INSECT- AND VERTEBRATE-SELECTIVE NEUROTOXINS FROM AUSTRALIAN URODACID AND BUTHID SCORPION VENOMS: LEAD COMPOUNDS FOR NOVEL BIOPESTICIDES

Harry Wilson BSc, MSc

Neurotoxin Research Group

Department of Health Sciences

University of Technology, Sydney

2003

submitted in fulfilment of the degree requirements for Doctor of Philosophy (Science)

CERTIFICATE OF AUTHORSHIP

AND ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged in the text.

I also certify that the thesis has been written and prepared by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all sources of information and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

(signed)

25.7.04 (date)

INSECT- AND VERTEBRATE-SELECTIVE NEUROTOXINS FROM AUSTRALIAN URODACID AND BUTHID SCORPION VENOMS: LEAD COMPOUNDS FOR NOVEL BIOPESTICIDES

Harry Wilson, Neurotoxin Research Group, Department of Health Sciences, University of Technology, Sydney

PhD Thesis, 2003

ABSTRACT

Scorpions from nine species were collected from locations across Australia comprising four *Lychas* (Buthidae), four *Urodacus* (Urodacidae) and one *Cercophonius* (Bothriuridae). Three species had not been described previously. *Lychas* and *Urodacus* species collected in sufficient numbers were milked regularly for their venom, and characteristics of the venom determined.

Insect toxicity was qualitatively demonstrated for two *Lychas* species. Insect and vertebrate toxicity was determined for *Urodacus manicatus* and *U. hoplurus*, and both species were shown to have very low mammalian toxicity (>4mg/kg). Insect toxicity of these two venoms was estimated at 300-500 μ g/g by injection into crickets (*Acheta domesticus*). Venom profiles prepared by rp-HPLC revealed that *Lychas* venom was simple in composition and resembles that seen in overseas buthids. Venom composition of the *Urodacus* species was extremely complex, complicating attempts to purify individual proteins.

Toxins were purified from the venom by rp-HPLC or size-exclusion chromatography (SEC) followed by HPLC, and screened for activity in vertebrate (chick biventer cervicis) and insect bioassays. Fractions from both species showed selective excitatory toxicity towards insects and/or vertebrates. Effects on vertebrate muscle included contracture and increased stimulated twitch tension, and some fractions produced fasciculation. Further investigation was undertaken to determine the effects on ion channels in insects, as part of a search for potential biopesticide compounds.

In neurones isolated from the American cockroach terminal abdominal ganglion, the predominant effect was a block of whole-cell sodium current.

ACKNOWLEDGEMENTS

I would like to thank the many people who have assisted me in the preparation of this thesis. Firstly, I would like to acknowledge the role played by my supervisor A. Prof. Graham Nicholson, of the Department of Health Sciences, UTS. Without his guidance this would never have been finished. Secondly, I would like to acknowledge the assistance with theory, technique and equipment of my co-supervisors, A. Prof. Kevin Broady of the Department of Cell and Molecular Biology, UTS and Prof. Glenn King, UConn Health Centre, Farmington, CN, USA.

For direct assistance in several areas:

Provision of *Urodacus hoplurus* scorpions: Peter Mirtschin, Venom Supplies P.L., Tanunda, South Australia.

Identification of Australian Scorpions: Erich Volschenk, Dept. of Terrestrial Invertebrates, Western Australian Museum.

QTOF Mass spectrometry: Dr. Peter Hains, Dept. Chemistry, Wollongong, NSW.

Initial assistance in ESI-MS: Mr. Matt Padula, Dept. Cell and Molecular Biology, UTS.

Sequencing of peptides: Dr Bernie McInerny, Australian Proteome Analysis Facility, North Ryde, NSW.

For their support in less tangible ways, my fellow lab workers, of whom there have been too many to list fully, but particularly Simon Gunning, Andis Graudins, Youmie Chong, Phil Lawrence and Qiao Yang. Thanks for all your help and kind words.

