertia)
- I_P Pinion inertia
- K_C Control shaft stiffness
- T_{CONT} Control torque
- T_{SYN} Synchroniser torques
- x_C Chamfer contact displacement
- Δx_{s} Net sleeve displacement over one chamfer

CHAPTER 7 NOTATION*

*Any previously used terminology can be found in Chapter 4, 5 or 6 notation

CHAPTER 8 NOTATION

General

- θ Angular displacement
- $\dot{\theta}$ Angular velocity
- $\ddot{\theta}$ Angular acceleration
- γ Gear ratio
- ω Frequency
- 🧖 Phase angle
- ζ Damping ratio
- x Displacement
- x Velocity
- ^x − Acceleration
- T Time
- C Damping coefficient
- I Inertia
- K Spring coefficient
- M Mass
- T Torque
- X Amplitude coefficient

Subscripts

1	-	Refers to components associated with odd gears
2	_	Refers to components associated to even gears
e	-	Engine
hys	_	Hysteresis
AX	-	Axle
С	_	Clutch
DIFF	-	Differential
F		Flywheel or Dual mass flywheel primary
DM	_	Clutch drum or Dual mass flywheel secondary integrated with clutch
FD	-	Final drive

G	_	Gear
Р	_	Pinion
S	_	Synchroniser
SL	_	Synchroniser sleave
Т	_	Tyre
W	_	Wheel hub

Engine models

θ	_	Crank angle
ω _e	_	Engine speed
\mathbf{m}_{T}	_	Mass of gas
A _P	_	Piston area
M_{P}	_	Piston mass
Р	_	Instantaneous piston pressure
R	_	Ideal gas constant
Ś	_	Piston speed
Т	_	Piston temperature
T _P	_	Piston torque
Tt	-	Inertia change torque
v	_	Piston volume

Clutch model

μ_D	_	Dynamic friction coefficient
μ _S	_	Static friction coefficient
∆ḋ _{SL}	_	Clutch slip speed
n	_	Number of friction surfaces
rı		Inside radius
r _O	-	Outside radius
F _A		Axial force
T _C	-	Clutch torque
T_{avg}		Average torque
X	-	Piston displacement

 X_0 – Contact displacement for friction plates

Synchroniser model

Refer to Chapter 4 notation

Vehicle torque model

$\theta_{incline}$	-	Angle of inclination
ρ_{air}	_	Air density
g	_	Gravity
CD	_	Coefficient of drag
C_{tire}	_	Dimensionless tire retarding force
Faero	_	Aerodynamic drag load
Fincline	_	Incline load
F _{roll}	_	Aerodynamic drag load
F _R	_	Net resistance force
$H_{\boldsymbol{v}}$	_	Vehicle height
M_{ν}	_	Vehicle mass
R_{wheel}	_	Wheel radius
T _R	_	Net resistance torque
$\mathbf{V}_{\mathbf{W}}$	-	Linear velocity of driving wheels
W_{ν}	_	Vehicle width

CHAPTER 9 NOTATION

*Any previously used terminology can be found in Chapter 8 notation

General

 Θ – Amplitude coefficient

Subscripts

C – Clutch

D – clutch drum

E – Engine

T – Transmission

V – Vehicle

1,2 – clutch or gear number

CHAPTER 11 NOTATION

*Any previously used terminology can be found in Chapter 8 notation

General

- $\boldsymbol{\theta}$ –rotational degree of freedom
- θ_C Contact displacement rotation
- C Damping
- I Inertia
- K-stiffness
- M Mass
- r radius
- t –time
- TA throttle angle
- x gear linear degree of freedom
- X_C contact displacement length
- y pinion linear degree of freedom

Subscripts

B – BearingRefer to Chapter 8 subscripts

ABSTRACT

Transient dynamic investigations of dual clutch transmission equipped powertrains are conducted in this thesis through the development and application of torsional multibody models incorporating multiple nonlinearities. Shift control studies are performed using detailed hydraulic model integrated with a 4DOF powertrain model. Results illustrate that accuracy of torque estimation, time delay in engine and clutches, and torque balance in the powertrain all influence the shift quality. Powertrain transient studies have been carried out to investigate the impact of multiple nonlinearities on powertrain dynamics and shift quality. This makes use of the clutch friction stick-slip algorithm to model nonlinearity in clutch engagements, with other nonlinearities including mean and harmonic engine torque models and dual mass flywheel with hysteresis. Comparisons between 4 and 15 DOF powertrain models are made, and the impact of using engine harmonics for the DCT powertrain identified. Results of these studies are also discussed with respect to stick-slip response clutches and the effect on post shift transient response. Finally, a backlash model is introduced for gears and synchronisers to study response under a variety of operating conditions, including synchroniser engagement, shift transients and engine tip-in/tip-out.

Investigations of synchroniser mechanism dynamics and control are undertaken with a rigid body mechanism model, and as part of the DCT powertrain using a 15 DOF multibody model. Broad ranging parameter studies are undertaken for design and environmental variables that impact on synchroniser performance, and dimensionless torques are introduce for the study of synchroniser design parameters. Slip regeneration is identified as a significant issue in mechanism actuation, in terms of engagement repeatability and damage to chamfer friction surfaces. Alignment control methods are studied to attempt to reduce the impact of chamfer alignment and regenerated slip on engagement performance. Finally two design modifications are suggested for the mechanism to eliminate the slip issue, and provide higher synchroniser torques for a similar design envelope. Powertrain simulation results suggest that under nominal actuation, using the mean engine torque model, vibrations of the sleeve increase during indexing alignment of chamfers, indicating increased wear of friction surfaces. With the inclusion of the harmonic engine torque model, vibrations in the transmission increases significantly throughout the engagement process; however these results do not indicate that there is an increased likelihood of clash during speed synchronisation.