

University of Technology, Sydney

A STUDY OF FLUID STRUCTURE INTERACTIONS IN HYDRAULIC PIPING OF PASSIVE INTERCONNECTED SUSPENSIONS

by

Jing Zhao

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Information Technology University of Technology, Sydney May, 2014

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed

Jing Zhao Date:

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude my supervisor Professor Nong Zhang. He has been a tremendous mentor for me. I would like to thank him for encouraging my research and for helping me to grow as a research scientist. Special thanks are also extended to my co-supervisor, Dr. Jinchen Ji. He has always been very approachable and helpful. The advice that both of these mentors have given me has been priceless.

I would also like to thank Chris Chapman for his expertise in the lab. His extensive knowledge on both the hardware and software in the laboratory has been most helpful. It has also been enormously beneficial in terms of this project. I extend my gratitude to my colleagues, Dr. Wenlong Hu, Dr. Wade Smith and Dr. Paul Walker for their invaluable help. The financial and infrastructure support for this work by the Australian Research Council, my supervisor and the University of Technology, Sydney, is also gratefully acknowledged.

Many thanks to my family for the love and support they have given me over the years. Words cannot express how grateful I am to my parents for all of the sacrifices that they have made on my behalf. Their consistent encouragement has quite literally sustained me throughout my endeavours.

Jing Zhao Sydney, April 2014

TABLE OF CONTENTS

ACKN	IOW	LEDGEMENTS	iii
TABL	E OF	CONTENTS	iv
NOMI	ENCI	LATURE & ACRONYM	viii
LIST	OF F	IGURES	X
LIST	OF T	ABLES	xii
ABST	RAC	Τ	xiii
Chapt	er 1	INTRODUCTION	1
1.1	Ba	sic Structure and Function of Vehicle Suspension System	1
1.2	Lin	nitation of Conventional Suspension System	1
1.3	Int	erconnected Suspension	3
1.4	Hy	draulically Interconnected Suspension	4
Chapt	er 2	PROJECT DEFINITION	7
2.1	Pro	oblem Statement	7
2.2	Re.	search Objective and Contribution to Knowledge	8
2.3	Ои	tline of Thesis	9
Chapt	er 3	LITERATURE REVIEW	11
3.1	Hy	draulically Passive Interconnected Suspension	11
3.	1.1	Early interconnection schemes	11
3.	1.2	Recent research and applications	12
3.	1.3	Kinetic HIS systems	14
3.2	Flı	uid-Structure Interaction	15
3.3	Ма	odelling	16
3.	3.1	One-dimensional model	16
3.	3.2	Models of hydraulic components and circuits	18
3.4	Ме	thods Used in the Research	20
3.	4.1	Method of analysis	20
3.	4.2	Method of implementation	21
3.5	Re	levant Study	23
3.	5.1	Suspension model for analysis of low-frequency vibration	23

3.5.2		Methodology	24
Chapter 4		MATHEMATICAL MODELLING	25
4.1	Tra	unsfer Matrix Method (TMM)	25
4.2	Inti	roduction of the System	26
4.3	Ste	el Pipe Modelling	27
4.3	3.1	Governing equations	27
4.3	3.2	Derivation of field transfer matrix	35
4.3	3.3	Validation of field matrix	48
4.4	Fle	xible Hose Modelling	50
4.4	4.1	Assumption	50
4.4	4.2	Field transfer matrix	51
4.5	Мо	delling of Structural Discontinuities	55
4.5	5.1	Concentrated mass	55
4.5	5.2	Spring support	57
4.5	5.3	Pipe elbow	59
4.6	Мо	delling of Fluidic Discontinuities	62
4.6	5.1	Valve	62
4.6	5.2	Accumulator	66
4.7	Ele	ment Model Combination	71
4.7	7.1	Coordinate transformation	71
4.7	7.2	Matrix combination	74
4.8	Co	ncluding Remarks	75
Chapte	er 5	SYSTEM EXPERIMENTS	77
5.1	Tes	t Rig	77
5.1	l.1	System installation	77
5.1	1.2	System pressurisation	79
5.2	Exp	perimental Instruments and Data Acquisition	80
5.2	2.1	Hardware	80
5.2	2.2	Software	82
5.2	2.3	Experimental data acquisition	84
5.3	Sys	tem Natural Frequency Identification	85
5.4	Мо	dal Shape Tests	88
5.5	Infl	luence Factors	89
5.5	5.1	Circumstance and instruments	90

