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ABSTRACT

Due to ease of fabrication and maintenance and speed of construction, precast
prefabricated composite deck slabs have gained huge popularity all around the globe.
The precast prefabricated structural systems do not require the costly in-situ formworks.
Accordingly, the precast prefabricated structural systems can reduce the cost of labour
and improve the safety and speed of construction. In addition, the prefabricated
composite structures can significantly facilitate application of external reinforcement in
lieu of conventional internal steel bars. The reinforced concrete (RC) structures, in
general, suffer maintenance and repair difficulties, as internal reinforcements in
reinforced concrete (RC) structures are susceptible to corrosion that can be typically
accelerated by chloride and other corrosive material ingress. Once the corrosion occurs,
reinforcement starts to expand inside the concrete and that in turn causes concrete
cracking and spalling. Accordingly, the reinforced concrete member cannot perform its
structural role properly. Second generation bridge deck slabs, namely steel-free deck
slabs, in which conventional embedded reinforcements are replaced by external
reinforcements have proved to be efficient in mitigating the problems associated with

corrosion of reinforcing steel bars..

The steel-free deck slabs rely on development of arching action to withstand the load.
The inherent arching action in longitudinally restrained reinforced concrete members
was realised about fifty years ago, however, the beneficial effects of arching action has
not been recognised by most of the existing reinforced concrete design standards yet. So
far only Northern Island Standard, DRD, NI (1990), and Canadian code, OHBD
(1992) takes account of the enhancing effect of arching action in design practice. This
intrinsic capacity of laterally restrained RC structures helps the flexural reinforced
concrete members to show loading capacity far in excess of flexural resistance predicted

by the conventional formulas.

Apart from corrosion of reinforcing steel bars, the existing steel-concrete composite
deck slabs cannot be repaired and rehabilitated conveniently and without the
interruption to the traffic. Although many studies have been conducted examining a
wide range of composite deck systems, lack of a practical precast prefabricated steel-

concrete deck slab that allow for easy replacement of concrete slabs in case of

A\



deterioration is apparent. The restrained steel-free concrete deck provides a practical
solution to the corrosion of reinforcement by removing the internal steel bars and
replacing them with external steel straps. However, in the meshless slabs proposed by
them, the future repair and replacement of concrete slab cannot be conducted easily

without a major interruption to the traffic.

To take advantage of the intrinsic characteristic of precast prefabricated deck slabs and
to overcome the issues associated with corrosion of internal steel bars in RC bridge
decks subject to corrosive environment, a novel steel-concrete deck with precast
prefabricated concrete slabs is proposed and examined in this study. The results of
experimental tests on precast prefabricated slabs with high strength bolts are presented
and FE numerical simulation are carried out using ATENA 2D. The novelty of this
research project lies in the application of high strength steel bolts for connecting the
concrete slabs to steel girders. The high strength bolts are pre-tensioned with a special
amount of tensile force induced in them by a torque meter wrench. This new steel-
concrete composite deck has two main advantages; firstly, there is no requirement as to
design and assemble formworks for constructing cast-in-situ concrete slabs and hence
the construction of deck is much faster. Secondly, the high strength bolts can be opened
and the precast slab can be easily released and replaced if required. This advantage
allows for easy repair and maintenance of the concrete deck slab without causing

significant interruption to the traffic during repair and rehabilitation.
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NOTATIONS

The symbols used in this thesis, including their definitions, are listed below.

Cross-sectional area of a rectangular concrete section
Cross-sectional area of reinforcement
Cross-sectional area of compressive reinforcement
Width of a rectangular cross-section (width of slab)
Depth of neutral axis

Membrane force

Compressive force carried by concrete

Compressive force carried by tensile

Effective depth (the distance from the extreme fibre to the centroid of the

tensile steels)

Diameter of high strength bolt
Diameter of steel reinforcement
Half of the arching depth

Distance from the extreme compressive fibre to the centroid of the

compression steels

Distance from neutral axis

Modulus of elasticity of steel reinforcement

Modulus of elasticity of concrete

Compressive strength of concrete — stress in concrete
Characteristic compressive (cylinder) strength of concrete

The total area under the load-deflection diagram up to the failure load (total

energy)

The elastic energy

The area under the load-deflection diagram up to 0.75% the ultimate load.
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feu Compressive (cube) strength of concrete

feyt Compressive (cylinder) strength of concrete

F; Post tensioning force induced in high strength bolt

fu Specified ultimate strength of steel reinforcement

fy Specified yield strength of steel reinforcement

h Overall height of a rectangular cross-section

hq Height of the arch in three-hinged arch theory

hy Distance between membrane force at hogging and sagging

Lo Energy ductility index

k The ratio of the outward movement of the support to elastic shortening of the
beam

k Lateral stiffness in a laterally restrained RC member

K, Equivalent stiffness of support beam

K, Stiffness of diaphragm and slab

K, Combined stiffness of restraint

l RC member’s span length

L RC member’s span length

L, Half of span length in elastically restrained arch

L, Half of span length in rigidly restrained arch

M, Arching moment of resistance

Mg, Arching moment of resistance of rigidly of rigidly restrained slab strip

Mya Balanced moment of resistance

M, Moment ratio (non-dimensional)

my, Sagging moment in a yielded section

m,, Hogging moment in a yielded section

M, Sagging moment in a yielded section
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Hogging moment in a yielded section

Difference between compressive and tensile forces in a yielded section
Applied load

Predicted ultimate arching capacity

Predicted ultimate flexural capacity

Johansen’s loads (i.e. flexural capacity using yield line analysis)
Load due to compressive membrane action

Predicted ultimate capacity under Park’s method

Maximum total load on the slab

Flexural punching strength

Shear punching strength

McDowell’s non-dimensional parameter (elastic deformation)
Thickness of slab

Tensile force carried by tensile reinforcement

Torque applied by wrench in high strength bolt

Effective reinforcement ratio at principal section

LoadAunit area carried by arching action)

Deflection under the point load

Average axial strain in a section

Concrete compressive plastic strain

Concrete maximum compressive strain

Axial strain

Beam/column curvature

Strain

Plastic strain of idealised elastic-plastic concrete
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Width of circular patch load

Longitudinal tension reinforcement ratio in a section (A4y/bd)
Effective arching reinforcement ratio at principal section
Effective reinforcement ratio at principal section

Ductility index (general definition)

Ho

HUe

HUa

Ug

1S S S
e

<

Ductility index in term of curvature
Ductility index in term of rotation

Ductility index in term of deflection

Energy ductility index
Curvature

Ultimate curvature
Yielding curvature
Rotation

Rotation at yielding

Rotation at ultimate load

Ratio of depth of rectangular stress block, a, to depth to neutral axis, ¢

Deflection under the load point

Deflection at centre of structure member

Mid-span elastic deformation

Ultimate deflection

Mid-span plastic deformation

Yielding deflection
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