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Abstract 

Reports show that the number of elderly people and people with disabilities in society 

are significantly increasing. These people have a wide range and variety of functional 

impainnents. The aim of rehabilitation technology is to improve the quality of life of 

people with disabilities. In particular, smart wheelchairs have been developed to 

accommodate people with mobility impairments. The provision of independent mobility 

can produce substantial benefits, such as the development of physical, cognitive, 

communication and social skills for both children and adults in their daily lives. 

In this thesis, we present a method of constructing a 360° real-time environmental map 

for the smart wheelchair. It combines the information from a laser range finder and 

encoders mounted in the driving wheels. As the wheelchair moves, the obstacles in front 

of the wheelchair that are detected by the laser sensor are updated to this map, after a 

modification based on the encoder data. This mapping method is 13-fold more accurate 

than the common use of encoders. 

Also, a method of determining accessible free-space for the obstacle avoidance task is 

implemented. This accom1nodates the actual dimensions of the wheelchair and then 

determines the collision-free area available for the wheelchair. The data of accessible 

free-space can be used to simplify the obstacle avoidance controller and improve its 

real-time capabilities. It eliminates errors from the common approximation of the 

wheelchair boundary as a circle, which may lead to the assumption that no accessible 

space is available to move safely without incurring a collision. 



We introduce an advanced obstacle avoidance technique that utilises separate Bayesian 

neural networks for specified tasks. The obstacle avoidance task is divided into three 

sub-tasks: passing through a door, corridor and wall following, and general obstacle 

avoidance. This enables the network to respond to the particular features of each task, 

thereby improving performance. Specific data acquisitions are perfonned to collect the 

patterns used to design the neural network for each task. Bayesian framework is then 

applied to determine the optimal network structures. The training patterns are 

subsequently used in conjunction with the Bayesian training process to improve the 

generalisation and performances of each network. Our method was able to successfully 

accomplish difficult navigation tasks smoothly following a near optimum trajectory. 

Furthermore, we developed an adaptive shared control method for an intelligent 

wheelchair based on the Bayesian recursive technique to assist disabled users when 

performing obstacle avoidance tasks. Three autonomous tasks have been developed for 

different types of environments to improve the performance of the overall system. The 

system combines local environmental information gathered using a laser range finder 

sensor with the user's intentions to select the most suitable autonomous task in different 

situation . The evidences of these tasks are estimated by the Bayesian recursive 

technique during movements of the wheelchair. The most appropriate task that is 

selected automatically by the wheelchair controller is the one that has the highest value 

of evidence. 

Finally, a method of classifying the environmental 1nodel is introduced for this shared 

control strategy. The features of the environment such as do01ways, corridors and walls, 

and general obstacles have to be recognised. This method is based on the Bayesian 

neural network to recognise the environmental features from the laser images that were 

acquired from the on board sensors. This environmental feature information is one of the 

main inputs of the adaptive shared control strategy to effectively improve the accuracy 

of autonomous task selection. 

Various experiments are conducted to evaluate the performance of our smart wheelchair 

system. Eight able-bodied people are recruited, including four males and four females 

whose ages range from 27 years to 60 years. They have had no experience of driving a 



wheelchair before. Three experiments are arranged with increasing difficulties. These 

users are asked to drive the wheelchair in both manual mode via a conventional joystick 

and in semi-autonomous mode with the shared control strategy and autonmnous 

obstacle avoidance controller. 

The evaluation results show the advantages of our wheelchair's control system 

compared to the manual control method. Our intelligent wheelchair, which was 

equipped with a reliable obstacle avoidance method and an effective shared control 

strategy, was able to successfully accomplish difficult navigation tasks not only by 

following a near opti1num trajectory but also by generating smooth movements 

(maintaining stable velocities) in different types of environments. It is able to 

successfully support people with various types and levels of impairment. 
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