A Laser Based Semi-Autonomous Wheelchair Using Bayesian Theory

By

Tuyen Hoang Trieu

Submitted to Faculty of Engineering and Information Technology

in partial fulfilment of Doctor of Philosophy

at the University of Technology, Sydney.

Sydney, September 2009

Certificate of Authorship/Originality

I, Tuyen Hoang Trieu, certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of the requirements of a degree, except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Sydney, September 2009.

Acknowledgements

First of all, I would like to thank my supervisor, Professor Hung Tan Nguyen, for giving me the great opportunity to work on the smart wheelchair project under his expert guidance. He is not only my supervisor, but has also been like a father to me, who has supported me though this critical period of my study. I am very grateful for his support and guidance.

I would also like to thank my co-supervisor, Dr Keith Willey, for his valuable help throughout this project, from the first semester until the very end of my journey.

Special thanks to my wife for her great encouragement and support. She is my best friend, my soul mate and my family.

Many thanks to Samantha Yee for her help in editing this thesis.

Finally, this thesis is dedicated to my beloved mother, my father and my younger brother.

Tuyen Hoang Trieu

Sydney, September 2009

Contents

List of Figur	es	VII
List of Table	28	XI
Chapter 1	Introduction	6
1.1.	Problem Statement	7
1.2.	Objectives of the thesis	9
1.3.	Thesis contributions	10
1.4.	The structure of the thesis	13
1.5.	Publications related to the thesis	15
Chapter 2	Literature Review	17
2.1.	Introduction	17
2.2.	Autonomous Systems	19
2.2.1.	Sensor Introduction	19
2.2	.1.1. Common Range Sensors and Limitations	19
2.2	.1.2. Laser Range Finder Sensors and Advances	22

2.2.2.	Obstac	ele Avoidance Techniques	. 24
2.2	.2.1.	Obstacle Avoidance Techniques Based on Prior	
		Environmental Information	25
2.2	.2.2.	Obstacle Avoidance Techniques Based on Online	
		Environmental Information	. 26
2.3.	Smart	Wheelchairs and Shared Control Strategies	. 29
2.3.1.	User Iı	nterfaces	. 29
2.3.2.	Smart	Wheelchair Review	. 34
2.3	.2.1.	Smart Wheelchair Based on User's Control Capability	34
2.3	.2.2.	Smart Wheelchairs Requiring Prior Knowledge of	
		Environments	37
2.3	.2.3.	Smart Wheelchairs Based on Pre-designed	
		Autonomous Obstacle Avoidance Tasks	41
2.4.	Discus	sion	50
Chapter 3	Real-t	ime Mapping and Free-space Estimation for	
	a Lase	r Based Wheelchair	53
3.1.	Introdu	action	53
3.2.	SAM -	- Smart Wheelchair System	55
3.3.	Laser I	Range Finder System	57
3.4.	Metho	dology	61
3.4.1.	Real-ti	me Laser Map	61
3.4.	1.1.	Position Estimation – The Wheelchair Model	62

..... 65

Construction of a Real-time Laser Map

3.4.1.2.

3.4.2.	Available Accessible Space	73
3.4.	2.1. A Survey of Contemporary Methods	73
3.4.	2.2. Advanced Method of Determining Accessible Free-space	75
3.5.	Experimental Results	78
3.5.1.	Real-time 2D Mapping Result	78
3.5.2.	The Calibration and Results	80
3.5.3.	Accessible Free-space Results	86
3.6.	Discussion	88

Chapter 4	Advanced Obstacle Avoidance Based on Bayesian Neural		
	Networks for a Laser Based Wheelchair System	90	
4.1.	Introduction	90	
4.2.	Bayesian Neural Networks	92	
4.2.1.	Standard Neural Networks	92	
4.2.2.	Why Bayesian Neural Network?	95	
4.2.3.	Bayesian Framework for Feed-Forward Neural Networks	97	
4.3.	Advanced Obstacle Avoidance Based on Bayesian Neural		
	Networks – Methodology	100	
4.3.1.	Training Algorithm for Obstacle Avoidance Bayesian		
	Neural Networks	100	
4.3.2.	Hessian Matrix for Evidence Estimation	103	
4.3.3.	Bayesian Framework for Obstacle Avoidance	105	
4.3.4.	Obstacle Avoidance Neural Networks	108	
4.3.5.	Data Acquisition Method	112	
4.4.	Training and Experimental Results	113	

