
 

i 

 

 

 

 

Global Swarm Optimization Algorithms 

with hybrid search strategies   

 

By 

Po-Chun CHANG 

 

Principle Supervisor 

Longbing Cao 

 

Submitted in partial fulfilment for the degree of 

Master of Analytics by Research  

In 

The University of Technology, Sydney 

2014 

 

 



 

ii 

ABSTRACT 

In decades, global optimization algorithm with nature-inspired technique has become an 

important research topic. The aim is to find the optimal solutions for given problems 

without knowing the characteristics of solutions beforehand. In particular, Swarm 

Intelligence is a population-based meta-heuristic methodology belonging to Soft 

Computing. The collective behaviour of swarm members is often inspired by the 

biological system and behaviours of nature. For instance, Particle Swarm Optimization 

is inspired from bird flocking. Evolutionary algorithms such as Genetic Algorithm and 

Differential Evolution are inspired from biological evolution. These algorithms try to 

iteratively improve the discovered solutions by employing specially designed formulae 

to synthesize new solution candidates. However, sometimes algorithms present low 

performance in some problems. Possible reasons could be an algorithm itself is not 

specialized for particular types of problems; an algorithm is with the inappropriate 

selection of control parameters, or an inappropriate way to perform evaluation. 

To address the above issues, this research is to design swarm optimization algorithms to 

operate in the black-box scenario where objective functions are the only direct source of 

information. Different optimization methods are specialized for solving different types 

of problems, but they may not achieve good results in other problem classes. 

Hybridization of different algorithms and incorporating their knowledge may combine 

the strength of different optimization approaches and cancel out their weaknesses. 

Therefore, the two swarm optimization algorithms are developed with this manner. The 

optimization performance is verified by public benchmark mathematical functions.  

The proposed methods in the thesis are: 1) Simplified Swarm Optimization with 

Differential Evaluation mutation strategy (SSODE) and 2) Macroscopic Indeterminacy 

Swarm Optimization (MISO). SSODE is an experimental method which is developed to 

verify the proposed hybrid principle in the thesis. SSODE hybridizes Simplified Swarm 

Optimization (SSO) algorithm structure with multiple mutation strategies from DE. The 

experiment results of SSODE indicate that the hybridization of different algorithms and 

mutation strategies is able to achieve general efficiency. By continuing the research of 

SSODE, MISO presents a well-structured memetic algorithm with new evaluation 
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schema. Substantial experiments have shown that the performance of MISO is 

significantly superior to many well-known algorithms in many objective functions.  
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1 INTRODUCTION 

 “Life is problems. Living is solving problems”(Baker Jr and Baker Jr, 2001). Dealing 

with problem solving and decision-making are part of human life. Even if people 

remain silence, no comment, or go with random guessing, these are the answers they 

provided. There are no wrong answers, the question is whether these solutions can be 

efficiently concluded and effectively solves the objective problems.  

1.1 Background  

Many real world problems can be analysed and formularized into problem models 

known as objective functions (sometimes called fitness functions) with a set of 

constraints. Optimization algorithm is a process for selecting better solutions over poor 

solutions. In general, optimization is to discover the best parameters which can 

maximize or minimize the outputs of objective functions. There are two common types 

of optimization problems: function optimization and combinatorial optimization 

problems. Function optimization problem is concerned about finding the best values, 

either discrete number or continuous number, within predefined range. For instance, 

researchers want to discover the best value or vector to achieve minimum/maximum 

result of a concave/convex function. Combinatorial optimization problem is concerned 

about the best combination or ordering of the given variables. Some practical 

applications are finding the shortest routes, time scheduling, etc. Now a day, 

optimization problems can be handled by computer. 

