

BIOAVAILABILITY ASSESSMENT OF ENDOCRINE-DISRUPTING CHEMICALS IN SOIL AND SEDIMENT

A thesis submitted in fulfilment of the degree of

Doctor of Philosophy

by

Phanchai MENCHAI

B.Sc. (Science), M.Sc. (Environmental Management)

Department of Environmental Sciences, Faculty of Science University of Technology, Sydney Broadway, NSW, Australia 2008

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Production Note: Signature removed prior to publication.

> > Mr. Phanchai Menchai

Candidate

ACKNOWLEDGMENTS

I would like to express my sincerest thanks and gratitude to my supervisors Dr Lukas Van Zwieten, Department of Primary Industries, Wollongbar, NSW, and Dr Grant Hose, Department of Environmental Sciences, University of Technology Sydney, NSW for their scholarly advice, and continuous guidance throughout the course of the study.

Sincere thanks are extended to the NSW Environmental Trust for providing the research funding and to the NSW Department of Primary Industries, Wollongbar, NSW, Australia for the provision of all the laboratory facilities. Special thanks are given to the Suan Dusit Rajabhat University, Bangkok, Thailand for supporting my tuition fee.

I am equally grateful to Dr Nazir Ahmad, ex-senior research scientist from the University of Sydney, for his invaluable advice and assistance on the experiment setup. Sincere gratitude is also expressed to environmental scientists in Wollongbar particularly Stephen Kimber, who provided valuable advice on GC/MS and analytical methods. I really appreciate the assistance and advice from Stephen Morris on statistical analysis, and from colleagues Matthew Ayres, Josh Rust, Tony Tyler and Greg Keegan. My deep appreciation is also given to Professor Suresh Rao, Purdue University, Indiana, USA for reviewing drafts of the paper manuscripts.

Special thanks are given to all my best friends in Australia, particularly Tippamas Chinnawong, Piyaporn Payakprom, and Richard and Vareewan Callinan. Finally, I am profoundly grateful to my beloved parents for their financial support during difficult stages of the work, and for their encouragement for the best opportunity of my life.

PREFACE

The study of the bioavailability of endocrine-disrupting chemicals (EDCs) was carried out in the ISO 9001: 2000 certified laboratory at the NSW Department of Primary Industries, Wollongbar, NSW, Australia. This study aims to assess the hazard of EDCs, particularly DDT and atrazine in laboratory soil and sediment with the application of passive samplers. Semipermeable membrane devices (SPMDs) are a recently developed passive sampling tool specifically for monitoring hydrophobic contaminants (Van Zwieten *et al.*, 2001). The devices consist of lipid (cod liver oil) spread into a thin film inside sealed polyethylene lay-flat tubing. Lipophilic compounds permeate the polyethylene membrane and partition into the lipid where they are concentrated, depending on their physico-chemical parameters. The utility of SPMDs in providing bioavailability information has been assessed in this study. The determination of the concentrations and compositions of lipophilic compounds, such as DDTs taken up by the SPMDs provides a measurement of the levels of these compounds that are bioavailable to living organisms.

In recent years there has been increasing awareness of the endocrine-disrupting effects of organic contaminants such as chlorinated pesticides. DDT is one such pesticide that is of great environmental concern, due to its toxicity and longer persistence in the environment. Although DDT use was banned in 1970, DDT is still found in aquatic environments (Erdogrul *et al.*, 2005). Alarmingly, DDT is biomagnified, that is, its concentration increases with an increasing trophic level in aquatic food chains (Cullen & Connell, 1992; Kidd *et al.*, 2001).

Exposure to certain EDCs contributes to adverse effects in some wildlife species (Burlington & Linderman, 1950). There is evidence indicating a causal link between exposure to endocrine-disrupting pollutants and reproductive abnormalities observed in wild fish, birds, reptiles, and mammals (Helle *et al.*, 1976; Fry & Toone, 1981; Fry *et al.*, 1987; Fox, 1992; Guillette *et al.*, 1994; Jobling *et al.*, 1998). In amphibians, exposure to endocrine-disrupting pollutants can feminise gonadal differentiation, resulting in female-biased sex-ratios at metamorphosis (Kloas *et al.*, 1999; Hayes *et al.*, 2002; Mackenzie *et al.*, 2003; Levy *et al.*, 2004).

