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Abstract 

The benchmark framework provides an alternative paradigm for financial market 

modelling. Firstly, approaches to parameter estimation of discretely observed 

diffusion processes are examined, with particular emphasis on estimating function 

techniques. A new estimating function technique, called the transform function 

method, is introduced and applied to a class of stochastic differential equations. 

The advantage of the transforrn function method is that explicit information is 

not required about conditional moments and the existence of stationary transition 

densities. Despite the flexibility of the transform function technique, it suffers the 

same drawbacks as existing estimation methods with respect to drift estimation 

of financial data. The observation period required to estimate the drift function 

is much greater than what is available in financial markets. Notwithstanding the 

lack of available data for drift estimation, the diffusion function can be reliably 

estimated by the transform function method from short periods of frequently 

observed data. This thesis highlights that the benchmark approach of Platen 

(2002), where only estimates for diffusion coefficients are required, resolves the 

issue of drift estirnation from financial market data. 

Secondly, we ~xtend the benchmark approach to incorporate modelling aspects 

particular to intraday data. This requires the construction of high- frequency 

diversified portfolios to approximate the growth optimal portfolio, the central 

building block of the benchmark model. Three different high- frequency indices 

are considered and it is demonstrated that an index with proportions based on 

total world market capitalisation provides the best proxy for the growth optimal 

portfolio. The benchmark model is then extended to intraday data through the 

introduction of a market activity process. This process is shown to be readily 

observable and as such, properties of market activity can be characterised. The 

analysis includes the consideration of the high- frequency indices in US Dollars 

and a further twenty currency denominations. As such, we reveal the pairwise co-

X 



variation structures between the currency denominations considered. It is shown 

that the intraday benchmark model, which has market activity as the main pa-

rameter of interest , provides a largely accurate intraday description of financial 

markets. 
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Chapter 1 

Introduction 

Modelling of financial markets using continuous time stochastic processes is cen-

tral to modern finance , see Merton (1992). The identification and calibration of a 

financial market model is a key step to risk measurement, the pricing of derivative 

securities and portfolio optimisation. The aim of this thesis is two- fold. Firstly, 

to identify an appropriate statistical method to estimate and calibrate a financial 

market model and secondly, to extend the benchmark model, see Platen (2002), 

to incorporate intraday data. 

Inference for Financial Markets 

The estimation and calibration of market models is a difficult task. Many different 

market models have evolved and alternative estimation techniques have been 

suggested , see, for example, Gallant & Tauchen (1997), Overbeck & Ryden (1997), 

Chan, Karolyi, Longstaff & Sanders (1992) and Christensen, Poulsen & S0rensen 

(2001). A problem with parameter estimation for stochastic processes is that, 

typically, to estimate the drift coefficient, the data used in the estimation must 

be observed over an extremely long period of time. For example, consider the 

classical Black- Scholes- Merton model, see Black & Scholes ( 1973) , with constant 

appreciation rate p, and volatility parameter a. We wish to estimate the rate 

p,. To achieve a reliable estimate [1, , such that 1~-t - [1,1 < 0.01, within a 95% 

confidence interval, the length of the observation time T > (196 a) 2 is required. 

Thus, if (j = 15% then the required length of time is T > 865 years . Furthermore, 

the greater the volatility parameter a , the longer the time period necessary to 

estimate [1, reliably. That is , if a = 30% then the length of time increases to 

T > 3, 458 years, see also Davis (2003) or Rogers (2001). The volatility a is 
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simpler to estimate since it is observable as the square root of the slope of the 

quadratic variation of the logarithm of the sample path. The estima~e of(}' can be 

achieved with considerable precision. For example, if we consider the above model 

with (}' = 20% the time required to estimate the volatility reliably from daily 

observations is approximately T = 3 years. However , if we use hourly observations 

the time required to estimate (}' is T = 0.5 years. This is because the estimate 

based on quadratic variation becomes exact as the time between observations 

approaches zero. This demonstrates that a financial model which only requires 

estimation of the diffusion function is beneficial for practical applications. 

Many existing techniques used for the statistical analysis of financial markets rely 

on stationarity. This suggests that even if a sufficiently long financial data series 

exists, it may be inappropriate to base results on this data set since financial 

markets have changed markedly over the years. Furthermore, a true picture of 

long term financial market evolution during the last century is difficult to grasp 

due to events such as World War One and World War Two, which raises questions 

about the reliability of the data series over these time periods. Additionally, many 

estimation techniques require the drift and diffusion parameters to be constant. 

This is an unreasonable assumption over long observation periods for a time series 

of financial data. 

Chapter 2 reviews various approaches related to parameter inference for discretely 

observed diffusion processes. Maximum likelihood estimation requires the diffu-

sion coefficient to be known and approximations to the likelihood function are 

required if the transition density is not explicitly available. An alternative are 

estimating function techniques, which provide extremely flexible methods of pa-

rameter estimation and are well suited to discretely observed diffusion processes. 

Whilst these techniques can be used to estimate both the drift and diffusion co-

efficient, stationarity is usually required and a long observation interval is still 

necessary for reliable drift estimation. Additionally, whereas the diffusion coef-

ficient benefits from frequently observed data, such high- frequency data can be 
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detrimental to the estimation of the drift functions when using certain estimating 

techniques, see Bibby, Jacobsen & 80rensen (2003). 

To increase the flexibility of estimating functions , the transform function method 

is developed in Chapter 3. As an example of the method, we consider the esti-

mation of affine stochastic differential equations (SDEs) with unknown drift and 

diffusion parameters. This example results in explicit estimators when a power 

transform function is used. For the simulated processes , the results confirm the 

applicability of the method. Although the standard problem with inference about 

the drift function from realistic observation periods is again apparent. 

The Benchmark Approach and Stochastic Volatility 

A distinct advantage of the benchmark approach of Platen (2002) is that the 

SDE for the discounted growth optimal portfolio (GOP), the building block of 

the modelling framework, is completely determined by its diffusion coefficient. 

This implies that an accurate method for estimating the diffusion coefficient is 

sufficient to obtain estimates for the drift coefficient. Thus, by providing a link 

between the diffusion and drift coefficients, a potential solution to the problem of 

reliable drift estimation for financial data is provided by the benchmark approach. 

Essentially, the benchmark model consists of several risky assets and one riskless 

asset, known as primary security accounts. To forrn the GOP, a self- financing 

portfolio of primary security accounts is created that achieves the maximum log-

arithmic growth rate. Identification of the general dynamics of the GOP shows 

that when used as benchmark or numeraire, benchmarked portfolios are local 

martingales under the real world probability measure. This gives rise to the 

concept of fair pricing for derivative securities under the real world probability 

measure, where benchmarked fair price processes are martingales. 

The practical use of the benchmark model relies on the identification and calibra-
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tion of the GOP dynamics. The optimal proportions used to form this portfolio 

depend on the matrix of all volatilities and correlations between the primary 

security accounts, in addition to the corresponding market prices for risk. The 

market price for risk appears in the drift coefficient, which is independent of the 

diffusion coefficient of the primary security accounts and hence cannot be reliably 

estimated using standard techniques. In addition, estimation of a large volatility 

matrix is a cumbersome task and in practice, the exact GOP can be extremely 

difficult to form, see, for example, Long (1990). As an alternative, we concentrate 

on the analysis of approximate COPs. An approximate GOP is any broadly di-

versified portfolio. This result is provided by a limit theorem in Platen (2003). In 

this thesis, we construct world stock indices to provide intraday approximations 

to the GOP. 

In principle, proxies for the GOP, observed at daily intervals at least, are already 

available in the form of broadly diversified accumulation indices. We show in 

Figure 1.1 the evolution of the logarithm of a discounted accumulated world 

stock index created by Global Financial Data over the last 77 years. The data is 

observed monthly from 1925 until2003. It is clear that the discounted world stock 

index has experienced significant growth over the years. A trendline with slope 

of 0.043 , which approximates the growth of the logarithm of the index, is shown. 

This implies that on average, the growth of the index appears to be exponential 

with an approximate net growth rate of rJ = 4.3%. Note that any reasonable 

estimation technique will give an approximate growth rate in this vicinity. 

Without restricting the generality of the benchmark approach, Platen (2002) 

shows that the dynamics of the discounted GOP V(t) satisfy the SDE 

dV(t) = a(t)dt + yfa(t)V(t) dW(t) 

for t E [0, T]. The initial value V(O) is assumed to be strictly positive. Here 

W is a standard Wiener process. An analysis of available market data shows 

that the discounted G 0 P drift process a( t) = ~ exp{ rJ t} can be simply taken 
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Figure 1.1: Long term dynamics of the logarithm of a discounted accumulated 

world stock index. 

as a parameter process, which relies on the net growth rate ry. Throughout the 

thesis , the net growth rate is assumed to be constant. The resulting dynamics 

of the discounted GOP are that of a time transformed squared Bessel process 

of din1ension four , see Revuz & Yor (1999). To obtain a stationary process, a 

squared Bessel process can be transformed into a square root process. This results 

in the normalised GOP Y(t) =~' which satisfies the SDE 

dY(t) = 'r/ G-Y(t)) dt + y'Y(t)dW(t) 

fortE [0, T]. 
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Figure 1. 2: Long term dynamics of a discounted normalised world stock index. 

Under the above assumptions, we obtain the dynamics of the normalised GOP 

as shown in Figure 1.2. This allows the calculation of the GOP volatility IB(t)l , 
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which is given by 
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Figure 1.3: Long term dynamics of the volatility of the world stock index. 

The resulting volatility process in Figure 1. 3 is not constant nor can it be de-

scribed by a deterministic function of time. This highlights the need for stochas-

tic volatility to be included in any reasonable model. In the benchmark model 

by Platen (2001, 2002, 2003) , the dynamics of volatility are implied through the 

structure of the GOP, resulting in an endogenous stochastic volatility model. 

This is in contrast to models commonly referred to in the literature, where an ex-

ternal stochastic volatility process is introduced, see, for instance, Hull & White 

(1987) or Heston (1993) . This specification of the benchmark Inodelinakes the 

identification of the stochastic volatility of the GOP straightforward. 

Intraday Analysis 

Advances in data technology have made the recording and analysis of high-

frequency data possible. As such, the intraday empirical analysis of financial 

market data has been considered by numerous authors, for example, Dacorogna, 

Gen~ay, Muller , Olsen & Pictet (2001) and references therein. However, the 

modelling and analysis of intraday data is more difficult than, for instance, daily 

data. This is due mainly to the presence of intraday seasonal patterns in high-

frequency data. These seasonalities must be properly accounted for in order to 
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prevent important empirical features of the data from being overshadowed by 

intraday patterns. 

To account for the residual stochastic and seasonal features caused by intraday 

data, the standard benchmark model is extended in Chapter 4 to incorporate 

market activity m( t). Market activity is obtained as the slope of the quadratic 

variation of the square root of the normalised GOP and captures much of the 

short term seasonal and stochastic features of the squared GOP volatility. The 

introduction of market activity gives rise to a market activity time scale. The 

only assumption is that the expected market activity time approaches physical 

time over longer observation periods. This is a natural assumption since seasonal 

patterns do not greatly affect the empirical analysis of data observed over longer 

time intervals. 

Diversified World Stock Indices 

To examine the properties of the intraday benchmark model, three high- frequency 

world stock indices, denorninated in US Dollars, are constructed. It is shown that 

of the high- frequency indices considered, the world stock index based on total 

world market capitalisation displays the largest growth over the period and also 

provides statistical properties that best reflect the benchmark rnodel. There-

fore , it is interpreted as the closest approximation to the exact GOP of those 

considered. 

Chapter 5 assesses the properties of the three intraday world stock indices. We 

concentrate entirely on the diffusion coefficient estimation. For these indices, we 

analyse the properties of the resulting market activity time. Following this, a 

model for the market activity m(t) is deduced and examined. Market activity 

is shown to have a multiplicative diffusion coefficient in addition to a strongly 

mean- reverting drift function with different seasonal patterns in the drift and 

diffusion coefficients. The seasonal pattern in its diffusion coefficient, captured 

by the activity volatility /3( t), in1plies that an activity volatility time scale r can 
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be introduced that deseasonalises the fluctuations of market activity. 

Complete flexibility in the modelling of the drift coefficient of market activity is 

permitted, which is specified via a non- parametric drift function. It is shown that 

in activity volatility time T, the market activity derived from the three indices 

considered has a stationary density. Since the multiplicative diffusion coefficient 

of market activity is already identified, this implies a particular form for the 

market activity drift function. The empirical stationary density of the logarithm 

of market activity is well described by a gamma density. This leads naturally to 

a linear mean- reverting drift function for the logarithm of market activity. The 

logarithm of market activity in activity volatility time m 7 satisfies the SD E 

where the parameters p and 1 characterise the stationary gamma density. Here 

W is a standard Wiener process. 

Currency Denominations of Diversified World Stock Indices 

A key feature of the benchmark approach is that the choice of denomination 

does not change the structure of the dynamics for the GOP. In Chapter 6 the 

analysis of the market capitalisation based world stock index is conducted for a 

further twenty currency denominations. The market activities derived are shown 

to behave in a sim.ilar manner as that for the world stock index when denominated 

in US Dollars. It is also shown that the majority of denominations appear to 

have logarithmic market activity that has approximately a gamma density as 

stationary density. Again , this implies a particular form of the drift function. 

The pairwise relationships of the driving noises of normalised world stock in-

dices and market activities for the different currency denominations are also in-

vestigated. We are able to calculate covariation coefficients between different 

denominations. Using cluster analysis we are able to clearly identify interesting 

groupings of currencies that display similar behaviour. The groupings that result 
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from the fluctuations of the normalised world stock indices seem to be predom-

inantly motivated by economic factors, whereas the groupings that result from 

the market activities appear to reflect regional effects. Note, that these groupings 

change over time as new economic alliances are formed and trading technologies 

and habits change. 

The thesis proposes the use of the intraday benchmark framework for the mod-

elling of financial markets. This is different to standard approaches in the financial 

literature. An alternative parametrisation is provided by the intraday benchmark 

model through the introduction of the market activity process, which appears 

to be more effective than the volatility parametrisation proposed in the widely 

used Black- Scholes- Merton model and its extensions. The suggested concept 

of market activity in this thesis, models the short term stochastic and seasonal 

effects particular to high- frequency data. It allows the consistent modelling of 

the GOPs and provides a largely accurate description of the fluctuations of a 

diversified world stock index in different currencies. 
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Chapter 2 

Parameter Estimation of Discretely 

Observed Diffusion Processes 

In this chapter we review the problem of statistical inference for stochastic pro-

cesses and the various approaches that have been proposed. We examine tech-

niques that have been developed for discretely observed diffusion processes, con-

centrating on estimating function techniques with a brief overview of inference 

for continuously observed diffusion processes. Common definitions in the area of 

parameter estimation are given in Appendix A. 

2.1 Background and Notation 

Consider, for a parameter 'lJ E 8 ~ RP where p E {1 , 2, ... }, the one-dimensional 

diffusion process, X = {X(t) , t 2 0} defined as the solution to the following class 

of stochastic differential equations (SDEs) 

dX(t) = a(X(t); v)dt + b(X(t); '!J)dW(t) (2.1.1) 

where X(O) = x(O) and W = {W(t), t 2 0} is a standard Wiener process on 

the filtered probability space (D, A , A , P19 ), fulfilling the usual conditions, see 

Karatzas & Shreve (1991). We assume that the drift function a(X(t); '!J) and 

the diffusion function b(X ( t); '!J) are known with the exception of the parameter 

vector 'lJ. Moreover, the coefficient functions are assumed to satisfy the usual 

Lipshitz and linear growth conditions, ensuring that a unique solution of (2 .1.1) 

exists for all 'lJ E 8 , see Karatzas & Shreve (1991). The goal is to estimate the 

parameter 'lJ from a discretely observed diffusion process. This situation is more 

realistic , since in practice, it is impossible to observe data continuously. It is 
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assumed that the continuous time process X has been observed at discrete time 

points t 0 < t 1 < t2 , . .. , with values X(t0 ), X(t1 ), X(t2 ) .... We observe a sequence 

of random variables (X(tn)) for n E {1, 2, ... }, which are values of the process 

X , rather than the entire path of the process. Of course, this sequence will not 

contain all the information about the path of X. However , it may be sufficient to 

obtain reasonable parameter estimates. Throughout this chapter, Lln = tn- tn-l 

denotes the time between observations, where n E {1, 2, ... , nt}. Here 

nt = max { n E { 0, 1, ... } : tn :S t}. (2.1.2) 

When the time between observations is fixed , we will sirnply write Ll for Lln. For 

simplicity, throughout the following discussion, we take X to be one-dimensional 

but many results can be generalised to the d-dimensional case. 

The problem of inference for a continuously observed diffusion process is consid-

ered in , for instance, Liptser & Shiryaev (2001) , Prakasa Rao (1999) and Ku-

toyants (1984). When b(X(t); 73) = b(X(t)) , that is, the diffusion coefficient is 

independent of the parameter to be estimated, maximum likelihood estimation can 

be used for inference about the drift parameter. Maximum likelihood estimation 

involves forming a likelihood function and finding the maximum of this function. 

To illustrate the basic idea we let a(X(t); 73) = 73a(X(t)) and b(X(t)) = 1 in 

(2.1.1). The likelihood function is given as 

L,('O) = exp { iJ l a(X(s))dX(s) - ~ l iJ2 a2 (X(s))ds} (2.1.3) 

see, Liptser & Shiryaev (2001). Note that the log-likelihood function is simply 

the logarithm of (2.1.3). The maximum likelihood estimator can be found by 

solving 
L~ ( 73) 

U ( 73) = Lt ( 73) = 0. (2.1.4) 

Here U(73) is known as the score function. Note that L~('13) denotes the first 

derivative of L(·) with respect to 73. The estimators that result are consistent, 

asymptotically normal and efficient. Results regarding more general inference 
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problems using maximum likelihood estimation are available, see, for instance, 

Kutoyants (1984). If the diffusion coefficient depends on the parameter rJ, it may 

be determined using the quadratic variation of the process X at timet, denoted 

by (X)t , see (2.1.6) below. Maximum likelihood estimation may then be applied, 

see, for instance, Florens-Zmirou (1993). Note that if the diffusion coefficient is 

not constant , the estimator that results is biased, see Liptser & Shiryaev (2001). 

Throughout this thesis, ( L )t denotes the quadratic variation of a continuous 

stochastic process L = { L ( t), t E [ 0, T]}, which can be defined as the limit in 

probability 

where ( L) D. ,t is the approximate quadratic variation 

nt 

( L)D.,t = L (L(tn)- L(tn-1)) 2 

n=l 

fortE [0, T]. 

2.2 Approximate Maximum Likelihood 

Estimation for Discretely Observed 

Diffusion Processes 

(2.1.5) 

(2.1.6) 

Ideally, the estimation of parameters from a discretely observed diffusion pro-

cesses would be estimated using maximum likelihood estimation. When the tran-

sition densities are known explicitly, the maximum likelihood estimator can be 

characterised via the log- likelihood function, which can be used to estimate the 

parameter rJ. In the case of equidistant time steps, Dacunha-Castelle & Florens-

Zmirou (1986), prove consistency and asymptotic normality of the parameter 

estimate Jnt as the number of observations nt in (2.1.2) becomes large, regardless 

of the time between observations. Generally, the estimation requires long time 

periods to estimate the drift coefficient. 

12 



However, when the transition densities of X are not known in an explicit form, it 

is necessary to approximate the transition densities in some manner in order to 

apply maximum likelihood estimation. This provides an approximation for the 

likelihood function for 73. 

Many alternatives for the approximation of the likelihood function have been 

suggested. An intuitively appealing approach is to discretise the continuous like-

lihood function using Ito and Riemann integrals. As in the case of continuous 

observations, this assumes that the diffusion function is independent of the pa-

rameter 73. However, estimators for discrete observations resulting from this dis-

cretisation are inconsistent if the time between observations is fixed, see Florens-

Zmirou ( 1989) and Pedersen ( 1995b). This problem can be solved by suitable 

modifications. For example, H. S0rensen (2001) suggests an approximation to 

the continuous time score function that depends on the infinitesimal generator 

and the invariant density for X. This approximation is an example of a simple 

estimating function , see Kessler (2000). Bibby & S0rensen (1995) suggest ap-

proximating the score function by using a martingale estimating function, since 

the score function is itself a martingale. Martingale estimating functions are 

discussed in more detail in Subsection 2.4.1. 

In addition to explicit approximations to the likelihood function, numerical ap-

proximations can also be performed although these techniques can be computa-

tionally intensive. 

