A Study of Soil Humic Interactions with Calcium Phosphate and the Development of a Novel Method of Oxygen Isotope Analysis in Orthophosphate

Rebeca Alvarez

2005

A thesis submitted to the University of Technology, Sydney in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science.

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Rebeca Alvarez

Dedicated in loving memory of

Peter Benson

○A true inspiration

26/2/46 - 26/10/02

ACKNOWLEDGEMENTS

I extend my sincere gratitude to my supervisors, Dr Louise Evans, Professor Mick Wilson and Paul Milham. This thesis has benefited from their varied backgrounds and I have learned a great deal from each of them. I thank them for their guidance, support and wisdom.

I thank the staff at UTS, both past and present. Dr Harry Rose was a great source of inspiration to me when I first commenced my Ph.D. and I am grateful to him for his interest and encouragement. Jim Keegan especially deserves much gratitude, for his training and assistance with mass spectrometry. The staff at the Microstructural Analysis Unit at UTS are thanked for their training in the use of XRD and SEM – Mark Berkahn, Dr Ric Wuhrer and Katie McBean. Gail Grindrod, Dr Norman Booth, Anthea Harris and Alan Barnes are thanked for the use of their equipment and technical advice. I would like to thank Ronald Shimmon for giving his help and advice unselfishly at all times and for sharing his friendship with me.

I acknowledge support given from external sources: Dr Peter Baron from Bruker Australia for use of 400 and 500 MHz NMR instruments. Dr Liz Carter from the University of Sydney is thanked for training in the use of laser Raman. Roy Lawrie from NSW Agriculture is thanked for his helpful discussions on soils and organising the collection of soil samples. The employees of Natural Resources Victoria are thanked for their time in giving us a site tour and for an introduction to the wonders of Endnote. Rachel O'Donohue is thanked for her friendship and for sharing her knowledge in agronomy with me. CSIRO Land and Water are thanked for performing soil mineralogical analyses. Australian National University, Microanalysis Unit are thanked for performing elemental analyses on calcium phosphate products. Dr Gary Hancock of CSIRO is thanked for sharing his knowledge on fluorination procedures for oxygen isotope analyses. David Waters is thanked for his encouragement and for supply of ¹⁸O enriched water during a time when there was a world shortage.

My colleagues in the Northern Hemisphere, Drs Clint Sharrad and Simon Pope are thanked for editorial assistance, constructive criticism and encouragement. Professor Francis Livens, Dr Nick Bryan, Dr Stephen Faulkner, Emmanuelle Chardon and many of my other current colleagues are thanked for their support during the final stages of writing this thesis.

Financial assistance is gratefully acknowledged from the following sources: UTS Faculty of Science Scholarship, UTS Vice-Chancellor's Conference Fund, UTS Thesis Equity Completion Grant, Australian Research Council SPIRT grant, and NSW Agriculture.

I would like to thank my fellow Ph.D. students (too numerous to mention – but they know who they are!). In future, I will fondly remember sharing friendship, knowledge and pub-time with them.

Without reservation, I would like to thank my family and friends who have accompanied me during my "Ph.D. journey" and shared with me both the successes and failures. I would like to thank my parents and my sister, Marina for their incessant love, support and encouragement in absolutely every possible way. Kevin is sincerely thanked for all the support he has shown me, especially when it had anything to do with computers!

A great deal of gratitude is owed to my fiancé, Dr Stephen Sestak who has shown, in countless ways, the meaning of encouragement and support. I thank him for believing in me and for his inspiration, constant encouragement and love.

ABSTRACT

There is increasing interest in limiting quantities of applied phosphorus fertilizer both for economic reasons and for environmental protection purposes and in facilitating the release of normally unavailable phosphorus for plant growth. The work presented in this thesis seeks to identify and understand some of the chemical reactions that occur between phosphate, calcium and soil humic acids. In addition, a novel electrospray ionisation mass spectrometric (ESI-MS) analytical method, which measures both highly enriched and natural abundance levels of oxygen isotopes in orthophosphate-soil systems, was developed and validated. The significance of this novel method is in its capability to provide an accurate, simple and sensitive means of tracing the sources and sinks of phosphate in soils as well as enabling an effective way to follow chemical reactions and their mechanisms.