Endocrine disruption has also emerged as a human health issue (Bitman *et al.*, 1968). For example, exposure in the early stages of life to naturally occurring hormones could produce harmful health effects, including cancer, in young adults (Dunn & Green, 1963; Takasugi & Bern, 1964; Foresbert, 1969). Furthermore, EDCs have also been linked to declining human male reproductive health, such as reduced sperm quality/counts (Handelsman, 2001; Carlsen *et al.*, 1992; Sharpe & Skakkebaek, 1993) and increased occurrence of testicular cancer (Toppari & Skakkebaek, 2000). Furthermore, a Japanese study has confirmed that the increases in hypospadias in human males and accelerated puberty in girls are due to exposure to endocrinedisrupting chemicals (Mori, 2000).

This thesis consists of six chapters. Four chapters report on experimental work and these have been prepared as papers in a format suitable for publication in a refereed scientific journal. These four chapters are preceded by a general introduction (Chapter I) to the thesis, which gives an overview of endocrine-disrupting chemicals and their effects on biota, including humans. Chapter II is a study on the kinetic uptake of atrazine into SPMDs from pure water. This chapter tests whether SPMDs are suitable for assessing the risk of bioaccumulation of atrazine, including six of its congeners, from pure water. The study showed the uptake of atrazine by cod-liver-oil-filled SPMDs had low bioaccumulation, which was similar to that by living organisms.

In the north of New South Wales, Australia, the contamination of soil from DDT use in cattle dips poses a potential environmental risk to soil and aquatic biota. Chapter III presents a comparative study between the kinetics of uptake of DDT by cod-liver-oilfilled semipermeable membrane devices (SPMDs) and earthworms (*Eisenia foetida*) in both pure water and dip soil. In this chapter, earthworms were used in the aquatic and soil terrestrial systems to estimate the bioavailability of DDT and its congeners (o,p' & p,p'-DDE, DDD and DDT). Both linear regression and non-linear regression were used to calculate the rate of kinetic uptake of different sampling tools. The kinetic uptake rate by earthworms in the aquatic system was 1.7 times faster than the uptake rate for the SPMDs. However, the kinetic uptake rate by earthworms in soil was found to be 1 to 4.3 times slower than the uptake rate for the SPMDs.

To assess the bioaccumulation of DDT from soil and sediment, SPMDs containing cod liver oil were used. These experiments are presented in Chapter IV. The SPMDs were exposed three times to the same sediment. Non-linear regressions were used to predict the maximum bioavailability of DDT in different dip soils that were submerged as aquatic sediments. DDT was sequestered from the sediment to SPMDs, and the sequestration decreased as the fraction of organic contaminants decreased. This confirms the suitability of the SPMD technique for the assessment of DDT bioavailability.

vi

In Chapter V, DDT-contaminated soils were placed in laboratory aquaria to mimic the natural soil erosion into creeks. This study focused on the changes in environmental risk (measured as DDT availability) under aerated and non-aerated sediment conditions over time. The exponential decay model presented in this chapter demonstrates that the risk of DDT residues decreased as sediment aged. The final chapter of the thesis (Chapter VI) summarises the key findings of the whole study and provides recommendations for future research and management of EDC-contaminated soil and sediment.

TABLE OF CONTENTS

Certificate of authorship/originality	ii
Acknowledgements	iii
Preface	iv
Table of contents	viii
List of tables	xiv
List of figures	XV
Acronyms and abbreviations	xvii
Publications and conferences	XX
Abstract	xxi

CHAPTERS

I INTRODUCTION	1
1.1 Overview of endocrine-disrupting chemicals	1
1.2 Endocrine system	2
1.3 Sources of EDCs	4
1.3.1 Point-source emissions	4
1.3.2 Non-point-sources or diffuse-source emissions	5
1.4 Effects of EDCs	6
1.4.1 Wildlife	6
1.4.1.1 Mammals	7
1.4.1.2 Birds	7
1.4.1.3 Reptiles	8
1.4.1.4 Fish	9
1.4.1.5 Aquatic invertebrates	10
1.4.2 Effects on human health	11
1.4.2.1 Temporal reduction in sperm counts and quality	12
1.4.2.2 Altered sex ratios	12
1.4.2.3 Increased incidence of female breast cancer	13
1.4.2.4 Neurological effects	13
1.4.2.5 Other possible effects	14

