Enabling concentrating solar power in Australia: An investigation of the benefits and potential role of concentrating solar power and non-conventional fuel hybrid plants in Australia's transition to a low-carbon energy future

Juergen Heinz Martin Peterseim

Institute for Sustainable Futures University of Technology, Sydney

Thesis submitted for the PhD in Sustainable Futures

September 2014

STATEMENT OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree and nor has it been submitted as part of the requirements for a degree.

I also certify that the thesis is an original piece of research written by me, except where noted in the text. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of candidate:

Juergen Heinz Martin Peterseim

I dedicate this thesis to love and hope: love for my wife Anja and my children Lola and Leon, and hope for a bright future for concentrating solar power in Australia.

ACKNOWLEDGEMENTS

Many people supported me in my research and in my personal life throughout this threeyear journey. This includes family, friends, supervisors and colleagues, and it would take too long to thank them all individually. In particular I want to thank my wife Anja and my children Lola and Leon for their support as they provided welcome distractions that took my mind off specific research issues. This gave me time to reconsider and in many cases improve my ideas. I know that during this time I did not always have as much time for my family as I wished, and I want to thank Anja for her understanding and efforts to give me time for my research. Without her support this thesis would not exist.

I want to acknowledge my supervisors Prof. Stuart White, Prof. Udo Hellwig and Dr. Amir Tadros for their continual support, their willingness to help and their optimism. I want to thank Prof. Stuart White for his deep insights into sustainability and energy research. His availability, even at short notice, and his detailed feedback allowed me to solve problems quickly and stay on track. I want to thank Prof. Udo Hellwig, not only for his valuable technical support during my candidature, but also for his mentorship since I entered the energy sector in 2003. I don't think I would be in the position I am in today if it had not been for his support. I also want to thank him for the opportunity to work for him part-time during this research project. This was a significant help for me during my second period of time as a student. Last but certainly not least, I want to thank Dr. Amir Tadros for this for valuable insights into techno-economic modelling. His detailed understanding of power plants in the context of the Australian electricity market was invaluable.

Various people within and outside the university contributed to specific aspects of this research. In particular I want to thank Dr. Deborah O'Connell and Dr. Alexander Herr from CSIRO Ecosystems Sciences, and Sarah Miller from CSIRO Energy Technology, for their contribution to the resource assessment, which is a key component of this work. I also want to thank Frank Klostermann, formerly of Thiess Services Pty. Ltd., for his insights into the industry, and for the financial contribution to the Swanbank case study. I sincerely hope that this proposal will eventually turn into an actual power station. I also want to thank various students and staff at ISF for their friendship, support, insightful discussion and time, which not only helped with the thesis but also contributed to my personal development.

Last but not least I want to thank the University of Technology, Sydney for the confidence they showed in me by awarding me a UTS President's Scholarship and two travel funds. Without the scholarship I would not have been able to do this research and the travel funds allowed me to attend relevant international conferences.

Statement o	of orig	inal authorship	ii	
Acknowledgementsiv				
Table of cor	Table of contentsv			
List of Figur	List of Figures			
List of Table	es		xi	
List of publi	cation	S	xii	
List of abbre	eviatic	ns	xiv	
Abstract			xv	
Foreword			xvii	
1 Introducti	on		1	
2 Literature	revie	Ν	4	
2.1 T	he Au	stralian electricity market	4	
2.1.1	Curr	ent status	5	
2.1.2	Trar	sition to a low carbon future	8	
2.2 0	Concer	ntrating solar power plants	13	
2.2.1	Hist	ory and technology development	13	
2.2.2	Out	ook	17	
2.2.3	Aust	ralian market	20	
2.3 N	lon-co	onventional fuels for power generation	23	
2.3.1	Enei	gy from waste	23	
2.3.2	Energy from biomass 2			
2.3.3	Aust	ralian market	30	
2.4 0	CSP hy	brid benefits & challenges		
2.5 C	CSP hy	brid plants		
2.5.1	CSP-	Natural gas	38	
2.5.	.1.1	Commercial references		
2.5.	.1.2	Concepts	40	
2.5.2	CSP-	Coal	42	
2.5.	.2.1	Commercial references		
2.5.	.2.2	Concepts	43	
2.5.3	CSP-	non-conventional fuels		
2.5.	.3.1	Commercial references		
2.5.	3.2	Concepts	45	