4.4.1. Data A	Acquisition Results	113
4.4.1.1.	General Obstacle Avoidance Data Acquisition Task	113
4.4.1.2.	Corridor and Wall Following Data Acquisition Task	114
4.4.1.3.	Door Passing Data Acquisition Task	115
4.4.2. Traini	ng Conditions	116
4.4.3. Netwo	ork Training and Experimental Results	119
4.4.3.1.	General Obstacle Avoidance Task (GOA)	119
4.4.3.2.	Corridor and Wall Following Task (C-WF)	123
4.4.3.3.	Door Passing Task (DP)	126
4.5. Discu	ssion	129

Chapter 5	Shared Control Strategy Based on Bayesian Theory for an	
	Intelligent Laser Based Wheelchair System	131
5.1.	Introduction	131
5.2.	Control Structure for the SAM Assistive Wheelchair	133
5.3.	Shared Control Strategy Based on the Bayesian Recursive	
	Technique - Methodology	135
5.3.1.	Recursive Bayesian Technique	138
5.3.2.	Bayesian Framework for the Adaptive Shared Control Strategy	140
5.3.3.	Environment Model	145
5.4.	The Experimental Results of the Shared Control Strategy	146
5.4.1.	Training and Testing Result of Environmental Model	147
5.4.2.	Shared Control Strategy – Experimental Results	153
5.5.	System Evaluations	163
5.5.1.	Task 1 – Navigating in a Narrow Space Experiment	164

5.5.2.	Task 2 – Corridor Following and Door Passing Experiment	168
5.5.3.	Task 3 – Navigate Through a Tight Spot Experiment	172
5.6.	Discussion and Conclusion	176
Chapter 6	Conclusions and Future Work	178
6.1.	Discussions and Conclusions	178
6.2.	Future Work	181

Bibliography

Appendix A	Bayesian Framework for Neural Networks	191
A.1.	Determining the Optimal Network's Weights	191
A.1.1.	Gaussian Approximation of Posterior	195
A.1.2.	Gaussian Approximation of Likelihood	196
A.1.3.	Gaussian Approximation of Prior	196
A.1.4.	Estimating the Evidence of Hyper-Parameters	197
A.1.5.	Estimating the Most Probable Hyper-Parameters	200
A.2.	Determining the Optimal Network's structure	201
A.2.1.	Occam's razor – Bayesian penalisation factor	201
A.2.2.	Model comparison - selecting the most optimal network' structure	205
Appendix B	The Wheelchair's Performance Evaluation Result	208
B.1.	The 1st Experimenter's testing results.	209
B.2.	The 2nd experimenter's testing results.	212

B.3. The 3rd experimenter's testing results. 215

B.4.	The 4th experimenter's testing results.	218
B.5.	The 5th experimenter's testing results.	221
B.6.	The 6th experimenter's testing results.	224
B.7.	The 7th experimenter's testing results.	227
B.8.	The 8th experimenter's testing results.	230
Appendix C	Software Code	233
Appendix C C.1.	Software Code Bayesian Training – Matlab Code	233 233
Appendix C C.1. C.1.1.	Software Code	233233233
Appendix C C.1. C.1.1. C.1.2.	Software Code	233233233234
Appendix C C.1. C.1.1. C.1.2. C.1.3.	Software Code	 233 233 233 234 243
Appendix C C.1. C.1.1. C.1.2. C.1.3. C.2.	Software CodeBayesian Training – Matlab CodeBasic Training CodeBayesian training with Levenberg-Marquardt algorithmAlphXI FunctionControl Software – C Code	 233 233 233 234 243 244

C.2.2.	WC function library.c	 255

List of Figures

Figure 2.1: An overall structure of a smart wheelchair control system.	12
Figure 2.2: Typical range sensors: (A) - Sonar sensor; (B) – Infrared sensor	14
Figure 2.3: Bumblebee®2 camera system	15
Figure 2.4: Examples of laser range finder systems	17
Figure 2.5: Head-movement interface	24
Figure 2.6: EEG control interface	25
Figure 2.7:Hephaestus smart wheelchair	28
Figure 2.8: CWA autonomous wheelchair	32
Figure 2.9: Robchair prototype	33
Figure 2.10: SENA wheelchair	34
Figure 2.11: SMARTCHAIR prototype	37
Figure 2.12: Osaka University's wheelchair	39
Figure 2.13: The MAid wheelchair	40
Figure 2.14: The NavChair prototype	42

Figure 3.1: SAM intelligent wheelchair	50
Figure 3.2: The SAM wheelchair's hardware overview	50
Figure 3.3: URG 04-LX laser sensor	52
Figure 3.4: Data acquisition software for URG 04-LX laser sensor.	53
Figure 3.5: 3D laser hardware system.	54
Figure 3.6: The software for data acquisition of 3D laser sensor	54