In soils, most of the phosphorus from fertilizers, if not washed away in runoff water, is converted to insoluble compounds, including calcium phosphates. Soil organic acids such as humic and fulvic acids may play an important role in influencing inorganic phosphate availability to plants by inhibiting the formation of thermodynamically stable calcium phosphates. Therefore, this work examines the formation of calcium phosphate phases in the presence of humic and fulvic acids extracted from soil sourced from the Sydney Basin in NSW, Australia. The combined techniques of pH-stat autotitration, Fourier transform infrared and laser Raman spectroscopy, as well as x-ray diffraction and elemental analyses facilitated this study.

At 25°C under conditions of high supersaturation and a pH of 7.4 humic materials were found to delay calcium phosphate phase transformation processes. Under these conditions there was a delayed transformation of unstable amorphous calcium phosphate (ACP) to thermodynamically more stable octacalcium phosphate (OCP) and thence to an apatitic phase resembling poorly crystalline hydroxyapatite (HAp). Investigations at the lower pH of 5.7, and in the presence of humic acids, revealed that ACP was also precipitated initially, however humic-free solutions at this pH produced the metastable phase, dicalcium phosphate dihydrate (DCPD). ACP produced in the presence of humic materials persisted longer than DCPD in their absence, before ultimately hydrolyzing to OCP. Thus these results confirm that humic materials are geologically relevant inhibitors of calcium phosphate transformations and modify the availability of phosphate in soils by changing crystallisation behaviour from solution.

The work presented here also aimed to study phosphate reactions in soil environments with the use of stable oxygen isotope labelling (¹⁸O) to monitor the change in orthophosphate oxygen isotopic distributions under acidic soil conditions. Current methods for determining oxygen isotope analysis in phosphate involve either lengthy procedures for conversion of the phosphate to carbon monoxide/dioxide, are insensitive, or are not amenable to rapid automated analyses. The ESI-MS analytical method developed in this thesis is rapid and can be readily applied to calcium phosphate materials, which are normally not amenable to this type of analysis.

Humic-induced oxygen exchange was not detectable in ¹⁸O enriched calcium phosphate products that had been precipitated at pH 5.7 from solutions at 25 °C or 80 °C. Furnace temperatures of 600 °C caused the solid-state delabelling of calcium phosphate products in the absence of soil humic material, however, delabelling was accentuated in its presence. The furnace-induced delabelling was also evident when KH₂PO₄ (solid) was subjected to the same conditions. The implications of these results are discussed in terms of the importance of considering extreme heat conditions, for example in the case of forest or bush fires or volcanic conditions, when assessing oxygen exchange processes that occur in terrestrial environments.

PUBLICATIONS

The work presented in this thesis has resulted in the following publications:

Alvarez, R., Evans, L.A., Milham, P.J. and Wilson, M.A., 2004. Effects of humic material on the precipitation of calcium phosphate. *Geoderma*, **118**: 245-260.

Alvarez, R., Evans, L.A., Milham, P. and Wilson, M.A., 2000. Analysis of oxygen-18 in orthophosphate by electrospray ionization mass spectrometry. *International Journal of Mass Spectrometry*, **203**: 177-186.

Alvarez, R., Evans, L.A., Milham, P.J. and Wilson, M.A., (in preparation). High temperature oxygen exchange in orthophosphates in geological systems. *Geoderma*.