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION	
1.1 INSECTICIDES OF THE FUTURE	1
1.1.1 The Problem Facing Modern Agriculture	1
1.1.2 Current Methods of Agricultural Pest Control	2
1.1.3 Alternative Strategies for Agricultural Pest Insect Control	4
1.1.4 The Recombinant Baculovirus Approach	5
1.1.5 The Baculovirus System for Agricultural Insect Control	6
1.2 SCORPION BIOLOGY	8
1.2.1 Evolution of the Scorpions	8
1.2.2 Scorpion Anatomy	12
1.2.3 Scorpion Behaviour	13
1.2.4 Australian Scornions	19
125 Australian Buthidae	10
1.2.6 The Hrodacidae	21
1 3 TOXINS FROM ANIMAL VENOMS	23
131 Animal Venome: Nature's Combinatorial Libraries	23
1.3.2 Torin Amplications as Theraneutic Agents	20
1.3.2 Toxin Applications as Pharmacological Tools	24
1 A SCORPION VENIOM	20
1.4 1 Components of Scornion Venome	27
1.4.1 Components of Scorpton Venoms	27
1.4.2 Scorpton Venents of Medical Importance	20
1.5 NELIROTOVINI TARCETS, IONI CHANINIELS	30
1.5 1 Ion Channels: An Operation	30
1.5.1 Ion Channels. An Overview	30
1.5.2 Sodium Channel Structure and Subtypes	35
1.5.5 Sodium Channel Function	40
1.5.4 Soutum Chunnel Toxins	40
1.5.5 The Scorpton & Toxins	52
1.5.6 The Scorpton B-Toxins	33 E 4
1.5.7 Potassium Channel Structure and Function	54
1.5.8 Potassium Channel Toxins	58
1.6 OBJECTIVES AND OUTLINE OF THIS THESIS	60
CHAPTER TWO: MATERIALS AND METHODS	61
2.1 SCORPION COLLECTION, HOUSING AND MILKING	62
2.1.1 Introduction	62
2.1.2 Collection of Scorpions	62
2.1.2.1 Buthidae	62
2.1.2.2 Urodacidae	65
2.1.2.3 Bothriuridae and Liochelidae	67
2.1.3 Scorpion Identification	68
2.1.4 Scorpion Housing and Maintenance	69
2.1.5 Venom Collection	71
2.2 CHROMATOGRAPHY	73
2.2.1 Reverse-Phase HPLC	73
2.2.2 Shallow Gradient rp-HPLC	74
2.2.3 Size-Exclusion Chromatography	75
2.3. SCREENING FRACTIONS FOR ACTIVITY	76
2.3.1 Vertebrate Toxicity in vivo	76

2.3.2 Vertebrate Toxicity in vitro	77
2.3.3 Insect Toxicity in vivo	79
2.3.4 Calculation of KD 50, PD 50 and LD 50 Values	83
2.4 ELECTROPHYSIOLOGY OF VENOMS AND ISOLATED TOXINS	84
2.4.1 Preparation of Isolated Cockroach TAG Neurones	85
2.4.2 Preparation of Isolated Rat DRG Neurones	89
2.4.3 Preparation of Electrodes	92
2.4.4 Patch-clamp Recording Set-Up	93
2.4.5 Solutions Used for Current Recording	95
2.4.6 Voltage-Clamp Stimulation Protocols	96
2.4.6.1 INa Protocol	97
2.4.6.2 IV Protocol	97
2.4.6.3 Steady-state inactivation protocol ($h\infty$)	98
2.4.6.4 R/S Protocol – determination of predominant Na+ channel subtype in D	RG
neurones	99
2.4.7 Current Clamp protocol	100
2.4.8 Electrophysiology Data Analysis	100
2.5 BIOCHEMICAL TECHNIQUES	101
2.5.1 Determination of Molecular Mass by MS	101
2.5.2 Estimation of Protein Content	102
2.5.3 Determination of Protein Primary Sequence	103
2.5.3.1 Puridulethylation	103
2.5.3.2 N-Terminal Amino Acid Seauencing	104
2.6 SOURCES OF CHEMICALS AND TOXINS	104
2.6.1 Scornion Toxins	104
2.6.2 Snider Toxins	104
2.6.3 Poly-lusine hydrobromide	105
2.6.4 D-MEM (Dulbecco's Modified Fagles Medium)	105
2.6.5 CMF-PBS (Phosphate Buffered Saline Ca2+ and Mo2+ free)	105
2.6.6 Newhorn Calf Serum (NCS)	106
2.6.7 Minor Chemicals and Solvents	106
	100
CHAPTER THREE: RESULTS	
AUSTRALIAN SCORPION SPECIES AND CHARACTERISTICS	105
2.1 Callesting of Andrelia Const	107
3.1 Collection of Australian Scorpions	107
3.2 Characteristics of the venom	113
3.3 Venom Yield Variation Of Captive Urodacus Scorpions	11/
3.4 HPLC Profiles of Australian Scorpion venom	120
3.5 Important considerations in venom collection	123
3.6 Conclusion	127
CHAPTER FOUR: RESULTS	
TOXICITY OF THE VENOM OF AUSTRALIAN SCORPIONS	130
4.1 Lychas Venom Toxicity Studies in Insects	130
4.2 Urodacus Venom Toxicity in Insects in vivo	131
4.3 Urodacus Whole Venom Toxicity in Vertebrates	137
4.3.1 Urodacus manicatus Whole Venom Toxicity in vivo	137
4.3.2 Urodacus hoplurus Whole Venom toxicitu in vitro	138
4.4 Conclusion	140