VIII

Figure 3.7: Illustrations of wheelchair's movement	57
Figure 3.8: Relative co-ordinates for the SAM wheelchair	60
Figure 3.9: Updating positions of surrounding obstacles	60
Figure 3.10: Five steps of building a real-time local map	62
Figure 3.11: The Bi-directional Square Path experiment, UMBmark method	
(Borenstein & Feng 1996)	65
Figure 3.12: The accessible free-space estimating procedure.	70
Figure 3.13: The algorithm of determining the accessible free-space	
from the real-time 2D laser map.	71
Figure 3.14: The results of the real-time 2D local map method.	73
Figure 3.15: The wheelchair calibration software	75
Figure 3.16: The results of UMBmark experiments of the uncalibrated wheelchair.	76
Figure 3.17: The results of UMBmark experiments after UMBmark calibration.	78
Figure 3.18: The trajectories of the UMBmark experiments.	79
Figure 3.19: The results of the 2D mapping method for	79
Figure 3.20: The results of determining accessible free-space for SAM	81
Figure 4.1: Structure of a two perceptron layered feed-forward neural network	87

Levenberg-Marquardt and backpropagation algorithm. 111

Figure 4.7: The training and testing results for the general obstacle avoidance task	114
Figure 4.8: Experimental result of Bayesian neural network in performing	
the general obstacle avoidance task.	115
Figure 4.9: The training and testing results for the corridor and	
wall following task	118
Figure 4.10: Experimental results of Bayesian neural network in performing	
the corridor and wall following task.	119
Figure 4.11: The training and testing results for the door passing task	121
Figure 4.12: Experimental results of Bayesian neural network in	
performing the door passing task.	122

Figure 5.1: Overall control diagram of the assistive wheelchair system.	
Figure 5.2: The Markov chain for the wheelchair application	135
Figure 5.4: The structure of the adaptive shared control strategy	139
Figure 5.5: Environmental classifier.	140
Figure 5.6: Real-time control software for the smart wheelchair.	141
Figure 5.7: Training result for environment classification task.	143
Figure 5.8: Experimental results of testing environment model.	146
Figure 5.9: The performance of the adaptive shared control strategy based on the	
recursive Bayesian technique.	150
Figure 5.10: The performance of the adaptive shared control strategy based on the	;
recursive Bayesian technique	151
Figure 5.11: The evidences of the three autonomous tasks	152
Figure 5.12: The performances of the two shared control strategies	
in the first experiment.	154

Figure 5.13: The performances of the two shared control strategies are compared	
in the second experiment.	155
Figure 5.14: The performances of the two shared control methods in the second	
experiment (continued).	156
Figure 5.15: The environment for the 'navigating to a narrow area' experiment	158
Figure 5.16: The result of experimenter 3 in Task 1	159
Figure 5.17: Time for finishing Task 1 for 8 experimenters in manual	
and semi-autonomous modes.	161
Figure 5.18: Average time for manual and semi-autonomous modes	161
Figure 5.19: The environment for the 'corridor following and	
door passing' experiment (Task 2).	162
Figure 5.20: The result of experimenter 1 in Task 2	163
Figure 5.21: Time of finishing Task 2 for 8 experimenters in manual and	
semi-autonomous modes.	165
Figure 5.22: Average time for manual and semi-autonomous modes (Task 2)	165
Figure 5.23: The environment for the 'tight spot' experiment (Task 3)	166
Figure 5.24: The result of experimenter 8 in Task 3	167
Figure 5.25: Time for finishing Task 3 for 8 experimenters in manual and	
semi-autonomous modes.	169
Figure 5.26: Average time in manual and semi-autonomous modes (Task 3)	170