Swarm intelligence is a population based meta-heuristic computational intelligence 

based on soft computing (SC). Unlike the conventional hard computing (HC) looking 

for the precise solution, SC is trying to discover the approximate and imprecise optimal 

solution(s)(Karaboga, 2011). The idea of HC is to design exact methods for the target 

problems. By giving the same inputs, HC algorithm is always returning the same 
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outputs. In contrast, SC is somewhat like human mind that tolerance for imprecision, 

uncertainty, partial truth, and approximation. Instead of focusing on one optimization 

agent, SI is an artificial intelligence emerged from the population, which is a set of 

agents. Similar to human societies, people may make a conclusion based on intuition 

which influenced by experience, other people’s opinions, lessons of history, etc. How 

these kinds of knowledge accomplish the final decision is hard to articulate (probably, 

go with the answers they “feel” right or correct). Stochastic method, random variables 

appeared in formulae, illustrates human minds of making decisions or random walk 

behaviour of living creatures.   

As its name implies, Swarm intelligence Optimization in computer science refers to the 

concept of swarm, which is a group or groups of simple agents. Many powerful and 

efficient algorithms have been proposed. Some of these algorithms are Differential 

Evolution (DE) by Storn and Price(Storn and Price, 1995), Particle Swarm Optimization 

(PSO) algorithm by Eberhart and Kennedy (Shi and Eberhart, 1999, Poli et al., 2007), 

Simplified  Swarm Optimization (SSO) by Yeh (Yeh et al., 2009, Yeh, 2009, Wei-

Chang, 2012, Yeh, 2013), and Artificial Bee Colony (ABC) by Karaboga and Basturk 

(Karaboga and Basturk, 2007). The simple agents are called differently in different 

algorithms, such as particles in PSO, chromosomes in genetic algorithm (GA), bees in 

ABC, parameter vectors or solution candidates in DE. This is because the inspirations 

often come from nature behaviours or phenomena. Based on the predefined rules, 

individual agents iteratively generate new candidate solutions by interacting with other 

agents. The interaction between agents leads to the emergence of intelligence of the 

entire system.  

Maintaining a certain level of diversity between agents is important. Exploration is the 

process that finding the points far from the current ones. High diversity between agents 

provides strong global optimization ability, which increases the possibility to avoid the 

areas that have been investigated. Nevertheless, it may cause the optimization process 

never improve the solution candidates. In contrast, exploitation process, also known as 
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local search, synthesis new solution candidates by performing small changes. This 

provides the steady improvement of current solution candidates. However, losing 

diversity is almost equal to losing search ability in solution space. There may be better 

solutions in distant areas from the current positions. For solving the optimization 

problem, individual may not be able to discover the global best solution, but the system. 

The knowledge discovered by individuals contributes to the overall output.   

1.2 Research Objectives and Contributions 

There is no one optimization algorithm which can efficiently and successfully solve 

problems in any cases. According to No Free Lunch Theorem (NFL), if an algorithm 

achieves satisfied results in some problem classes, these good performances have to be 

paid for with inferior solution qualities in different situations (Wolpert and Macready, 

1997). NFL implies that the performances of algorithms can be compared while giving 

a limited number of objective functions. Optimization practitioners often refer to public 

benchmark functions and toy problems for demonstrating the utility of their algorithms, 

in order to achieve credible results. By comparing the performances of optimizers with 

one another, it is able to find the weaknesses of optimization algorithms for the 

particular problems. Using minimal numbers of optimizers to solve maximal kinds of 

problems would be one research focus. 

 Review of existing population-based methods 1.2.1

At the very beginning, this thesis presents the comprehensive review of some existing 

SI based methods and summarizes the comment features of different optimization 

strategies. Different algorithms achieve superior results in different problem domains. 
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 Hybrid different search strategies increases generalization 1.2.2

ability  

By integrating different search operation techniques incorporate their knowledge, the 

strengths of different methods can be combined and compensate for one another’s   

weaknesses. Therefore, the first contribution is to successively present two new hybrid 

swarm optimization algorithms. Each proposed algorithm introduces a new principle to 

concurrently use different optimization strategies.  