2.2.1 Approximations through Simulation 

Pedersen (1995b) and Brandt & Santa-Clara (2002) independently derive a Sim-

ulated Maximum Likelihood technique. The idea of this method is to derive a 

sequence of approximations to the log- likelihood function. This is done by ap-

proximating the true, yet unknown, transition densities of X by first discretising 

the process X and producing a sequence of approximate transition densities. The 

13 



Euler scheme is used to simulate the diffusion process in this interval. Any scheme 

with closed form transition densities can be used to do this, such as the Milstein 

scheme, see Elerian (1998). By assumption, the one-step ahead transition den-

sities of the Euler discretisation are Gaussian. Using this, the integral of the 

transition density of X is interpreted as an expectation, which can be evaluated 

using draws from this distribution. 

The approximate likelihood function can then be shown to converge in probability 

to the true likelihood function as the number of observations increases for all 

{) E 8, see Pedersen (1995a, 1995b) and Brandt & Santa-Clara (2002). This 

implies that the parameters, which maximise the approximate likelihood function, 

converge to the parameters that maximise the true likelihood function. 

An alternative simulated approximation method, based on results in Florens-

Zmirou (1989), is suggested by Nicolau (2002). 

2.2.2 Approximation using Numerical Solutions of the 

Kolmogorov Forward Equation 

Lo (1988) and Poulsen (1999) suggest solving the Kolmogorov forward equation, 

also known as the Fokker- Planck equation, for the transition density of a diffusion 

process. Provided that the drift and diffusion functions are smooth functions, the 

transition density satisfies the Kolmogorov forward equation. This approximation 

of the transition density can then be used to form an approximate maximum 

likelihood (AML) function. 

Poulsen (1999) uses the Crank-Nicolson finite difference technique to solve the 

Kolmogorov forward equation for the transition density and then forms the AML 

function. It is shown that under certain assumptions, the estimator that results 

from AML estimation is consistent and asymptotically normal. Moreover, under 

additional assumptions, the AML estimator is asymptotically equivalent to the 

maximum likelihood estimator. 
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2.2.3 Approximation using Non- parametric Techniques 

A further method of approximating the transition density is given in A'it-Sahalia 

(2002). A closed form sequence of approximations to the log- likelihood function 

is constructed. The approximation is based on a sequence of Hermite approxi-

mations to the true transition density. This results in a proxy for the true log-

likelihood function , which involves the same parameters as the original model. 

A'it-Sahalia (2002) shows that the sequence of approximating log- likelihood func-

tions converges to the true log- likelihood function as the number of approxi-

mations in the sequence increases. Additionally, maximising the approximate 

likelihood function results in an estimator that converges to the true maximum 

likelihood estimator. A'it-Sahalia (2003) extends this work to consider closed 

form expansions for the transition density and likelihood functions of arbitrary 

multivariate diffusion processes. 

Jensen & Poulsen (1999) give a review and comparison of various numerical tech-

niques that have been implemented to approximate the transition densities of a 

diffusion process. The result indicate that , when speed and accuracy are taken 

into account , the Hermitian expansion is superior to other methods considered. 

2.2.4 Bayesian Analysis 

Eraker (1998) and Elerian, Chib & Shephard (2001) discuss the Bayesian analysis 

of discretely observed diffusion processes. The idea is to treat the values of the 

diffusion between any two discrete measurements as missing data and then to 

apply tuned Markov Chain Monte Carlo (MCMC) methods to "learn" about the 

missing data and the parameters. 

Using MCMC, the posterior density can be sampled by simulating a Markov chain 

that has an invariant and limiting density equal to the posterior density. After 

an initial transient stage, the path of the Markov chain provides a sequence of 

draws from the marginal distribution of the posterior and can be used to conduct 
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inferences about iJ. This allows likelihood inference for the stochastic process 

despite the fact that the likelihood function is not explicitly evaluated. 

2.3 Contrast Functions 

Discretising the continuous log- likelihood function can also result in a contrast 

function that can be maximised to estimate iJ, see Yoshida (1992). An alternative 

construction was introduced by Florens-Zmirou (1989) using the Euler scheme to 

discretise the diffusion process X. The log- likelihood function can be formed for 

this discretisation, which results in a contrast for the estimation of iJ. The joint 

estimation of the drift and diffusion coefficient functions was also considered by 

Yoshida (1992). This was performed under two restrictive assumptions involving 

the form of the diffusion coefficient and the rate at which the time between 

observations approaches zero. Essentially, the diffusion coefficient is required to 

be multiplicative so that a diffusion estimator can be based on quadratic variation. 

Kessler ( 1997) relaxes these assumptions and suggests a single contrast to esti-

mate both the drift and diffusion function. To construct the contrast function , 

approximations of the first two conditional moments are derived. This requires 

the observation that the contrast function is the log- likelihood of X , provided the 

transition density is Gaussian. It is shown that the desired estimator i asymp-

totically efficient. No assumption regarding multiplicative noise is required. 

2.4 Estimating Functions 

Estimating functions are functions that consist of the parameter and the observa-

tions. A flexible method of estimating parameters of discretely observed diffusion 

processes is provided. An estimator is obtained by setting the estimating func-

tion equal to zero and solving for the parameter. Estimating functions provide a 

natural method for inference of diffusion processes since the maximum likelihood 

estimator, discussed in Section 2.1, is the zero of the score function. Thus, the 
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score function is a particular estimating function. 

2.4.1 Martingale Estimating Functions 

Bibby & S0rensen (1995) consider a martingale estimating function of t he form 

nt 
Gnt(1J) = L g(~, X(tn-1), X(tn); 1J), 

n=l 

where T4 is given in (2.1.2). This is the form of the score function discussed in 

Section 2.1. It is argued in Bibby & S0rensen (1995) that a natural approximation 

of the score function is of the general form 

N 

g(~ , x, y; 1J) = L aJ(~, x; 1J)hJ(~, x, y; 1J) 
j=l 

where hJ(~ , x, y; 1J) for j = 1, 2, ... , N are given real valued functions satisfying 

the martingale condition 

[ h; (!::. ,X, y; ?J)p( !::., X, y; ?J)dy = 0 

for all~> 0, x E (l,r) and{} E 8 . Here p(~,x, y;1J) is the transition density of 

the process X for a transition from x to y over the time period ~. The aJ are 

weights that are given to the functions hJ . These are derived in Bibby & S0rensen 

(1995) using optimal estimating function theory developed by Heyde (1988) and 

Godambe & Heyde (1987). The weights aJ determine the contribution of the 

functions hj to the estimation of the parameters of the diffusion process. The 

choice of functions hJ is more difficult and depends predmninantly on the diffusion 

process to be estimated. 

Bibby & S0rensen (1995) suggest the linear estimating function 

h1 (~,x,y;1J) = y- F(~,x; rJ) (2.4.1) 

where N = 1 and F(~, x; rJ) = E19(X(tn) IXo = x) is the first conditional moment. 

Linear estimating functions are useful in cases where the diffusion coefficient is 
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known. When this is not the case the linear estimating function is too simplistic 

and does not contain adequate information to estimate the diffusion coefficient. 

A natural extension to the linear estimating function, so that the diffusion coef-

ficient can be estimated, is the quadratic estimating function. Here, h1 is given 

as in (2.4.1) and 

h2(~, x, y; iJ) = (y- F(~, x; iJ))2 - ¢(~, x; 'l9) 

where N = 2 and 

¢(~, x; 'l9) = E((X(tn) - F(~ , x; iJ)) 2 IXo = x), 

is the conditional variance of the process X. Provided that the conditional mean 

and variance are known, the estimators that result from the above estimating 

functions are consistent. However , the estimators can be biased if approxima-

tions have been made to the conditional moments. Kessler & Paredes (2002) 

investigate the asymptotic properties, discussed in Subsection 2.4.3, of the es-

timators obtained from martingale estimating functions when the conditional 

moments are approximated by simulation. It is shown that, provided the number 

of simulations used is sufficiently large and the time step in the simulation is 

sufficiently small , approximations of conditional moments do not greatly affect 

the asymptotic properties of the estimators. 

Both the linear and quadratic estimating functions are examples of polynomial 

estimating functions. These are not necessarily the most effective class of martin-

gale estimating functions. Estimating functions, in some instances, can be fitted 

more closely to the given type of diffusion process by using the eigenfunctions 

of a generator of the diffusion, see Kessler & S¢rensen (1999). The martingale 

property of the estimating function remains by using the martingale property of 

the eigenfunction of the generator of diffusions , see Karlin & Taylor (1981). The 

resulting estimators are consistent and asymptotically normal. This holds with-

out the assumption that the t ime between observations approaches zero, which 
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is often unrealistic. Further results on the identification of martingale estimating 

functions are derived in H. S0rensen (2002). 

A generalisation of martingale estimating functions is given by prediction- based 

estimating functions , see S0rensen (2000). These estimating functions use un-

conditional moments as opposed to conditional moments, which are required by 

martingale estimating functions. Prediction-based estimating functions are use-

ful for estimating non-Markovian processes, such as stochastic volatility models. 

Under certain regularity conditions, asymptotic normality and consistency are 

ensured. 

2.4.2 Simple Estimating Functions 

Kessler (2000) considers a simple estimating function of the form 

nt 
Fnt(1J) = L J(X(tn-I); 1J). 

n=l 

These estimating functions do not have the martingale property. The estimating 

function relies only on X(tn-1), which implies that the nature of the dependence 

structure of the diffusion process can be difficult to characterise. Moreover, the 

estimating function relies heavily on the Markovian structure of the diffusion 

process. It is assurned that 

j f(x; rJ)p(x; iJ)dx = 0, 

where p(x; '!9) denotes the stationary density of an ergodic Markov process. Con-

sistency and asymptotic normality are proven for one-dimensional diffusion pro-

cesses. Kessler (2000) notes that optimality in the sense of Godambe & Heyde 

( 1987) and Heyde ( 1997), characterises simple optimal estimating functions. The 

functions are chosen in a somewhat adhoc manner. However, Kessler (2000) sug-

gests that when a polynomial is used for the function f , it should be of low order. 

H. S0rensen (2001), as mentioned previously, applies a simple estimating function 

to approximate the continuous time score function. 
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2.4.3 Asymptotics of Estimating Functions 

When the estimating function is a martingale, consistency and asymptotic nor-

mality can be verified using the ergodic theorem and the central limit t heorem 

for martingales. 

We consider a martingale estimating function of the form 

(2.4.2) 

fort 2::0, where Gnt and g = (g1 ,g2 , ... ,gp)T are p-dimensional and nt; is given in 

(2.1.2). We denote by '190 the true parameter value where '190 is an interior point 

of 8. The true probability measure is denoted by P190• For a treatment of more 

general settings, see S0rensen (1999) and Bibby, Jacobsen & S0rensen (2003). 

Provided that X is ergodic with stationary density p(x; '19) for '19 E 8 and certain 

regularity conditions are satisfied, see S0rensen ( 1999), the following theorem can 

be proved. 

Theorem 2.4.1 (S~rensen (1999)) Under certain conditions, for every nt, 

there exists an estimator Jnt that solves the estimating equation Gnt ( JnJ = 0 

with a probability tending to one as nt ~ oo. Moreover, we have the limit in 

P-a0 - probability 

and under P190 the limit in distribution 

where 

(2.4.3) 

is a zero mean Gaussian distributed random variable with covariance matrix 

(2.4.4) 
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and the p x p matrix 

A( 'l9o) = { q~ (c! g,(b., '!Jo) ) }P 
J t,J=l 

(2.4.5) 

is assumed to be invertible. 

This theorem ensures the existence of a ynt-consistent estimator provided that 

Gnt is a martingale estimating function. The proof is given in S0rensen (1999), 

where 

qi'o(x, y) = p(x; 'l9a)p(6., x, y; 'l9o) 

is the joint probability density of each pair of neighbouring observations. It 

can also be assumed that A in (2.4.5) is positive definite, however, this stronger 

condition is usually only satisfied by optimal estimating functions and estimating 

functions that are found by maximising a contrast function , see S0rensen (1999). 

Given that Gnt is a martingale and X is ergodic, the combination of an ergodic 

theorem and central limit theorem for martingales is required for the proof of 

the above theorem, see S0rensen (1999). For completeness, we state this theorern 

below where the state space is the open interval (l, r) where -oo :s; l < r· :s; oo. 

For a function f : ( f, r )2 ~ IR we use the notation 

q%',(!) = [ [ f(x, y) p(b., x, y; '!Jo) p(x; 'IJ0 ) dy dx (2.4.6) 

assurning the integral exists. 

Theorem 2.4.2 Suppose the process X has a unique invariant probability mea-

sure under PfJo with density p(x;'l90 ) such that for all values of x E (l,r), the 

transition density p(6., x, y ; 190) is assumed to be zero for all those y E (l, r) for 

which p(y; 190 ) equals zero. Furthermore, suppose that the function f: (l, r) 2 ~ IR 

is such that q~ ( / f I) < oo, then 

under PfJo . Furthermore, suppose that q~ (f2) < oo and that 

ir f(x , y)p(,l\,, x, y; '!Jo)dy = 0 
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for all x E ( l , r). Then we have the following convergence in distribution 

under P190 , where 

denotes a Gaussian random variable with mean zero and variance qi'o (/2
). 

In the case when the estimating function is not a martingale, additional results 

are required. This problem is dealt with in the following chapter. For additional 

details see Bibby, Jacobsen & 80rensen (2003) and references therein. 

The methods discussed in this chapter are not implemented due to the nature of 

the benchmark model discussed in Chapter 4. However, they provide valuable 

tools for parameter inference in circumstances where there is no link from the 

diffusion to drift coefficient. 
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Chapter 3 

Estimation of Discretely Observed 

Diffusions using Transform Functions 

This chapter is an extended version of Kelly, Platen & S0rensen (2004). Here we 

seek to obtain a simple, yet general, estimation method, which provides flexibility 

in the estimation of discretely observed diffusion processes via the use of transform 

functions. The approach presented here lies somewhere between the method of 

contrast functions, see Section 2.3, and that of martingale estimating functions , 

see Subsection 2.4.1. Nevertheless, the method is based on the foundations of 

estimating function theory. One advantage of the method presented here is that 

information is not required regarding the conditional and unconditional moments. 

In principle, stationarity is also not required. 

3.1 Transform Function for a Diffusion Process 

Consider a class of one-dimensional diffusion processes defined by the following 

SDE 

dX(t) = a(t, X(t); 7J)dt + b(t, X(t) ; 7J)dW(t) (3 .1.1) 

for t 2: 0. The initial value X(O) = x(O) is assumed to be A 0- n1easurable. Here 

W denotes a standard Wiener process given on the filtered probability space 

(0, A, A, P{)) , where the filtration A = (At)t;::::o satisfies appropriate conditions, 

see Karatzas & Shreve (1991) or Jacod & Shiryaev (2003). We assume that the 

SDE (3.1.1) has a unique solution, see Kloeden & Platen (1999), for all parameter 

values 73 in a given open subset e ~ JRP, p E {1, 2, ... }. The drift and diffusion 

coefficient functions a(·, ·;73): [O,oo) x 1R---+ 1R and b(·,·;'l3): [O,oo) x 1R---+ JR , 
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respectively, are assumed to be known with the exception of the parameter vector 

rJ = ( rJl, ... , rJP) T E 8. Throughout the discussion , AT denotes transposition of 

A. 

It is our aim to estimate the unknown parameter vector rJ from observations of 

the diffusion process X= {X(t) , t 2: 0}. For simplicity, an equidistant time dis-

cretisation with observation times tn, where 0 =to < t1 < ... < tn < tn+l < ... , 
is assumed to be such that the time step size ~ = tn - tn-l E (0, 1). For t 2: 0, 

the integer nt is introduced as the largest integer n for which tn does not exceed 

t. That is, 

n, = max { n E { 0, 1, ... } : tn $ t} = [ ~] , 
where [x] denotes the integer part of the real number x, see (2.1.2). 

(3.1.2) 

To provide sufficient flexibility for this approach we consider, at the observation 

times t0 , t 1 , t 2 , ... , the original data 

X(to), X(t1), X(t2), ... (3.1.3) 

and the transformed data 

(3.1.4) 

fori E {1, 2, ... ,p}. Here U(·, ·; ·): [0, oo) x ffi. x A~ ffi. is a smooth real valued 

function with respect to t E [0, oo) and x E ffi., where A ~ JR. 

The function U(·,·;.Ai) fori E {1 , 2, ... ,p}, is referred to as the ith transform 

function , and is used to transform the data in a manner that allows us to obtain 

estimates of the unknown parameters. In principle, for each i E {1, 2, ... , p } , a 

different function could be used to estimate the parameters. For fixed .Ai E A we 

obtain, by the Ito formula, the following SDE for the transformed data 

dU(t, X(t) ; .Ai) = L~U(t, X(t); .Ai)dt + L~U(t, X(t); .Ai)dW(t) (3.1.5) 

for t E [0, oo). Here we have used the operators 

0 ( 8 . 8 1 2 . 8
2 

) L19u(t, x) = 8t u(t, x) + a(t, x, 79) 8x u(t, x) + 2b (t, x, 79) Bx2 u(t, x) (3.1.6) 
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and 

(3.1. 7) 

For n E {1, 2, ... , nt}, i E {1, 2, ... , p} and Ai E A we introduce the normalised 

difference 

(3.1.8) 

and the normalised squared increment 

(3.1.9) 

By a truncated Wagner-Platen expansion, see Kloeden & Platen (1999), the incre-

ment of U in (3.1.8) and (3.1.9) can be expressed in terrns of multiple stochastic 

integrals. Thus, we obtain 

U(tn, X(tn); Ai) - U(tn-1, X(tn-1); Ai) 

= L~U(tn-1, X(tn.-d; Ai)(W(tn) - H'(tn-1)) + L~U(tn-b X(tn-1); Ai)(tn- tn--d 

1 1 ( . 1( 2 + LfJLfJU(tn-1, X tn-1), Ai)2 (W(tn)- W(tn-1)) - (tn- tn-1)) 

0 0 ( ( ) . \ ) ( tn - in-1) 2 

+ LfJL.aU tn-1, X tn-1 , 1\i 2 

+ L~L~U(tn-1, X(tn-1); Ai) l:, {_, dzdW(s) 

+ L~L~U(tn-1 , X(tn-·1); Ai) [" [ dW(z)ds 
tn-1 tn-1 

(3 .1.10) 

where R>..i,n,fJ(tn, tn-1, X(tn)) is the corresponding remainder term, as follows from 

Kloeden & Platen (1999). The expansion (3.1.10) can also be obtained by appli-

cation of the Ito formula to U and then repeated to L3U and L~U. The first term 

in (3.1.10) has mean zero and is the leading term of the expansion. Note that the 

third , fifth and sL-xth terms also have mean zero but are of a higher order than 

the first term. In ( 3 .1.1 0) the order of the first term is V/5., that of the second 
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and third term is .6 and that of the fourth term is .6 2 . The order of the fifth and 

sixth term is .6 ~ . The remainder term has mean and variance of order .6 3 . 

Using (3.1.8) and (3.1.9), we can construct estimating functions that exploit the 

structure of the first and second term of the above increment (3.1.10). To do this , 

we define 

Fn(73) = (F~l)(?J)T,p~2)(73)T)T 

with F~j)(73)T = (F?~(73), ... , Fj!~(73)), j E {1, 2} where 

i E { 1, 2, ... , q} and 

(3.1.11) 

(3.1.12) 

i E {1, 2, ... , q} for ?3 E 8 and suitably chosen values of Ai E A. It is not 

necessary that the number of Ai 's be the same for pJl) ( 73) and F~2) ( 73) and they 

need not have the same value for the two functions. This assumption simplifies 

the exposition. 

A class of estimating functions is then given by 

1 nt 

K(?J , t, .6) = - L M(73) Fn(73), 
'nt n=l 

(3.1.13) 

where the p x 2q matrix valued function M(73) = lvf(?J, tn--b X(tn--d, .6) is free to 

be chosen appropriately. Throughout the chapter the dependence of a weighting 

matrix and its elements on tn_1 , X(tn_1) and .6 will be suppressed. The esti-

mating function K(730 , t , .6) , where ?30 is taken to be the true parameter value, 

has expectation of order .6. Thus, when the observation interval .6 is suffi-

ciently small, the expectation of K(730 , t, .6) is approximately zero. Essentially, 

the approach adopted here is to approximate the conditional moments of the 

transformed diffusion process using the expansion in (3.1.10) . This is similar to 

the approach in Kessler ( 1997) , where closed form approximations for the first 
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two conditional moments are derived and used to construct a contrast estimator 

for the parameters in the drift and diffusion functions . 