5.5	.2	Human factors	91
5.5	.3	Experimental methods	91
5.6	Cor	ncluding Remarks	
Chapte	r 6	RESULTS COMPARISON AND VALIDATION	94
6.1	Me	chanical Parameter of Simulation Model	94
6.1	.1	Model assumption	94
6.1	.2	Mechanical system parameters	95
6.2	Res	sults Comparison	97
6.2	.1	Frequency results	97
6.2	.2	Result stability	
6.2	.3	Modal shape results	
6.3	Val	lidation	105
6.3	.1	Reason of deviation	
6.3	.2	Modification of simulation model	
6.4	Cor	ncluding Remarks	106
Chapte	r 7	CHARACTERISTICS ANALYSIS AND DISCUSSION	108
7.1	Imp	pact of Hydraulic Components	108
7.1	.1	Orifice influence	
7.1	.2	Accumulator influence	110
7.1	.3	Hose influence	112
7.2	Imp	pact of Structural Components	114
7.2	.1	Pipe influence	114
7.2	.2	Pipe elbow influence	117
7.3	Not	ise Reduction Methods	119
7.4	Cor	ncluding Remarks	119
Chapte	r 8	CONCLUSION	121
8.1	Cor	ntribution and Potential Impact	121
8.2	Fut	ture Work and Recommendation	123
8.2	.1	Curved hose	
8.2	.2	Coupling with connected structure	124
APPEN	DIX	ΚΑ	125
Curve	ed Pi	ipe Section versus Straight Pipe Section	125
APPEN	DIX	Κ B	129
Sprin	g Su	pport Test	129

PUBLICATION	
REFERENCE	

NOMENCLATURE & ACRONYM

Variables (for pipe wall or hose wall):

f_x	lateral shear force	F_x	lateral shear force amplitude
f_y	lateral shear force	F_y	lateral shear force amplitude
f_z	axial force	F_z	axial force amplitude
m_x	bending moment to x axis	M_x	bending moment amplitude to x axis
m_y	bending moment to y axis	M_y	bending moment amplitude to y axis
m_z	bending moment to z axis	M_z	bending moment amplitude to z axis
u_x	lateral displacement	U_x	lateral displacement amplitude
u_y	lateral displacement	U_y	lateral displacement amplitude
u_z	axial displacement	U_z	axial displacement amplitude
θ_x	rotate angle to <i>x</i> axis	Θ_x	rotate angle amplitude to x axis
$ heta_y$	rotate angle to <i>y</i> axis	Θ_y	rotate angle amplitude to y axis
θ_z	rotate angle to z axis	Θ_z	rotate angle amplitude to z axis
Varia	ables (for fluid):		
р	axial pressure	Р	axial pressure amplitude
v	axial velocity	V	axial displacement amplitude
Indep	pendent variables:		
t	time	x	lateral axis
Z	axial axis	У	lateral axis
x	lateral axis	ω	angular frequency

Coefficients:

A	cross-sectional area (m ²)
C_r	circumference of reinforcement of hose wall (m)
D	damping coefficient per unit length (s ⁻¹)
е	wall thickness (m)
Ε	Young's modulus of pipe wall (Pa)
E_x	lateral Young's modulus of hose wall (Pa)
E_z	axial Young's modulus of hose wall (Pa)
G	shear modulus of wall (Pa)

Ι	area moment of inertia (m ⁴)
I^M	moment of inertia (kg m ²)
J	polar moment of inertia (m ⁴)
K_E	modified bulk modulus of hose section (Pa)
K^{*}	modified fluid bulk modulus of pipe section (Pa)
l	length of section or distance (m)
L	inductance of hydraulic component
n	friction coefficient (s^{-1})
q	fluid flow (m ³)
r	inner radius of pipe/hose wall (m)
\overline{r}	mean radius of pipe wall (m)
r _r	radius of reinforcement of hose wall (m)
R	radius of curvature of pipe bend (m)
R	resistance of hydraulic component
¥	volume of gas (m ³)
Ζ	impedance characteristics
γ	ratio of specific heats for nitrogen
η	rigidity factor for stiffness of elbow
κ	shear coefficient for hollow circle cross section
V	Poisson's ratio of pipe wall
V_x	lateral Poisson's ratio of hose wall
V_z	axial Poisson's ratio of hose wall
ρ	mass density (kg/m ³)

Subscripts:

f	fluid
р	pipe wall
h	hose wall
т	concentrated mass
0	orifice
а	accumulator
ao	orifice at neck of accumulator
pre	manufacturer parameter of accumulator

LIST OF FIGURES

Figure 1.1	Dynamic Modes of Road Vehicle	2
Figure 1.2	Schematic Diagram for Hydraulic Circuit of Half-Car HIS System	5
Figure 3.1	Moulton's Hydragas Suspension	12
Figure 3.2	Ortiz's Prototype	13
Figure 3.3	Zapletal's Suspension Concept	13
Figure 3.4	Fontdecaba's HIS Scheme	14
Figure 4.1	Free Body Diagram of Transverse Vibration	
Figure 4.2	One-Dimensional representation of Pipe Section	42
Figure 4.3	Free Body Diagram of Concentrated Mass at Torsional Direction	55
Figure 4.4	Free Body Diagram of Spring Support at Axial Direction	57
Figure 4.5	Sharp-Edged Constant-Area Orifice	62
Figure 4.6	Free Body Diagram of Fixed Orifice	63
Figure 4.7	Gas-Charged Accumulator	66
Figure 4.8	Free Body Diagram of T Junction of Accumulator	68
Figure 4.9	Flow Chart of Result Searching Algorithm	75
Figure 5.1	Schematic Diagram of Hydraulic Circuit	77
Figure 5.2	Photo of Test Rig (Frequency Test of Hydraulic Circuit 1)	78
Figure 5.3	Photo of Test Rig (Modal Shape Test of Hydraulic Circuit 2)	78
Figure 5.4	Experimental Instruments	81
Figure 5.5	Measurement & Automation Explorer Interface	82
Figure 5.6	NI LabVIEW	83
Figure 5.7	Flow Chart of Test Rig Data Acquisition	84
Figure 5.8	Interface of Frequency Tests	86
Figure 5.9	Frequency Spectra of Different Average Times	87
Figure 5.10	Comparisons of Hammer Input and Sine Sweep Input	92
Figure 6.1	Simulation Model of Test Rig	94
Figure 6.2	Simulation Results of System 1 Frequency Response	98
Figure 6.3	Experimental Results of System 1 Frequency Response	98
Figure 6.4	Simulation Results of System 2 Frequency Response	100
Figure 6.5	Experimental Results of System 2 Frequency Response	100