CHADTED EIVE, DECHITC	
UDENTIFICATION OF SELECTIVELY TOXIC FRACTIONS	
IN URODACUS VENOM	140
5.1 Introduction	140
5.2 Identification of Selective Toxins in U. manicatus venom	141
5.2.1 Fractionation of venom by rp-HPLC.	141
5.2.2 Insect-active Toxins in U. manicatus venom	144
5.2.3 Vertebrate-active Toxins in U. manicatus venom	147
5.2.4 Selection of Specific Toxins from U. manicatus venom	148
5.3 SELECTIVÉ TOXÍNS IN <i>ÚRODACUS HOPLURUS</i> VENOM	151
5.3.1 Separation of U. hoplurus Venom Fractions	151
5.3.1.1 Size-exclusion chromatography of U. hoplurus venom	151
5.3.1.2 Size-Exclusion Chromatography of U. hoplurus venom: effect of solvent	152
5.3.1.3 Characteristics of the Size Exclusion Chromatogram	155
5.3.1.4 Size Exclusion Chromatogram of U. manicatus Venom	155
5.3.2 Insect Toxicity of U. hoplurus venom Fractions	155
5.3.3 Vertebrate Toxicity of U. hoplurus venom Fractions	158
5.3.4 Further fractionation of U. hoplurus venom	162
5.3.5 Screening for Selective Toxins in U. hoplurus venom	166
5.3.6 Selection of Specific Toxins from U. hoplurus venom	168
5.4 Further characterisation of selected Urodacus hoplurus fractions	170
5.5 Conclusions	173
CHAPTER SIX: RESULTS	
PURIFICATION OF TOXINS FROM URODACUS VENOM	173
6.1 Introduction	173
6.2 Purification of Insect and Vertebrate-Selective Toring from Urodacus manic	7+110

6.1 Introduction	173
	110
6.2 Purification of Insect and Vertebrate-Selective Toxins from Urodacus manical	tus
Venom	174
6.2.1 Vertebrate-selective toxins in Urodacus manicatus venom	174
6.2.2 Insect-selective fractions in U. manicatus venom: Purification by rp-HPLC	177
6.2.3 Insect-selective fractions in U. manicatus venom: Alternate Purification by	SEC
	180
6.3 Purification of insect and Vertebrate-Selective Toxins from Urodacus hopluru	IS
Venom	183
6.3.1 Vertebrate-selective Toxins in U. hoplurus venom	183
6.3.2 Insect-selective Toxins in U. hoplurus venom	186
6.4 Determination of Toxin Primary Structure	194
6.4.1 Fraction UhF2.9.1	194
6.4.2 Fraction UhF2.10.1	199
6.5 Conclusions	200

6.5 Conclusions

CHAPTER SEVEN: RESULTS ELECTROPHYSIOLOGY OF URODACUS TOXINS ON INSECT NELIRONES

7.1 electrophysiological investigation of the actions of whole venom and major fractions
fractions 200
200
7.1.1 Whole-cell currents in isolated TAG neurones 200
7.1.2 Initial determination of electrophysiological action 206
7.2 Electrophysiology of Purified Urodacus Toxins 209
7.2.1 Screening of Urodacus Toxins for activity 209
7.2.2 Toxins with Low activity in TAG neurones 210
7.2.3 Toxins with High activity in TAG neurones 212