TABLE OF CONTENTS

CERTI	FICA	FE OF AUTHORSHIP / ORIGINALITY	I
ACKNO	WLEDO	GEMENTS	III
ABSTRA	ACT		V
PUBLIC	ATION	S	VII
TABLE	OF CO	NTENTS	VIII
LIST OF	F FIGUI	RES	XII
LIST OF	TABL	ES	XVII
Снарт	er 1	GENERAL INTRODUCTION	1-1
1.1	PHOS	PHORUS AND ITS ROLE IN NATURE	1-1
1.2	PHOS	PHORUS FERTILIZERS	
1.3	PHOS	PHORUS IN SOILS	
1.4	The (Chemistry of Phosphates	
1.	.4.1	CALCIUM PHOSPHATES	
	Apati	te (Ap) and Hydroxyapatite (HAp)	
	OCTAC	CALCIUM PHOSPHATE (OCP)	1-9
	DICAL	CIUM PHOSPHATE DIHYDRATE (DCPD)	1-10
	AMOR	PHOUS CALCIUM PHOSPHATE (ACP)	
1.5	SOIL	Organic Matter	
1	.5.1	HUMIC SUBSTANCES	
	ISOLAT	TION FROM SOIL	1-16
	CHAR	ACTERISATION OF HUMIC SUBSTANCES	1-16
	BINDI	ng of Metal Ions	1-17
	HUMIC	C SUBSTANCES AND PHOSPHATES	1-17
1.6	THES	IS STRUCTURE	
СНАРТ	ER 2	SOIL HUMIC AND FULVIC MATERIALS AFFECTING CALCIUM PHOSPHATE	
CRYST	ALLISA	TION PROCESSES	
2.1	INTRO	DDUCTION	
2.2	MATI	erials and Methods	
2	.2.1	SOIL PROFILE AND SAMPLING	
2	.2.2	HUMIC EXTRACTION	
2	.2.3	HUMIC CHARACTERISATION	2-4
2	.2.4	CALCIUM PHOSPHATE REFERENCE MATERIALS	
2	.2.5	CALCIUM PHOSPHATE PRECIPITATION (PH-STAT) EXPERIMENTS	
2	.2.6	MONITORING/CHARACTERISATION OF CALCIUM PHOSPHATE PRECIPITATES	2-7
2.3	Resu	LTS	
2	.3.1	HUMIC CHARACTERISATION	