TABLE OF CONTENTS

2.5.4	CSP	P-geothermal	47		
2.6	2.6 Introduction to transition management and transition theory				
2.7	2.7 Conclusion from the literature review and research gaps				
3 Research	desigr	n	57		
3.1	3.1 Research questions				
3.2	Metho	ods	60		
3.2.1	Wo	rkshops and interviews	60		
3.2	2.1.1	CSP technology selection	61		
3.2	2.1.2	Implementation barriers	61		
3.2.2	Mo	delling	62		
3.2	2.2.1	Techno-economic modelling	62		
3.2	2.2.2	GIS modelling	63		
3.2.3	Mul	Iti-criteria decision-making	64		
3.2.4	Case	e studies	65		
3.3	Theore	etical framework	67		
3.4	Resear	rch ethics	72		
4 Results a	nd disc	cussion	73		
4.1	CSP hy	vbrid categories and energy source combinations			
4.2	CSP-nc	on-conventional fuel potential and plant area identification in Aust	ralia 82		
4.3	CSP te	chnology selection	97		
4.4	Techno	o-economic optimisation	111		
4.4.1	Ider	ntical steam parameter from CSP and biomass components	111		
4.4.2	Exte	ernal CSP steam superheating with biomass	124		
4.4.3	Futu	ure CSP–EfB and CSP–EfW hybrid plants	135		
4.5	Impler	nentation barriers	138		
4.5.1	Sign	nificant Australian barriers to CSP	139		
4.5	5.1.1	Social barriers	140		
4.5	5.1.2	Technical barriers	142		
4.5	5.1.3	Environmental barriers	145		
4.5	5.1.4	Economic barriers	146		
4.5	5.1.5	Policy barriers	148		
4.5.2	Rati	ing results	151		
4.5	5.2.1	CSP-only plants	153		
4.5	5.2.2	CSP hybrid plants	154		
4.5	5.2.3	CSP-only versus hybrid rating differences	155		

4.5.3	Disc	ussion	157
4.5.4	Con	clusions	159
4.6	Case st	udies	160
4.6.1	Swa	nbank, CSP-multiple feedstock hybrid	
4.6	5.1.1	SolarPACES 2012 conference paper	
4.6	5.1.2	Environmental analysis	
4.6	5.1.3	Hybrid versus CSP-only cost comparison	175
4.6	5.1.4	Socio-economic benefits	175
4.6	5.1.5	Economic and socio-ecological renewal at Swanbank	178
4.6.2	Grif	ith, CSP-single feedstock hybrid	180
4.6	5.2.1	SolarPACES 2013 conference paper	181
4.6	5.2.2	Socio-economic benefits	192
4.7	CSP hy	brids as a pathway to a low carbon future	194
5 Future re	esearch		206
6 Conclusio	ons		209
References	s		214
Appendix .			236

LIST OF FIGURES

Figure 1: Australia's electricity generation 2011-12 by energy source (Bureau of Resources
and Energy Economics 2013); Other includes oil, bioenergy, solar PV, and multi-fuel
fired power plants
Figure 2: Changes in electricity generation and emissions in the NEM (pitt&sherry 2014) 6
Figure 3: Changes in electricity generation by fuel type in the NEM (pitt&sherry 2014) 6
Figure 4: Australian electricity generation from renewable energy (Bureau of Resources and
Energy Economics 2013)7
Figure 5: Electricity price indices for households and businesses, Australia (Bureau of
Resources and Energy Economics 2013)8
Figure 6: Australia's emissions trends, 1990 to 2020 (Department of Climate Change and
Energy Efficiency 2012)9
Figure 7: Forecast renewable energy investment – value of construction and capacity added
(Macromonitor 2013) 11
Figure 8: Share of electricity generation by energy type, prepared with data from Syed
(2012)
Figure 9: Al Meadi pumping station using the five parabolic troughs with direct steam
generation (Stinnesbeck 1914)13
Figure 10: One of three solar tower systems of the 392 MWe Ivanpah power station, USA 15
Figure 11: Annual electricity capacities and generation for CSP and PV from 2011-18
(International Energy Agency 2013)17
Figure 12: Tariff and levelised cost of energy development above DNI level; Percentage
compared to reference plant in Spain with a DNI of 2,084 kWh/m²/a at 100 per cent
(AT Kearney & ESTELA 2010)19
Figure 13: CSP project pipeline by technology in per cent of total CSP projects as per 1 $^{ m st}$
March 2013 (SBC Energy Institute 2013) 20
Figure 14: Direct normal irradiation for potential global CSP sites (Trieb et al. 2009)
Figure 15: Energy from waste conversion technologies (Kaltschmitt 1998)
Figure 16: a: Waste incineration plant Bullerdeich in Hamburg in 1896 (Vehlow 2004) and b:
modern Energy from Waste plant in Tokyo, Japan (right)
Figure 17: Rate of recycling versus incineration with energy recovery of municipal waste,
2005 for the EU (European Environment Agency 2007)
Figure 18: CSP power top-up (left) or fuel saver (right) option