 The effect of performing evaluation process 1.2.3

Moreover, another concept that less concerned about in SI optimization is evaluation 

phase. Many researches are focused on implementing the systems that can efficiently 

discover better solutions. Thinking of it differently, whether the quality of solution is 

better or not is dependent on the result of evaluation process. It does not matter what 

principles and strategies been used in an algorithm, so long as its evaluation outcomes 

are often pleasing the system. Consequently, the second contribution introduces a new 

evaluation schema. Assume an exploitation mechanism samples a new point from the 

current one, it performs local search and generates a similar solution candidate. While 

recursively executing the mechanism a number of times, the random region will be 

extended and will be able to synthesis new point in distant areas. By manipulating the 

moment of applying evaluation, it will influence the balance between exploration and 

exploitation. 

1.3 Research issues  

 Black-box optimization – solving problems without knowing any background 

knowledge. 

 Swarm Intelligence – optimization methods are often inspired from nature 

phenomena, but should not stick on examples from nature. 



17 

 

 

 Global optimization algorithm – the optimization techniques which can 

efficiently and effectively solve a wide range of problems are often interested by 

stakeholders.  

 Efficiency does not always mean effectiveness – a good trade-off between 

computational complexity and performance.  

1.4 Significance of the research issues  

Many real-world problems cannot be optimized analytically and can only be evaluated 

by objective functions. Another main issue is the curse of dimensionality (Li et al., 

2013). The solution space of a problem increases exponentially with the size of the 

problem domain. Besides, for the same objective function with different size of decision 

variables should be considered as different optimization problems. One classical 

example is Rosenbrock function. Despite of Rosenbrock function is a unimodal function 

in 2D, it becomes multimodal when the dimension is higher than 3 (Shang and Qiu, 

2006). Thus, the distributions of outcomes, also known as the problem landscapes, are 

varying due to not only different objective functions, but also the size of decision 

variables. It is often time consuming for well-analysing the specific problem before 

implement the precise model with hard computing (HC). Beside, many real-world 

problems are typically ill-defined systems with imperfect information, which is difficult 

to model and with large-scale solution spaces. Moreover, for solving complex problem, 

although HC technique is often stable, it may take a lot of computation time. Instead of 

specifically design optimization approaches for particular types of problems, it is 

practical to design a general-purpose algorithm which is able to handle multiple kinds of 

problems.  

Swarm intelligence (SI) is a research branch in SC and it has become a popular 

approach to solve optimization problems. The concept of a swarm refers to swarm 

behaviour in the real world such as bird flocks, gene pool, or quantum mechanical 

phenomena. Intelligence in machine learning usually refers to the method which can 
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solve the problem somehow successfully. In decades, researchers have been looking for 

examples in nature and seeking for inspiration. For example, Particle Swarm 

Optimization (PSO) is inspired from bird flocking. Ant Colony Optimization (ACO) is 

inspired from ant colony. Genetic Algorithm (GA) and Differential Evolution (DE) are 

evolutionary algorithms inspired from biological evolution. Nevertheless, these 

biological behaviours and phenomena are only some parts of the whole universe in 

nature. Swarm optimization research should not cease to mimic particular examples in 

nature, but comprehend their knowledge and techniques to design an algorithm for the 

given problems.  

Due to the fact that computer technologies are advancing with each passing day, the 

complexity and dimension of problem domain increase. To recap the curse of 

dimensionality issues, the previous successful approaches may no longer be capable for 

new problems. Besides, objective functions can be changed due to different problems or 

different suppositions for building computational models. A method which specifically 

designed for a particular problem may not achieve satisfied results for other ones. For 

these reasons, stakeholders are often interested in the method which is not only 

achieving maximum output with the minimum resource usage (i.e. time, memory), but 

also achieve high generalization ability. In SI system, the running time and required 

memory space, which an algorithm needs, grow with increasing the size of swarm (the 

number of search agents or optimizers). Although a good algorithm should keep the 

processing time and the memory space as small as possible, the quality of output results 

is always the key concern in optimization issues. Small swarm size may result in local 

convergence, whereas, large size will increase computational efforts. The trade-off 

between computational complexity and the quality of discovered solutions is always the 

research topic. 
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1.5 Research methodology and Justification (Approach)  