2	.3.2	TITRATION CURVES	2-11
2	.3.3	FTIR CHARACTERISATION OF CALCIUM PHOSPHATE PRECIPITATES	2-14
2	.3.4	XRD CHARACTERISATION OF CALCIUM PHOSPHATE PRECIPITATES	2-20
2	.3.5	LASER RAMAN SPECTROSCOPY OF CALCIUM PHOSPHATE PRECIPITATES	2-26
2	.3.6	CA/P RATIOS OF CALCIUM PHOSPHATE PRECIPITATES	2-29
2.4	DISCU	JSSION	2-31
2.5	CONC	CLUSIONS	2-35
Снарт	ER 3	OXYGEN ISOTOPES OF PHOSPHATE: AN IMPORTANT TOOL IN GEOCHEMISTRY	3-1
3.1	TRAC	ING PHOSPHATES IN THE ENVIRONMENT USING ISOTOPES	3-1
3	.1.1	ISOTOPE EFFECTS	3-2
3	.1.2	ISOTOPE FRACTIONATION AND OXYGEN ISOTOPIC SIGNATURES	3-2
	FRACT	IONATION FACTOR	3-4
	STANL	ARDS	3-4
3	.1.3	OXYGEN ISOTOPE EXCHANGE REACTIONS BETWEEN PHOSPHATE AND WATER	3-6
3	.1.4	MECHANISM OF OXYGEN EXCHANGE	3-7
3.2	STUD	ies of Oxygen Isotope Ratios of Phosphate	3-9
3.3	MEAS	SURING OXYGEN ISOTOPE RATIOS	3-11
Снарт	ER 4	DEVELOPMENT OF AN ELECTROSPRAY IONISATION MASS SPECTROMETRIC METH	IOD
TO ANA	ALYSE 1	¹⁸ O LABELLED ORTHOPHOSPHATE	4-1
4.1	INTRO	DDUCTION	4-1
4	.1.1	ELECTROSPRAY IONISATION MASS SPECTROMETRY (ESI-MS)	4-1
4	.1.2	DETERMINATION OF ORTHOPHOSPHATE AND METAPHOSPHATE ANIONS	4-3
4.2	Mati	ERIALS AND METHODS	4-7
4	.2.1	SYNTHESIS OF NATURAL ABUNDANCE AND ¹⁸ O ENRICHED POTASSIUM DIHYDROGEN	
0	RTHOP	HOSPHATE	4-7
4	.2.2	ESI-MS OF ORTHOPHOSPHATES	4-8
4	.2.3	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (³¹ P NMR)	4-10
4.3	RESU	LTS	4-10
4	.3.1	NATURAL ABUNDANCE EXPERIMENTS	4-12
	CALIB	RATIONS: $H_2 P^{16} O_4^{-} (M/Z 97)$ and $P^{16} O_3^{-} (M/Z 79)$	4-12
	CALIB	RATIONS: $H_2 P^{16} O_3^{18} O^- (M/Z 99)$ and $P^{16} O_2^{18} O^- (M/Z 81)$	4-13
	Relat	TONSHIP BETWEEN $H_2 P^{16} O_3^{-18} O^- (M/Z 99)$ and $H_2 P^{16} O_4^- (M/Z 97)$	4-15
	Relat	IONSHIP BETWEEN $H_2 P^{10} O_4^{-}$ (M/z 97) and $P^{10} O_3^{-}$ (M/z 79)	4-16
4	.3.2	ENRICHED EXPERIMENTS	4-16
	ORTH	DPHOSPHATE ISOTOPOMERS (M/Z 97, 99, 101, 103 AND 105)	4-17
	DELAT	PHOSPHATE ISOTOPOMERS (M/Z / 9, 81, 83 AND 83)	4-18
А	RELAT	OXYGEN EXCHANGE IN THE MASS SPECTROMETER	4-10 A_20
+ 1	3.1	COMDARISON WITH NMR ANALYSIS	4_20
4	3.5	DETECTION LIMITS OUANTITATION LIMITS AND REDEATADU ITY	A_24
4	.3.3	DETECTION LIMITS, QUANTITATION LIMITS AND REPEATABILITY	4-24
			IX

4.4	DISCU	USSION	4-24
4	1.4.1	QUALITATIVE ANALYSIS	4-24
4	1.4.2	QUANTITATIVE ANALYSIS	4-25
	Non-1	Linear B ehaviour	4-25
	Exclu	ISION OF EQUILIBRIUM	4-26
4	1.4.3	QUANTITATION OF OXYGEN ISOTOPE DISTRIBUTIONS OF ORTHOPHOSPHATE	4-28
4.5	CONC	CLUSIONS	4-30
Снарт	fer 5	VALIDATION OF THE NOVEL ESI-MS METHOD FOR THE QUANTITATIVE	
DETER	RMINAT	ION OF THE OXYGEN ISOTOPIC ENRICHMENT IN ORTHOPHOSPHATE	5-1
5.1	INTRO	DUCTION	5-1
5	5.1.1	ACCURACY	5-2
	STANE	DARD ADDITION	5-3
5	5.1.2	LIMIT OF DETECTION AND LIMIT OF QUANTITATION	5-3
5	5.1.3	Precision	5-4
	REPEA	AT ABILITY	5-4
	Inter	MEDIATE PRECISION	5-4
	REPRO	DDUCIBILITY	5-4
5	5.1.4	LINEARITY AND RANGE	5-4
5	5.1.5	ROBUSTNESS	5-5
5	5.1.6	SPECIFICITY	5-5
5	5.1.7	SENSITIVITY	5-5
5.2	MAT	erials and Methods	5-6
5	5.2.1	SYNTHESIS OF ¹⁸ O ENRICHED POTASSIUM DIHYDROGEN ORTHOPHOSPHATE	5-6
5	5.2.2	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (³¹ P NMR)	5-6
5	5.2.3	ELECTROSPRAY IONISATION MASS SPECTROMETRY (ESI-MS)	5-6
5	5.2.4	DATA TREATMENT	5-7
5	5.2.5	MIXED ¹⁸ O ENRICHMENT EXPERIMENTS	5-10
5.3	RESU	ILTS	5-10
5	5.3.1	NMR ANALYSIS	5-10
5	5.3.2	ESI-MS ANALYSIS OF MIXED ¹⁸ O ENRICHMENT EXPERIMENTS – ORTHOPHOSPHATE	5-12
	LIMIT	S OF DETECTION AND QUANTITATION – ORTHOPHOSPHATE	5-12
	ACCU	racy – Orthophosphate	5-13
	Linea	rity and Range – Orthophosphate	5-15
	PRECI	ISION – ORTHOPHOSPHATE	5-22
	Inter	MEDIATE PRECISION – ORTHOPHOSPHATE	5-23
	SENSI	TIVITY – ORTHOPHOSPHATE	5-24
5	5.3.3	ESI-MS ANALYSIS OF MIXED ¹⁸ O ENRICHMENT EXPERIMENTS – METAPHOSPHATE.	5-24
	LIMIT	S OF DETECTION AND LIMITS OF QUANTITATION – METAPHOSPHATE	5-24
	ACCU	racy - Metaphosphate	5-26
	LINEA	RITY AND RANGE - METAPHOSPHATE	5-27