The estimating function given in ( 3 .1.13) is slightly biased. To determine the 

optimal weighting matrix M* ( 11), we consider the unbiased estimating function 

K 0 (11, t , ~) obtained by compensating K(11 , t , ~)such that 

K 0 (11, t , ~) = !._ t M(11) (Fn(11)- Fn(11)). 
nt n=1 

(3.1.14) 

Here Fn(11) = E~(Fn(11)IX(tn_ 1 )) is the compensator for Fn(11) and is of order 

~ . The optimal choice for the weighting matrix M(11) in the unbiased estimating 

equation (3.1.14) , in the sense of Godambe & Heyde (1987) , can be derived using 

the method outlined in Heyde ( 1997). For details regarding the case of diffusion 

processes , see Sorensen (1997). Here the optimal weighting matrix is given by 

M*(11) = B *(11) V* (11)- 1 , (3 .1.15) 

where V*(11) is the 2q x 2q conditional covariance matrix 

and B*(11 ) = (B*(1)(11) , B*(2)(11) ) with B*(k) (11 ), k E {1 , 2} , denot ing t he p x q 

rnatrix where the ( i , j)th entry is 

s:,;k) (#) = s•(k)(t? , tn- 1, X(tn-1))i, j = ED (c!, [FJ.~ (#)- PI~(#)l l X(tn- 1)) . 

The value for each ,\ should be chosen in such a way that the conditional covari-

ance matrix V* ( 11) is invertible. 

Keeping only the leading terms, we obtain 
_ 1 nt _ 

K(11 , t, ~) = - L M(11) Fn(11), 
nt n=1 

(3.1.16) 

where M(11) = B(11)V(11)-1 . Here B(11) = (B(1)(11), B(2)(11)), where the (i , j)th 

entry of the p x q matrices B (1) ( 11) and B(2) ( 11) are 

s<1l(t?),,J = c!, L3 U(tn-1> X(tn-1); .\J) (3.1.17) 

27 



and 
(2)( )· .- _!_( 1 ( ( )· ·))2 B 1J t,1 - B1Ji LrJU tn-1, X tn-1 , A.1 , (3.1.18) 

respectively. Moreover, 

V(1J) = ' { 
vn(1J) v12(1J) } 
v21 ( 1J) v22 ( 1J) 

where the (i,j)th entry of the q x q matrices V11 (1J), V22 (1J) and V12 (1J) are 
1 

V11 
( 1J)i,j = L\ L~U( tn-1, X (tn-1); A.i) L~U( tn-1, X ( tn-1); A.j), (3.1.19) 

V22 ( 1J)i,j = 2 [ L~U( tn-1, X ( tn-1); A.i)L~U(tn-1, X( tn-1); Aj)] 2 , (3.1.20) 

and 

v12(1J) . . 
t,] (3.1.21) 

= 2L~U(tn-1, X(tn-1); ,\i)L~U(tn-1: X(tn-d; A.j) L~U(tn-1, X(tn-1); 'Aj) 

+ 2L~U(tn-1, X(tn-1); A.i)L~U(tn-b X(tn--1); A.j) L~L~U(tn-1 , X(tn-1); A.j) 

+ L~L~U(tn-1, X(tn-d; A.i) [L~U(tn-1, X(tn-1); A. j)] 2
, 

The weighting matrix M(1J) in (3.1.16) is fixed sample optimal, see Godambe & 

Heyde (1987) and Heyde (1997). The weighting matrix results in an estimating 

function (3.1.16) , that is, to the order of approxiination used l closest within the 

class of estimating functions of the form (3.1.13) to the corresponding, usually 

unknown, score function. For example, if the diffusion process is ergodic, it can 

be proved that a fixed sample optimal martingale estimating function is also 

asymptotically optimal or Heyde- optimal, see Heyde ( 1997). The estimating 

functions proposed in this chapter are approximations of martingale estimating 

functions to the order ~. 

For given transform functions U, with parameters A.i E A, i E {1, ... , q}, a p-

dimensional estimating equation is obtained, 

i<(1J, t, ~) = o 
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for t ~ t 1 , see (3.1.16). Assuming that the resulting system of p equations 

has a unique solution, we obtain for the particular SDE (3.1.1), an estimator 

J = (J1 , ... ,19'P)T for the parameter vector 19. Note that the vector of estimators, 

J, depends on t, .6. , -\1 , ... , Ap and the observed data. Appropriate values of Ai for 

i E { 1, 2, ... , p} can be found by exploiting asymptotic properties of the estimating 

functions as described in the next section. The choice of the Ai fori E {1, 2, ... ,p} 

determines the resulting system of equations. 

A simpler, although less efficient, estimation procedure can be used when the 

parameter 19 is written as 19 = (Q, () T. Here it is assumed that the p1-dimensional 

parameter g appears only in the drift coefficient, while the diffusion coefficient 

depends only on the p2-dimensional parameter (. In this case we first estimate ( 

by solving H((, t, .6.) = 0, where 

ii((, t, .6.) = ~ f= B (2)(() v22(()-1 p~2)(() 
nt n=l 

(3.1.22) 

with the p2 x q matrix B(2) ( () given by 

(2)( ) .. - J_ ( 1 ( ( )· \ ·))2 B ( t ,J - B(i L19U tn-1, X tn- 1 , /\J , (3.1.23) 

and V22 (() = V22 (19) given by (3.1.20) . Note that H((, t, .6.) does not depend on 

(}. Next {}can be estimated by solving G(g, (, t, .6.) = 0, where ( is the estimator 

of ( previously obtained, and 

(3.1.24) 

with the p1 x q matrix B (1)(Q, () given by 

B (1l(r!,()i,J = 8~,L3U(tn-t,X(tn-t); >.,) . 
I;;; 

(3.1.25) 

and V11 (Q, () = V11 (19) given by (3.1.19). The estimating functions G(Q, (, t , .6.) 

and H((, t , .6.) are, to the order of approximation used, optimal within the classes 

of estimating functions 

(3.1.26) 

29 



and 

H((, t, ~) = _!:._ t M(2)(()F~2)(() 
nt n=l 

(3.1.27) 

for the estimation of (} and (, respectively. The optimal martingale estimating 

function for the form (3.1.14) is the optimal combination of the optimal mar-

tingale estimating functions , which (3.1.22) and (3.1.24) approximate, see Heyde 

(1997) and Bibby (1994). 

3.2 Asymptotics 

The proposed transform function method is designed to encompass both station-

ary and nonstationary diffusion processes. Despite this, it is advantageous to 

analyse the asymptotic behaviour and bias of the parameter estimators for some 

given class of real valued diffusion processes. We assume in this section that X 

is ergodic and described by the SDE (3.1.1) with time homogeneous coefficient 

functions 

a(t, x; '19) = a(x; 79) (3.2.1) 

and 

b(t, x; '19) = b(x; '19) (3.2.2) 

for t ~ 0, x E JR and '19 E 8. We use as state space the interval (.e, r) where 

-oo ~ .e < T ~ oo. For given parameter vector '19 E 8 , the density of the scale 

measures: (.e , r) ~ [0, oo) is given by the expression 

( rx a(y; ?J) ) 
s(x; '19) = exp -2 }Yo b2(y ; '19) dy 

for x E (f,r) with some reference value y0 E (f,r). 

If the following two conditions 

and 

l r lyo 
s(x; '19) dx = s(x; '19) dx = oo 

Yo l 

l r 1 
-----dx<oo 

e S (X ; '19) b2 (X ; '19) 
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are satisfied, then it is well known that X is ergodic with stationary density 

_ C(79) ( lx a(u; 79) ) 
p(x; 79) = b2(x; 79) exp 2 yo b2(u; 79) du (3.2.6) 

for x E ( .e, r) and 79 E 8. The constant C( 79) results from the normalisation 

condition 

[ p(x; ?J)dx = 1. (3.2.7) 

To prove the existence, consistency and asymptotic normality of the estimators 

we introduce the following conditions and notation where, essentially, we follow 

S0rensen (1999). We denote by 790 the true parameter value, where 790 is an 

interior point of 8. The true probability measure is denoted by P190• Additionally, 

let p(tl, x, y ; 790) be the true transition density of the observed diffusion process X 

for a transition from x toy over a time period of length tl > 0. Throughout the 

remainder of this section we take tl to be fixed. We consider estimating functions 

of the form 

(3.2.8) 

for t ~ 0 and where Gt and 9 = (91 , 92 , ... , 9p) T are p-dimensional. Furthermore, 

we assume that X is stationary and impose the condition that X is geometrically 

a - mixing. For a definition of this concept, see, for instance, Doukhan (1994). 

For a given one-dimensional, ergodic diffusion process .X , there are a number of 

relatively simple criteria ensuring a-mixing with exponentially decreasing mixing 

coefficients. We cite the following straightforward and rather weak set of con-

ditions used in Genon-Catalot, Jeantheau & Laredo (2000) on t he coefficients a 

and b that are sufficient to ensure geometric a-mixing of X. 

Condition 3.2.1 

(i) The function a is continuously differentiable and b is twice continuously 

differentiable with respect to x E (.e, r) , b(x; 79o) > 0 for all x E (.e, r) , 

and there exists a constant K > 0 such that la(x; 79o)l ~ K(1 + lxl) and 

b2(x ; 790) ~ K (1 + lxl 2
) for all x E (.e, r). 
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{ii) b(x;'l90 )p(x,'l9o)-+ 0 as x l f and xi r. 

{iii) -y(x~t!o) has a finite limit as x l f and x i r, where 

2a(x; '190) 
r(x; rOo) = axb(x; rOo) - b(x; rOo) . 

Each pair of neighboring observations (X(tn_1), X(tn)) has the joint probability 

density 

q~0 (x,y) = p(x;'l9o)p(f1,x,y;'l9o) (3.2.9) 

on (f,r) 2 . For a function f: (f,r) 2 -+ ffi.k, k E {1,2, ... }, where we assume that 

the following integral exists, we introduce the vector valued functional 

qt,U) = [ [ f(x, y) p(6., x, y; >'Jo) p(x; >'Jo) dy dx. (3.2.10) 

For our purposes, we cannot assume that the estimating function in (3.2.8) is 

unbiased. Instead, we make the following assumption. 

Condition 3.2.2 There exists a unique parameter value i3 that is an interior 

]Joint of 8 such that 

q~o (g(f1 , iJ)) = 0. (3.2 .11) 

Note that the equation in Condition 3.2.2 is a vector equation with the zero-

vector on the right hand side. We can now impose conditions on the estimating 

function (3.2.8), that are similar to those used by Barndorff-Nielsen & S0rensen 

(1994) and S0rensen (1999). 

Condition 3.2.3 

{i) The function gi(f1, x, y; ·) : 8 -+ ffi. is twice continuously differentiable with 

respect to '19 E 8 for all x, y E ( f, r), and i E { 1, 2, ... , p}. 

{ii) The function 9i(f1, ·, ·; '19) : (f , r) x (f, r) -+ ffi. is such that there exists a 

6 > 0 with q~(gi(f1, '19) 2+6) < oo for all '19 E 8 and i E {1, 2, .. . ,p}. 
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(iii) For the partial derivatives 
a 

aiJj gi(~, x, y; '19) and (3.2.12) 

where i,j, k E {1 , 2, ... ,p} , there exists for every {)* E 8 a neighbor-

hood N( '19*) C 8 of {)* and a non-negative random variable L( iJ*) with 

EfJo ( L ( {)*)) < oo such that 

I a~; g, (~,X, y ; '!9) I ::; L( '!9') and I 8'!9~~k g, (~.X, y ; '!9) I ::; L( '!9') 
(3.2.13) 

forall'19EN(iJ*), (x,y) E (f,r) 2 , andi,j,kE {1 ,2, ... ,p}. 

(iv) The p x p matrix 

- { 6. ( a - ) }p A(iJo,'19) = qfJo aiJjgi( t1 , ·, ·;iJ) i,j= l (3.2.14) 

is invertible. 

Theorem 3.2.4 Suppose Conditions 3.2.2 and 3.2.3 are satisfied. Then for every 

t > 1:1 , there exists an estimator Jnt that solves the system of estimating equations 

with a probability tending to one as nt --* oo. Moreover, we have the limit in 

PfJo -probability 
. " p 19 0 _ 

hm '19nt = '19 (3.2 .15) nt -400 
and under PfJo the limit in distribution 

lim .fo;( Jnt - iJ) :!:: R , (3 .2.16) nt-400 
where 

(3.2.17) 

is a p-dimensional, zero mean Gaussian distributed random variable with covari-

ance matrix A(iJ0 ,iJ)-1v('l90 ,iJ)(A(iJ0 ,i9)-1)T, where 

(3.2.18) 
00 

k=l 
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Under the conditions imposed, the covariances in the infinite sum in (3.2.18) 

tend to zero exponentially fast as k --+ oo, so the sum converges quickly and can 

usually be well approximated by a finite sum with relatively few terms. 

The theorem can be proved in complete analogy with the proof of Theorem 3. 6 

in S0rensen (1999). The only difference is that the martingale limit theory used 

in that paper must be replaced by results for a-mixing processes because the 

estimating functions considered here are not martingales. Let us briefly outline 

the necessary limit results. By the ergodic theorem, one has 

(3.2.19) 

Note, from Condition 3.2.2 the limit is zero for f)= 19. 

Under the conditions imposed, we have the following central limit theorern: 

(3.2.20) 

under P{)0 , where 

F rv N(O, v('130 , 19)) (3.2.21) 

denotes a p-dimensional Gaussian random variable with mean zero and covariance 

matrix v('130 ,i3) given by (3.2.18), provided that the matrix v('130 ,19) is strictly 

positive definite. This follows from Theorem 1 in Section 1.5 of Doukhan (1994) 

by application of the Cramer-Wold device. The condition that X is geometrically 

a-mixing is actually stronger than what is required for the central limit theorem to 

hold. Minimal, but more technical conditions can be found in Doukhan, Massart 

& Rio (1994). 

It is clearly desirable to use estimating functions for which 19 is close to the 

true parameter value '13 0 . For the estimating function G given by (3.1.24) , it 

follows from (3.1.10), that the leading term in an expansion in powers of ~ of 

q~ (g(~, '13)), from Condition 3.2.2, is ~~m('130 , '13), where 

m('13o,'l3) = ErJo (B(l)(Q,() yll(Q,()-1 Sn('13))' 
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given 

We could choose the transform function U and the value of Ai to make lm(190 , 190 )1 

as small as possible in an attempt to minimize the bias of the estimating function. 

However , we can expect to achieve a good approximation to iJ by solving the 

equation m( 190 , 19) = 0 with respect to 19. By an expansion of m in 19 around 190 , 

we find that 
AQ - AQ rv (om( 19o, 19o)) -

1 
(AQ AQ ) vo v - [)19T m vo' vo . (3.2.23) 

Here ~~~·~) denotes the p x p-matrix, where the ( i, j)th entry is am~1°'~) . To 

reduce the distance between iJ and 190 , it therefore seems appropriate to choose 

the transform function U and the values of A1, ... , Ap in a way that makes the 

right-hand side of (3.2.23) as small as possible. The estimating functions if and 

k can be treated in a similar manner. However, the resulting expressions for 

m( 19o, 19) are more complicated. 

A different asymptotic scenario could have been considered, namely, t hat ~ goes 

to zero sufficiently fast as nt tends to infinity, see, for instance, Prakasa Rao (1988) 

and Kessler (1997). In such a scenario the estimators proposed here would be 

consistent. However, the kind of asymptotics studied in this section illustrate 

more clearly the advantage of the transform function approach. 

3.3 Affine Diffusions 

We now introduce a specific class of affine diffusions that will aid us in highlight-

ing the features of the proposed methodology. Consider the affine SDE for the 

shifted square root process 

(3.3.1) 

for t ~ 0, where both the drift function a(t, x; 19) = 191 + 192x and squared dif-

fusion coefficient function b2 (t , x; 19) = 193 + 194x are affine. In the following , the 
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parameter vector r{} = ( 'l31 , 'l32 , 'l3 3 , 'l34) T E IR4 shall be chosen such that the process 

X= {X(t), t 2: 0} is ergodic. T his happens when either 

r{}4 = 0 
' and (3 .3.2) 

or 

and (3 .3.3) 

In the first case, the Ornstein-Uhlenbeck process, the process X lives on the whole 

real line and the stationary distribution is Gaussian with mean - * and variance 

- (2-a;2 ). In the latter case, the process X lives on the interval E = (y0 , oo) with 

y0 = - ~! . The stationary density for such an ergodic affine diffusion is of the 

form 

(3.3.4) 

for X E E = (yo, oo), where r(-) denotes the Garnma function. In this case the 

stationary mean is 

100 rJl 
xp(x)dx = - r{}2 

YO 
(3.3.5) 

and the stationary second moment has the fonn 

(3.3.6) 

Note that the stationary density in (3 .3.4) is a shifted Gamma distribution. 

3.4 Power Transfortn Functions 

To illustrate the transform function method for affine diffusions we need to specify 

a class of transform functions. Let us consider the power transjoTm function, 

which is one of the most tractable transforms. We set 

U(t , x ; A) = x>- (3.4.1) 
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for t E [0, oo) , x E ( f , r) with A > 0. Setting (} = ( 191, 192) and ( = ( 193 , 194 ) whilst 

letting M (1) (Q, () and M (2) ( () be the identity matrix, we obtain from (3.1.26) 

and (3.1.27) , the estimating functions 

with 

Fi~~(() = (Q>. i,n,tl- (L~U(tn-1 , X(tn-1) ; -\i)) 2
) 

for i E {3, 4} and 

where 

Fi~~ (Q , () = (D>-i,n,tl - L~U(tn-1, X (tn-1) ; -\i)) 

for i E {1 , 2}. For the affine diffusions we have by (3. 1.6) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

(3 .4.5) 

L~U( tn-1, X ( tn- 1); -\i) = ( 191 + 192 X ( tn- 1) )-\iX ( tn- 1)>-i-1 (3 .4.6) 
1 + 2(193 + 194 X (tn- 1)) -\i(Ai- l )X(tn-1) >-i- 2 

and by (3.1. 7) 

L~U(tn- 1 , X(tn- 1); Ai) = -\iX(tn-1 )>-i- 1) 193 + 'l?4 X(tn-1) · (3.4. 7) 

We obtain from (3 .1.9) , (3.1.27) , (3.4.2) and (3.4.7) the estimating function 

(3 .4.8) 

fori E {3, 4} for two different values -\3 , )q > 0. Here we have used the notation 

(3.4.9) 

and A~ = A~0 '0 (-\i), which refers to an equidistant t ime discretisation of step size 

~. 

Similarly, we obtain from (3. 1.8) , (3.1.26) , (3 .4.4) and (3.4 .6) the estimating 

function 

Gi (Q, (, t , ~) = Cll (-\i, 193
, 194

) -191 -\iA~ -1 - 192 -\ iA~ 
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with 

(3.4.11) 

for i E {1, 2} for two different values -\1 , -\2 > 0. 

It follows from (3.1.10) , properties of multiple stochastic integrals , see Kloeden 

& Platen (1999), and the existence of all moments of positive order for X that 

. . (1~1[ 0 22 hm E(Hi((, t , ~)) = hm E - L...t ~ (L{}U(tn-1,X(tn-1) ; -\i)) ~ 
nt---+oo nt---+00 T4, n=

1 

1 1 . 2~2 

+ (L19L19U(tn-1, X(tn-1), -\i)) 2 
~2 

+ L~U(tn-1 , X(tn-1); -\i)L~L~U(tn-1 , X(tn-1); -\i)2 

+ L~U(tn-1, X(tn-1); A;)L3L~U(tn-1 , X(tn-1); A,) ~
2

]) 

+ ~2 E(R1((, t, ~' -\i)) 

= ~ { oo ((L~U(1, y; -\i)) 2 + ~(L~L~U(1, y; -\i)) 2 

}yo 2 

+ ~L~U(1, y; -\i)L~L~U(1, y; -\i) 

+ ~L~U(l , y; A;)L3L~U(l, y; A,)) P(y)dy 

+ ~ 2 E ( R2 ( (, 1, ~, Ai)) . ( 3. 4.12) 

Here p(y) is given by (3.3.4), and E(RJ((, t, ~' Ai)), for j E {1, 2} and i E {3, 4} 

are finite. Similarly, we obtain 

lim E ( G i ( Q, (, t, ~)) = 
nt---+00 

Ll ioo G(L3L3U(l, y; A,))) p(y) dy + Ll~ E(R;(e, (, 1, Ll, A,)), 

where E(R4 (Q, (, t, ~' Ai)), fori E {1 , 2} are finite. 

(3.4.13) 

Note that if the time between observations ~ tends to zero, then the expectation 

of the functions Hi and Gi will approach zero. By setting the estimating functions 

to zero, we obtain the linear system of four estimating equations 

O = A~1,o(-\i) __ J3(-\i)2 A~>.i- 1 ) _ J4(-\i)2 A~>.i-1 
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fori E {3,4} and 

(3.4.15) 

for i E {1, 2}. 

As discussed previously, the values of .\ for i E {1, 2, 3, 4}, should ideally be 

chosen such that the estimator bias is minimized. Here we choose them based 

on a more practical consideration. Intuitively, the values chosen for the Ai, 

i E { 1, 2, 3, 4} should remain small, since large values of Ai would result in trans-

form functions that produce unstable estimating functions with terms that may 

increase rapidly over time. Furthermore, simple explicit solutions of the system of 

equations (3.4.14) and (3.4.15) can be obtained by choosing small integer values. 