By reviewing many scientific literatures on various types of optimization algorithm, 

they have the certain characteristics as follow:  1) the population structure or topology; 

2) the trade-off between population size and iteration; and 3) updating strategy or 

equation for improving candidate solutions. As the thesis is designed to propose new 

meta-heuristic optimization algorithms, the study is carried in these three focuses with 

new ideas and inspirations. The second focus in this thesis is to verify and compare the 

algorithms performances with other existing algorithms. The public benchmark 

functions and toy problems are used for evaluating algorithms in a systematic and 

creditable manner. 

 Benchmarks and toy problems  1.5.1

Benchmark and toy problems are used to demonstrate the performance of optimization 

algorithms. In spite of these problems may not relevant to the real-world problems, they 

are widely used for testing optimization algorithms. Many practitioners use them for 

measuring and comparing the utility of algorithms, verifying theories, examining 

hypotheses, and understanding the concept of optimization problems(Weise, 2009).  

Mathematical benchmark functions are designed for measuring and comparing the 

algorithm based on real number vectors with n elements . Such vectors usually 

refer to parameters or candidate solutions. The optima of the mathematical functions are 

predefined which is similar to the answers to riddles. While applying the optimization 

algorithms to the functions, they are trying to find the solutions as close as possible to 

the predefined answers. Mathematical optimization functions can be categorized into 

two types: Single-Objective (SO) and Multi-Objective (MO).  SO optimization is to find 

the one and only one optimum for a single objective function, whereas, MO 

optimization is to find a set of compromised, trade-off, or Pareto-optimal solutions. For 

different objective functions or in different dimensional space, the distributions of 



20 

 

 

fitness landscape are varying. Functions could be unimodal, multimodal, or even lack of 

useful structure. IEEE Congress of Evolutionary Computation (CEC) has released the 

mathematical benchmark test suite for researchers to download (Suganthan et al., 2005, 

Tang et al., 2007, Liang et al., 2013).  

1.6 Limitation of the study 

There is always a risk that the proposed strategy cannot result satisfactory outcome. As 

the thesis is planning to develop new optimization algorithms, the main bottlenecks 

might be the new algorithms cannot outperform the existing well-known algorithms in:  

 Overall performance on average 

 The quality of discovered solutions 

 Computation complexity 

 Generalization ability 

Soft computing based optimization algorithm is always tolerant of imprecision, 

uncertainty, partial truth and approximation. Thus, it can efficiently locate the 

approximately optimal result, but may take long times and almost impossible to 

approach the global best optima. The balance between efficiency and effectiveness 

needs to be justified properly. At the end, there is no point to implement a system that 

cannot provide any improvement; the proposed approach needs to be beneficial in some 

concepts 

1.7 Thesis organization  

In the thesis, the detail literature review of optimization problem and comprehensive 

summary of some representative swarm optimization algorithms are discussed in 

chapter 2. There are two hybrid swarm optimization algorithms are successively 

proposed. In Chapter 3, the preliminary experimental hybrid algorithm: Simplified 
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Swarm Optimization with Differential Evolution mutation strategy (SSODE) is 

proposed. The experiment designs and results for SSODE are shown in subsection 3.4. 