1.5 Pesticides known to elicit endocrine disruption activity	14
1.5.1 Atrazine	15
1.5.1.1 Atrazine chemistry	15
1.5.1.2 Atrazine use in Australia	15
1.5.1.3 Environmental fate of atrazine	17
1.5.1.4 Atrazine contamination in Australia	18
1.5.1.5 Effects of atrazine on the endocrine system	19
1.5.2 DDT (Dichlorodiphenyl trichloroethane)	21
1.5.2.1 DDT chemistry	21
1.5.2.2 DDT use in Australia	22
1.5.2.3 Environmental fate of DDT	23
1.5.2.4 DDT contamination in Australia	24
1.6.2.6 Effects of DDT on the endocrine system	26
1.6 Assessment of biological risk	28
1.6.1 Bioavailability	28
1.6.2 Bioconcentration	29
1.6.3 Biomagnification	29
1.6.4 Bioaccumulation: Risks of EDCs	30
1.6.5 Risk assessment	30
1.7 K _{ow} Theory	32
1.8 Methods to assess bioavailability	33
1.8.1 Biological monitoring	33
1.8.2 Pore-water analysis	34
1.8.3 Solid-phase extraction (SPE)	35
1.8.4 Solvent-filled dialysis bags	36
1.9 Objectives of the study	38
1.10 Research questions	38
1.11 Outcomes of the study	38

II KINETIC UPTAKE OF TOTAL ATRAZINE INTO	
SEMIPERMEABLE MEMBRANE DEVICES FROM PURE WATER	39
2.1 Introduction	39
2.2 Materials and methods	42
2.2.1 Materials and reagents	42

2.2.2 Purification of cod liver oil	42
2.2.3 Preparation of SPMDs	43
2.2.4 Experimental design	43
2.2.5 Assessment of atrazine available in SPMDs	44
2.2.6 Analysis of SPMDs	44
2.2.7 Instrumental analysis	44
2.2.8 Data analysis	45
2.3 Quality assurance	46
2.3.1 Preparation of spiked SPMDs	46
2.4 Results	47
2.4.1 Percentage recoveries	47
2.4.2 Bioaccumulation of atrazine from water	47
2.5 Discussion	49
2.5 Conclusion	53

III KI	NETIC UPTAKE BY COD-LIVER-OIL-CONTAINING SPMDs	
AND	EARTHWORMS (Eisenia foetida) FOR DDTs	54
3.1 Int	troduction	55
3.2 Ma	aterials and methods	58
	3.2.1 Materials and reagents	58
	3.2.2 Preparation of dehydrated sodium sulphate	58
	3.2.3 Preparation of deactivated alumina	59
	3.2.4 Purification of cod liver oil	59
	3.2.5 Preparation of SPMDs	59
	3.2.6 Soil sampling and preparation	59
	3.2.7 Soil physico-chemical analysis	60
	3.2.8 Culture and maintenance of earthworms (Eisenia foetida)	61
	3.2.9 Purging of earthworms	61
	3.2.10 Design of Σ DDT uptake by SPMDs from pure water	61
	3.2.11 Design of Σ DDT uptake by earthworms from pure water	62
	3.2.12 Design of Σ DDT uptake by SPMDs from sediment	62
	3.2.13 Design of Σ DDT available in earthworms from soil	63
	3.2.14 Analysis of DDT and its congeners in SPMDs	63
	3.2.15 Analysis of DDT and its congeners in earthworms	64

