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Abstract 

Understanding the processes that drive the variability in thermal tolerance among scler-

actinian corals is key to predicting the impacts of rising worldwide temperatures on coral 

reefs. This thesis explores the thermal microclimate of corals, and specifically examines 

the thermal effects of environmental conditions of flow and irradiance, combined with the 

optical, thermal and morphological characteristics of individual coral colonies. 

The temperature of branching (Porites cylindrica) and hemispherical (Porites lobata 

and Cyphastrea serailia) coral species was monitored on a shallow reef flat in the South-

ern Great Barrier Reef. This revealed a strong diurnal and tidal pattern in solar heating 

of corals, whereby maximum coral surface warming of "'-'+0.6 °C occurred during low 

Spring tides, under conditions of high irradiance and low water flow. 

Microsensor temperature measurements were used to demonstrate for the first time 

that at flow velocities < 5 cm s-1 heat transfer at the surface of corals was controlled 

by a thermal boundary layer (TBL). Dimensionless analysis of heat transfer (Nusselt-

Reynolds number plots) confirmed that convective heat transfer at the surface of hemi-

spherical Porites lobata and branching colonies (Stylophora pistillata occurred through a 

laminar boundary layer, consistent with predictions from engineering theory for simple 

geometrical objects. For topographically more complex corals (Favia and Platygyra sp.) 

both the TBL thickness and the surface temperature was spatially heterogeneous. 

Temperature and spectral reflectance measurements were used to investigate close 

links between the thermal and optical properties of corals. Coral surface temperature 

could be expressed as a linear function of the tissue's absorptivity, but this relationship 

was species-specific, and highlighted the thermal importance of the skeleton. The spec-

tral composition of light was important in determining the magnitude of coral surf ace 

warming, and short wavelengths ( <500 nm) had the greatest heating efficiency. 

Finally, a mechanistic thermal model of corals identified both irradiance absorption 

and convective heat loss as the major controlling parameters of coral smface warming. 

Conductive heat transfer into the skeleton was a negligible portion of the overall heat 

budget, except for small coral diameters ("" 1 cm). Experimental and theoretical results 

throughout this thesis revealed that the surface warming of hemispherical coral species 

xvii 



was greater than that of branching species, and indicates that massive species may tolerate 

temperatures greater than previously thought. In light of the greater bleaching resistance 

of massive compared to branching species, this warrants further investigation into the 

effects of small temperature differences on the physiological response of morphologically 

distinct, bleaching sensitive and resistant coral species. 

xviii 
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Table 1: List of terms. 

Tissue absorptivity 
Boundary layer thickness (µm or mm) 

Surface emissivity 
Density (kg m-3 ) 

Stefan-Boltzmann constant (5.673 x 10-8 W m-2 K- 1) 

Transient response time (s) 
Warming: T - Twater (Kor C) 
Maximum surface wanning (Kor C) 

Maximum skeleton wanning (Kor C) 

Effective quantum yield of PSII 
Skeleton thermal diffusivity (m2 s- 1) 

Water kinematic viscosity (m2 s- 1) 

Analysis of Variance 
Surface area of sun-exposed tissue (m2) 

Surface area of shaded tissue (m2 ) 

Total coral surface area (m2 ) 

Biot number 
Skeleton specific heat capacity (Jkg- 1 K- 1) 

Diffusive boundary layer 
Incident irradiance (Wm- 2 ) 

Variable chlorophyll a fluorescence 
Maximum fluorescence in light 
Dark adapted maximum quantum yield of PSII 
Convection coefficient (W m-2 K- 1) 

Conductivity (Wm- 2 K- 1) 

Skeleton conductance (Wm- 2 K- 1) 

Lewis number 
Nusselt number 
Photosynthetically active radiation 
Photosystem II 
Absorbed radiation flux (W m-2 ) 

Conduction flux from the tissue to the skeleton (W m-2 ) 

Convection flux from the tissue to the water (Wm- 2 ) 

Convection flux from the skeleton to the water (Wm- 2 ) 

Reynolds number 
Sherwood number 
Thermal boundary layer 
Tissue temperature (K) 

Skeleton temperature (K) 

Water temperature (K) 
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