A convenient choice is A1 = A3 = 1, A2 = A4 = 2. Using these values for Ai for 

i E {1, 2, 3, 4} we obtain the following four equation for the estimators , 

J1 + A~J2 = C~( 1 ,J3,J4 ) 

A1J1+A2J2 = ~C (2 J3 a4) 
· ~ ~ 2 ~ ' ' 

J3 + A~J4 = A~1,o( 1 ) 

A2 J3 + A3 J4 _ 1 Ao,1,o( 2) 
!::. ~ - 4 ~ . 

This system has the explicit solution 

Jl = Ct\(1, J3 , J4) _ A~J2 
1 " 3 " 4 1 " 3 " 4 J2 = 2C~(2,19 ,19)- A~C~(l , O ,rJ) 

A~- (A~) 2 

J3 = A~1,o(l) _ A~J4 

1A0,1,0(2)- A2 A0,1,0(1) J4 4 ~ ~ ~ 

- Ai -A~A~ 

(3.4.16) 

(3.4.17) 

Here we have derived explicit expressions for the estimators of the given class 

of affine diffusions using power transform functions. The illustrated transform 

function method can be extended to other classe of diffusions including non-

ergodic and multi-dimensional diffusions. If no explicit solution of the system 
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of estimating equations is available, then numerical methods can be applied to 

identify their solution. 

3.5 Example 

To illustrate the practical applicability of the proposed transform function 

method, we consider an example for the above affine diffusion given in (3.3.1). 

Sample paths of this process are simulated using two different simulation schemes. 

Firstly, a Wagner-Platen order 1.5 strong scheme, see Kloeden & Platen (1999), 

is used. The scheme has the form 

X(tn) = X(tn-1) + (191 + 192 X(tn-1))~ + V193 + 194X(tn-1)~Wn 

+ ~192 (73 1 +192X(tn-1))~2 + ~194(~W~- ~) +192vf193 +194X(tn-d~Zn 

+ (194(191 + v2 X(tn-1)) - (194)2 ) (~W ~- ~z ) (3 51) 
2J193 + 194 X(tn- 1)' 8J193 + 194X(tn-1 ) n n ' .. 

3 

where~ Wn = v'Kc1n and ~Zn = 6.2'1 ( E1n +~). Here E1n and E2n are independent , 

standard Gaussian random variables. Additionally, the balanced implicit scheme, 

introduced by Milstein, Platen & Schurz (1999), is also used to simulate t he affine 

diffusion. This scheme has the forrn 

X(tn) = X(tn- 1) + (191 + 192 X(tn-1))~ + V193 + 194X(tn-1)~Wn 

+ Cn(X(tn-1) - X(tn)) 

with ~ Wn defined as above. Here the function Cn is chosen to be 

Unknown Drift and Diffusion Functions for T = 20 

(3.5.2) 

The affine diffusion is simulated with 20,000 steps over the time period [0 , T], 

with the parameters set to 191 = 0.01, 192 = -0.01: '193 = 0.01, 194 = 0.01 , T = 20 
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and X ( 0) = 1, see Figure 3 .1. There is no significant difference in the paths 

obtained when simulated by t he different numerical schemes. The parameters 

are estimated from the path shown in Figure 3.1 by application of the estimators 

given in (3.4.17), using every tenth observation only in the estimation procedure. 

Thus ~ = 0.009, so we expect the estimator to be consistent. 

0 5 10 15 20 

Figure 3.1: Simulated sample path of the affine diffusion with 191 = 0.01 , 

192 = -0.01, 193 = 0.01 and 194 = 0.01. 

The evolution of the estimators through time is shown in Figures 3.2 and 3.3. 

There is substantial variability of the drift estimators as they evolve over time. 

This is to be expected since the observed trajectory in Figure 3.1, shows only 

one substantial change in direction. The estimates of the diffusion parameters 

are relatively stable as can be seen frorn Figure 3. 3. 

0.1 --theta 1 

0. 05 

- 0.05 

-0. 1 

0 10 15 20 

Figure 3.2: Estimates of the drift parameters ?91 and ?92 . 
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0.01.4 -- theta 3 

0. 01.2 

1.5 

Figure 3.3: Estimates of the diffusion parameters -03 and -04 . 

To study the variability of the estimators, results from the estimation of 1, 000 

simulated paths are shown in Table 3.1. As before, we have used every tenth 

observation and for comparison, we have also used every twentieth and fiftieth 

observation for the estirnation where ~ = 0.019 and ~ = 0.049, respectively. 

The corresponding number of observations used are given in the first column of 

Table 3.1. The mean and standard deviation of the estimators are given in the 

corresponding columns of Table 3.1. It is clear that, on average, the estimates 

are reasonably accurate. We see that the accuracy of the estimators for the 

drift parameters increases slightly as the tin1e between observations is decreased. 

More clearly, there is a notable decrease in the variance of the estimates for the 

parameters of the diffusion coefficient as the time between observations decreases. 

Note that the standard deviation for the estimates of the drift parameters is 

substantially greater than that of the estimates of the diffusion parameters. 

The estimation is also performed for the shorter observation period T = 10. The 

diffusion process in (3.3.1) is sirnulated using 10,000 steps with the parameter 

settings as discussed above. In order for the time between observations to remain 

unchanged, the number of simulated points is halved. Results using the estimat-

ing equations in (3.4.17) for 1, 000 simulated paths are given in Table 3.2. It is 

clear that there is little change in the accuracy of the estimates for the diffusion 

coefficients. The standard deviation and mean of the estimators of the diffusion 
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2220 0.0101 -0.02087 0.0080 0.0081 

(0.0286) (0.0394) (0.0006) (0.0009) 

1050 0.0102 -0.0291 0.0090 0.0090 

(0.0301) (0.0411) (0.0010) (0.0012) 

408 0.0102 -0.0292 0.0097 0.0096 

(0.0309) (0.0420) (0.0016) (0.0018) 

Table 3.1: Mean and standard deviation of estimators for the drift and diffusion 

coefficients when T = 20. 

1110 0.0104 -0.0192 0.0086 0.0088 

(0.0407) (0.0482) (0.0009) (0.0008) 

525 0.0109 -0.0194 0.0094 0.0091 

(0.0421) (0.0506) (0.0014) (0.0018) 

204 0.0110 -0.0198 0.0096 0.0096 

(0.0442) (0.0521) (0.0019) (0.0023) 

Table 3.2: Mean and standard deviation of estimators for the drift and diffusion 

coefficients when T = 10. 

parameters are relatively unchanged. However, there is an increase in the stan-

dard deviation for the drift estimates. The need for a long observation interval 

to reliably estimate the drift coefficients is apparent from this study. 

The estimators in Figures 3.2 and 3.3 and Tables 3.1 and 3.2 appear to have 

some bias. In particular, the diffusion coefficient parameters are underestimated. 

In theory, this could be rectified by simply using the compensated estimating 

functions in (3.1.14). However, in practice, when .6. is small, the effect on the 

estimated parameter values is minimal due to the presence of .6. in the compen-
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- 30 -10 10 30 50 

Figure 3.4: Gaussian quantile plot for J1 . 

sators. 

Alternatively, it may be possible to eliminate the leading error term, which is a 

multiple of the time between observations. This is done by combining estimating 

functions in a way that the resulting expectation is small. This was tested and 

the results suggest that such bias- reduced estimators overcompensate for the bias 

present in the estimators in the given example. 
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0 
0 

- 70 -50 - 30 - 10 

Figure 3.5: Gaussian quantile plot for J2 . 

10 

Another simple way of correcting for the bias in the method is to artificially 

simulate the affine diffusion with the biased parameter estimates. By correcting 

for the observed bias , new estimates are obtained that can be used for an improved 

simulation. This procedure can be repeated until the biased parameter estimates 

are reasonably matched by the sirnulated results. The pararneter estimates of the 

artificially simulated diffusion process may then be interpreted as good proxies 
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for the true parameters. 

The normality of the estimators is illustrated in Gaussian quantile plots shown 

in Figures 3.4, 3.5, 3.6 and 3. 7 for the case T = 20. The quantile plots indicate 

that the distributions of the parameter estimates J1 , J3 and J4 are close to 

Gaussian. The distribution of J2 exhibits some larger deviations from a Gaussian 

distribution. These deviations are also reflected in the estimates given in Tables 

3.1 and 3.2. 
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Figure 3.6: Gaussian quantile plot for J3 . 
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Figure 3. 7: Gaussian quantile plot for J4 . 

Unknown Drift and Diffusion Functions for T = 1, 000 

Of interest is the length of the observation period T required such that the drift 

estimators also converge to the true parameter values using the system in (3.4.17). 
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For the affine diffusion process in (3.3.1) with the same parameters as above, 

Figure 3.8 shows a simulated path with 100, 000 steps where T = 1, 000. Note 

that in contrast to the simulated path shown in Figure 3.1, this path shows a 

number of changes in direction. 

J. 

0 

0 200 400 600 BOO 1000 

Figure 3.8: Simulated sample path of the affine diffusion when T = 1, 000 with 

'l91 = 0.01, 'l92 = -0.01, 'l93 = 0.01 and 'l94 = 0.01. 

The evolution of the estimators that result for this path are shown in Figures 3.9 

and 3.10. It is clear that the diffusion coefficients are estimated reasonably soon 

with little variability about the estimates. Note that the distance between tick 

marks on the vertical axis in Figure 3.10 is 0.00025. However, the drift estimates 

display significant variability and take rnuch longer than the T = 20 years, as 

shown in the previous example, before convergence to the true parameter values 

is apparent. In fact, it appears that at least T = 500 years is required to be 

reasonably confident that the drift estimates are reliable. This may reflect the 

fact that the estimators are the solution of a system of estimating equations. 

In this sense, the value of an individual estimate relies on those of the other 

estimated parameter values. If one estimator does not stabilise, neither will the 

remaining estimators. This occurs despite the relatively fast stabilisation of the 

diffusion estimators. 

Figure 3.11 and 3.12 show the Gaussian quantile plots for the estimators shown 

in Figure 3.9. It is clear that with the increased time, the estimators for the drift 
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Figure 3.9: Estimates of the drift parameters J1 and J2 when T = 1, 000. 
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Figure 3.10: Estimates of the diffusion parameters J3 and J4 when T = 1, 000. 
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Figure 3.11 : Gaussian quantile plot for J1 with T = 1, 000. 

47 



5 

0 

0~ 
-5 

0 

-10+---~----~----~--------~--------~~--~--~ 
-4 -2 0 2 

Figure 3.12: Gaussian quantile plot for J2 with T = 1, 000. 

coefficients J1 and J2 are reasonably close to Gaussian. 

Known Drift Function and Unknown Diffusion Function for T = 1 

It appears that the time required to estimate the diffusion function is far shorter 

than T = 20 years. To illustrate how the estimators in (3.4.17) of the diffusion 

function perform, we assume that the estimators of the drift function have con-

verged to the correct values and estimate only the diffusion function. Note that 

this is not a study where optimal estimators are designed. Our aim is to clarify 

the length of the observation period required T, such that the estilnators stabilise. 

1.25 
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1.1 
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Figure 3.13: Simulated sample path of the affine diffusion when T 

731 = 0.01, 732 = -0.01, '133 = 0.01 and 734 = 0.01. 
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We simulate a path of the solution of the affine SDE (3.3.1) with 100, 000 simu-

lated points over the comparatively short observation period T = 1. This is equiv-

alent to performing the estimation with financial data observed at five minute in-

tervals. The drift and diffusion coefficients have the same values as in the previous 

examples. An example of the simulated path is shown in Figure 3.13. 

The resulting estimators for -83 and -84 are shown in Figure 3.14. Here we see that 

the estimators stabilise extremely quickly and a reasonably reliable estimate of 

the diffusion coefficients -83 and -84 is available after only six months. The reason 

for this is clear once it is recognised that in (3.4.17) 

A o,1,o(2) = _1_ ( x2) 
~ ntL':1 ~.t 

(3.5.3) 

and 
A o,1,o(1) = _1_ (X) 

.6. ntL':1 .6-,t ' (3.5.4) 

see (2.1.6). 

Thus, the expressions for -83 and -84 can be written as 

(3.5.5) 

Hence, it is apparent that the estimators rely on the quadratic variation of X 

and the transforms of X. This provides an explanation of the short time period 

required for the estimators to stabilise. We remark that in the case of the smaller 

time between observations L':1 , the evolution of the diffusion estimates is practically 

indistinguishable. 

Unknown Drift Function and Known Diffusion Function for T = 1, 000 

Given that the diffusion coefficients can be estimated relatively quickly, we ex-

amine the length of time required such that the drift function can be reliably 
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Figure 3.14: Estimates of the diffusion parameters J3 and J4 when T = 1. 

estimated assuming the parameter estimates for the diffusion function have con-

verged to the correct values. Again note that this is not a study of the design of 

opthnal estimators. We simulate a path of the solution to the SDE in (3.3.1) with 

100,000 simulated points over the observation period T = 1, 000. An example of 

this path with the same parameter values as above is shown in Figure 3.15. 

5 

0 

0 200 40 0 6 00 B OO 1 000 

Figure 3.15: Simulated sample path of the affine diffusion when T = 1, 000 wit h 

191 = 0.01, iJ2 = -0.01 , 193 = 0.01 and 194 = 0.01. 

The evolution of the drift estimates J1 and J2 are shown in Figure 3.16. It is clear 

that in this case at least T = 600 years is required to be reasonably confident that 

the drift estimators J1 and J2 have stabilised. Thus, even when we assume that 

the diffusion function has completely stabilised, the drift estimates still require a 

long observation period before convergence to the true parameter values is appar-
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Figure 3.16: Estimates of the drift parameters J1 and J2 when T = 1, 000. 

ent. A long observation period would still be necessary even if optimal maximum 

likelihood estimators for the drift parameters, where the diffusion parameters are 

given, were used. 

With the transform function method, we propose a simple and rather generales-

timation technique that is capable of estimating parameters in the drift and the 

diffusion coefficients of discretely observed diffusions. This method has .. the ad van,. 

tage of being simple to implement and, in principle, does not require stationarity. 

Explicit expressions for mom nts, conditional moments or transition densities of 

the original process and the transformed observations are not required. This 

method has been demonstrated for simulated affine diffusion processes, where 

estirnated parameter values for the diffusion function are found quickly and re-

liably. However, it is shown for the transform function rnethod, that the time 

required to reliably estimate the drift coefficients is significantly greater than even 

the longest available data series available for financial markets. Thus , it appears 

that a financial market model with the drift function determined by the diffusion 

function is advantageous for practical inference. 
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Chapter 4 

A Continuous Benchmark Model 

This chapter reviews the continuous benchmark model of Platen (2002) and ex-

tends the modelling framework to incorporate intraday data. The essence of the 

benchmark model is to form a self- financing portfolio of risky assets and max-

imise the logarithmic growth rate to find the growth optimal portfolio (GOP). 

Here for ease of notation, it is assumed that all assets are denominated in the 

domestic currency and the dependence on the currency is suppressed unless oth-

erwise stated. The exact GOP is difficult to form in practice and as a result, 

theory regarding the approximation of the GOP is required and presented in 

Section 4.3. In Section 4.4, three alternative constructions of high- frequency in-

dices are presented. A goal is to find the best approximation to the GOP using 

the high- frequency indices considered. The remainder of the chapter extends 

the benchmark framework to intraday modelling. This is done by introducing a 

market activity process which captures changes in the index due to short term 

fluctuation . Section 4.7 briefly reviews empirical properties of the GOP. 

4.1 A Continuous Market 

4.1.1 Model Setup 

We consider a continuous financial market with d+ 1 primary assets, d of which are 

risky assets, with the remaining asset being riskless. The d primary risky assets, 

denominated in the domestic currency, can be shares, foreign savings accounts, 

indices, commodities or other security contracts. The uncertainty in this market 

is generated by d independent , standard Wiener processes W1 , ... , Wd defined on 

a filtered probability space (0, Ar, A , P) that satisfies the usual conditions. The 
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filtration A = (At)tE[O ,T] is the augmentation under P of the natural filtration 

Aw, generated by the vector W = {W(t) = (W1 (t), ... , Wd(t))T, t E [0 , T]} of 

independent Wiener processes, see Karatzas & Shreve (1991) and Protter (1990). 

Here At is the information available up until timet. Note that Pis the real world 

probability measure. 

4.1.2 Primary Security Accounts 

A primary security account contains only units of a given primary asset. It 

accumulates all payments and losses that are generated from holding this asset. 

For example, the BHP primary security account contains the risky BHP spot 

share price in addition to the accumulated dividends. The All Ordinaries Index 

is formed as a portfolio of primary assets and the corresponding portfolio of 

primary security accounts including accumulated dividends is shown in Figure 4.1. 

We assume that the units of primary assets are infinitely divisible such that 

continuous trading is possible. 

3500 -

3000 . 

2500 

2000 

1500 

1000 

1990 1992 1994 1996 1998 2000 2002 2004 

Figure 4.1: An example of an index of primary assets (blue) and corresponding 

portfolio of primary security accounts (red) for the All Ordinaries Index. 

The value of the jth primary security account process at time t, is denoted by 

S(J)(t), when expressed in units of the domestic currency. It is assumed in the 
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following that SU)(t) is the unique solution of the SDE 

dS(Jl(t) = sUl(t) { aJ(t)dt + t IJi·k(t)dWk(t)} (4.1.1) 

fortE [0, T] and j E {0, 1, ... , d} with S(j)(O) > 0. Here the jth appreciation rate 

aJ ( t) is the expected return at time t that an investor receives for holding the jth 

primary security account. The (j, k)th volatility lJ.i·k(t) measures, at time t, the 

proportional fluctuations of the value of the jth primary security account with 

respect to the kth Wiener process. Some technical assumptions regarding the 

appreciation rate and volatility are required. Namely, that the jth appreciation 

rate and (j, k)th volatility are considered to be predictable stochastic processes 

such that 

for [laJ(s) + (IP(s)n] ds < oc 

almost surely for j, k E {1, 2, . .. , d}, see Protter (1990). The savings account or 

riskless asset is denoted as S(o) ( t) and has 

for t E [0 , T] and k E {1, ... , d}. It is clear from ( 4.1.1) that 

(4.1.2) 

where S(0)(0) = 1. Here r(t) = a0 (t) is the adapted short rate at timet. 

Furthermore, we assume that no security can be expressed as a linear combination 

of other securities, see Platen (2002). That is, no primary security account is 

redundant in the sense that its value cannot be replicated by forming a portfolio of 

other primary security accounts. This can be written by introducing the volatility 

matrix b(t) = [lJ.i·k(t)]j,k=l and assuming that it is invertible. That is, 

• 

In such an invertible market all uncertainties are securitised. This implies that 

the uncertainties for individual markets are sufficiently different. In practice, this 
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does not restrict the modelling of the dynamics of primary security accounts since 

each additional primary security account permits the use of an additional Wiener 

process for modelling. 

By introducing the appreciation rate vector a( t) = ( a1 ( t) , ... , ad( t)) T and the 

unit vector 1 = ( 1, 1, ... , 1) T, the market price for risk vector is obtained as 

(4.1.3) 

for t E [ 0, T]. The kth market price for risk ()k ( t) is proportional to the excess 

return that an investor expects at time t for taking the risk that is modelled by 

the kth Wiener process. The market price for risk ( 4.1.3) allows the SDE ( 4.1.1) 

to be written in the form 

dSlil(t) = s til(t) { r(t)dt + ~ Qi·k(t)[Bk(t)dt + dWk(t)]} 

fortE [0, T] and j E {0, 1, ... , d}. 

4.1.3 Portfolios and Strategies 

(4.1.4) 

To form the GOP, it is necessary to first form a self- financing portfolio. This port-

folio is formed by determining a self- financing strategy. A predictable stochastic 

process 5 = {5(t) = (5(0)(t),5(1)(t), ... ,5(d))T,t E [O,T]} is a strategy if 5 is 

S-integrable, see Protter (1990). The jth component 5U)(t) E ( --oo, oo) of the 

strategy 5 denotes the number of units of the jth primary security account that 

are held in the corresponding portfolio at time t E [0, T]. For a given strategy 5, 

let S (t5) (t) be the value of the corresponding portfolio at timet. This means that 

d 

sun ( t) = L 5(j) ( t)s(J) (t) ( 4.1.5) 
j=O 

for t E [0 , T]. A portfolio and the corresponding strategy 5 are self- financing if 

d 

dS(o)(t) = L5(J)(t)dS(j)(t) ( 4.1.6) 
j=O 
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for all t E [0, T]. Thus, all changes in the value of a self- financing portfolio are 

due to corresponding gains from trade in the primary security accounts. Unless 

otherwise stated, we consider only self-financing strategies and corresponding 

self-financing portfolios. 

