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PREFACE 

The study of the bioavailability of endocrine-disrupting chemicals (EDCs) was carried 

out in the ISO 9001: 2000 certified laboratory at the NSW Department of Primary 

Industries, Wollongbar, NSW, Australia. This study aims to assess the hazard of 

EDCs, particularly DDT and atrazine in laboratory soil and sediment with the 

application of passive samplers. Semipermeable membrane devices (SPMDs) are a 

recently developed passive sampling tool specifically for monitoring hydrophobic 

contaminants (Van Zwieten et a!., 2001 ). The devices consist of lipid (cod liver oil) 

spread into a thin film inside sealed polyethylene lay-flat tubing. Lipophilic 

compounds permeate the polyethylene membrane and partition into the lipid where 

they are concentrated, depending on their physico-chemical parameters. The utility of 

SPMDs in providing bioavailability information has been assessed in this study. The 

determination of the concentrations and compositions of lipophilic compounds, such 

as DDTs taken up by the SPMDs provides a measurement of the levels of these 

compounds that are bioavailable to living organisms. 

In recent years there has been increasing awareness of the endocrine-disrupting effects 

of organic contaminants such as chlorinated pesticides. DDT is one such pesticide that 

is of great environmental concern, due to its toxicity and longer persistence in the 

environment. Although DDT use was banned in 1970, DDT is still found in aquatic 

environments (Erdogrul et a!., 2005). Alarmingly, DDT is biomagnified, that is, its 

concentration increases with an increasing trophic level in aquatic food chains (Cullen 

& Connell, 1992; Kidd eta!., 2001). 
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Exposure to certain EDCs contributes to adverse effects in some wildlife species 

(Burlington & Linderman, 1950). There is evidence indicating a causal link between 

exposure to endocrine-disrupting pollutants and reproductive abnormalities observed 

in wild fish, birds, reptiles, and mammals (Helle et al., 1976; Fry & Toone, 1981; Fry 

et al., 1987; Fox, 1992; Guillette et al., 1994; Jobling et al., 1998). In amphibians, 

exposure to endocrine-disrupting pollutants can feminise gonadal differentiation, 

resulting in female-biased sex-ratios at metamorphosis (Kloas et al., 1999; Hayes et 

al., 2002; Mackenzie et al., 2003; Levy et al., 2004). 

Endocrine disruption has also emerged as a human health issue (Bitman et al., 1968). 

For example, exposure in the early stages of life to naturally occurring hormones 

could produce harmful health effects, including cancer, in young adults (Dunn & 

Green, 1963; Takasugi & Bern, 1964; Foresbert, 1969). Furthermore, EDCs have also 

been linked to declining human male reproductive health, such as reduced sperm 

quality/counts (Handelsman, 2001; Carlsen et al., 1992; Sharpe & Skakkebaek, 1993) 

and increased occurrence of testicular cancer (Toppari & Skakkebaek, 2000). 

Furthermore, a Japanese study has confirmed that the increases in hypospadias in 

human males and accelerated puberty in girls are due to exposure to endocrine-

disrupting chemicals (Mori, 2000). 

This thesis consists of six chapters. Four chapters report on experimental work and 

these have been prepared as papers in a format suitable for publication in a refereed 

scientific journal. These four chapters are preceded by a general introduction (Chapter 

I) to the thesis, which gives an overview of endocrine-disrupting chemicals and their 

effects on biota, including humans. Chapter II is a study on the kinetic uptake of 
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atrazine into SPMDs from pure water. This chapter tests whether SPMDs are suitable 

for assessing the risk of bioaccumulation of atrazine, including six of its congeners, 

from pure water. The study showed the uptake of atrazine by cod-liver-oil-filled 

SPMDs had low bioaccumulation, which was similar to that by living organisms. 

In the north of New South Wales, Australia, the contamination of soil from DDT use 

in cattle dips poses a potential environmental risk to soil and aquatic biota. Chapter III 

presents a comparative study between the kinetics of uptake of DDT by cod-liver-oil-

filled semipermeable membrane devices (SPMDs) and earthworms (Eisenia foetida) 

in both pure water and dip soil. In this chapter, earthworms were used in the aquatic 

and soil terrestrial systems to estimate the bioavailability of DDT and its congeners 

(o,p' & p,p '-DDE, DDD and DDT). Both linear regression and non-linear regression 

were used to calculate the rate of kinetic uptake of different satnpling tools. The 

kinetic uptake rate by earthworms in the aquatic system was 1. 7 times faster than the 

uptake rate for the SPMDs. However, the kinetic uptake rate by earthworms in soil 

was found to be 1 to 4.3 times slower than the uptake rate for the SP11Ds. 

To assess the bioaccumulation of DDT from soil and sediment, SPMDs containing 

cod liver oil were used. These experiments are presented in Chapter IV. The SPMDs 

were exposed three times to the same sediment. Non-linear regressions were used to 

predict the maximum bioavailability of DDT in different dip soils that were 

submerged as aquatic seditnents. DDT was sequestered from the sediment to SPMDs, 

and the sequestration decreased as the fraction of organic contaminants decreased. 