Figure 6.6	Modal Shapes of System 1 Natural Frequency	
Figure 6.7	Modal Shapes of System 2 Natural Frequency	
Figure 6.8	Last Pressure Transducer of System 2	
Figure 7.1	Orifice Investigation System	
Figure 7.2	1 st and 2 nd Vibration Modal Shapes of Fluid Displacement	
Figure 7.3	Accumulator Investigation System	110
Figure 7.4	1 st and 2 nd Vibration Modal Shapes of Fluid Pressure	111
Figure 7.5	Effect of Hose Length	112
Figure 7.6	Effect of Hose Elastic Moduli	112
Figure 7.7	Effect of Hose Density	113
Figure 7.8	Effect of Pipeline Diameter	114
Figure 7.9	Effect of Pipe Thickness	115
Figure 7.10	Effect of Pipe Elastic Modulus	116
Figure 7.11	Effect of Pipe Density	117
Figure 7.12	Effect of Curvature Radius	118
Figure 7.13	Effect of Elbow Angle	118
Figure 9.1	Photo of Support Test Equipment	
Figure 9.2	Photo of Displacement Meter	
Figure 9.3	Photos of Supports	

LIST OF TABLES

Table 4.1	System Parameters of Li's Example	
Table 4.2	Axial Matrix Verification	49
Table 4.3	System Parameters of Zhang's Example	49
Table 4.4	Lateral Matrix Verification	49
Table 4.5	Equation Comparison	
Table 5.1	Technical Specifications of Transducers	85
Table 5.2	Comparison between Instruments (Pressure Transducer Measurement	nt)90
Table 6.1	Physical Properties of Pipe	95
Table 6.2	Physical Properties of Hydraulic Hose	96
Table 6.3	Physical Properties of Hydraulic Oil	96
Table 6.4	Physical Properties of Hydraulic Accumulator	97
Table 6.5	Simulation and Test Results of System 1	99
Table 6.6	Simulation and Test Results of System 2	101
Table 7.1	Influence of Orifice Location on System Natural Frequencies	110
Table 7.2	Influence of Accumulator Location on System Natural Frequencies.	111
Table 7.3	Effect of Pipeline Diameter	114
Table 7.4	Effect of Pipe Thickness	115
Table 7.5	Effect of Pipe Elastic Modulus	116
Table 7.6	Effect of Pipe Density	117
Table 8.1	Frequency Comparison	123
Table 9.1	Measured Stiffness	130

ABSTRACT

This thesis examines the fluid-induced high-frequency vibrations in the hydraulic pipelines of a recently invented vehicle suspension, namely Hydraulically Interconnected Suspension (HIS), which is applied to overcome the compromise between comfort and handling performance. The basic system of the suspension is a liquid-filled pipe-guided fluidic circuit, inside which the produced pressure changes often lead to vibrations of the whole pipeline and associated structures and hence become a source of noise. The results of this study can be extended to similar piping systems.

The modelling approach proposed here is necessarily multidisciplinary, covering vibration theory and fluid dynamics. The one-dimensional wave theory is employed to formulate the equations of motions that govern the dynamics of the fluid-structural system. Piping sections are defined as continuous line elements and discontinuities between the sections as point elements.

The Transfer Matrix Method (TMM) is applied to determine the relationships between individual components. The resulting sets of linear, frequency-dependent state-space equations, which govern the coupled dynamics of the system, are derived and then applied in a variety of ways. Key parameters that influence system dynamics are identified and analyses of their effects are presented.

The theoretical model is validated by experimental investigations. Two piping systems are assembled and free vibration results acquired through both the systems agree well with those of the proposed linear models. The deviation is reasonable and possible impact factors are described. However, the results from a different system configuration reveal the limitations in terms of the linear modelling to precisely represent curved hoses.

The methodology presented is found to be an effective and useful way of modelling liquid-filled pipe-guided piping systems, particularly in the frequency domain. The obtained results suggest possible improvements can be made in relation to decreasing the fluid induced vibration in the piping system and the surrounding structures. However, further investigation is needed. For example, the development of the precise hose bend model or the coupling between the piping system and the connected structures could provide the topic of future studies.