For a given strategy 6, the jth proportion 1r~j)(t) of the value of the jth primary 

security account held at timet in a strictly positive portfolio S(6)(t), is given by 

1r(j)(t) = ~SU)(t) S(J)(t) 
o S(o)(t) ( 4.1.7) 

for all t E [0, T] and j E {0, 1, ... , d}. Naturally, the sum of the proportions 

invested in each primary security is one. That is , 
d 

L 1rY)(t) = 1 ( 4.1.8) 
j=O 

for all t E [0, T]. A strictly positive portfolio value S(o) (t) satisfies, according to 

(4.1.1) and (4.1.6) , the SDE 

dS(0l(t) = S(0l(t) { r(t)dt + t f3%(t)(1Jk(t)dt + dWk(t))} (4.1.9) 

with kth portfolio volatility 
d 

j3;(t) = L 1rY) (t)lJ·k(t) (4.1.10) 
j=O 

fort E [0, T]. The portfolio volatility j3f(t) , given in (4.1.10), is a linear com-

bination of the security account volatilities and their corresponding proportions. 

By application of the Ito formula , it follows from (4.1.9), that the logarithm of a 

strictly positive portfolio S(6)(t) satisfies the SDE 

d 

dlog (s(o) (t)) = (r(t) + g6(t))dt + L!3;(t)dWk(t) (4.1.11) 
k=l 

with portfolio net growth rate 

(4.1.12) 

fortE [0, T]. 
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4.2 Growth Optimal Portfolio 

Central to the benchmark model is the growth optimal portfolio (GOP), see 

Kelly (1956), Long (1990), Karatzas & Shreve (1998) or Platen (2002). We 

denote its value at time t E [0, T] by S(6*)(t). The GOP is t he portfolio that 

maximises the portfolio net growth rate 9J(t). Thus, the optimal proportions 

1r(J*) = {1r(J*)(t) = (1r~~)(t), 1r~~)(t), ... , 1r~~)(t))T, t E [0, T]} are obtained from the 

solution of the first order equations for the corresponding quadratic maximisation 

problem for the portfolio net growth rate g6( t) in ( 4.1.12). The solution to this 

problem yields the optimal proportions 

(4.2.1) 

fortE [0, T]. Using (4.1.9) together with (4.2.1), the GOP can then be shown to 

satisfy the SD E 

(4.2.2) 

for t E [0 , T], see also Karatzas & Shreve (1998) and Platen (2002). It is assumed 

that S (J .. ) (0) > 0. 

From (4.2.2) and (4.1.3) , it follows that the kth GOP volatility Ok(t) is the kth 

corresponding market price for risk. Note that the risk premium, of the GOP 

appearing in ( 4.2.2) equals the square of the total market price for risk 

d 

IO(t) I = L(Ok(t)) 2 (4.2.3) 
k=l 

for t E [0 , T]. The risk premium of the portfolio in ( 4.1.9) is given by the corre-

lation of the returns of the portfolio with the returns of the GOP. 

In applications to areas in quantitative finance , the GOP can be used as bench-

mark or numeraire, see Platen (2002) . Security prices expressed in units of the 

GOP are known as bench marked prices and can be shown to be local martingales 
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under the real world probability measure. Note that within the benchmark frame-

work, derivative pricing also takes place under the real world probability measure 

using the concept of fair pricing rather than risk- neutral pricing. An advan-

tage of fair pricing is that it encompasses and extends the commonly used risk-

neutral pricing methodology. This is useful since risk- neutral pricing relies on 

the existence of an equivalent risk- neutral measure and that the Radon- Nikodym 

derivative is a martingale. 

4.3 Approximate Growth Optimal Portfolios 

In practice, forming the GOP can be difficult, see, for example, Long (1990). 

From ( 4.2.1), it is clear that the optimal proportions depend on the volatility 

matrix and the market price for risk vector. The market price for risk appears 

in the drift coefficient of the SDE for the primary security account, see ( 4.1.4). 

This implies that this parameter cannot be reliably estimated. In addition, esti-

mation of large volatility matrices can be cumbersome and as such, it is simpler 

to approximate the GOP by using a suitably diversified portfolio. According to 

Platen (2003), in order to approximate the GOP using a diversified portfolio , the 

following definitions are required. 

Definition 4.3.1 A strictly positive portfolio process S(6) is called a diversified 

portfolio (DP) if finite constants K1 > 0, K 2 > 0 and K3 E {1 , 2, ... } exist, 

independent of d, such that 

(4.3.1) 

almost surely for all j E {0, 1, . . . , d}, dE { K3 , K3 + 1, ... } and t E [0, T]. 

This means that the proportion 1rY) ( t) of the value of a D P, which is invested 

in the jth primary security account, must decrease slightly faster than d-~ as 

d ~ oo. This occurs, for example, if equal proportions are used . 
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When a given portfolio S(6)(t) is expressed in units of the GOP, then the bench-

marked portfolio S( J) = { $( J) ( t), t E [ 0, T]} is the ratio 

~(J) _ S(6)(t) 
S (t) - S(J*)(t)' ( 4.3.2) 

By application of the Ito formula in conjunction with (4.3.2), (4.1.9), (4.1.10) and 

(4.2.2), it follows that the benchmarked portfolio satisfies the SDE 

d d 

dS(J)(t) = -S(J)(t) L L 1f~j)(t)Cij ,k(t)dWk(t). (4.3.3) 
k=l j=O 

The (j, k )th specific volatility 

( 4.3.4) 

fort E [0, T], j E {0, 1, . .. , d} and k E {1, 2, ... , d} measures the jth diversifiable 

risk with respect to the kth Wiener process. The kth total specific volatility can 

then be introduced as 
d 

o-k(t) = Li(/j,k(t)i (4.3.5) 
j=O 

for t E [0 , T') and k E {1, 2, ... , d}. 

Definition 4.3.2 A benchmark model is called regular if there exists finite con-

stants, K 3 and K4 , independent of d, such that 

(4.3.6) 

for all t E [0, T], k E {1 , 2, ... , d} and dE {K3, K3 + 1, ... }. 

In a regular benchmark model, each independent source of uncertainty influences 

a restricted number of benchmarked primary security accounts. This is a property 

that can be assumed for the world stock market consisting of all stocks traded 

on the existing exchanges. 

In order to form an approximate GOP, a measure of the difference between the 

exact GOP and a DP is required. Hence, Platen (2003) introduces the notion of 
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the tracking rate. By (4.1.9) and (4.2.2), the difference between the logarithm of 

the GOP S(o,.) and the logarithm of a given portfolio S(o) satisfies the SDE 

1 d d . 
d(log(S(o,.)(t)) -log(S(o)(t))) = 2Rt(t)dt- LL 1ri1)(t)o-J,k(t)dWk(t) (4.3.7) 

k=l j=O 

with tracking rate 

Jl1(t) = t, (~ 1CY\t)<7j,k(t)) 
2 

(4.3.8) 

for t E [0, T]. Note that the tracking rate equals the squared diffusion coefficient 

of the SDE in (4.3.7). It can be interpreted as a measure of the "distance" 

between a given portfolio S(6)(t) and the GOP S(o,.)(t) at timet E [0, T]. 

Definition 4.3.3 For an increasing number d of risky primary security accounts 

we call a strictly positive poTtfolio S(o) an approximate GOP if the corresponding 

sequence of tracking rates R1(t) d E {1, 2, ... } vanishes in probability. That is, 

for each E > 0 we have 

lim P(Rt(t) > E) = 0 
d-+oo 

( 4.3.9) 

for all t E [0, T]. 

This is a natural definition for an approximate GOP. As the number of assets 

increase, the approximate GOP approaches the exact GOP. Thus, the difference 

between the values of these indices must approach zero. Under the above as-

sumptions the following limit theorem is proved in Platen (2003). 

Proposition 4.3.4 (Platen (2003)) For a regular benchmark model, a diver-

sified portfolio is an approximate GOP. 

This result implies that a diversified world stock portfolio or index, which is a 

DP, approximates the exact GOP. 
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4 .4 Construction of Intraday World Stock 

Indices 

T he results in Section 4.3 imply that the GOP can be approximated by a suffi-

ciently diversified world stock index (WSI). To our knowledge there is no readily 

available high- frequency WSI. Therefore, in Breymann, Kelly & Platen (2004), 

three different intraday WSis are constructed , for which key characteristics of 

their dynamics will be compared. 

Each WSI is constructed as a self- financing portfolio consisting of local stock 

market indices taken from all major financial markets throughout the world. See 

Appendix B for a list of those indices included. The WSis, denominated in 

US Dollars (USD), are constructed from d = 34 local stock market accumula-

tion indices. Many of the local indices used are obtained as spot price indices. 

We denote by V ( i,J) ( t), the value of the local stock spot price index at time t 

of stock market j, when denominated in currency i , for j E {1, 2, ... , d} and 

i E {US D, C H F, . . . } . As a first step, we transform the original local spot price 

index into an accumulation index S~~~~x ( t) by forming the expression 

S}~~x(t) = V (i,J)(t) exp {l yUl (u)du} ( 4.4.1) 

for t E [0 , T], j E {1, 2, ... , d} and i E {USD, CHF, . . . } . Here yU)(t) is the 

continuously compounded jth dividend yield for the jth local stock index at time 

t. Secondly, in order to form a WSI in US Dollars, all local accumulation indices 

must be denominated in US Dollars. The corresponding foreign exchange rate 

is denoted by X(i ,k) (t) at time t. That is , X(i ,k) (t) is the price at time t of one 

unit of the kth currency in terms of units of the ith currency. The jth local 

accumulation index, denominated in US Dollars , is given by 

S(USD,j) (t) = S(i ,k) (t)X(USD,k) (t) 
Index Index (4.4 .2) 

for t E [0, T] . A WSI at time t, denominated in US Dollars , denoted by 
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S(usn,6<wsiJ)(t), is obtained by forming the portfolio 

d 
S(USD,6(Wsl)) (t) = '"""""6 (j) (t) S(USD,j) (t) 

~ (WSI) Index · ( 4.4.3) 
j=l 

Here 6~~SI) ( t) denotes the number of units of the jth local accumulation index held 

in the WSI at timet E [0, T]. The values for 6~~sl)(t) relate to the corresponding 

jth proportion 1r~~SI)(t), see (4.1.7), at timet by the formula 

S(USD,j) (t) 
7T'(j) (t) _ 6(j) (t) Index 

(WSI) - (WSI) S(USD,6(WSI))(t)' ( 4.4.4) 

for t E [0, T] and j E {1, 2, ... , d}. Throughout our analysis we separate the US 

Dollar short rate evolution from the index movements examined, by studying the 

discounted WSI [;(USD,6<wsi)) ( t) at time t, which is computed as, 

S(USD,6<w sJ)) (t) 
[;(USD,6(wsl)) (t) = ----,-----,-__:.......:.... 

S(USD,O) ( t) 

for t E [0, T] where S(usn,o) ( t) is US Dollar savings account given by 

S(USD,O)(t) = exp {fo' rUSD(s)ds} . 

Here rusD(t) denotes the short rate at timet for the US Dollar market . 

(4.4.5) 

( 4.4.6) 

We consider three WSis: the approximately Equal Weighted Index (EWI) , the 

Market Capitalisation Weighted Index (MCI) and the Gross Domestic Product 

Weighted Index (GDPI). The values of the strategies 6~~sl)(t) for each WSI are 

adjusted such that the corresponding proportion 7r~~sl)(t) for the MCI and GDPI 

correspond to their respective weights. The proportions for the MCI are shown 

in Figure 4.2. The proportions of the GDPI are omitted since they ru·e similar 

to those of the MCI. Despite its name, the EWI is not equally weighted for all 

markets. Developed markets were given an equal weight of 0.0357 and emerging 

markets a weight of 0.0179. The markets were classified as either developed or 

emerging to be consistent with the classification used by Morgan Stanley Capital 

International. The stock markets considered in the MCI account for more than 

95% of the total world market capitalisation, while the GDPI weights account for 
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Figure 4.2: Proportions of each local stock index calculated by using market 

capitalisation. 

more than 85% of the total world gross domestic product. In each of the WSis, 

the number of units of each of the accumulation indices is kept piecewise constant. 

The WSis are rebalanced after one year has elapsed or when a local stock index 

is to be added to the WSI , whichever occurs first. The rebalancing dates are 

05/04/1996, 17/12/1996, 31/01/1997, 30/01/1998, 20/10/1998, 20/10/1999 and 

20/ 10/2000. 

To ensure that the WSis are comparable, each index must have the same initial 

value. Each WSI is rescaled to have the same initial value as the Morgan Stanley 

Capital World Index (MSCI) at the starting date t0 of our sample to enable the 

convenient comparison of the WSis to a readily available market index. That is , 

( 4.4. 7) 

with 

t0 = 05/04/1996 00:00:00 GMT. (4.4.8) 

Note that all analysis of the WSis is performed using Greenwich Mean T ime 

(GMT). 
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Figure 4.3: World stock indices with equal weights (EWI), market capitalisation 

adjusted weights (MCI), GDP adjusted weights (GDPI) and MSCI, where initial 

values are matched to the MSCI. 

As any single local accumulation index represents a portfolio consisting of a cross 

section of the stocks in that local market, a WSI can be regarded as a portfolio 

containing the stocks of all local stock markets considered. To include as many 

stocks as possible in the WSis constructed, all local accumulation indices for 

which we could obtain high- frequency data were included. As a result of this, 

the three WSis are based on between two and three thousand stocks. 

In addition to local stock indices, we rely on high--frequency foreign exchange spot 

data to transform the value of the different local stock indices into US Dollars. 

The high- frequency index and foreign exchange data consists of tick- by- tick data 

originating mainly from Reuters, which was collected and filtered by Olsen Data. 

The period explored is from 4 Aprill996 until 29 June 2001. Intraday data for a 

number of local stock indices start at later dates and are included into the WSis 

as soon as they are continuously available. Both the original high- frequency local 

stock indices and foreign exchange time series are irregularly spaced. Previous 

tick interpolation was used to transform the observed data to regularly spaced 

time series with an observation interval of five minutes. In order to form the 
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discounted accumulated WSis , daily local dividend yields and US Dollar interest 

rates obtained from Thomson Financial were used. Omitting the high- frequency 

information in dividends and short rates is justified because only the exponentials 

of the integrals of these quantities, not the values themselves, enter the formulae 

for the relevant quantities in our construction of the WSis, see ( 4.4.1) and ( 4.4.6). 

Figure 4.3 displays the three different WSis in addition to the daily observed 

MSCI. Of note is that , despite significant differences in the weights, all WSis 

appear to be very similar. In particular , as suggested in Platen (2003) , the 

similar fluctuations of all four indices are apparent. The three WSis are analysed 

in detail in Chapter 5. 

4.5 Discounted GOP 

To discount the GOP value S(o,.)(t) at timet, see (4.2.2), we introduce the savings 

account 

S(O)(t) = exp {l r(s) ds}, (4.5.1) 

see (4.1.2), where r(t) is the short rate at timet of the domestic market. The 

discounted GOP 
5 (o,.) ( t) = S(o,.) ( t) 

S(0)(t) 

satisfies by application of the Ito formula, (4.2.2) and (4.5.1) the SDE 

dS(o,. ) (t) = 5(o,.) (t) IB(t) I ( IB( t) I dt + dW ( t)) 

(4.5.2) 

( 4.5.3) 

fortE [0 , T]. Here the standard Wiener process W = {W(t), t E (0, T]} has the 

stochastic difi'erential 

d 
" 1 ""'k k dW(t) = IB(t) 

1 
'8 e (t) dW (t), (4.5.4) 

where IB( t) I is the total market price of risk given in ( 4.2.3). By Levy's Theorem, 

see Karatzas & Shreve (1991), W = {W(t), t E [0, T]} is a standard Wiener 

process on (D, Ar , A , P) . 
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The discounted GOP drift a(t) at timet E [0, T], has the form 

(4.5.5) 

When taken as a parameter process , a = {a(t) , t E [0, T]} , leads to a GOP 

volatility of the form 

IO(t)i = ( 4.5.6) 

Thus by (4.5.3) and (4.5.5), we obtain the following SDE for the discounted GOP 

(4.5.7) 

for t E [0, T]. Note that ( 4.5. 7) is a time transformed squared Bessel process of 

dimension four , see Revuz & Yor ( 1999). 

By application of the Ito formula to ( 4.5.3), the logarithm of the discounted GOP 

satisfies the SD E 

( 4.5.8) 

fortE [0, T]. This process has quadratic variation, see Section 2.1, 

( 4.5.9) 

Thus, the GOP volatility can be observed as 

( 4.5.10) 

Figure 4.4 shows the GOP volatility calculated for the MCI over several weeks in 

April/May 1996. Here we see that volatility is neither constant nor a deterministic 

function of time. When the GOP volatility process is calculated on a five minute 

basis it is difficult to see the leverage effects that are exhibited in the medium 

term. This is because a relatively small change in the index produces a large 

change in the GOP volatility, which is distorted by the intraday activity. This 

mixture of different dynamics makes it difficult to directly analyse the behaviour 

of observed volatility under the Black- Scholes- Merton type models. 
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Figure 4.4: Volatility process of the MCI for several weeks in April/May 1996. 

4.6 Normalised GOP 

The WSis displayed in Figure 4.3 , on average, appear to grow exponentially. In 

principle, this can be accounted for by modelling the discounted GOP drift using 

an exponential funct ion. 

More precisely, throughout this thesis, we take the model for the discounted GOP 

drift process a as 

a(t) = e exp { 1) 1' m(s) ds} m(t) (4.6.1) 

for t E [0, T]. Here rJ > 0 is the net growth rate of the market and the A-adapted, 

nonnegative market activity process is denoted by m = {m(t) , t E [0, T]}. 

The parameterisation of the discounted GOP drift in ( 4.6.1) can be justified by 

consideration of the quadratic variation of the square root of the discounted GOP. 

That is, by (4 .5.7) and the Ito formula, y'S0•(t) satisfies the SDE 

~ 3 a(t) 1 r::r;\ " dy ~.:y · \&J = - ~dt + -2 y a(t)dW(t) 
8 \1 ~o·(t) . ( 4.6.2) 

fortE [0 , T] . Hence, 

\ #), = ~ l a(t) dt . (4.6.3) 
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Note that this quantity defines so- called GOP time, see Platen (2004). Figure 4.5 

shows the approximate quadratic variation of J S6* ( t) , which appears to be fairly 

smooth. Note also that an exponential curve is somewhat evident. This is also 

true for longer time periods explored in Platen ( 2004). The discounted GOP drift 

should incorporate this feature. Furthermore, the inclusion of market activity 

reflects periods of low discounted GOP drift due to market closures and periods 

of high discounted GOP drift due to active markets . This can be seen if the 

quadratic variation is viewed over a shorter observation period than the five years 

shown in Figure 4.5. 
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Figure 4.5: Approximate quadratic variation of the square root of the discounted 

MCI. 

It is straightforward to show via the Ito formula, in conjunction with ( 4.5. 7) and 

(4.6.1) , that the normalised GOP Y = {Y(t) , t E [0, T]} with 

Y(t) = $(6.,)(t)m(t) = $(6*) (t) ' 

a(t) ~ exp { 17 J~ m(s) ds} 
( 4.6.4) 

satisfies the SDE 

dY(t) = ry ( ~ - Y(t)) m(t) dt + yiY(t) m(t) dW(t) ( 4.6.5) 

fortE [0 , T] with 

(4.6.6) 

68 



From ( 4.5.6) and ( 4.6.4), the GOP volatility can be written as 

Ill( t) I = /m(i) VYW (4.6.7) 

for t E [0, T]. Thus the GOP volatility can also be calculated simply once the 

normalised GOP and market activity process are known. Relation (4.6.7) high-

lights the short term effects on the GOP volatility caused by seasonal patterns 

and intraday trading activity. In the medium to long term, where market activity 

becomes less important, the GOP volatility will no longer reflect these short term 

features. This implies that to model the market activity, an exogenous process 

for this quantity appears to be adequate. Market activity will be modelled in 

Chapter 5, in accordance with the empirical properties that are observed. 

4.6.1 Market Activity Time 

Based on the market activity m(t) introduced in the previous section, market 

activity time can be defined as 7jJ = { 7jJ ( t), t E [ 0, T]} with 

,P(t) = l m(s) ds ( 4.6.8) 

fort E [0 , T]. Here, 7/J(O) is the starting point of the market activity time scale and 

0 years corresponds to the starting date of our sample 05/04/1996 00:00:00 GMT. 

Additionally, T = 5.25 years, which is equivalent to 30/05/2001 00:00:00 GMT, 

is the terminal date of the data available. Note that ( 4.6.8) requires proper 

normalisation of the market activity. It is reasonable to normalise m(t) such 

that, on average, the rnarket activity time scale elapses approximately as fast as 

physical time. Furthermore, we assume that 

1 
lim TE ( 7/J(T)) = 1. 