3.2.16 Analysis of DDT and its congeners in soil	64
3.2.17 Instrumental analysis	65
3.2.18 Data analysis	65
3.2.19 Quality assurance	66
3.2.19.1 Preparation of spiked SPMDs	66
3.2.19.2 Preparation of spiked earthworms (Eisenia foetida)	67
3.2.19.3 Preparation of spiked control OECD soil	67
3.2.19.4 Preparation of spiked sandy soil	67
3.3 Results	68
3.3.1 Percentage recoveries	68
3.3.2 Physical and chemical characteristics of studied soil	68
3.3.3 Kinetics uptake of DDT by SPMDs and earthworms	
from pure water	69
3.3.4 Cumulative uptake of DDT by SPMDs and earthworms from soils	70
3.3.4.1 Spiked OECD soil	70
3.3.4.2 Spiked sandy soil	72
3.3.4.3 Sandy soil	72
3.3.4.4 Heavy clay soil	75
3.3.4.5 Clay soil	77
3.3.4.6 Clayey sand soil	79
3.3.5 Percentage DDT uptake by SPMDs and earthworms from soil	81
3.3.6 Kinetics of DDT uptake by SPMDs and earthworms from soil	83
3.3.7 Log-linear relationships in soil concentrations	
and device concentrations	86
3.3.8 Correlations between SPMDs' and earthworms' uptake	87
3.4 Discussion	87
3.5 Conclusion	91
IV DEPLETION OF BIOAVAILABLE FRACTION IN SEDIMENTS	
FROM REPEATED SAMPLINGS BY SPMDs	92
4.1 Introduction	93
4.2 Materials and methods	95
4.2.1 Materials and reagents	95
4.2.2 Preparation of dehydrated sodium sulphate	95

4.2.3 Preparation of deactivated alumina	95
4.2.4 Purification of cod liver oil	95
4.2.5 Preparation of SPMDs	95
4.2.6 Soil sampling and preparation	95
4.2.7 Soil physico-chemical analysis	95
4.2.8 Experimental design	95
4.2.9 Analysis of Σ DDT and breakdown products in SPMDs	96
4.2.10 Analysis of Σ DDT and breakdown products in soil	96
4.2.11 Instrumental analysis	97
4.2.12 Data analysis	97
4.3 Quality assurance	98
4.3.1 Preparation of spiked membranes	98
4.3.2 Preparation of spiked control OECD	98
4.3.3 Preparation of spiked sandy soil	98
4.4 Results	99
4.4.1 Percentage recoveries	99
4.4.2 Physical and chemical characteristics of studied soil	99
4.4.3 Cumulative accumulation	99
4.4.3.1 Spiked OECD soil	99
4.4.3.2 Spiked sandy soil	102
4.4.3.3 Sandy soil	105
4.4.3.4 Heavy clay soil	106
4.4.3.5 Clayey sand soil	107
4.4.4 Accumulation factor	109
4.4.5 Maximum bioavailability	112
4.5 Discussion	114
4.6 Conclusion	118
V BIOAVAILABLE DDT RESIDUES IN SEDIMENTS:	
LABORATORY ASSESSMENT OF AGEING EFFECTS USING SPMDs	120
5.1 Introduction	121
5.2 Materials and methods	
5.2.1 Materials and reagents	123
5.2.2 Preparation of dehydrated sodium sulphate	123

5.2.2 Preparation of dehydrated sodium sulphate

5.2.3 Preparation of deactivated alumina	123
5.2.4 Purification of cod liver oil	123
5.2.5 Preparation of SPMDs	123
5.2.6 Soil sampling and preparation	123
5.2.7 Soil physico-chemical analysis	124
5.2.8 Experimental design and incubation	124
5.2.9 Assessment of Σ DDT available in SPMDs	125
5.2.10 Analysis of SPMDs	125
5.2.11 Analysis of DDT and breakdown products in soil	125
5.2.12 Instrumental analysis	125
5.2.13 Data analysis	126
5.3 Quality assurance	126
5.3.1 Preparation of spiked SPMDs	126
5.3.2 Preparation of spiked control OECD soil	126
5.3.3 Preparation of spiked sandy soil	126
5.4 Results	
5.4.1 Percentage recoveries	127
5.4.2 Physico-chemical properties of studied soils	127
5.4.3 Accumulation by SPMDs	127
5.4.3.1 The spiked control soil	127
5.4.3.2 Spiked sandy soil	131
5.4.3.3 Sandy soil	131
5.4.3.4 Heavy clay soil	132
5.4.3.5 Clayey sand soil	133
5.4.4 Cumulative uptake by SPMDs	134
5.5 Discussion	137
5.6 Conclusion	139
VI GENERAL CONCLUSIONS	141
6.1 Key findings of cod-liver-oil-filled SPMDs	141
6.2 Recommendations for future research on the bioavailability assessments	144
REFERENCES	146
APPENDIX	181