	PRECI	ision – Metaphosphate	5-30
	INTER	MEDIATE PRECISION – METAPHOSPHATE	5-30
	Sensi	TIVITY - METAPHOSPHATE	5-31
	Orth	OPHOSPHATE AND METAPHOSPHATE RELATIONS	5-31
5.4	DISC	USSION	5-33
3	5.4.1	ORTHOPHOSPHATE	5-33
	5.4.2	METAPHOSPHATE	5-37
	5.4.3	ORTHOPHOSPHATE AND METAPHOSPHATE RELATIONS	5-38
:	5.4.4	COMPARISON WITH OTHER METHODS	5-39
5.5	CON	CLUSIONS	5-39
СНАР	TER 6	THE MONITORING OF OXYGEN EXCHANGE IN CALCIUM PHOSPHATE-HUMIC/FUL	LVIC
SYS	STEMS U	SING NEWLY DEVELOPED ELECTROSPRAY IONISATION MASS SPECTROMETRIC	
TEG	CHNIQU	ES	6-1
6.1	INTR	ODUCTION	6-1
6.2	MAT	erials and Methods	6-1
	6.2.1	CALCIUM PHOSPHATE PRECIPITATION (PH-STAT) EXPERIMENTS (¹⁸ O ENRICHED)	6-1
	6.2.2	ACID DIGESTION OF CALCIUM PHOSPHATES	6-2
	6.2.3	FURNACE TREATMENTS	
	6.2.4	ELECTROSPRAY IONISATION MASS SPECTROMETRY (ESI-MS)	
6.3	RESU	ЛТ S	
	6.3.1	MASS SPECTROMETRY	
	POTA	SSIUM PHOSPHATE REFERENCE MATERIALS	
	DIGES	STED CALCIUM PHOSPHATES	6-10
	FREE	ze-Dried Filtrates	6-11
	6.3.2	FURNACE EXPERIMENTS	6-14
	6.3.3	% ¹⁸ O Enrichment in Orthophosphate	6-14
	POTA	SSIUM PHOSPHATE REFERENCE MATERIALS	6-14
	DIGES	STED CALCIUM PHOSPHATES	6-15
	Freez	ze-dried Filtrates	6-19
6.4	DISC	USSION	6-20
	6.4.1	ASSESSMENT OF THE ANALYTICAL METHOD	
	6.4.2	LACK OF OXYGEN EXCHANGE DURING PRECIPITATION EXPERIMENTS	6-20
	6.4.3	HIGH TEMPERATURE EFFECTS	
6.5	CON	CLUSIONS	6-25
СНАР	ter 7	CONCLUDING REMARKS AND RECOMMENDATIONS	
REFEI	RENCES		R-1

