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ABSTRACT 

Indirect evaporative cooling (lEC) exhibits favourab le potential for energy recovery 

when operated on its own or when it is integrated with a vapour compression system to 

form a hybrid system. However, very few systematic and holistic design approaches 

have been carried out to analyse its strengths and weaknesses relative to other available 

technologies. This thesis reports research on developing a novel low energy air 

conditioning system in which an indirect evaporative cooling unit in the form of a 

polymer plate cross-flow heat exchanger is integrated with a vapour compression 

system or a chilled water coil. 

Two design approaches are taken, one after the other. In the first approach the thermal 

aspect of this particular heat exchanger is described (Chapters 1 to 3). A model for 

basic effectiveness is developed from the physical principles involving energy balance, 

use of moist air properties and a psychrometric chart. This new development explains 

the sensitivity of effective operating conditions and the link between sensible heat ratio 

and flow ratio. 

In the second part of this thesis, (chapter 4 to 7) a functional design approach is 

enlployed that considers criteria which are common to air conditioning system design 

and product development. For the DICER system, technology assessment and the 

original case study for ventilation air pre-treatment are described. This part of the thesis 

also describes life cycle costing, materials, manufacturing and the influence of volume 

production on cost along with a case study. 

When considering manufacturing or fabrication on a larger scale a simple tool using 

geometrical relations of the mould size, shape and material specifications is used to 

estimate the material quantity for large scale production. This is illustrated with a 

specific model of heat exchanger housing and considering fibreglass as a preferred 

material for fabrication. An economic evaluation is carried out based on the material 

requirements for existing manufacturing and proposed manufacturing method. Cost 

reduction opportunity is presented using optimised batch quantity. This cost reduction 

is then extended to other models of the heat exchanger housing and compared with 
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existing manufacturing methods. This total approach of combining thennal SCIence 

with materials, production and engineering design activity identifies the strengths, 

weaknesses and suitability of this method of air conditioning for commercial 

exploitation. The research conducted by this approach has provided valuable insights 

and understanding of the technology as well as its merits and limitations when 

compared with existing commercial products such as vapour compression systems. 

A life cycle cost (LCC) analysis method is developed based on the operating cost, initial 

cost, perfonnance and discount rate over future time for the economic lifetime of the 

product. This model compares the life cycle cost of a particular design or product when 

evaluating several energy recovery options. This costing tool will aid design engineers 

to establish a balance between performance and cost. Alternatives with different design, 

perfonnance and initial costs are assessed and analysed for operating life, taking 

replacement within the comparison period into account. 

The key contributions of the work described in this thesis are: 

1. A simplified effectiveness mode] based on sensible heat ratio and uSIng a 

psychrometric chart which explains sensitivity of effectiveness when 

considering dry and wet surface heat transfer. 

2. The case study involving ventilation air pre-treatment in a commercial building 

using the DICER method of energy recovery, where the cross-flow polymer 

plate heat exchanger is integrated with the chilled water coils supplied from the 

main plant. 

3. Qualifications to the benefits of this method of ventilation air pre-treatment for 

peak delnand reduction as well as annual energy conservation combined with 

site evaluation for potential application in retrofit operation. 

4. Guidelines are developed based on the knowledge gained throughout the case 

study which will aid similar future designs. 

5. Technology assessment is carried out to point out the strengths and weaknesses 

of the DICER system for its next stage of design optimisation. 

6. A simplified quantity estimation technique is presented using the geometric 

relation of mould shape; size and material specification. Optimum batch 

quantities are presented for the existing and recommended method of 

manufacturing for further cost optimisation. 
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