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Abstract 

W IRELESS Sensor Networks (WSNs) are deployed for the purpose of mon-

itoring an area of interest. Even when the sensors are properly calibrated 

at the time of deployment, they develop drift in their readings leading to erroneous 

network inferences. Traditionally, such errors are corrected by site visits where the 

sensors are calibrated against an accurately calibrated sensor. For large scale sen-

sor networks, the process is manually intensive and economically infeasible. This 

imposes finding automatic procedures for continuous calibration. Noting that a 

physical phenomenon in a certain area follows some spatia-temporal correlation, 

we assume that the sensors readings in that area are correlated. We also assume that 

measurement errors due to faulty equipment are likely to be uncorrelated. Based 

on these assumptions, we follow a Bayesian framework to solve the drift and bias 

problem. in WSNs. 

In the case of densely deployed WSN, neighbouring sensors are assumed to be 

close to each other that they observe the same phenomenon. Hence, the average of 

their corrected readings is taken as a basis for each sensor to self-assess its measure-

ment, estimate its drift and to correct the measurement using a Kalman Filter (KF) 

in the case of smooth drift, and the Interacting Multiple Model algorithm (IMM) 

in the case of unsmooth drift. The solutions are computationally simple, decen-

tralised and also scalable. Any new node joining the neighbourhood needs only to 

obtain the corrected readings of its neighbours to find the average and apply the 

KF iterative procedure. 

On the other hand, when the sensors are not densely deployed, Support Vector 

Regression (SVR) is used to model the interrelationships of sensor measurements 
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in a neighbourhood . This enables the incorporation of the spatia-temporal correla-

tion of neighbouring sensors, to predict future measurements. The SVR predicted 

value is used by a KF to estimate the actual drift and correct the measurement. Un-

fortunately, the KF introduces some system errors when used with nonlinear sys-

tems. The use of Unscented Kalman filter (UKF) instead, considerably reduces the 

system error and results in a better drift correction. The use of IMM with the SVR-

UKF framework allows for reducing the sampling rate which eventually reduces 

the communication overhead among the sensors and saves the communication en-

ergy. 

In this thesis, we present several solutions for the random and systematic (drift 

and bias) errors in sensors measurements, for different sensor deployment scenar-

ios. We also consider two drift scenarios, namely smooth and unsmooth drifts. We 

evaluate the presented algorithms on simulated and real data obtained from the 

Intel Berkeley Research Laboratory sensor deployment. The results show that our 

algorithms successfully detect and correct systematic errors (drift and bias) devel -

oped in sensors and filters out the noise. Thereby, prolonging the effective lifetime 

of the network. 
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