xiii

LIST OF TABLES

	Page
Table 2.1 Percentage uptake of atrazine and its metabolites from pure water	49
Table 2.2 Rate uptake at initial time (%/h)	49
Table 3.1 The physical properties of spiked soils and dip soils	68
Table 3.2 Concentrations of DDT and its metabolites in the soils	69
Table 3.3 Percentage uptake of DDT and its congeners by SPMDs	
and earthworms at 35 days for all soils	82
Table 3.4 Uptake rate of SPMDs and earthworms from soil (% per day)	85
Table 4.1 DDT and its metabolite concentrations in soils after samplings	100
Table 4.2 The loss of Σ DDT from the system after SPMDs exposure	100
Table 4.3 Uptake rate of SPMD from repeated samplings ($\mu g/g/d$)	101
Table 5.1 Rate of Σ DDT accumulation of soils following incubation periods	128
Table 5.2 Σ DDT (µg/g soil) in the microcosms after 365 days	128
Table 5.3 The values of the constants in the exponential equation	
$Y = Y_o + A_1[exp(-t/t_1)]$ for aerated conditions	136
Table 5.4 The values of the constants in the exponential equation	
$Y = Y_o + A_1[exp(-t/t_1)]$ for non-aerated conditions	136

LIST OF FIGURES

	Page
Figure 1.1 Endocrine-disruption processes	3
Figure 2.1 Percentage cumulative uptake of atrazine	
and its breakdown products by SPMDs	48
Figure 3.1 Percentage Σ DDT uptake by SPMDs and worms from pure water	70
Figure 3.2 Average microgram of DDT uptake from 3 replicates by SPMDs	
and earthworms from spiked OECD soil	71
Figure 3.3 Average microgram of DDT uptake from 3 replicates by SPMDs	
and earthworms from spiked sandy soil	73
Figure 3.4 Average microgram of DDT uptake from 3 replicates by SPMDs	
and earthworms from sandy soil	74
Figure 3.5 Average microgram of DDT uptake from 3 replicates by SPMDs	
and earthworms from heavy clay soil	76
Figure 3.6 Average microgram of DDT uptake from 3 replicates by SPMDs	
and earthworms from clay soil	78
Figure 3.7 Average microgram of DDT uptake from 3 replicates by SPMDs	
and worms from clayey sand soil	80
Figure 3.8 Percentage Σ DDT uptake by SPMDs and earthworms from all soils	84
Figure 3.9 Log-linear relationships between soil concentration	
and concentration in SPMDs/earthworms at 14 days	86
Figure 4.1 Uptake of Σ DDT by SPMDs for 1st sampling, 2nd sampling,	
and 3rd sampling times	103
Figure 4.2 Percentage uptake of spiked OECD soil from repeated samplings	104
Figure 4.3 Percentage uptake of spiked sandy soil from repeated samplings	104
Figure 4.4 Percentage uptake of sandy soil from repeated samplings	106
Figure 4.5 Percentage uptake of heavy clay from repeated samplings	108
Figure 4.6 Percentage uptake of clayey sand soil from repeated samplings	109
Figure 4.7 Accumulation factor of Σ DDT from soils	
at different incubation periods	110

Figure 4.8 Proportion of accumulation factor taken up by SPMDs	
over three sampling periods	111
Figure 4.9 Non-linear regression of Σ DDT bioavailability by SPMDs over	
165 days	113
Figure 5.1 Uptake of ΣDDT (µg/g) by SPMDs following aerated incubation	
as sediment over 0 days, 30 days, 90 days, 180 days, and 365 days	129
Figure 5.2 Uptake of $\Sigma DDT~(\mu g/g)$ by SPMDs following non-aerated incubation	
as sediment over 0 days, 30 days, 90 days, 180 days, and 365 days	130
Figure 5.3 Percentage reduction of bioavailability of Σ DDT residues for aerated,	
and non-aerated sediments following incubation	135