T--too 
( 4.6.9) 

This assumption is natural, given that market activity and seasonal patterns do 

not have a significant affect on the analysis of daily data, see Platen (2004). That 

is , it is assumed that as time increases, market activity time approaches physical 

time. 
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With the notion of market activity time, see ( 4.6.8), the SDE ( 4.6.5) for the 

normalised GOP in market activity time Y'!f!(t) = Y(t) can be written as 

dY,p = TJ G- Y,p) d'lj; + AdW,p 

for 'lj;(t) E [0, 'l/;(T)] and 

( 4.6.10) 

(4.6.11) 

for t E [0, T]. The normalised GOP in market activity time in ( 4.6.10) is a 

square root process of dimension four , see Revuz & Yor (1999). The solution 

of ( 4.6.10) has a long term mean of .!. and a speed of adjustment parameter ry. ,., 

Most importantly, the only parameter is the net growth rate ry of the market. 

Note that the SDE in ( 4.6.10) is an affine SDE of the type discussed in Section 

3.3. This suggests that with this parametrisati.on the long term net growth rate 

'TJ can be estimated using techniques discussed in Chapters 2 and 3. Although, as 

previously discussed, the length of the observation period is inadequate for drift 

parameter estimation. The parameter ry must be identified through inference 

about the diffusion coefficient. This is possible due to the structure of the SDE 

for the discounted GOP, see (4.5.7). In Platen (2004) , an estimate of ry ~ 0.048 

is obtained from 30 years of daily data using the fact that 

( 4.6.12) 

This estirnate is close to the trend of ry ~ 0.043 obtained in Figure 1.1. 

Notwithstanding difficulties related to the estimation of ry from the normalised 

GOP in ( 4.6.10) , the derived dynamics are useful due to the nature of the diffusion 

coefficient. By ( 4.6.10) and application of the Ito formula, the square root of the 

normalised GOP in market activity time satisfies the SDE 

d (A) = ( 8 ~-~A) d'I/J + ~dW"' ( 4.6.13) 

for 'lj; E [0 , 'lj;(T) ]. It is crucial to note that the diffusion coefficient in ( 4.6.13) is 

constant. Therefore, we obtain in market activity time the quadratic variation of 
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vY in the form 

( 4.6.14) 

for 'ljJ E [0, '1/J(T)]. Despite its simplicity, relation ( 4.6.14) is fundamental. It allows 

direct observation of market activity time and hence market activity. Note that 

from the market activity time given in ( 4.6.8) and the quadratic variation of vY 
in ( 4.6.14) the market activity can be calculated as 

m(t) = d'ljJ(t) = 4 d(VY)t 
dt dt 

( 4.6.15) 

fortE [0, T]. 

Relationship ( 4.6.15) implies that market activity is directly observable provided 

that the normalised GOP is a square root process of dimension four. To observe 

market activity, the slope of the quadratic variation of the square root of the 

normalised GOP is required. 

4. 7 Empirical Properties of the GOP 

An extensive amount of literature exists on the stylised empirical features of 

financial instruments for both daily and high- frequency data. This literature 

encornpasses distributional properties of returns, the behaviour of volatility and 

the well documented implied volatility skew or smile. Of interest, is whether the 

benchmark model and its intraday extension for the GOP are able to capture 

these en1pirical features in a robust manner for all time scales. 

Typically, the log- returns of financial assets display leptokurtic distributions . 

That is, the distribution has heavier tails and more pronounced peaks around the 

mode than described by a Gaussian distribution. Hurst & Platen (1997) analysed 

the daily log- returns of 27 indices. It was found that the Student t distribution 

with degrees of freedom four best describes the marginal distribution of log-

returns, see also Hurst & Platen (1999). Additionally, Breymann, Fergusson & 
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Platen (2004) confirmed the results in Hurst & Platen (1997) for daily log- returns 

using a much larger data set. 

The marginal distribution of log- returns in the benchmark model can be ex-

plained via the properties of the squared GOP volatility. The squared GOP 

volatility !B(t)i2 according to (4.6.7) is given by the ratio 

fortE [0, T]. 

IO(t) 12 = m(t) 
Y(t) 

(4.7.1) 

For daily or longer observation intervals, market activity becomes less important 

in the dynamics of volatility, which implies that the squared GOP volatility is 

approximately 
2 1 

IB(t)i ~ Y(t) ( 4. 7.2) 

for t E [0, T] . The stationary density of the square root process Y is a gamma 

density, which implies that the GOP volatility ( 4. 7.2) yields an inverse gamma 

distributed conditional variance for log- returns. Hence, log- returns are Student 

t distributed. 

Furthennore, five minute observations of log- returns were also considered in Brey-

rnann, Fergusson & Platen (2004) and it was found that the variance-gamma dis-

tribution best describes the n1arginal distribution of high- frequency log- returns. 

In this thesis, it is shown that this phenomenon can be explained by the nature 

of the market activity. It is demonstrated that market activity has a gamma den-

sity as stationary density. As market activity m(t) changes rapidly compared to 

the normalised GOP Y(t), the five minute log- returns ar~ obtained as a normal 

mixture distribution with gamma distributed conditional variance. This implies 

a variance-gamma log- return distribution. 

A change in distributional properties as the observation interval further increases 

can be easily documented. We consider the hourly, daily and weekly log- returns 

of the MCI. Note that the high- frequency returns are not deseasonalised. Gaus-
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Figure 4.6: Gaussian quantile plot for hourly log- returns of the MCI. 
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Figure 4. 7: Gaussian quantile plot for daily log- returns of the MCI. 

4 

sian quantile plots of these returns are shown in Figure 4.6 to 4.8 . Clearly, 

the larger the observation interval, the closer to Gaussian the log- returns ap-

pear. When hourly log- returns are considered, the returns display pronounced 

deviations from normality. This is apparent for various other instruments. For 

example, Dacorogna, Genc;ay, Muller , Olsen & Pictet (2001) analyse various cur-

rencies and the results suggest that the variance and third moment are finite in 

the large sample limit. Furthermore, they observe that the fourth moment 1nay 

not be finite , as is consitent with the Student t distribution of four degrees of 

freedom. 

Additionally, Breymann, Dias & Embrechts (2003) study the bivariate distribu-

tional properties of high- frequency foreign exchange returns and find that the 

Student t copula with four degrees of freedom , see, for instance, Joe (1997) , best 
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Figure 4.8: Gaussian quantile plot for weekly log- returns of the MCI. 

describes the joint dependence of returns for the US Dollar- Deutschmark and US 

Dollar- Japanese Yen foreign exchange rates. 

We emphasise that the intraday distributional properties of the log- returns of 

the GOP depend on the stationary distribution of the market activity process, 

provided that this is the dominant factor influencing volatility movements . If 

market activity has a gamma distributed stationary density, then the log- returns 

of the GOP are variance-gamma distributed. However, if the market activity has 

less in1pact on the squared GOP volatility, such that GOP volatility is an inverse 

gamma distributed random variable, see Platen, West & Breymann (2004) , then 

the log- returns of the GOP appear to be Student t distributed. 

The benchmark model, when examined with daily data, see Platen (2004) , incor-

porates stochastic volatility endogenously without an explicit external volatility 

process. Furthermore, since the GOP volatilities are proportional to the inverse 

of the normalised GOP process, see (4.6.7) , this generates a negative correlation 

between the GOP and its volatility. This phenomenon is known as the leverage 

effect, see Black (1976), which is explained naturally by the benchmark model. 

The Black- Scholes- Merton model, see Black & Scholes (1973), suggests that 

volatilities implied from market traded options are constant with respect to both 

the moneyness and time to maturity of the option. Deviations from this are 
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Figure 4.9: Sample autocorrelation function for hourly absolute returns of the 

MCI. 
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Figure 4.10: Sample autocorrelation function for daily absolute returns of the 

MCI. 

well- documented, see, for example, Derman & Kani ( 1994) , and are com1nonly 

referred to as the implied volatility skew or smile and the term struct ure of implied 

volatility, respectively. The benchmark model in conjunction with fair pricing, 

generates empirically observed implied volatility skews and smiles for European 

options on stock indices, stocks and currencies, see, for instance, Heath & Platen 

(2002). 

Evidence of stochastic volatility has been well documented in the empirical finance 

literature by features such as volatility clustering and volatility persistence. This 

is best seen by considering the sample autocorrelation function for the absolute 

returns. We show this for the MCI for hourly and daily absolute returns in 
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Figures 4.9 and 4.10, respectively. Volatility persistence is evident in both the 

daily and hourly absolute returns, which is an indicator of stochastic volatility. 

This implies that the constant volatility suggested in the classical log- normal 

model, see Black & Scholes (1973), is incorrect. 

Observing the hourly absolute returns, the presence of the periodic peaks in the 

sample autocorrelation function indicate seasonality. Seasonal patterns in high-

frequency data are well-documented, see Dacorogna, Gen<;ay, Muller, Olsen & 

Pictet (2001) and references therein. The introduction of the market activity 

process allows the modelling of typical intraday seasonal patterns in a stochastic 

framework. Studies linking the ideas of market activity, seasonal patterns and 

deviations from normality have existed for some time. Clark (1973) proposed link-

ing the deviations from normality to the existence of variations in volume during 

different trading periods. Subordinated processes were introduced to compensate 

for the fact that physical time may not be the appropriate time scale for financial 

securities. Thus, Clark (1973) used volume traded as a proxy for market activity. 

The positive correlation between volume and volatility is well documented, see 

Karpoff (1987). Note, market activity can be regarded as a model for short term 

volatility in the standard financial modelling literature. A more recent study was 

conducted by Xu & Wu (1999). This study considered 141 stocks traded on the 

New York Stock Exchange. They find that frequency of trades explains return 

volatility. These results are a justification for the presence of market activity in 

the diffusion dynamics of the normalised GOP, see (4.6.5), and the drift and diffu-

sion dynamics of the discounted GOP, see (4.5.7). This is as a consequence of the 

form of the model of the discounted GOP in the intraday benchmark framework. 

Advances on Clark (1973) include the work by Ane & Geman (2000) where, using 

high- frequency observations of Cisco and Intel shares, they investigated whether 

the volume traded or the number of trades executed best defines business time. 

In the context of Ane & Geman (2000), the "best" business time is the time 

scale on which, when returns were examined, they were closest to Gaussian. For 
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these two stocks, the best time scale was found to be that which is determined by 

the number of trades executed. The claim is that all processes that define asset 

returns can be represented as time changed Brownian motion and that this time 

change is the key element in taking information arrival and market activity into 

account. 

In the intraday benchmark model, the introduction of new market activity based 

time scales allows a natural, consistent method for the deseasonalisation of finan-

cial market data. This refers to allowing for seasonal patterns caused by regular 

information arrival and trading activity. Deseasonalisation in general, is neces-

sary since the presence of seasonal patterns can mask other empirical features. 

The time scales considered are similar to that in Dacorogna, Gen<;ay, M tiller, 

Olsen & Pictet (2001) for volatility deseasonalisation, where they suggest a new 

business time scale based on polynomial approximations to the seasonal pattern 

present in volatility. Other deseasonalisation techniques have also been consid-

ered in the literature. For example, a business time scale can be created by the 

factorisation of volatility into different components. The seasonal components 

are then assumed to be deterministic, as opposed to the stochastic component, 

which is assumed to be essentially free of seasonalities, see, for instance, Andersen 

& Bollerslev (1997). Furthermore, wavelet techniques for deseasonalisation were 

suggested by Gen~ay, Selcvk & Whitcher (2001). 

In the existing literature, the majority of approaches focus on volatility as the key 

parameter to be modelled. This is based on the logarithmic transformation of the 

underlying security. Under the benchmark approach, one transforms the under-

lying security, in this case an index, by using the square root, or more generally, 

a certain power function. This reveals the market activity, which in the bench-

rnark approach, captures the higher order effects of intraday trading on volatility. 

The advantage is that much of the leverage effect is captured automatically by 

the square root transformation and as will be seen in the following discussion, 

market activity is relatively independent of the noise that drives the underlying 
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index itself. 

The remaining chapters investigate the properties of the intraday WSis intro-

duced in Section 4.4, with particular emphasis on the modelling and empirical 

characteristics of market activity in both US Dollars and other currency denom-

inations. 
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Chapter 5 

Intraday Analysis of World Stock 

Indices 

In order to assess the performance of the benchmark model, we consider the 

three world stock indices constructed in the previous chapter, denominated in US 

Dollars (USD). A key feature of the benchmark model is that the drift function is 

completely determined by the diffusion coefficient function. This is an advantage 

of the benchmark model since, as seen in Chapter 3, the drift coefficient is difficult 

to estimate with a satisfactory level of reliability. For this reason, we concentrate 

on the estimation and calibration of the diffusion coefficient. Section 5.1 considers 

properties of the normalised world stock index (WSI) in physical time. Section 5.2 

concentrates on empirical features and the modelling of market activity. Finally, 

we consider the normalised WSI in rnarket activity time. In the following chapter, 

we suppress the dependence on the currency for ease of exposition. 

5.1 Empirical Properties of World Stock Indices 

We consider the three high- frequency WSis, denominated in US Dollars, intro-

duced in Chapter 4. The indices shown in Figure 4.3 appear to grow exponentially. 

To compensate for this, we introduce the normalisation function 

a(t) = ~ exp( ryt), 

for t E [0, T], where~ > 0 is the normalisation factor and r; > 0 is the net growth 

rate of the market, see Section 4.6. An empirical study conducted by Dimson, 

Marsh & Staunton (2002), suggests that over the last 100 years, a discounted 

WSI denominated in US Dollars has experienced an average rate of growth of 
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approximately rJ = 4.8%. This is in the range of that deduced in a simple manner 

for the long term WSI shown in Figure 1.1. 

We introduce the normalised WSI in the form 

fortE [0, T]. 

.. ~ 
: ... ~ J' ,. 
- ,.... VtJ f/1 ,.. , 
: .. 
: 

ycwsr) (t) = _sc_w_sr_) (_t) 
a(t) 

.... ~ Iii~ rv ~ 
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Figure 5.1: Normalised world stock indices with equal weights (EWI), market 

capitalisation adjusted weights (MCI), GDP adjusted weights (GDPI). All are 

shown in physical time. 

Figure 5.1 shows the normalised WSis in physical time. The normalised WSis all 

display similar dynamics. A theoretical argument for this stylised fact is given 

in Section 4.3, where the GOP is shown to be approximated by any diversified 

portfolio. 

We show the hourly absolute returns of the normalised NICI and the square root 

of the normalised MCI in Figure 5.2. Here we see that the square root reduces 

the fluctuations of returns when the level of the index is high and increases the 

fluctuations when the level of the index is low. In Section 4.6 , it was shown that 

the quadratic variation of the square root of the normalised GOP is proportional 

to market activity t ime. However, we expect that as the observation interval 

increases , the effects of market activity should decrease and as such, market ac-

tivity time and physical time should become very similar. It is shown in Platen 

(2004) that the MSCI observed on a daily basis displays the property ( h)t = t. 
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However , seasonal patterns can be observed for more frequent observation inter-

vals. Figure 5.3 shows four times the quadratic variation of the square root of the 

normalised MCI, or market activity time, see (4.6.14). One notes market activity 

time is monotonically increasing and appears to be almost linear over certain 

periods. It is clear that the process cannot be completely described by a linear 

function of time. This suggests that the introduction of market activity time is 

necessary to account for the seasonalities present in high- frequency indices. The 

presence of seasonal patterns in the intraday indices is confirmed by the sample 

autocorrelation functions of the hourly absolute returns of the normalised MCI in 

Figure 5.4. Note that the seasonal patterns evident in Figure 4.9 are also appar-

ent here and the normalisation does not affect the seasonal behaviour. Properties 

of the normalised WSis in market activity time are examined in Section 5.3. 