 7.3 Further effects of Urodacus toxins on sodium current in TAG neurones. 7.3.1 Effects on voltage-dependence of activation of sodium channels. 7.3.2 Urodacus toxin effects on sodium channel steady-state inactivation. 7.4 Summary of Urodacitoxin Actions 	215 215 218 218
CHAPTER EIGHT: RESULTS CHARACTERISATION OF BUTHIDAE SODIUM CHANNEL TOXING	5 2 2 0
8.1: SODIUM CHANNEL TOXINS FROM A BUTHID SCORPION:	
BACKGROUND	220
8.2: Actions of LQHII and LQHIII on mammalian neurones	222
8.2.1: LqhIII Effects on action potentials in rat DRG neurones	223
8.2.2: Effects on tetrodotoxin-sensitive sodium channels in DRG neurones	226
8.2.3 Lqh11 and Lqh111 Effects on the Voltage-Current Relationships of TTX-S So Channels	dium 229
8.2.4 LqhIII Effects on Steady-State Inactivation of TTX-S Sodium Channels	231
8.2.5: Effects on tetrodotoxin-resistant sodium channels	232
8.3 Actions of LqhIII on insect neurones	234
8.4 CONCLUSIONS	236
CHAPTER NINE: DISCUSSION	237
9.1 CHARACTERISTICS OF THE VENOM OF AUSTRALIAN SCORPION	JS
	237
9.1.1 New Scorpion Species	237
9.1.2 Venom Toxicity and Scorpion Biology	238
9.1.3 Venom Complexity and Profiles	241
9.1.4 Problems Encountered During Fraction Purification	243
9.2 URODACUS VENOM AND TOXINS	245
9.2.1 Insect Actions of Urodacus Venom and Toxins	245
9.2.2 Vertebrate Actions of Urodacus Venom and Toxins	248
9.2.2 Electrophysiology of Urodacus Venom and Toxins in TAG Neurones	251
9.2.3 Primary Structure of the Urodacitoxin UDIT-Uh1a	252
9.2.4 Structural homology of UDIT-Uh1a with other scorpion toxins	254
9.2.5 Implications for Sodium Channel Pharmacology	256
9.3 ACTIONS OF LEIURUS ALPHA-TOXINS	257
9.3.1 Differential Actions of LqhII and LqhIII on Sodium Channel subtypes in the	257 Rat
9.3.2 LqhIII has Scorpion alpha-Toxin Activity in the Cockroach TAG	258
9.4 Conclusions and Future Directions	259
APPENDIX: CITED REFERENCES	262

LIST OF TABLES AND FIGURES

Chapter One: Introduction

Figure 1.1: Evolutionary relationships and classification of arachnids.	9
Figure 1.2: Scorpion anatomy.	10
Figure 1.3: Bothriuridae and their Australian distribution.	14
Figure 1.4: Liochelidae and their Australian distribution.	15
Figure 1.5: Buthidae and their Australian distribution.	16
Figure 1.6: Urodacidae and their Australian distribution.	17
Figure 1.7: Sodium channel (VGSC) structure and function.	40
Figure 1.8: Identified VGSC Neurotoxin receptor sites.	44
Figure 1.9: Toxins that target the VGSC.	46
Figure 1.10: Toxins that target the VGKC.	47
Figure 1.11: Potassium channel (VGKC) structure and function.	53
Table 1.1: Toxicity of medically-important scorpion venoms.	29
Table 1.2 Identified Scorpion Toxins.	32
Table 1.3: Identified Mammalian Sodium Channel Subtypes.	39
Table 1.4 Identified VGSC Neurotoxin receptor sites.	44

Chapter Two: Materials and Methods 60

Figure 2.1 Scorpion collection areas.	62
Figure 2.2 Collection of venom.	70
Figure 2.3 Insect toxicity <i>in vivo</i> .	79
Figure 2.4 Preparation of Cockroach TAG neurones.	86
Table 2.1: Categories and signs of toxicity in mice	75
Table 2.2. Categories and signs of toxicity in crickets	78

i doie min cuce offeo and orgito of conterty in chereto	10
Table 2.3: Categories and signs of toxicity in blowfly larvae	81
Table 2.4: Trypsin incubation times for rat DRG	90
Equation 2.1	83
Equation 2.1	07
Equation 2.2	97
Equation 2.3	98

Chapter Three: Australian Scorpions and Characteristics of their Venom 107

Figure 3.1: Lychas Species Collected	110
Figure 3.2: <i>Urodacus</i> Species Collected	111
Figure 3.3: Features of <i>Urodacus</i> Species, <i>Cercophonius squama</i>	113
Figure 3.4: Variation in Venom Yield of Captive Urodacus Scorpions	117
Figure 3.5: Comparative <i>Lychas</i> Whole Venom profiles	120
Figure 3.6: Comparative <i>Urodacus</i> Whole Venom Profiles	121
Figure 3.7: Sex Differences in <i>U. hoplurus</i> Venom HPLC Profiles	124
Figure 3.8: Individual <i>U. hoplurus</i> compared to Pooled Venom	125
Figure 3.9: Batch Variation in <i>Urodacus manicatus</i> Whole Venom	127
Figure 3.10: Venom Variation Between Groups of <i>U. hoplurus</i>	128