ACRONYMS AND ABBREVIATIONS

AATSE	Australian Academy of Technological Sciences & Engineering
APECs	Alklyphenol polyethoxycarboxylates
APEOs	Alklyphenol polyethoxylates
APs	Alkylphenols
APVMA	Australian Pesticides and Veterinary Medicines Authority
ATSDR	Agency for Toxic Substances and Diseases Registry
ATZ	Atrazine
BCF	Bioconcentration factor
BMF	Biomagnification factor
cm	Centimetre
cm^2	Square centimetres
DDD	1,1-dichloro-2,2-bis(p-chlorophenyl)ethane
DDE	1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene
DDT	Dichloro-diphenyl-trichloroethane
DBP	4,4'-dichlorobenzophenyl
DEA	Diethylatrazine
DEHA	Diethylhydroxyatrazine
DFO	Department of Fisheries and Oceans
DIA	Deisopropylatrazine
DIHA	Deisopropylhydroxyatrazine
DMF	Dimethylformamide
DOM	Dissolved organic matter
EDCs	Endocrine-disrupting chemicals
EPA	Environmental Protection Agency

FWPRDC	Forest & Wood Product Research & Development Corporation
g	gram
GC	Gas Chromatography
GC/MS	Gas Chromatography-Mass spectrometry
НА	Hydroxyatrazine
HPLC	High-performance liquid chromatography
HT	2-hydroxyterbutylazine
kg	Kilograms
K _{oc}	Soil sorption coefficient on an organic carbon basis
K _{ow}	Octanol-water partition coefficient
LDPE	Low-density polyethylene
LOQ	Limit of quantitation
LP	Liverpool Plains
LPWQP	Liverpool Plains Water Quality Project
mg	Milligram
mg/kg/d	Micrograms per kilogram per day
mL	Millilitre
mm	Millimetre
µg/kg	Micrograms per kilogram
μg/L	Micrograms per litre
µg/mL	Micrograms per millilitre
μm	Micrometre
MCL	Maximum contaminant levels
MIA	Murrumbidgee Irrigation Aarea
MRLs	Maximum residue limits

MTBSTFA	N-(tert-Butyldimethylsilyl)-N-methyltrifluoroacetamide
MTD	Maximum tolerated dose
NHMRC	National Health and Medical Research Council
NP	Nonylphenol
NSW	New South Wales
OP	Octylphenol
PAD	Passive accumulation devices
PAHs	Polyaromatic hydrocarbon
PCBs	Polychlorinated biphenyls
POCIS	Polar organic chemical integrated samplers
PTFE	Polytetrafluoroethylene
RO	Reverse osmosis
rpm	Revolutions per minute
SPE	Solid-phase extraction
SPMDs	Semipermeable membrane devices
SPME	Solid-phase microextraction
STPs	Sewage treatment plants
TBT	Tributyltin
TT	Triazine Tolerant
UK	United Kingdom
USA	United States of America
US EPA	United States Environmental Protection Agency
UV	Ultraviolet
WHO	World Health Organization
WA	Western Australia

xix

PUBLICATIONS AND CONFERENCES

Parts of the research presented in this thesis have appeared in the following journal and conference presentations.

Phanchai Menchai, Lukas Van Zwieten, Stephen Kimber, Nazir Ahmad, P. Suresh, C. Rao and Grant Hose. 2008, Bioavailable DDT residues in sediments: Laboratory assessment of ageing effects using semi-permeable membrane devices. *Environmental Pollution*, Vol. 153, pp. 110-118.

Phanchai Menchai, Lukas Van Zwieten, Stephen Kimber, Nazir Ahmad and Grant Hose. Semipermeable membrane devices (SPMDs): Addressing the risk, not the residue. In abstracts of Pacifichem 2005. American Chemical Society, Honolulu, Hawaii, HI, USA.

Lukas Van Zwieten, Phanchai Menchai, Stephen Kimber, Nazir Ahmad, Joshua Rust and Grant Hose. Assessing risk of pesticide residues in aquatic and freshwater ecosystems. In abstracts of Pacifichem 2005. American Chemical Society, Honolulu, Hawaii, HI, USA.