Chapter 4 presents the improved version of SSODE with new evaluation scheme called 

Macroscopic Indeterminacy Swarm Optimization (MISO).  The benchmark test for 

MISO is shown in subsection 4.4. The conclusion and final remarks are given in 

Chapter 5. Moreover, all the mathematical benchmark functions provided by Congress 

on Evolutionary Computation conference are referenced in Appendix A. The additional 

experiment results for SSODE and MISO are listed in Appendix B, Appendix C, and 

Appendix D. 
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2 LITERATURE REVIEW 

2.1 Optimization problem 

Global optimization algorithms are methods to discover the optimal solutions from all 

feasible solutions in problem domain. With the purpose of decision analysis or 

optimization studies, real-world problems are expressed into mathematical functions 

called objective functions  (Boyd and Vandenberghe, 2004, Burges, 1998, Weise, 

2009).  

Single-objective (SO) function:   

Multi-objective (MO) function: 

  

 

 

(1) 

 

  

where  is a set of all possible solutions in the solution space that satisfy the given 

constraints.   is a set of the possible outputs of function .  are the inequality 

constraints and  are the equality constraints. The role of optimization algorithm is 

to efficiently select better solutions from .  and   indicate the lower and upper 

bounds for . Discovering the best solutions for an objective function equates to finding 

the approximately best solutions for a real world problem.  

The aim of optimization is to discover the best solution(s) to the target problem. 

Assuming the  is the target result that the system wants to achieve, the 

optimization problem would be to discover the best solution from all possible 

solutions .  The goal is to achieve .  
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(2) 

Due to the solution space of optimization problems being in either continuous or 

discrete, they can be categorized into two types: Continuous Optimization Problem 

(COP) and Discrete Optimization Problem (DOP).   

 Continuous Optimization Problem (COP) 2.1.1

The continuous search space of candidate solution means that there are infinite many 

possible solutions that satisfy the given constraints. The candidate solutions for an 

objective function are subset of real numbers in -dimensional space. The 

objective function  is continuous means if a point (global optimum) in 

space . Thus, , then objective is 

to discover  where . In other words, while  is close to , the 

output of function  should be close to the output  . One approach for solving 

COP is to perform real-parameters optimization (Liang et al., 2013). According to the 

design guideline of benchmark functions (Liang et al., 2013), a benchmark function 

 is mathematical formula which simulates a complex search space. As the 

dimensionality of the problem domain increases, finding the optimal solutions becomes 

more challenging.  One approach for solving a large scale problem is to break it into 

sub-components and solve them individually. However, many problems in real-world 

are not fully separable. Even more, distribution of possible solutions in search space are 

varying according to objective functions. A function could be uni-modal with a single 

extremum, or multi-modal with a number of local extrema. Examples are shown in 

below: 
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 Separable Function examples 

Sphere Function (Uni-modal) 

 

 (3) 

 

Rastrigin’s Function (Multi-modal) 

 

 (4) 

 Non-separable Function examples 

Schwefel’s Problem 1.2 (Uni-modal) 

 

 (5) 

 

Rosenbrock’s function (Multi-modal) 

 
 (6) 
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 Discrete Optimization Problem (DOP) 2.1.2

In comparison, the search space of DOP is discontinuous that the number of possible 

solutions is finite. DOP often refers to Combinatorial Optimization Problems (ComOP), 

such as assignment problems(Maniezzo and Colorni, 1999), schedule problems(Blum 

and Sampels, 2004), and routing problems(Reimann et al., 2004). The formal definition 

of ComOP (Papadimitriou and Steiglitz, 1998) is shown as below (7):  

  

 

 

 

 

 

 

(7) 

 

There is a search space  which contains all combinations for a finite set of distinct 

nodes . Each node  is combined with another node  from a particular set  into a 

solution component  according the predefined constraints and rules . If there 

are no constraints applied, then each discrete decision variable can choose any value 

from domain . However, in the real world practices, constraints are varying 

depended on different type of COPs.  The goal is to discover the best solution  from 

all possible solutions . One of the famous COPs is Travelling Salesman Problem 

(TSP) (Reinelt, 1994). Giving a set of n nodes and path costs for each pair of nodes, the 

goal is to find the optimal trip (with the lowest total path cost) that visits every node 

exactly once. TSP problem can be categorized into two types: Symmetric and 

Asymmetric TSP. Assuming  is a set of  cities ,  is the edge set 
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between city  and  overall cities . The path cost from city  to 

city  is , whereas from city  to city  is . Symmetric TSP (STSP) means the 

path costs for any two nodes are the same for both directions . Thus, there are 

possible routes for TSP. In contrast, Asymmetric TSP (ATSP) means for the 

different directions between any two nodes are assigned with different path costs

. Therefore, there are possible solutions in search space. 