Table 3.1: Australian Scorpion species collected and identified Table 3.2: Characteristics of Venom from Australian Scorpions		108 115
Chapter Four: Toxicity of the Venom of Australian Scorpions	130	
Figure 4.1: <i>Urodacus manicatus</i> whole venom insect toxicity. Figure 4.2: <i>Urodacus hoplurus</i> whole venom insect toxicity. Figure 4.3: Timecourse of toxicity of <i>U. hoplurus</i> venom on crickets. Figure 4.4: Effects of <i>U. hoplurus</i> venom on chick muscle in vitro.		132 133 135 138
Table 4.1: Insect Toxicity of Australian Scorpion Venoms		131
Chapter Five: Selectively Toxic Fractions in Urodacus venom	140	
 Figure 5.1 Representative rp-HPLC of <i>U. manicatus</i> venom Figure 5.2: Toxicity profile of <i>U. manicatus</i> venom fractions Figure 5.3: Effect of Solvent pH on Protein Elution Figure 5.4 Size Exclusion Chromatograms of <i>Urodacus</i> Venoms Figure 5.5: Vertebrate activity of <i>U. hoplurus</i> venom fractions Figure 5.6: Detail of <i>U. hoplurus</i> effects on vertebrate muscle Figure 5.7: rp-HPLC of <i>U. hoplurus</i> venom fractions 1 and 3 Figure 5.9: Effects of fractions of <i>U. hoplurus</i> venom on chick muscle Figure 5.9: Details of effects of active <i>U. hoplurus</i> fractions. Table 5.1: Insect and vertebrate activity <i>U. manicatus</i> fractions Table 5.2: Effects of <i>U. hoplurus</i> size-exclusion fractions on insects. Table 5.3: Vertebrate activity of <i>U. hoplurus</i> venom fractions. 		142 149 152 153 159 160 163 164 168 170 144 156 158
Chapter Six: Purification of Toxins from Urodacus Venom 173		
 Figure 6.1: Vertebrate-active UmF29.4 from <i>U. manicatus</i> venom. Figure 6.2: Multiple components of insect-active fractions. Figure 6.3: Size-exclusion chromatography of <i>U. manicatus</i> fractions. Figure 6.4: Components of UhF2.0. Figure 6.5: Components and Purification of UhF2.3 and UhF2.4 Figure 6.6: Purification of UhF2.8 and 2.9 from <i>U. hoplurus</i>. Figure 6.7: Purification of Multiple Components of UhF2.10 and 2.12 Figure 6.8: Comparison of UhF2.9.1 primary sequence Figure 6.9: Secondary structure of UDIT-Uh1a and buthid toxins. 	2	175 178 181 184 187 189 192 196 197
Table 6.1: Characterisation of purified Urodacus toxins.		200

Chapter Seven: Electrophysiology of Urodacus Toxins on Insect Neurones

Figure 7.1: Characterisation of TAG neurones.	202
Figure 7.2: Effects of <i>Urodacus hoplurus</i> whole venom and fractions.	206
Figure 7.3: <i>U. hoplurus</i> toxins with low activity in TAG neurones.	210

Figure 7.4: <i>Urodacus</i> toxins with high activity on TAG neurones. Figure 7.5: Concentration dependence of Urodacus toxin effects.	212 213	
Figure 7.6: Urodacus toxin effects on voltage-dependence of activation of TAG neurone sodium channels.	216	
Figure 7.7: Effects of Urodacus toxins on steady-state inactivation of TAG neurone sodium channels.	218	
Table 7.1: Activity of Purified Urodacus Fractions in TAG neurones	215	
relationships of whole-cell sodium current in TAG neurones.	219	
Chapter Eight: Characterisation of Buthidae Sodium Channel Toxins	220	
Figure 8.1: Effect of LqhIII on action potentials in rat DRG neurones. Figure 8.2: Dose-dependent effects of LqhII and LqhIII on TTX-S sodium	224	
currents in DRG neurones. Figure 8.3: Typical effects of LabIII on current-voltage relationships of	227	
TTX-S currents in DRG neurones.	229	
the rat DRG.	232	
Figure 8.5: Effect of LqhIII on isolated cockroach TAG neurones.	234	
Table 8.1: Summary of LqhII and LqhIII effects on DRG TTX-S sodium currents.	230	