XX

ABSTRACT

There are many methods currently available to assess the risk of chemical bioaccumulation in an organism. Many of these methods are either very difficult to implement, being costly and time-consuming, or contain flaws which may affect the final result. In this study we used semipermeable membrane devices (SPMDs) containing cod liver oil to assess the bioavailability of lipophilic and hydrophilic organic contaminants. This SPMDs proved to be an excellent method for this study.

Atrazine is a hydrophilic endocrine-disrupting chemical and is likely to be taken up by SPMDs. Atrazine congeners were accumulated far less than the parent compound. The uptake of atrazine by SPMDs from pure water was rapid and reached equilibrium within 48 hours. The study also showed low bioaccumulation (0.05 - 13.5%), which is consistent with living organisms. Consequently, the SPMD method was appropriate for assessing atrazine.

Organochlorine pesticide DDT was readily taken up by the SPMDs. Approximately 76% of the total DDT from spiked water was accumulated by SPMDs after 180 days of exposure. However, only 5% of total DDT was taken up from field-collected contaminated soil and only 10% from a synthetic spiked soil after 35 days of exposure. Based on the percentage uptakes, o,p' & p,p'-DDD congeners were more bioavailable than any other DDT congeners (such as o,p' & p,p'-DDE, and o,p' & p,p'-DDT). Up to 10% of o,p' or p,p'-DDD was taken up from the field-collected soil and 20% was taken up from freshly spiked soil.

Kinetic uptakes of total DDT and six congeners by cod-liver-oil-containing SPMDs and earthworms were compared both in pure water and from soil and sediment. The correlation coefficients (r) between the SPMDs' uptake and the earthworms' uptake (*Eisenia foetida*) at 14 days of o,p '-DDE, p,p '-DDE, o,p '-DDD, p,p '-DDD, o,p '-DDT, p,p '-DDT, and total DDT were 0.96, 0.74, 0.80, 0.98, 0.95, 0.81, and 0.99, respectively. Unexpectedly, the kinetic uptake rate by earthworms in the aquatic system was 1.7 times faster than the uptake rate for the SPMDs. However, kinetic uptake rate by earthworms in soil was 1 to 4.3 times slower than the uptake rate for the SPMDs. The key advantage of SPMDs is 1) their ability to predict long term accumulation of the chemicals, 2) they provide more precise estimates of uptake than the earthworms, and 3) SPMDs require only simple preparation and give clean samples for chromatography. Even though earthworms can be cultured in the laboratory under controlled conditions, and can be tested in a variety of soil types, earthworm uptake rates were variable and experiments repeatedly failed.

The available Σ DDT and congeners in the contaminated dip soil decreased over time as they were sequestered into the SPMDs. The uptake was greatest at the first exposure and decreased with subsequent exposures. The bioaccumulation factors of DDT were in the range of 157 to 2,125 during the first 35 days of exposure and decreased over subsequent sampling periods. The non-linear regression model was used to predict the maximum uptake of DDT by SPMDs. The percentage DDT uptake of the two spiked soils and field-collected sandy soil reached asymptote after 150 days, with 11% to 13% of maximum uptake-that is the amount of chemical taken up as a proportion of the initial soil/sediment. After 70 days of exposure, 3.5% of DDT was predicted its maximum uptake in heavy clay and clayey sand soils. Of all the DDT congeners, p,p'-DDD was the most bioavailable. Approximately 30% of p,p'-DDD in freshly spiked soil was taken up by SPMDs.

The initial risk of studied EDCs added to the environment is high because these chemicals may be readily bioavailable, but this risk decreases over time. A mathematical model was developed to enable eventual inclusion of the DDT in environmental risk assessments and it was effectively used to explain changes in DDT bioavailability over a one-year exposure period. Soil with a higher clay proportion or with higher organic carbon was shown to have a lower environmental risk. For example, clay soil exhibited the risk at the commencement of the incubation with 3.3% of available DDT residue. As the sediments aged, either under aerated or non-aerated conditions, the bioavailable DDT fraction decreased in all soil types, following first-order exponential decay.