LIST OF FIGURES

Figure 1.1 Phosphorus cycle in soil
Figure 1.2 Phase diagram showing concentrations of saturated solutions as a function of pH for several
calcium phosphates at 25°C in the ternary system, Ca(OH) ₂ -H ₃ PO ₄ -H ₂ O [17]. Note that the
formula for HAp given on the graph is the general formula comprising half the atoms in the unit
cell1-6
Figure 1.3 Structure of the hexagonal apatite unit cell, showing the position of the hydroxy (or fluoride)
anions in the c-direction into the plane of the paper $[O = red, Ca = green, P = yellow, F(OH) = pale$
blue] [23]1-9
Figure 1.4 One unit cell of OCP along <i>a</i> axis [17]1-10
Figure 1.5 View down the <i>b</i> -axis of one of the corrugated sheets of composition CaHPO ₄ that occur in
DCPD [11]1-11
Figure 1.6 "Typical" model structure of soil humic acid [24]1-14
Figure 1.7 "Typical" model structure of soil fulvic acid [24]1-14
Figure 1.8 Two-dimensional model structure of soil humic acid [24]1-15
Figure 2.1 ¹ H NMR spectrum of soil humic material showing tetramethylsilane (TMS) and water peak
assignments
Figure 2.2 ¹³ C CP-MAS NMR spectrum of soil humic material
Figure 2.3 Typical titration curves showing the moles of 0.4 M KOH added to maintain pH 7.4 whilst
calcium phosphate was precipitated in the (i) absence and (ii) presence of humic material. Error
bars were calculated using the standard error of the mean of up to four replicate experiments and
show the greatest variation during rapid base consumption
Figure 2.4 Typical titration curves showing the moles of 0.4 M KOH added to maintain pH 5.7 whilst
calcium phosphate was precipitated in the (i) absence and (ii) presence of humic material. Error
bars were calculated using the standard error of the mean of up to six replicate experiments and
show the greatest variation during rapid base consumption
Figure 2.5 Fourier transform infrared spectra of calcium phosphates precipitated at pH 7.4 in the absence
of humic material at various times are shown together with OCP and stoichiometric high
temperature HAp reference materials
Figure 2.6 Fourier transform infrared spectra of calcium phosphates precipitated at pH 7.4 in the presence
of humic material at various times are shown together with OCP and stoichiometric high
temperature HAp reference materials, humic material and humic material titrated to pH 7.4 (humic
salt)2-17
Figure 2.7 Fourier transform infrared spectra of calcium phosphates precipitated at pH 5.7 in the absence
of humic material at various times are shown together with DCPD, OCP and stoichiometric high
temperature HAp reference materials

- Figure 2.12 Expanded x-ray diffraction spectra of calcium phosphates precipitated at pH 5.7 in the presence of humic material at various times are shown together with OCP and stoichiometric high temperature HAp reference materials, humic material and humic material titrated to pH 5.7 (humic salt). Note that in all pH 5.7 products the diffraction angle of the 002 reflection is offset from that of HAp (shown by the dotted line) and more closely matches that of OCP (labelled as "O")......2-25

Figure 4.6 Calibration curve showing P¹⁶O₂¹⁸O⁻ natural abundance versus concentration of commercial KH₂PO₄ solutions obtained using mean peak areas of ESI-MS ion chromatograms. Error bars have been calculated as standard errors of the mean of six measurements at each concentration........4-14

Figure 4.7 Calibration curve showing H₂P¹⁶O₃¹⁸O⁻ natural abundance versus concentration of commercial KH₂PO₄ solutions obtained using mean peak areas of ESI-MS ion chromatograms. Error bars have been calculated as standard errors of the mean of six measurements at each concentration........4-14

