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Abstract

Reports show that the number of elderly people and people with disabilities in society
are significantly increasing. These people have a wide range and variety of functional
impairments. The aim of rehabilitation technology is to improve the quality of life of
people with disabilities. In particular, smart wheelchairs have been developed to
accommodate people with mobility impairments. The provision of independent mobility
can produce substantial benefits, such as the development of physical, cognitive,

communication and social skills for both children and adults in their daily lives.

In this thesis, we present a method of constructing a 360° real-time environmental map
for the smart wheelchair. It combines the information from a laser range finder and
encoders mounted in the driving wheels. As the wheelchair moves, the obstacles in front
of the wheelchair that are detected by the laser sensor are updated to this map, after a
modification based on the encoder data. This mapping method is 13-fold more accurate

than the common use of encoders.

Also, a method of determining accessible free-space for the obstacle avoidance task is
implemented. This accommodates the actual dimensions of the wheelchair and then
determines the collision-free area available for the wheelchair. The data of accessible
free-space can be used to simplify the obstacle avoidance controller and improve its
real-time capabilities. It eliminates errors from the common approximation of the
wheelchair boundary as a circle, which may lead to the assumption that no accessible

space is available to move safely without incurring a collision.



We introduce an advanced obstacle avoidance technique that utilises separate Bayesian
neural networks for specified tasks. The obstacle avoidance task is divided into three
sub-tasks: passing through a door, corridor and wall following, and general obstacle
avoidance. This enables the network to respond to the particular features of each task,
thereby improving performance. Specific data acquisitions are performed to collect the
patterns used to design the neural network for each task. Bayesian framework is then
applied to determine the optimal network structures. The training patterns are
subsequently used in conjunction with the Bayesian training process to improve the
generalisation and performances of each network. Our method was able to successfully

accomplish difficult navigation tasks smoothly following a near optimum trajectory.

Furthermore, we developed an adaptive shared control method for an intelligent
wheelchair based on the Bayesian recursive technique to assist disabled users when
performing obstacle avoidance tasks. Three autonomous tasks have been developed for
different types of environments to improve the performance of the overall system. The
system combines local environmental information gathered using a laser range finder
sensor with the user’s intentions to select the most suitable autonomous task in different
situations. The evidences of these tasks are estimated by the Bayesian recursive
technique during movements of the wheelchair. The most appropriate task that is
selected automatically by the wheelchair controller is the one that has the highest value

of evidence.

Finally, a method of classifying the environmental model is introduced for this shared
control strategy. The features of the environment such as doorways, corridors and walls,
and general obstacles have to be recognised. This method is based on the Bayesian
neural network to recognise the environmental features from the laser images that were
acquired from the onboard sensors. This environmental feature information is one of the
main inputs of the adaptive shared control strategy to effectively improve the accuracy

of autonomous task selection.

Various experiments are conducted to evaluate the performance of our smart wheelchair
system. Eight able-bodied people are recruited, including four males and four females

whose ages range from 27 years to 60 years. They have had no experience of driving a



wheelchair before. Three experiments are arranged with increasing difficulties. These
users are asked to drive the wheelchair in both manual mode via a conventional joystick
and in semi-autonomous mode with the shared control strategy and autonomous

obstacle avoidance controller.

The evaluation results show the advantages of our wheelchair’s control system
compared to the manual control method. Our intelligent wheelchair, which was
equipped with a reliable obstacle avoidance method and an effective shared control
strategy, was able to successfully accomplish difficult navigation tasks not only by
following a near optimum trajectory but also by generating smooth movements
(maintaining stable velocities) in different types of environments. It i1s able to

successfully support people with various types and levels of impairment.



	Title Page

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abstract