Figure 19: a:75 MWe equivalent CSP steam boost to Martin Next Generation power station
in the USA (Florida Power & Light Company 2010) and b: 100 MWe Shams One plant
(Goebel & Luque 2012)
Figure 20: a: 228 MWe solar tower ISCC concept (Peterseim et al. 2012c) and b: 4.6 MWe
Solugas tower in Spain (Quero et al. 2013)41
Figure 21: Kogan Creek Solar Boost project under construction as per October 2013 43
Figure 22: First CSP-biomass hybrid plant in Spain, 22.5 MWe Termosolar Borges, Spain 45
Figure 23: Schematic diagram of the hybrid solar-geothermal power plant (Zhou, Doroodchi
& Moghtaderi 2013) 48
Figure 24: Transition management cycle (Loorbach 2010)50
Figure 25: Multi-level perspective (Geels 2002)
Figure 26: Emerging technical trajectory carried by local projects (Geels & Raven 2006, p.
379)
Figure 27: Research outline 57
Figure 28: Research structure showing the sequence of the research components (black
arrows) and the information flow (dotted arrows)58
Figure 29: Case study locations in Ipswich, Queensland, and Griffith New South Wales 66
Figure 30: Multi-level perspective on transitions (Geels & Schot 2007, p. 401)
Figure 31: Reconfiguration pathway (Geels & Schot 2007)71
Figure 32: Potential efficiency increase (black line) and range of cost impact (red dotted
lines) based on future steam parameters for a 100 MWe (net) CSP-EfB hybrid plant
with air cooling at Mildura, Australia136
Figure 33: Participant breakdown for implementation barrier ranking
Figure 34: Barrier rating results for CSP-only (orange) and CSP hybrid plants (green) 152
Figure 35: Barrier category ratings for CSP-only plants
Figure 36: Barrier category ratings for CSP hybrid plants
Figure 37: Detrimental CSP implementation cycle with intervention option. Adapted from
Effendi and Courvisanos (2012)158
Figure 38: Swanbank site with the proposed CSP–EfB and CSP–EfW hybrid plant (CSP =
yellow and EfB/EfW = green), the existing coal fired Swanbank B power plant and the
existing gas fired Swanbank E power plant (red squares), and landfill (blue polygon)
Figure 39: Vision for an eco-industrial transition – map and concept, Baumann et al. (2012)
Figure 40: Potential site for the CSP–EfB hybrid plant near Griffith

Figure 41: Multi-level perspective for different renewable energy technologies in the			
Australian electricity generation market; Blue = hydro, grey = wind, green = biomass,			
yellow = PV, orange = CSP, and red = others; Adapted from Geels & Schott (2007) 200			
Figure 42: Multi-level perspective for CSP-only and hybrid technologies in the Australian			
electricity generation market. Adapted from Geels & Schott (2007)			
Figure 43: Possible reconfiguration pathway for the implementation of CSP technologies in			
the Australian electricity generation market; Red squares = CSP add-ons to existing			
power plants, green triangles = new CSP hybrid plants, and yellow pentagons = new			
CSP-only plants. Adapted from Geels & Schott (2007)			
Figure 44: Overlay of DNI (PIRSA Spatial Information Services 2009) with mine sites in			
Australia (Geoscience Australia 2010) 207			

LIST OF TABLES

Table 1: Biomass generation capacity in MWe per state and fuel in 2009 (Stucley et al.
2012) updated with the recently commissioned 36 MWe Mackay plant using bagasse
in Queensland (Biomass Power & Thermal Magazine 2011)
Table 2: Ranking differences between CSP-only and hybrid plants showing total average and
group averages for researcher (ΔR), owners/operators (ΔO), consultants (ΔC),
technology provider (Δ TP) and government (Δ G)156
Table 3: Swanbank power plant cost breakdown and investment distribution
Table 4: Griffith power plant cost breakdown and investment distribution

LIST OF PUBLICATIONS

Relevant publications:

- Peterseim J.H., Herr, A., Miller, S., White, S., O'Connell, D.A., 2014, Concentrating solar power/alternative fuel hybrid plants: Annual electricity potential and ideal areas in Australia, *Energy*, vol. 68, pp. 698-711.
- Peterseim, J.H., Hellwig, U., Tadros, A., White, S., 2014. Hybridisation optimization of concentrating solar thermal and biomass power generation facilities. *Solar Energy*, vol. 99, 203–214.
- Peterseim, J. H., Tadros, A., Hellwig, U., White, S., 2014. Increasing the efficiency of parabolic trough plants using thermal oil through external superheating with biomass, *Energy Conversion and Management*, vol. 77, pp. 784–793
- Peterseim, J.H., White, S., Tadros, A., Hellwig, U., 2014. Concentrating solar power hybrid plants - enabling cost effective synergies. *Renewable Energy*, vol. 67, pp. 178-185.
- Peterseim, J.H., White, S., Tadros, A., Hellwig, U., 2013. Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renewable Energy, vol. 57, 520–532.
- Peterseim, J.H., Tadros, A., White, S., Hellwig, U., Landler, J., Galang, K., 2013. Solar tower-biomass hybrid plants maximizing plant performance. *Energy Procedia*, vol. 49, no. SolarPACES 2013 conference special, pp. 1197–1206
- Peterseim, J.H., Tadros, A., White, S., Hellwig, U., Klostermann, F., 2012.
 Concentrated solar power / Energy from Waste hybrid plants creating synergies.
 In: *SolarPACES Conference*, Marrakech.
- Peterseim, J.H., White, S., Hellwig, U., Tadros, A., Vanz, E., 2012. Pre-feasibility study for a multi-fuel / concentrated solar power hybrid plant at Swanbank, QLD.
 Prepared for Thiess Services Pty Ltd by the Institute for Sustainable Futures, University of Technology, Sydney, Unpublished report.

Other publications:

- Peterseim, J.H., Tadros, A., Hellwig, U., White, S., 2013. Integrated solar combined cycle plants using solar towers with thermal storage to increase plant performance. In: ASME Power Conference, Boston.
- Peterseim, J.H., Hellwig, U., Endrullat, K., 2013. Parallel flow boiler designs to minimise erosion and corrosion from dust loaded flue gases. In: ASME Power Conference, Boston.
- Rutovitz, J., Peterseim, J., Elliston, B., Harris, S., Mohr, S., Lovegrove, K., Want, A., Langham, E., MacGill, I., 2013. Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal power at constrained locations in the NEM. Prepared for the Australian Solar Thermal Energy Association (AUSTELA) by the Institute for Sustainable Futures, UTS, Sydney.
- Peterseim, J.H., White, S., Tadros, A., Hellwig, U., 2012. Integrated Solar Combined Cycle plants using solar power towers to optimise plant performance. In: *SolarPACES Conference*, Marrakech.
- Peterseim, J.H., Hellwig, U., Guthikonda, M., Widera, P., 2012. Quick start-up auxiliary boiler/heater – optimizing solar thermal plant performance. In: *SolarPACES Conference*, Marrakech.
- Baumann, C., Asker, S., Giurco, D., Peterseim, J.H., White, S., 2012. ECO-INDUSTRIAL TRANSITION' A vision for economic and socio-ecological renewal at Swanbank. Prepared for Thiess Services Pty Ltd by the Institute for Sustainable Futures, University of Technology, Sydney, Australia.
- Peterseim, J.H., 2012. Energy Efficiency Opportunity Assessment at Tarong Power Station. Prepared for the Department of Resources, Energy and Tourism by the Institute for Sustainable Futures, Sydney, Unpublished report.
- Memary, R., Giurco, D., Prior, T.D., Mason, L. M., Mudd, G.M., Peterseim, J.H., 2011. Clean energy and mining - future synergies. In: *Second International Future Mining Conference*. The AusIMM (The Mineral Institute), Sydney, Australia.
- Peterseim, J.H., Hellwig, U., 2011. Water circulation calculation for Concentrated Solar Thermal Plants. In: *SolarPACES Conference*, Granada.