- Figure 4.9 Graph of H₂P¹⁶O₄⁻ versus P¹⁶O₃⁻ using mean peak areas of ESI-MS ion chromatograms. Error bars have been calculated as standard errors of the mean of six measurements at each concentration 4-16
- Figure 4.11 Calibration curve showing PO₃⁻ abundance versus concentration of ¹⁸O enriched KH₂PO₄ solutions showing the various species substituted with two, three and one ¹⁸O isotope label on the phosphorus atom. Error bars have been calculated as standard errors of the mean of six

Figure 4.13 Graph of $P^{16}O^{18}O_2^{-}$ and $P^{16}O_2^{-18}O^{-}$ versus $H_2P^{16}O_2^{-18}O_2^{-}$ show linear relationships. Error bars have been calculated as standard errors of the mean of six measurements at each concentration .4-19

Figure 4.14 Graph of $P^{16}O^{18}O_2^{-}$ and $P^{18}O_3^{-}$ versus $H_2P^{16}O^{18}O_3^{-}$ showing linear relationships. Error bars have been calculated as standard errors of the mean of six measurements at each concentration .4-20

Figure 4.16 Graph showing the close correlation between the data obtained by ³¹ P NMR and ESI-MS techniques. Data show percentage relative abundances of the various ¹⁸ O labelled species.
Differences between the percentage relative abundances obtained by the two techniques have been
shown for each labelled species (Δ)
Figure 5.1 ³¹ P solution NMR spectrum of ¹⁸ O enriched KH ₂ PO ₄
Figure 5.2 Relationship between isotopomer % relative abundance and the % ¹⁸ O enrichment in
orthophosphate
Figure 5.3 Standard addition plot for orthophosphate using mixed ¹⁸ O enrichment experiments where x
mL of 1007 ppm of ¹⁸ O enriched KH ₂ PO ₄ was added to a solution containing (1-x) mL of natural
abundance KH_2PO_4 and diluted to 10.00 mL
Figure 5.4 Residuals analysis of $\%^{18}$ O enrichment in orthophosphate versus volume of KH ₂ PO ₄ solution
Figure 5.5 Transformed standard addition plot for orthophosphate using mixed ¹⁸ O enrichment
experiments showing the whole measured range
Figure 5.6 Transformed standard addition plot for orthophosphate using mixed ¹⁸ O enrichment
experiments
Figure 5.7 Residuals analysis of transformed standard addition plot for orthophosphate
Figure 5.8 Repeat analysis: standard addition plot for orthophosphate using mixed ¹⁸ O enrichment
experiments
Figure 5.9 Repeat analysis: residuals analysis of % ¹⁸ O enrichment in orthophosphate versus volume 5-20
Figure 5.10 Repeat analysis: transformed standard addition plot for orthophosphate using mixed ¹⁸ O
enrichment experiments showing the whole measured range
Figure 5.11 Repeat analysis: transformed standard addition plot for orthophosphate using mixed ¹⁸ O
enrichment experiments and showing the linear range
Figure 5.12 Repeat analysis: residuals analysis of transformed standard addition plot for orthophosphate
showing the linear range
Figure 5.13 Plot of % relative abundance of metaphosphate isotopomers against $\%^{18}$ O enrichment in
orthophosphate solution
Figure 5.14 Standard addition plot for metaphosphate using mixed 18 O enrichment experiments where x
mL of 1007 ppm of ¹⁸ O enriched KH_2PO_4 was added to a solution containing (1-x) mL of natural
abundance KH_2PO_4 and diluted to 10.00 mL
Figure 5.15 Residual analysis plot of % ¹⁸ O enrichment in metaphosphate from mixed enrichment
experiments
Figure 5.16 Repeat analysis: standard addition plot for metaphosphate using mixed ¹⁸ O enrichment
experiments
Figure 5.17 Repeat analysis: residual analysis plot of % ¹⁸ O enrichment in metaphosphate from mixed
enrichment experiments