! --t-- .. +:-rtltll-fl:+tr-

~ 

~~~--~*-4-~~~~~~~~4--4-

Q2 Q3 Q4 Q1 02 Q3 Q4 Q1 Q2 Q3 
1 gga 1 997 1 998 

02 Q3 
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Q2 03 04 01 Q2 Q3 
2000 2001 

Figure 5.2: Hourly absolute returns of the normalised MCI (red) and the hourly 

absolute returns of the square root of the normalised MCI (blue). 

5.2 Market Activity of the WSis 

5.2.1 Empirical Behaviour of Market Activity 

The ease with which market activity time can be observed, allows for the direct 

calculation of the rnarket activity. We calculate market activity via the numerical 

derivative corresponding to ( 4.6.15) using five minute time steps. Note that the 
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Figure 5.3: The market activity time for the MCI. 
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Figure 5.4: Sample autocorrelation function for the hourly absolute returns of 

t he normalised M CI. 

market activity is positive since market activity time is a non-decreasing function 

of physical time. The empirically observed market act ivity fluctuates over a wide 

range. Therefore, we show the logarithm of market activity ln(m(t)) in Figure 

5.5 for the MCI spanning several weeks in April/May 1996. It appears that 

the observed market activity process displays some seasonal patterns and reverts 

quickly back to a reference level. The observed market activity processes for the 

EWI and GDPI appear to be very similar and therefore are omitted. 

To some degree, seasonal patterns are evident in the average level of market 

activity in addition to the average fluctuations. The presence of seasonal patterns 

within the fluctuations of market activity is further confirmed by the empirical 

quadratic variation (In( m)) ~J. , t of the logarithm of the market activity. This is 
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Figure 5.5: Logarithm of market activity, ln(m(t)), for the MCI. 
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Figure 5.6: Quadratic variation of the logarithm of the market activity process , 

(ln(rn))~ ,t, for the MCI. 

shown in Figure 5.6, where the period displayed is the same as in Figure 5.5. 

Here we see that the weekends are characterised by a plateau in the quadratic 

variation. Notably, despite the seasonal pattern, the empirical quadratic variation 

in Figure 5.6 appears to be almost linear for the periods when the markets are 

actively trading. This indicates market activity has a multiplicative diffusion 

coefficient for active trading periods. In addition, we are able to recover the GOP 

volatility from relation ( 4.6. 7) from the observed market activity and normalised 

WSI. 

In order to model the market activity it is necessary to characterise the relation-

ship between its fluctuations and those of the normalised WSI. For each WSI , the 

empirical covariation of the square root of the normalised WSI with the logarithm 

83 



... 
. f--- --f-- J'\t..r' rV\ ~ " lA 'fl/1' ·y ,f'\. 

I ' ... ~ '\.. ~ A. 
,_ 

;_ r T " 

.I( ~"' If 
... A P r'\ J " \... ~ /\ Wl.l'W [J V "111 w H, 

r,. .,. 
h"" vY 

02 03 04 
199e 

02 03 04 01 02 03 02 03 04 01 02 03 04 01 02 03 
1997 1998 1999 2001 

Figure 5.7: Covariation of the logarithm of the market activity with the square 

root of t he normalised WSI , (ln(m), VY)~,t , for the MCI. 

of the corresponding market activity process is analysed. 

The covariation ( L, K) = { ( L, K)t? t E [0, T]} of two continuous processes 

L = {L(t) , t E [0, T]} and K = {K(t) , t E [0 , T]} , can be defined as the limit in 

probability 

( L , K)t ~ l~ ( L, K)~,t (5.2.1) 

where ( L , K) ~,t denotes the approximate covariation 

nt 

( £, K)~,t = L (L(tn)- L(tn-l)) (K(tn)- K(tn-l)) (5.2.2) 
n=l 

for t E [0, T], where nt is given in (2.1.2). 

For the MCI, the empirical covariation is shown in Figure 5.7. We observe that 

the empirical covariation remains reasonably close to zero. There appears to be 

some evidence of a slight positive trend, although it seems reasonable to neglect 

this for the normalised WSis when denominated in US Dollars. In Chapter 6 a 

possible method for refining the analysis is discussed, such that there is practically 

no covariation between the noise of the WSI and that of the resulting market 

activity process. 
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5.2.2 Model for Market Activity 

T he expected market activity m(t) at t imet, which is defined as the expectation 

m(t) = E (m(t)), (5.2.3) 

is used to extract the seasonal pattern in the drift. For the full observation 

period, which covers 258 weeks in total, we use the law of large numbers to 

obtain an estimate for m(t) for each five rninute interval from the arithmetic 

average of the corresponding observed market activity. This implies that the 

expectation of the market activity at time t is estim.ated by assuming the same 

pattern for each week and sampling over all weeks in the observation period. 

Figure 5.8 displays the estimated weekly pattern of the expected market activity 

m(t) when daylight savings time (DST) is taken into account. Red represents the 

expected summertime market activity in the Northern Hemisphere, whilst the 

black represents wintertime. Here we note that the daily pattern shown in Figure 

5.8 is very similar for each working day irrespective of the DST period. Note, that 

Figure 5.8 is calculated from market activity and not its logarithm. The overall 

daily pattern is composed of several U -shaped patterns of different magnitude. 

The individual patterns are characteristic of localised, exchange-traded markets. 

The presence of similar U-shaped patterns in intraday return volatility is well 

documented. Wood, Mcinish & Ord (1985) and Harris (1986) provide early 

evidence of this pattern. This shape indicates that market activity is high at 

the open and close of trading and relatively low around the middle of the day. 

Pronounced intraday volatility patterns have also been documented in foreign 

exchange markets, see Muller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg 

(1990). As expected, in Figure 5.8, the magnitude of the average market activity 

is highest when the European and American markets are simultaneously active. 

It is lowest during the Pacific gap, that is , 21:00 to 00:00 GMT, and on the 

weekends. 

Figure 5.6 suggests that the market activity m(t) is likely to have multiplicative 
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Figure 5.8: Weekly pattern of expected market activity m(t). Red represents sum-

mertime in the Northern Hemisphere, black represents wintertime in the Northern 

Hemisphere. 

noise with some seasonal activity volatility since the empirical quadratic variation 

of its logarithm shows a piecewise linear pattern. A possible model for m( t) with 

multiplicative noise is given by the SD E 

dm(t) = A(m(t))/32(t)dt + ,B(t)m(t)dW(t) (5.2.4) 

for t E [0, T], where W denotes a standard Wiener process on the filtered prob-

ability space (0, Ar, A , P) that satisfies the usual conditions. Here A(-) is a 

drift function that is specified in Section 5.2.3. The activity volatility /3( t) > 0 

is assumed to exhibit some weekly periodic seasonal patterns. Squared activity 

volatility is estimated by averaging over the weekly observations of /32(t), ob-

tained from the slope of (ln(m)).6.,t· Figure 5.9 shows the estimated values for 

(3(t) for the MCI. These estimates are obtained from five minute observations. 

Here we have set the activity volatility to zero during the weekends, since spu-

rious observations do not allow a meaningful calculation of /J(t) at these times. 

Note that during the active trading days the activity volatility is almost constant 

and slightly larger than one. We see that the activity volatility spikes when the 

Asia- Pacific markets open. 

The seasonal activity volatility /3(t) allows us to introduce an alternative time 
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Figure 5.9: Average weekly pattern of activity volatility ~(t). 

scale. We define activity volatility time T = { T( t), t E [0, T]} to be 

r(t) = (ln(m)), = 1' ((J(u)? du (5.2.5) 

for t E [0, T]. Again, as with market activity time ( 4.6.8), the activity volatility 

time (5.2.5) requires normalisation. 

It is useful to consider market activity in activity volatility time mT(t) = m( t). 

By (5.2.4) and (5.2.5) , we obtain the SDE 

( 5.2.6) 

for T E [0, T(T)], where 

dWT(t) = f3(t)dW(t) (5.2.7) 

for t E (0, T]. Note that the drift function A(·) is the market activity drift in 

activity volatility time. In this new tirne scale, we capture the changes in activity 

volatility that occur both overnight and on weekends, as well as changes due to 

periods where there are unusually high levels of trading in the world financial 

markets. 

By considering the logarithm of market activity in activity volatility time and 

using Ito 's fonnula together with (5.2.6) we obtain the SDE 

( 5.2.8) 
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where 

A(ln(mr)) = -A(mr)--- ( 1 1) 
mr 2 

(5.2.9) 

forTE [0, T(T)]. Note that the diffusion coefficient in (5.2.8) is equal to one. 

The empirical quadratic variation of the logarithm of market activity in activity 

volatility time is shown in Figure 5.10. It confirms the theoretical slope, which is 

equal to one, for the quadratic variation (ln(m))r = T that follows from (5.2.8). 
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Figure 5.10: Empirical quadratic variation (ln(m))~ .r of the logarithm of the 

market activity process in activity volatility time. 

5.2.3 Estimation of Drift Function 

The identification of the drift function of market activity remains. For the US 

Dollar denomination of the GOP the logarithm of rnarket activity lr = ln(mr) 

has the empirical stationary density that is shown in Figure 5.11 via its histogram 

formed from 523,585 observations. For the mode and right tail of the histogram 

of lr we obtain an outstanding fit from the gamma density, which is shown in 

Figure 5.11. The gamma density for the logarithrn of market activity is given by 

Pl(l;!,P) = ~~~ exp { -1e1} e1
(p-l) (5.2.10) 

for T E [0, T(T)], where 1 > 0 is the speed of adjustment, p > 0 is the reference 

level and f( ·) is the Gamma function. By the stationary solution of the Fokker-

Plank equation, this implies a corresponding form of the drift function for the 
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logarithm of market activity given as 

A( lr) = ~ ( p ~ l - e1r) (5.2.11) 

forT E [0, T(T)]. 

The speed of adjustment parameter 1 and the reference level p, in (5.2.11), remain 

to be estimated. A very distinct deviation from the gamma density is shown in 

the histogram, where there is a concentration of negative spikes around -0.4. 

These negative spikes plus the thicker left tail, result from the sudden effects of 

market opening and closing. These are not included in the given dynamics of 

the model for market activity described by the SDEs (5.2.4), (5.2.6) and (5.2.8) 

when the reference level is assumed to be constant. For this reason we will ignore 

values less than I= -0.2 for the estimation of the drift parameters. 

-0.6 -0.4 -0.2 0 .0 0.2 0.4 

In m 

Figure 5.11: Histogram and estimated probability density function of ln(mT). 

In this case, we can perform maximum likelihood estimation. We exclude most 

of the distortions caused by the effects of market opening and closing from our 

estimation by forming a restricted log-likelihood function 
nr 

L("'f ,p) = L l{lrn~U ln (pz(lTn; "'(,p)) · (5.2.12) 
n=l 
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Here nr = 523, 585 is the total number of observations and l{t.,.n::::O denotes 

the indicator function which takes only observations with lTn 2: I into account, 

n E {1, 2, .. . , nr }. This condition results in 401,656 observations used in the 

restricted maximum likelihood estimation. The plot of the estimated probability 

density function of l7 = ln( m 7 ) based on the resulting maximum likelihood esti-

mates :Y ~ 103 and p ~ 106 is shown in Figure 5.11. We see that the left tail 

of the histogram is fatter than what is given by the theoretical gamma density 

from the effects of market opening and closing. However, the right tail and mode 

of market activity are extremely well described by the gamma density. The esti-

rnates for each of the WSis, together with 99% confidence intervals, are shown in 

Table 5.1. 

Index II 
MCI 103.2 105.8 

(89.3,116.4) (92.3,119.2) 

GDPI 136.6 138.9 

(120. 7, 152.5) (122.5,155.3) 

EWI 137.3 139.7 

(121.2,153.4) (123.5 , 155.8) 

Table 5.1: Estimates for the drift pararneters of market activity in activity volatil-

ity time with 99% confidence intervals. 

5.3 Normalised WSis in Market Activity Time 

In Section 4.6 it was shown that the normalised GOP, when observed in market 

activity tirne, is a square root process of dimension four. As explained in the pre-

vious chapters, we concentrate entirely on inference from the diffusion coefficient 

of the normalised WSis. The trajectory of the normalised MCI in market activity 

time is shown in Figure 5.12. By considering market activity time, we know that 

the quadratic variation of the square root of the normalised MCI should be linear 
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with a slope close to 0.25 , see ( 4.6.14). This relationship is confirmed by perform-

ing a simple linear regression of the empirical quadratic variation of the square 

root of the normalised WSis in market activity time against the corresponding 

estimated market activity time. The slope coefficient and R2 value are given in 

Table 5.2 for each of the WSis considered. 
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Figure 5.12: Normalised MCI in market activity time. 

Index II Slope Coefficient I R2 

MCI 0.245 0.9968 

GDPI 0.232 0.9969 

EWI 0.198 0.9919 

Table 5.2: Slope coefficients and R2 values for the empirical quadratic variation 

of the square root of normalised WSis in market activity time against market 

activity time. 

Observation of the normalised WSis in market activity time should also remove 

the seasonal patterns from the absolute returns of the normalised WSis, see Fig-

ure 5.4. We show the sample autocorrelation function of the hourly absolute 

returns of the normalised MCI in market activity time in Figure 5. 13. It is clear, 
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Figure 5.13: Sample autocorrelation function of the hourly absolute returns of 

the normalised MCI in market activity time. 

when comparing the results with those in Figure 5.4, that the seasonal pattern 

has been largely removed. 

This makes the rnodel derived and calibrated above, a largely accurate intraday 

description of the dynamics of the discounted world stock market index denomi-

nated in US Dollars and thus the discounted GOP. The above methodology yields 

similar results for a range of diversified indices. Hence, all three WSis can be in-

terpreted as reasonable approximations of the GOP. Table 5.2 shows that the 

MCI and GDPI fit the model equally well and both outperform the EWI when 

the quadratic variation processes of the square root of the corresponding nor-

malised index are considered. Additionally, the corresponding market activity 

processes in activity volatility time are shown to have the hypothesised dynamics 

when effects of the opening and closing of trading are omitted. It follows from 

Figure 4.3 that the MCI has the long term maximum value with respect to all 

other indices considered. This reflects the main property of the GOP. Conse-

quently, we consider the MCI to be the best proxy for both the GOP and the 

world stock portfolio, on the basis of statistical results and for economic reasons. 

That is , the MCI can also be considered as the market portfolio , which provides 

a link to the classical Capital Asset Pricing Model (CAPM), see Merton (1992). 
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It must be emphasised that the intraday benchmark model centres upon market 

activity as its parameter process. Market activity models the short term fluctua-

tions of the squared GOP volatility of the security dynamics. The inverse of the 

normalised GOP, see ( 4.6. 7) , captures the medium and long term fluctuations of 

squared GOP volatility. This is in contrast to the parametrisation used in the 

Black- Scholes- Merton model, which is built upon volatility as the sole parameter 

process of interest . 
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Chapter 6 

Intraday Analysis of the MCI in 

Different Currency Denominations 

Within the benchmark framework, the structure of the dynamics for the GOP is 

unaffected by the chosen units of denomination. To investigate this feature, we 

examine twenty- one currency denominations of the MCI in this chapter. Proper-

ties of the market activity processes that result frorn different denominations of 

the MCI are exarnined in Section 6.1. Section 6.2 considers the co- movements of 

the normalised GOPs and Section 6.3 considers the pairwise relationships between 

the market activity processes. 

6.1 Market Activity of the MCI 

6.1.1 'The MCI in Different Denominations 

As the rv1CI is the best proxy for the GOP, the remaining analysis is conducted 

only on the MCI as the underlying index. Here, we focus on the empirical be-

haviour of n1arket activity, derived from the MCI denominated in currencies other 

than US Dollars. The high- frequency MCI in different currencies is formed frmn 

the US Dollar MCI by 

(6.1.1) 

where X(i,USD)(t) is the spot price of one US Dollar at timet when measured in 

units of the ith currency. In general, the ( i, j)th foreign exchange rate at time t 

can be expressed as the following ratio of GO Ps 

v(i,j) (t) - S(i,6,.) ( t) ./\. - su.6*) (t) ' (6.1.2) 
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see P laten (2001). Here S(i,<5*) ( t) and S(j,<5*) ( t) denote the value at time t of the 

GOPs denominated in terms of currencies i and j, respectively. Note that the 

discounted MCI S(i,<S<Mcn)(t) at timet is formed by 

S(i,<5(MCI)) ( t) 
5(i,<5(MCI))(t) = ( O) , (6.1.3) s i, (t) 

where S(i,O)(t) is the savings account for the ith currency. This depends on the 

short rate for the ith market at timet, denoted by ri(t). 

The MCI in twenty- one different currency denominations is shown in Figure 6.1. 

On average, the majority of the denominations of the MCI appear to grow expo-

nentially. As in Chapter 5, an exponential function is used to compensate for the 

observed long term growth to fonn the normalised MCI. 

6.1.2 Empirical Analysis of Market Activity 

The benchmark model outlined in Chapter 4 models the dynamics of the GOP 

in an idealised framework. Specifically, the assumption that the normalised GOP 

has the dimension four, is likely to be satisfied only in the case of the most 

developed rnarkets. However, the benchmark approach is flexible. The dimension 

of the square root process is specific to individual markets and is permitted to take 

other values greater than two, see Platen ( 2001). Circumstances that may result 

in dimensions other than four include the possible inefficiencies within emerging 

rnarkets, or when the leverage effect is not reflected in the reactions of the market 

to new information. In such cases the GOP is formed by a power of a square root 

process. Furthermore, market activity is assumed to be uncorrelated with the 

noise driving the normalised GOP. To examine whether the dimension of the MCI 

when denominated in each currency is four, we consider the empirical covariation 

of the square root of the normalised MCI with the logarithm of market activity, 

but calculated as if the dimension is four. If the dimension of the normalised 

MCI is four for a given currency denomination, then the empirical covariation 

(ln( mi), v!Yi) t:..,t should remain close to zero. From Figure 6.2, it is clear that with 
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Figure 6.1: The MCI denominated in units of twenty-one different currencies for 

the five year period. 
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the exception of the US Dollar denomination, which shows a slight positive trend 

in the empirical covariation but remains close to zero, the empirical covariations 

for the remaining twenty indices are not close to zero. More precisely, periods 

with certain trends are apparent. 

In such cases, we transform the denomination of the MCI by a power function 

such that the resulting covariation between the square root of the transformed 

MCI and the logarithm of the resulting market activity remains relatively close to 

zero. The power function transform reflects the minimal market model proposed 

in Platen (2001) where powers of square root processes are considered to model 

the normalised GOP. 

General Form of the Normalised GOP 

Suppose we form the normalised GOP Z~ in market activity time for each de-

nomination i using a square root process YJ via the power transform 

z~ = (YJ) 4-1, (6.1.4) 

fori E {USD, CHF, .. . } and V;i E [0, V;i(T)], see Platen (2001) and Heath , Hurst 

& Platen (2001). Here vi denotes the dimension for the ith denomination. Note 

also that for each currency i, a corresponding market activity time exists denoted 

by 'lj;i. However, for ease of exposition the index i is omitted frorn the time scale. 

It can be shown using the Ito formula together with (6.1.4) and (4.6.10), that the 

general normalised GOP zi = {Z~,'lj;i E [O,'l/;i(T)]} satisfies the SDE 

for i E {US D, C H F, ... } . Note that the dependence of market activity time 'lj; on 

the denomination i is suppressed for ease of notation. It is clear that when z} = 4, 

the SDE in (6.1.5) simplifies to that given in (4.6.10). Recall, that to obtain the 

market activity process we calculate the slope of the quadratic variation of the 
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process jYJ. Note, by (6.1.5) and the Ito formula, t he square root of t he general 

normalised GOP jZi satisfies the SD E 

(6.1.6) 

for 'l/Ji E [0, 'lj;i(T)]. Thus, the quadratic variation of jZi is 
I vizi) = ~ {1/J(t) (vi - 1) 2 ( zi) ~:=~ d'l/J. 
\ 1/J(t) 4 }0 2 1/J 

(6.1. 7) 

This quadratic variation is only independent of zi if the dimension vi is exactly 

four. If we were to attempt to calculate market activity based on (6.1.7) by 

applying the relationship in ( 4.6.15) , the resulting process would be related to 

the process zi. Thus , we expect to see some covariation if the dimension of the 

observed normalised GOP is not exactly four , as displayed in Figure 6.2. 

We must find the correct power , which is equivalent to choosing the correct 

dimension vi, to ensure that market activity is not correlated to the noise that 

drives the normalised GOP. That is , from (6.1.4), we must find the dimension vi 

. . 2 

YJ = (Z~) ;;t.::2 

for i E { U 8 D, C H F, . .. } , such that the covariation between the square root of the 

observed process zi and the logarithm of its market activity is minimised. Note 

that the dimension vi is not necessarily constant. However, we assume throughout 

this chapter that vi is a piecewise constant function of time, which simplifies the 

analysis. :From the empirical covariation processes shown in Figure 6.2, it appears 

that the quantity vi could be conveniently described as a continuous time Markov 

chain. 

We deduce the dimension vi through a basic analysis of the empirical covaria-

tion processes in Figure 6.2. Figure 6.3 shows the estimated piecewise constant 

dimensions as a function of time for each denomination. The values for vi range 

98 



ATS AUD BEF 

:1::;z::1 ~1~1 ~lo:;;;TI 
CAD CHF OEM 

:1~·~~1 :1~1 t:;;z::l 
DKK ESP FIM 

:1~1 :l:;;z:l :l;;;:;:;z:=J 
FRF GBP GRD 

:~:;;;;r:J ;[:;;;;::?:! :lz:J;:I 
HKD ITL JPY 

:1~1 :I::Z::JI;;;??:I 
NLG NOK PTE 

r;;;~•c1 :1~1 :J::;;;z:=J 

Figure 6.2: The empirical covariation of the square root of the normalised GOP 

and the logarithm of market activity assuming that the dimension of the nor-

malised GOP is exactly four. 
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from 2.5 to 6.0 and are on average close to four. Further research is required to 

estimate the changes in vi more objectively. 

The resulting logarithm of the market activity process for the different denom-

inations of the MCI for two weeks in April 1996 are shown in Figure 6.4. This 

segment of the logarithm of market activity is typical of the behaviour for the 

five year period. In Chapter 5, it was demonstrated that the market activity of 

three different WSis, denominated in US Dollars, behaves in a similar fashion 

despite the different methods used in their construction. Namely, all three WSis 

were shown to result in a market activity that appears to be a strongly mean-

reverting process displaying seasonal patterns. We see that all denominations of 

market activity considered behave in the same manner. In particular, it appears 

that the observed market activity processes exhibit seasonal patterns and revert 

rapidly back to a reference level. Viewing these segn1ents of market activity il-

lustrates the seasonality apparent in the average level of market activity and to 

some extent, the seasonality apparent in the fluctuations of market activity. 

The presence of seasonal patterns is confirmed by the empirical quadratic varia-

tion of the logarithm of market activity shown in Figure 6.5 , which is plotted for 

the same segments as per Figure 6.4. We see that the weekends are characterised 

by a plateau in the empirical quadratic variation. Despite this, for periods when 

the market is actively trading, the ernpirical quadratic variation again appears 

to be almost linear. This indicates that the assumption of multiplicative noise is 

reasonable for the twenty- one currency denominations considered. 