LIST OF ABBREVIATIONS

		i i	
AHP	analytical hierarchy process	MLP	multi-level perspective
ASTRI	Australian solar thermal research	MSW	municipal solid waste
	initiative	MW	megawatt
AU\$	Australian dollar	MWh	megawatt hour
b	billion	MWth	Megawatt thermal
CapEx	capital expenditure	NEM	national electricity market
CO2	carbon dioxide	OpEx	operational expenditure
CSP	concentrating solar power	PPA	power purchase agreement
DNI	direct normal irradiance	PV	photovoltaic
EfB	energy from biomass	R&D	research and development
EfW	energy from waste	RDF	refused derived fuels
EPC	engineering, procurement and	RECs	renewable energy certificates
	construction	RET	renewable energy target
GIS	geographic information system	SEGS	solar energy generation systems
GWh	gigawatt hour	SNM	strategic niche management
h	hours	SRF	solid recovered fuels
HRSG	heat recovery steam generator	t	tonnes
ISCC	integrated solar combined cycle	t/h	tonnes per hour
kW	kilowatt	TES	thermal energy storage
kWh	kilowatt hour	TWh	terrawatt hour
LCOE	levelised cost of electricity	US\$	U.S. dollar
m	million		
		I	

ABSTRACT

After decades of stability the Australian electricity market is undergoing changes. Current government targets aim to reduce greenhouse gas emissions by 5% and raise renewable electricity production to 45 TWh by 2020. In addition, increases to natural gas prices, aging generation assets and falling electricity demand have had an impact in recent years.

Uncertainties exist around current policies, including the carbon pricing mechanism and the renewable energy target, but in light of Australian and international ambitions to lower greenhouse gas emissions the deployment of renewable energy technologies is essential. In recent years wind and photovoltaic installations have shown the highest renewable energy growth rates while concentrating solar power has struggled, despite Australia having some of the best natural resources for concentrating solar power in the world and some selected government funding. Reasons for the slow uptake include the comparatively high cost and lack of financial incentives. While technology costs are expected to decrease by up to 40% by 2020 through deployment as well as research and development, other cost reduction options have to be identified to promote short-term implementation in electricity markets such as Australia where the wholesale cost is low. To overcome the cost problem and to address other relevant implementation barriers this research analyses the hybridisation of concentrating solar power with biomass and waste feedstocks.

The results of this research include:

- a recommendation for a categorisation system for CSP hybrid plants based on the degree of interconnection of the plant components
- the availability of combined resources to generate up to 33.5 TWh per year and abate 27 million tonnes CO₂ annually
- an analysis of the most suitable CSP technologies for hybridisation
- a technology comparison showing CSP cost reductions through hybridisation of up to 40%
- the identification of cost differences of up to 31% between different hybrid concepts
- an analysis showing that the current economic and policy settings are the most significant implementation barriers
- two case studies with different biomass and waste feedstocks requiring power purchase agreements of AU\$ 100-155/MWh.

Based on the various benefits of concentrating solar power hybrid plants, this research analyses the potential role of this technological pairing in Australia's transition to a low carbon energy future. The research concludes that concentrating solar power hybrid plants, not only hybridised with biomass and waste feedstocks, can immediately enable a lower cost deployment of concentrating solar power facilities in Australia. The technology, deployment and operation of the first hybrid installations would provide market participants with valuable lessons and would have the potential to reconfigure the electricity market towards more sustainable generation. This could help promote the development of future low-cost concentrating solar power plants in Australia.

FOREWORD

When I started considering a PhD candidature in 2010 I already had a few potential topics in mind that derived from observations I had made since entering the energy business in 2003. I worked as an industrial engineer in several areas, including project management and business development, for the German boiler design companies La Mont-Kessel GmbH & Co. KG and ERK Eckrohrkessel GmbH. This allowed me to develop a detailed understanding of current issues with solid, liquid and gaseous fuel fired water tube boiler systems, and of their impact on power plant efficiency, reliability and cost. My early focus was on energy from biomass and from waste systems as well as work on compact boiler and heat exchanger systems. After moving to Australia in 2007 I continued work in these fields but also expanded into heat recovery and natural gas fired boilers.

The good resource for solar energy in Australia, and my interest in Rankine cycle systems, shifted my attention to concentrating solar power. The technology was immediately appealing due to its futuristic appearance, its low carbon intensity, and the availability of mature equipment for most of the plant. In late 2010 I was awarded a UTS scholarship and since commencing this research in March 2011 my interest in concentrating solar power has continued to grow. The work I have done for my PhD has enabled me to expand my knowledge not only through theoretical work, such as a literature review and thermo-economic modelling, but also through the exchange of ideas and cooperation with industry partners, both those I had known previously and others I have met during the last three years.

I sincerely hope that this thesis will contribute to the deployment of concentrating solar power plants in Australia and I am looking forward to further engaging with the technology for the foreseeable future.