Figure 5.18 %¹⁸O enrichment responses for orthophosphate versus metaphosphate in mixed enrichment experiments. The dotted plot corresponds to the response predicted when the dilutions of the Figure 5.19 Repeat analysis: %¹⁸O enrichment responses for orthophosphate versus metaphosphate in Figure 6.1 Schematic of experimental procedures involved in the acid digestion of calcium phosphate Figure 6.2 ESI-MS spectrum of 1000 ppm undigested natural abundance KH₂PO₄ (bottom) shown with the background (middle) and the total ion chromatogram (TIC)(top)6-8 Figure 6.3 ESI-MS spectrum of 1000 ppm undigested ¹⁸O enriched KH₂PO₄ (bottom) shown with the background (middle) and the total ion chromatogram (TIC)(top)6-8 Figure 6.4 ESI-MS spectrum of 1070 ppm digested ¹⁸O enriched KH₂PO₄ (bottom) shown with the Figure 6.5 ESI-MS spectrum of freeze-dried filtrate sample, "8*KP" (bottom) shown with the background Figure 6.6 ESI-MS spectrum of freeze-dried filtrate sample, "3*KP" (bottom) shown with the background Figure 6.7 Effects of furnace treatment of KH_2PO_4 on the relative abundances of orthophosphate Figure 6.8 Effects of charring (5*CaP_ch) and furnace treatment (5*CaP_f) on the relative abundances of orthophosphate isotopomer responses from digested calcium phosphate (5*CaP) synthesised in the Figure 6.9 Effects of charring on the relative abundances of orthophosphate isotopomer responses from digested calcium phosphate samples (8*CaP and 8*CaP ch) synthesised in the presence of humic Figure 6.10 Effects of furnace treatment (4*CaP f) on the relative abundances of orthophosphate isotopomer responses from digested calcium phosphate (4*CaP) synthesised in the absence of humic Figure 6.11 Comparison of furnace treated products synthesised in the presence (front: 5*CaP_f) and

LIST OF TABLES

Table 1.1	Major phosphate fertilizers (adapted from [2])1-3
Table 1.2	Calcium phosphate compounds1-7
Table 1.3	Fractions of humic substances1-13
Table 2.1	Characterisation of humic material
Table 2.2	Calcium to phosphorus ratios of selected products
Table 4.1	Masses of the major ions predicted in the gas phase from potassium orthophosphate solutions
Table 4.2	ESI-MS operating voltages in negative ion mode
Table 4.3	Statistical data on the distributions obtained via ESI-MS and NMR
Table 4.4	Calculations giving % ¹⁸ O enrichment in orthophosphate sample <i>via</i> ESI-MS analysis4-23
Table 4.5	Calculations giving $\%^{18}$ O enrichment in orthophosphate sample <i>via</i> 31 P NMR analysis 4-23
Table 5.1	ESI-MS operating voltages in negative ion mode for validation experiments
Table 5.2	Sequence of calculations involved in obtaining relative isotopomeric % abundances and $\%^{18}O$
enri	chment of orthophosphate ions measured by ESI-MS
Table 5.3	Relative isotopic distribution of unmixed $^{18}\mathrm{O}$ enriched KH_2PO_4 measured by $^{31}\mathrm{P}$ solution NMR
Table 5.4	% Relative abundance of orthophosphate isotopomers in mixed ¹⁸ O enrichment experiments
Table 5.5	Limits of detection and quantitation for each isotopomer in % relative abundance at
orth	ophosphate concentrations of 100.5 ± 0.2 ppm
Table 5.6	
	Accuracy when determining % relative abundance values for orthophosphate isotopomers. 5-14
Table 5.7	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric
Table 5.7 anic	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9 abu	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9 abu Table 5.1	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9 abu Table 5.1 anic	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9 abu Table 5.1 anic Table 6.1	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons
Table 5.7 anic Table 5.8 Table 5.9 abu Table 5.1 anic Table 6.1 Table 6.2	Accuracy when determining % relative abundance values for orthophosphate isotopomers . 5-14 Repeatability parameters obtained at the LOQ for responses of orthophosphate isotopomeric ons