This confirms the suitability of the SPMD technique for the assessment of DDT 

bioavailability. 
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In Chapter V, DDT-contaminated soils were placed in laboratory aquaria to mimic the 

natural soil erosion into creeks. This study focused on the changes in environmental 

risk (measured as DDT availability) under aerated and non-aerated sediment 

conditions over time. The exponential decay model presented in this chapter 

demonstrates that the risk of DDT residues decreased as sediment aged. The final 

chapter of the thesis (Chapter VI) summarises the key findings of the whole study and 

provides recommendations for future research and management of EDC-contaminated 

soil and sediment. 
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ABSTRACT 

There are many methods currently available to assess the risk of chemical 

bioaccumulation in an organism. Many of these methods are either very difficult to 

implement, being costly and time-consuming, or contain flaws which may affect the 

final result. In this study we used semipermeable membrane devices (SPMDs) 

containing cod liver oil to assess the bioavailability of lipophilic and hydrophilic 

organic contaminants. This SPMDs proved to be an excellent method for this study. 

Atrazine is a hydrophilic endocrine-disrupting chemical and is likely to be taken up by 

SPMDs. Atrazine congeners were accumulated far less than the parent compound. The 

uptake of atrazine by SPMDs from pure water was rapid and reached equilibrium 

within 48 hours. The study also showed low bioaccumulation (0.05- 13.5%), which 

is consistent with living organisms. Consequently, the SPMD method was appropriate 

for assessing atrazine. 

Organochlorine pesticide DDT was readily taken up by the SPMDs. Approximately 

76% of the total DDT from spiked water was accumulated by SPMDs after 180 days 

of exposure. However, only 5% of total DDT was taken up frmn field-collected 

contaminated soil and only 10% from a synthetic spiked soil after 35 days of 

exposure. Based on the percentage uptakes, o,p' & p,p '-DDD congeners were more 

bioavailable than any other DDT congeners (such as o,p' & p,p '-DDE, and o,p' & 

p,p '-DDT). Up to 10% of o,p' or p,p '-DDD was taken up from the field-collected soil 

and 20% was taken up from freshly spiked soil. 
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Kinetic uptakes of total DDT and six congeners by cod-liver-oil-containing SPMDs 

and earthworms were compared both in pure water and from soil and sediment. The 

correlation coefficients (r) between the SPMDs' uptake and the earthworms' uptake 

(Eiseniafoetida) at 14 days ofo,p'-DDE,p,p'-DDE, o,p'-DDD,p,p'-DDD, o,p'-DDT, 

p,p '-DDT, and total DDT were 0.96, 0.74, 0.80, 0.98, 0.95, 0.81, and 0.99, 

respectively. Unexpectedly, the kinetic uptake rate by earthworms in the aquatic 

system was 1. 7 times faster than the uptake rate for the SPMDs. However, kinetic 

uptake rate by earthworms in soil was 1 to 4.3 times slower than the uptake rate for 

the SPMDs. The key advantage of SPMDs is 1) their ability to predict long term 

accumulation of the chemicals, 2) they provide more precise estimates of uptake than 

the earthworms, and 3) SPMDs require only simple preparation and give clean 

samples for chromatography. Even though earthworms can be cultured in the 

laboratory under controlled conditions, and can be tested in a variety of soil types, 

earthworm uptake rates were variable and experiments repeatedly failed. 

The available l:DDT and congeners in the contaminated dip soil decreased over time 

as they were sequestered into the SPMDs. The uptake was greatest at the first 

exposure and decreased with subsequent exposures. The bioaccumulation factors of 

DDT were in the range of 157 to 2,125 during the first 35 days of exposure and 

decreased over subsequent sampling periods. The non-linear regression model was 

used to predict the maxin1um uptake of DDT by SPMDs. The percentage DDT uptake 

of the two spiked soils and field-collected sandy soil reached asymptote after 150 

days, with 11 o/o to 13o/o of maximum uptake-that is the amount of chemical taken up 

as a proportion of the initial soil/sediment. After 70 days of exposure, 3.5% of DDT 

was predicted its maximum uptake in heavy clay and clayey sand soils. Of all the 
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DDT congeners, p,p '-DDD was the most bioavailable. Approximately 30o/o of p,p '-

DDD in freshly spiked soil was taken up by SPMDs. 

The initial risk of studied EDCs added to the environment is high because these 

chemicals may be readily bioavailable, but this risk decreases over time. A 

mathematical model was developed to enable eventual inclusion of the DDT 1n 

environmental risk assessments and it was effectively used to explain changes in DDT 

bioavailability over a one-year exposure period. Soil with a higher clay proportion or 

with higher organic carbon was shown to have a lower environmental risk. For 

example, clay soil exhibited the risk at the commencement of the incubation with 

3.3o/o of available DDT residue. As the sediments aged, either under aerated or non-

aerated conditions, the bioavailable DDT fraction decreased in all soil types, 

following first-order exponential decay. 
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