List of Tables

TABLE 3.1:	HOKUYO LASER RANGE FINDER SYSTEM SPECIFICATIONS	52
TABLE 4.1:	DATA ACQUISITION RESULTS	
	OF GENERAL OBSTACLE AVOIDANCE TASK	108
TABLE 4.2:	DATA ACQUISITION RESULTS OF CORRIDOR AND	
	WALL FOLLOWING TASK	109
TABLE 4.3:	DATA ACQUISITION RESULTS OF DOOR PASSING TASK	110
TABLE 5.1:	EXTRACTED LASER IMAGE SAMPLES	143
TABLE 5.2:	RESULTS FOR THE TEST SET USING THE DATA OF DYNAMIC WINDOW	WS
	FROM THE ENVIRONMENTS 1 & 3	145
TABLE 5.3:	RESULT FOR THE VERIFICATION SET USING THE LASER IMAGES	
	FROM THE ENVIRONMENT 2	145
TABLE 5.4:	TAKE INTO ACCOUNT ENVIRONMENT MODEL	148
TABLE 5.5:	PROBABILITIES OF CHANGING THE TASK TO GOA	148
TABLE 5.6:	PROBABILITIES OF CHANGING THE TASK TO CWF	149
TABLE 5.7:	PROBABILITIES OF CHANGING THE TASK TO DP	149
TABLE 5.8:	INFORMATION FROM EXPERIMENTS	158
TABLE 5.9:	SUMMARY OF TIME TAKEN FOR EXPERIMENT 1	160
TABLE 5.10:	SUMMARY OF EXPERIMENTAL RESULTS OF TASK 2	164
TABLE 5.11:	SUMMARY OF EXPERIMENTAL RESULTS OF TASK 3	169

Abstract

Reports show that the number of elderly people and people with disabilities in society are significantly increasing. These people have a wide range and variety of functional impairments. The aim of rehabilitation technology is to improve the quality of life of people with disabilities. In particular, smart wheelchairs have been developed to accommodate people with mobility impairments. The provision of independent mobility can produce substantial benefits, such as the development of physical, cognitive, communication and social skills for both children and adults in their daily lives.

In this thesis, we present a method of constructing a 360° real-time environmental map for the smart wheelchair. It combines the information from a laser range finder and encoders mounted in the driving wheels. As the wheelchair moves, the obstacles in front of the wheelchair that are detected by the laser sensor are updated to this map, after a modification based on the encoder data. This mapping method is 13-fold more accurate than the common use of encoders.

Also, a method of determining accessible free-space for the obstacle avoidance task is implemented. This accommodates the actual dimensions of the wheelchair and then determines the collision-free area available for the wheelchair. The data of accessible free-space can be used to simplify the obstacle avoidance controller and improve its real-time capabilities. It eliminates errors from the common approximation of the wheelchair boundary as a circle, which may lead to the assumption that no accessible space is available to move safely without incurring a collision.

We introduce an advanced obstacle avoidance technique that utilises separate Bayesian neural networks for specified tasks. The obstacle avoidance task is divided into three sub-tasks: passing through a door, corridor and wall following, and general obstacle avoidance. This enables the network to respond to the particular features of each task, thereby improving performance. Specific data acquisitions are performed to collect the patterns used to design the neural network for each task. Bayesian framework is then applied to determine the optimal network structures. The training patterns are subsequently used in conjunction with the Bayesian training process to improve the generalisation and performances of each network. Our method was able to successfully accomplish difficult navigation tasks smoothly following a near optimum trajectory.

Furthermore, we developed an adaptive shared control method for an intelligent wheelchair based on the Bayesian recursive technique to assist disabled users when performing obstacle avoidance tasks. Three autonomous tasks have been developed for different types of environments to improve the performance of the overall system. The system combines local environmental information gathered using a laser range finder sensor with the user's intentions to select the most suitable autonomous task in different situations. The evidences of these tasks are estimated by the Bayesian recursive technique during movements of the wheelchair. The most appropriate task that is selected automatically by the wheelchair controller is the one that has the highest value of evidence.

Finally, a method of classifying the environmental model is introduced for this shared control strategy. The features of the environment such as doorways, corridors and walls, and general obstacles have to be recognised. This method is based on the Bayesian neural network to recognise the environmental features from the laser images that were acquired from the onboard sensors. This environmental feature information is one of the main inputs of the adaptive shared control strategy to effectively improve the accuracy of autonomous task selection.

Various experiments are conducted to evaluate the performance of our smart wheelchair system. Eight able-bodied people are recruited, including four males and four females whose ages range from 27 years to 60 years. They have had no experience of driving a

wheelchair before. Three experiments are arranged with increasing difficulties. These users are asked to drive the wheelchair in both manual mode via a conventional joystick and in semi-autonomous mode with the shared control strategy and autonomous obstacle avoidance controller.

The evaluation results show the advantages of our wheelchair's control system compared to the manual control method. Our intelligent wheelchair, which was equipped with a reliable obstacle avoidance method and an effective shared control strategy, was able to successfully accomplish difficult navigation tasks not only by following a near optimum trajectory but also by generating smooth movements (maintaining stable velocities) in different types of environments. It is able to successfully support people with various types and levels of impairment.