We can again extract the seasonal patterns in market activity. The expected 

market activity at time t is defined as the expectation 

(6.1.8) 

as discussed in Chapter 5, see (5.2.3). The weekly expected market activity 

pattern is shown for summertime in the Northern Hemisphere for each currency 

denomination in Figure 6.6 . Notably, for the majority of denominations we see a 
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Figure 6.3: Piecewise constant dimension vi of the normalised MCI as a function 

of time. 
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Figure 6.4: The logarithm of market activity denominated in twenty- one different 

currencies for two weeks during April 1996. 
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Figure 6.5: Empirical quadratic variation of the logarithm of market activity 

denominated in twenty-one different currencies for two weeks during April 1996. 
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largely clean pattern with five spikes that demonstrate the opening and closing 

of the different regional markets. This pattern is typically referred to as the 

U -shaped pattern and was originally seen for the return volatility of exchange 

traded instruments, see Dacorogna, Genc;ay, Muller, Olsen & Pictet (2001) and 

references therein. Again, market activity is lowest on weekends and during the 

Pacific gap. This clean pattern is not quite so evident for some of the less globally 

traded currencies. 

Activity volatility is obtained as described in Section 5.2. It also has a weekly 

pattern and is estimated by averaging over the weekly observations of the squared 

activity volatility (f3i(t)) 2 . We show in Figure 6.7, the average activity volatility 

{Ji(t) for the twenty- one denominations of the MCI. Again there is always a 

spike when the Asia- Pacific rnarkets have opened, which occurs after the Pacific 

gap. The calculation of activity volatility time, as described in Chapter 5, allows 

us to observe market activity on this additional time scale. A simple linear 

regression of the empirical quadratic variation of the logarithm of market activity, 

in terms of activity volatility time, against activity volatility time, was performed. 

The resulting R2 values are shown in Table 6.1 and confirm that the diffusion 

coefficient is practically constant. 

6.1.3 Parametric Drift Estimation 

In Figure 6.8, the histograms of all observations from the individual denomina-

tions of the logarithm of the market activity l~ = ln(m~) are shown. One notes 

a very distinct shape of the stationary density but also a concentration of nega-

tive spikes around -0.4 to -0.6 , depending on the currency. These result from 

markets opening and closing, which have not been accounted for in the model 

for market activity that is employed. Here we assume that irrespective of the 

denominating currency, that market activity has as stationary density, a gamma 

density. 

The stationary density of the logarithm of the market activity l~ in activity 
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Figure 6.6: The weekly pattern of expected market activity mi(t) for each cur-

rency for summertime in the Northern Hemisphere. 
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Figure 6.7: Average weekly pattern of activity volatility ~i(t) for twenty-one 

currency denominations. 
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ATS 0.9997 AUD 0.9999 BEF 0.9996 

CAD 0.9999 CHF 0.9995 DEM 0.9997 

DKK 0.9998 ESP 0.9998 FIM 0.9997 

FRF 0.9998 GBP 0.9995 GRD 0.9997 

HKD 0.9999 ITL 0.9998 JPY 0.9994 

NLG 0.9998 NOK 0.9998 PT E 0.9999 

SEK 0.9998 SGD 0.9998 USD 0.9999 

Table 6.1: Table of R2 values from the regression of t he empirical quadratic 

variation of t he logarithm of market activity against activity volatility time. 

volatility time can be written as 

Here r( ·) is the Ga1nn1a function and "Yi > 0 and pi > 0 are the only free 

parameters for each currency i. 

As in Chapter 5, we can perform a restricted maximum likelihood estimation. A 

straightforward maximum likelihood estimation would be adversely affected by 

the distortions in the negative tail of the histogram. Therefore, we exclude most 

of the distortions from our estimation by forming the restricted log-likelihood 

function for each currency denomination, 

nr 
L('"'/,pi) = L l{t~n~U lnpz(l~n; "'fi ,pi). 

n=l 

Here nr = 523, 585 and l {t~n~U denotes the indicator function which allows only 

observations with l~n 2:: I. The restricted maximum likelihood technique was 

applied using l = - 0. 2. A plot of the estimated gamma density function of 

ln ( m~) based on the resulting maximum likelihood estimate of '"'/ and pi is shown 

in Figure 6.8 fori E { USD , CHF, .. . } . We see that the effects caused by market 
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opening and closing make the left tail of the histogram fatter than what would be 

expected if market activity was a gamma distributed random variable. Although, 

note that the right tail and mode of the histogram is well described by the gamma 

density for most denominations. The estimates of 1i and pi together with the 

99% confidence intervals are shown in Table 6.2. 
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Figure 6.8: Histogram and estimated probability density function ln (m~). 
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~ 
~ 

0 

I i W t ____ _1 ti I i II ii I ti I i II ii I ti I 
--- ---- ----------

ATS 92 96 AUD 103 108 BEF 108 112 

(80.2,103.8) (82.4 ,109.5) (89.4,118.6) (97.4,118.6) (96.8,119.2) (98.4,125.6) 

CAD 95 99 CHF 70 73 DEM 102 107 

(83.2 ,106.8) (85.4 ,112.5) (56.4,83.5) (62.4,83.6) (90.8,113.2) (93.4,120.8) I 

DKK 80 85 ESP 85 90 FIM 75 79 

(68.2 ,91.8) (71.4 ,98.6) (71.4 ,98.5) (79.4,100.6) (63.8,86.2) (65.4,92.5) 

FRF 73 77 GBP 96 101 GRD 70 74 

(61.2,84. 7) ( 63.4,90.6) (82.4,109.5) (90.3,111.6) (58.8 ,81.2) (60.4,87.6) 

HKD 83 86 ITL 73 76 JPY 87 91 

(71.2 ,94.8) (72.4,99.6) (59.4 ,86.6) ( 65.3,86.6) (75.8,98.2) (77.4 ,104.6) 

NLG 80 84 NOK 59 62 PTE 79 83 

(68.2 ,91.8) (70.4,97.5) ( 45.4,72.6) (51.4, 72.6) (51.4,72.6) ( 69.4,96.6) 

SEK 79 84 SGD 55 58 USD 103 106 

(67.2 ,90.8) (70.4 ,97.6) ( 41.4 ,68.6) (47.4,69.2) (89.3,116.4) (92.3,119.2) 

Table 6.2: Estimates of the speed of adjustment and reference level parameters in addition to 99% confidence intervals. 



6.1.4 Non-parametric Drift Estimation 

It is clear from Figure 6.8, that it may not always be appropriate to assume 

that market activity has a gamma density as stationary density. There are some 

discrepancies, for example, the denomination of market activity in terms of the 

Norwegian Krona (NOK) , where it appears that the estimated gamma probability 

density is more peaked than the histogram of the data. Furthermore, Platen, 

West & Breymann (2004) find that market activity, when denominated in terms 

of half-hourly Australian electricity spot prices, has a stationary density that is 

best described by the inverse gamma density. This indicates that the assumed 

drift dynamics in (5.2.11) for the logarithm of market activity may be different 

for commodity denominations of a WSI. To make the model more flexible , we 

estimate the unknown stationary density of the logarithm of market activity 

using non- parametric methods. 

This allows us to deduce the drift function from the stationary density of 

l~ = ln(m~) since the diffusion function is fixed. Using the solution of the station-

ary Fokker- Plank equation, the stationary density for the logarithm of market 

activity zi can be written as 

til(l') = C exp { 2 { A'(u')du'} , ( 6.1.9) 

where Jii(-) is the drift function associated with the logarithm of market activity 

for each denornination i, see (5.2.8). Here Z6 E 1R is an arbitrary point and the 

constant C results from the normalisation condition 1: Pi(l')dl' = 1. 

By taking the derivative of the natural logarithm of the stationary density, the 

drift function can be directly obtained as 

Since there is enough data available, the stationary density can be fitted in a non-

parametric manner on the basis of the corresponding histogram. The form of the 
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drift function can therefore be deduced without making any extra assumptions. 

We do this for the twenty- one currency denominations considered by estimating 

the non- parametric density from the histograms of each logarithm of market 

activity l~ = ln ( m~). In Figure 6. 9 the resulting drift function estimates are 

shown, where l~ refers to the horizontal axis and A_i(l~) is shown on the vertical 

axis for each currency i. We select only the central segment of the drift function 

since the tail distortions make it difficult to discern the relevant shapes. This is 

due to the low number of observations in the tails of the stationary densities. 

In the case of the gamma density, as identified for the US Dollar denomination 

of the MCI, a plot of l~ against A_i(l~) should be 

A_i(li) = '"'/ (pi ~ 1 _ ezi) . 
2 '"'(" 

Thus around A.i(li) = 0 an approximate straight line should be evident. This is 

seen in Figure 6.9 for the majority of denominations. Furthermore, some negative 

curvature should be apparent away from this area. Overall, the US Dollar market 

activity drift function appears to show a negative exponential function. However , 

each market is different with some showing a distinct change in slope, such as the 

Italian Lira (ITL) and the Japanese Yen (.JPY) denominations. 

6.2 Co-movements of Norrnalised WSis 

The pairwise dependence of the normalised WSis is required so that a complete 

characterisation of the behaviour of the normalised vVSis is obtained. To do 

this, the covariation of the square root of the normalised WSI in physical tirne 

is considered. That is, from ( 4.6.5), the covariation of the square root of the ith 

and jth normalised GOP in physical time can be written as 

( v?i, VYi}, = ~ l ~v'mi(S)p';}(s)ds 
where 

( Wi, W1}, = l p'.;f(s)ds. 
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Figure 6.9: Non- parametric drift function estimates for twenty- one denomina-

tions . 

113 



If the two Wiener processes are uncorrelated then 

Provided that the covariation of the square root of the two normalised WSis is 

smooth, we can write the covariation coefficient between the ith and jth nor-

malised GOP as 
. . 4cft ( VYi, vYJ) 

p!;} ( t) = jmf(S) jmJ(s)t . 

From (4.6.15), this can be written as 

(6.2.1) 

Due to the large nu1nber of pairwise relationships we show only twenty of the 

empirical covariation processes in Figure 6.10. The empirical covariations shown 

display patterns typical to the various combinations of the normalised WSis. It 

is clear that the empirical covariations of the pairs of the square root of the 

normalised WSis shown here, remain close to zero. Notably both the empirical 

covariation and market activity processes in the denominator of (6.2.1) are not 

linear. This makes the calculation of p~ more complicated. 

To calculate a covariation coefficient for the square root of the normalised WSis, 

we assume that the covariation process remains linear for the last year of the 

observation period. Further research is required to examine the behaviour of the 

covariation coefficients over time. Figure 6.11 shows the covariation coefficients 

ordered according to similarity between pairs. In particular, note that the be-

haviour of the covariation coefficients is very similar for each of the European 

markets. A graph summarising these relationships, known as a dendogram, is 

shown in Figure 6.12. The dendogram is typical to cluster analysis, a multivari-

ate statistical technique used to summarise the similarity of a group of variables. 

Here the cluster analysis is performed using the matrix of covariation coefficients 

depicted in Figure 6.11. A single linkage agglomerative hierarchical method is 
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USD & JPY USD & DEM USD & CAD USD &AUD 

USD & GBP USD & CHF USD & HKD AUD &JPY 

AUD & DEM AUD & GBP AUD&SGD AUD & CHF 

JPY & HKD JPY & SGD JPY & DEM JPY & CHF 

DEM &ATS DEM & FRF DEM & GBP ESP & PTE 

Figure 6.10: Empirical covariation processes for the square root of normalised 

WSis. Only twenty pairs of covariation processes are shown. 
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used to perform the analysis, see Johnson & Wichern (1998). An agglomerative 

hierarchical method starts with each of the individual denominations. The most 

similar objects are grouped first and then these initial groups are merged until 

eventually a single cluster remains. The similarity of each currency denomination 

is determined via the minimum distance of the covariation coefficients, known as 

the single linkage method. Different techniques for the cluster analysis were tried, 

however the groupings shown earlier did not change markedly. The dendogram 

in Figure 6.12 shows the clusters clearly. A European cluster is apparent , indi-

cating that the normalised WSis have covariation coefficients very close to one 

another , as one would expect. This is also seen for the US Dollar (USD) and 

Hong Kong Dollar (HKD) covariation coefficients. This is not surprising since 

the Hong Kong Dollar is pegged to the US Dollar. The dendogram indicates 

an Asia- Pacific cluster , a lthough note that the Australian Dollar (AUD) is not 

as similar to the other Asian currencies. The Swedish Krona (SEK) is quite 

different to all currencies, although, there is some evidence of a Scandinavian 

clust er , comprising the Danish Krona (DKK) and the Norwegian Krona (NOK). 

The similarity of the normalised WSis is illustrative of some economic relation-

ships. These will change, for example, if new trade agreernents are reached t hat 

provide a link between two economies. Further research will investigate how t he 

covariation coefficients behave over t ime. 

6.3 Co-movements of Market Activity 

The pairwise behaviour of market activity in different denominations is also of in-

t erest. To analyse this dependence, we consider the e1npirical covariation of pairs 

of logarithmic market activity processes in physical time. That is , from (5.2.4) 

the covariation of the logarithm of the ith and jth market activity processes in 

physical time can be written as 

( ln(mi), ln(mJ)), = l !f' (s) {JJ(s)p:;{(s)ds, (6.3.1) 
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Figure 6.11: Covariation coefficients for the square root of the normalised MCI 

in different currency denominations. 

LO v 
c:) 

~ 

23 
<I) 
(/) 

c:: 
<I) 

~ 
<I) 

0 0 
(.) (") 

c:) c:: 
0 +=> co ·c co ~ ~ 8 ~ 0 

"0 c:: 
.5: LO 
<I) 

c:) (.) >. c:: .9; ~ 
<I) 
;;;: 
Cl 

0 
c:) 

E 0> ~ "0 
.!!} E 'Q) (/) c .c. ;::, co <I) .a 

'"0 

Figure 6.12: Dendogram of covariation coefficients for the square root of the 

normalised WSis. 

117 



where 

( W<, Wi), = l p:;;(s)ds. 

If the two Wiener processes are uncorrelated, then 

Again, due to the large number of pairwise relationships, we show only twenty 

of the empirical covariation processes for the logarithm of market activity in 

Figure 6.13. It is striking that in most cases, over the entire five year period, 

the empirical covariation appears almost linear. We see in some cases that there 

is a change in slope of the otherwise straight line. For example, the German 

Deutschmark (DEM) and French Franc (FRF) covariation process displays such 

behaviour. Over a smaller observation period, see Figure 6.14, we see the seasonal 

pattern in the empirical covariation processes. This is the interaction of the 

activity volatility processes for the two currencies. Note that the US Dollar 

(USD) and Hong Kong Dollar (HKD) empirical covariation and the German 

Deutschmark (DEM) and Austrian Shilling (ATS) empirical covariation behave in 

a similar manner to the empirical quadratic variation processes in Figure 6.5. This 

indicates that the activity volatility time scales of the market activity processes 

are very similar. 

Given that we know the activity volatility for each denomination , this implies 

that the covariation coefficient between the ith and jth market activity processes 

can be written as 
.. ( ) _ddt (ln(mi), ln(rnJ))t 

p:;{ t = -r========---;:==== J ft(ln(mi))tV ft(ln(m2))t 
(6.3.2) 

for t E [0, T]. For simplicity, we assume that the covariation coefficient is constant 

and calculate all estimates at the end of the period. The values of pij_ obtained 

are shown in Figure 6.15. The graphs are grouped according to the similarity 

between pairs. We see the relationships between the individual pairs of covariation 

coefficients. Again, note that the behaviour of the European markets are very 

similar for each pair of covariation coefficients. Interestingly, the logarithmic 
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USD & JPY USD & OEM USD & CAD USD& AUD 

USD & GBP USD& CHF USD & HKD AUD &JPY 

AUD & OEM AUD & GBP AUD &SGD AUD & CHF 

JPY & HKD JPY &SGD JPY & OEM JPY & CHF 

DEM&ATS OEM & FRF OEM & GBP ESP & PTE 

Figure 6.13: Empirical covariation processes for twenty pairs of logarithmic mar-

ket activity. 
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USD & JPY USD & DEM USD &CAD USD &AUD 

USD & GBP USD & CHF USD & HKD AUD &JPY 

AUD & DEM AUD & GBP AUD &SGD AUD& CHF 

JPY & HKD JPY & SGD JPY & DEM JPY & CHF 

DEM &ATS DEM & FRF DEM & GBP ESP & PTE 

Figure 6.14: Empirical covariation processes covering two weeks for twenty pairs 

of logarithmic market activity. 
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Figure 6.15: Covariation coefficients of the logarithrnic market activity in different 

currency denominations. 

market activity denominated in US Dollars has a covariation coefficient of at least 

0.4 for every currency denomination considered. The dendogram summarising 

these relationships is shown in Figure 6.16. As one would expect, the group on 

the left hand side shows that the European markets are extrernely similar with 

respect to the covariation of market activity. This is seen for the normalised WSis, 

see Figure 6.12. Additionally, the Hong Kong Dollar (HKD) and US Dollar (USD) 

have a high covariation coefficient for market activity. Furthermore, the US Dollar 

(USD) is highly correlated with the Canadian Dollar (CAD) and Singapore Dollar 

(SGD) . A clear Scandinavian cluster, consisting of the Danish Krona (DKK), the 

Norwegian Krona (NOK) and the Swedish Krona (SEK) is apparent. Note also 

that an Asian cluster is no longer evident in the covariation coefficients of market 

activity. Whilst the denominations contained in the clusters shown in Figures 6.12 

and 6.16 are very similar, there are some differences. This reflects the fact that 
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market activity indicates both trading volume and t rading activity, whereas t he 

normalised WSI is an indicator of level and value. 
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Figure 6.16: Dendogram of covariation coefficients for logarithmic market activity. 

We have shown that the MCI in different currency denominations, when analysed 

after a power transformation, display similar properties in terms of the behaviour 

of the market activity processes, as seen for the US Dollar. As a result, it appears 

different denominations of the GOP can be modelled using the same general 

structure of the SDEs. The co-movem.ents of the square root of the normalised 

WSis are examined. This reveals interesting currency groupings indicative of 

economic relationships . Additionally, this analysis is undertaken for the logarithm 

of market activities, revealing information about trading behaviour, which in the 

main appear to be associated with regional effects. This implies that the model 

described in Chapters 4 and 5 provides a reasonably accurate description of the 

discounted dynamics of the high- frequency MCI in currencies other than the US 

Dollar. 
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Chapter 7 

Conclusion 

An advantage of the benchmark approach is that estimates of the drift function 

are not required. The diffusion function, however, is easily estimated from a short 

period of high- frequency data. This is illustrated using the transform function 

technique developed. This new technique, by using approximations to martingale 

estimating functions, does not rely on stationarity nor is the explicit knowledge 

of moments or transition densities required. 

Several approximations of the growth optimal portfolio are formed from high-

frequency data. This appears to be the first time that such diversified high-

frequency world indices have been constructed and analysed. It is shown that the 

total world market capitalisation weighted index appears to be the best proxy 

for the growth optimal portfolio in terrns of statistical properties and maximum 

growth. 

This thesis successfully confirms the applicability of the benchmark framework 

to intraday data. The classical volatility based approaches have difficulties ac-

commodating high- frequency data. We achieve this through the introduction 

of market activity time, which allows consistent deseasonalisation of the high-

frequency indices. Market activity time approaches physical time, implying that 

the benchmark model is relevant for both micro and macro time scales. 

Market activity provides a natural parametrisation of the short term residual 

fluctuations apparent in the high- frequency indices considered. Through the 

use of a square root transform, or more generally, a power transform, market 

activity is directly obtained. This is in contrast to the logarithmic transform 

commonly used in the standard volatility based analysis of financial markets. The 
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empirical results documented for the currencies considered, suggest that market 

activity is a strongly mean- reverting stochastic process with different seasonal 

patterns in the drift and diffusion coefficients . The diffusion coefficient of the 

market activity process is shown to be multiplicative. Following this, an activity 

volatility time scale is developed. From the stationary density of the logarithm 

of market activity in activity volatility time, a distinct drift function is non-

parameterically identified. By a straightforward transformation of the index, we 

are able to non- parametrically identify; the expected market activity, activity 

volatility and logarithmic market activity drift. These non- parametric, robust 

estimates characterise the market activity and thus the dynamics of the index. 

The co-movements of the square root of the normalised world stock indices are 

characterised via their covariations. Such an analysis is also conducted for the 

logarithrn of market activities. Through the use of cluster analysis, it is shown 

that interesting currency groupings exist. These groupings are indicative of ex-

isting economic relationships and regional effects. This provides scope for future 

research which aiins to explain contagion and other behavioural patterns. 

The intraday benchmark model provides a largely accurate description of financial 

markets. This lay· the foundation for risk measurement, derivative pricing and 

wuious directions of future research. 
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Appendix A 

Definitions 

Here definitions from Liptser & Shiryaev (2001) regularly used in the area of the 

statistics of random processes are given. These terms are referred to throughout 

Chapters 2 and 3. Here X is a continuous stochastic process on the probability 

space (0, A, A, P79 ), where rJ E 8 is the parameter to be estimated. 

Definition A.l The statistic J is called an unbiased parameter estirnate of 

{) E 8 if E79(J) = {). 

Here E79 denotes expectation with respect to the probability P79 . 

Definition A.2 The statistic J is sufficient for rJ if for each A E A a version of 

the conditional probability P( AjJ), not depending on {), can be chosen. 

The Factorisation Theorem, see Liptser & Shiryaev (2001) , gives necessary and 

sufficient conditions for J to be sufficient. 

Definition A.3 The sequence of statistics Jn, n E { 1, 2, ... } is called a consistent 

parameter estimate if {)n ~ flo as n --t oo for all {) E 8 then 

as n --t oo for E > 0. 

Here rJ0 denotes the true parameter estimate. 

The sequence of statistics {)n, n E {1, 2, ... }is a strongly consistent estimator of 

the parameter{) E 8 if {)n ~ {)o with ?79-probability one for all{) E 8. 

125 



It is possible to investigate the quality of parameter estimates through the use of 

the Fisher information matrix 

Here L is the likelihood function, see Chapter 2. For unbiased estimates of the 

parameter {) E 8 ~ ffi.P the Cramer-Rao matrix inequality 

for rJ E 8 is true under certain conditions of regularity, see Liptser & Shiryaev 

(2001). 

Definition A.4 The estimator is known as an efficient estimator if for all{) E 8 

the Cramer-Rao matrix inequality attains eq11,ality. 
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Appendix B 

List of Countries with Stock Market 

Indices included in the World Stock 

Indices 

Country Index Currency Country Index Currency 

Argentina MERV ARS Japan Nikkei 225 JPY 

Australia AORD AUD Korea KOSPIC KRW 

Austria ATX ATS, EUR Malaysia KLSE MYR 

Belgium BEL20 BEF, EUR Mexico IPC MXP 

Brazil BVSP BRL The Netherland AEX NLG,EUR 

Canada TSE 300 CAD Norway OSETOT NOK 

Denmark KFX DKK Philippines PCI PHP 

Finland HEX FIM, EUR Portugal BVL 30 PTE, EUR 

France CAC 40 FRF, EUR Singapore STI SGD 

Germany DAX DEM, EUR Spain IBEX ESP, EUR 
------
Greece ATG GRD, EUR Sweden SGI SEK 

Hong Kong HSI HKD Switzerland SMI CHF 

Hungary BUXI HUF Taiwan TWI TWD 

India BSESI INR Thailand SETI THB 

Indonesia JSX IDR Turkey ICI TRL 

Ireland !SEQ IRP, EUR UK FTSE ALL GBP 

Italy MIB 30 ITL, EUR us S&P 500 USD 
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