 No Free Lunch Theorem 2.1.3

In fact, it is most likely no optimization algorithm can be efficient and effective on all 

problems. There are specialized algorithms which implemented for specific types of 

problems. Likewise, there are also general methods which are outperformed by highly 

specialized algorithms, but they are able to achieve acceptable results in many kinds of 

problems. Wolpert and Macready have proposed No Free Lunch Theorem (NFL) 

(Wolpert and Macready, 1997) for search and optimization algorithms. For a given 

problem , the conditional probability for an algorithm  to find global optima  

with iteration time  is set as .NFL proves that the sum of all 

conditional probabilities over all possible problems on finite domain is always identical 

for all optimization algorithms. The average performance over all given problems is 

independent of applied algorithm.  That is, for two optimizers  and :  

 

For  outperforms  in one optimization problem, has to be inferior in 

another problem. Figure 1 shows a crude sketch of NFL theorem. It is impossible for 

any method to always outperform non- repeating random walks (Weise, 2009). 

Algorithms are able to achieve good results in certain types of problems, but 

underperform in others.  
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Figure 1 illustration of no free lunch theorem  

Moreover, not all of the problems can be formulized with quadratic or analytic 

derivatives. Many of them are complicated and even considered as black boxes, which 

their analytic forms are not available. Instead of finding the precise solution(s) for a 

given problem, many researchers are trying to maximize the quality of discovered 

solutions. In practice, by only given some problems (e.g.  in Figure 1), it is 

possible to compare the performance between different optimization algorithms.  

 Comments 2.1.4

Optimization problems are diverse in forms and many optimization algorithms are 

required. However, specially designing optimizers for individual objective functions 

seems to be impractical due problems are constantly changing all the time. For a given 

problem, the objective function can be modelled in different ways due to different 
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aspects of problem representation. Besides, for one objective function with different 

dimension of input parameters, its problem landscapes and the global optimal regions 

may different. The ideal situation is to design and implement one approach which has 

the ability for solving all kinds problems, but it is little possible due to NFL theorem.  

Think differently, for the black-box optimization that given problem(s) is unknown. If 

concurrently running different types of optimization algorithms, some of them may able 

to discover the optimal solutions, so the problems could be solved efficiently. This 

approach is known as memetic and hybrid algorithm that specific evolutionary and 

population-based problem optimizers are combined (Moscato et al., 2004). The 

individual agents in a population are cooperated and competed to one another to achieve 

individual improvement of the solutions. Hybridization of different algorithms does not 

mean to be hodgepodge. It is important to understand the theories behind optimizers, 

their nature inspired knowledge, and how to incorporate the ideas to solve the given 

problems. The review of some representative swarm optimization algorithms are shown 

in the next section 2.2.  The principles of hybridizing different optimization techniques 

are discussed in Chapter 3 and 4.  

2.2 Reviews for Optimization Algorithms 

Although the inspirations often come from living creatures or nature phenomena, the 

constraints and objectives do not have to stick on these examples from nature. They are 

often re-implemented for fitting targeted problem domains. 

 Differential Evolution (DE) 2.2.1

DE is a population based evolutionary algorithm proposed by Storn and Price (Storn 

and Price, 1995).  The key concept of DE is to generate new candidate solutions by 

calculating vector differences between other randomly selected solutions from 

population. DE takes four control parameters: population size , mutation factor 
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(Scaling rate ) , Crossover rate , and strategy  for choosing update equations. The 

pseudo-code of DE algorithm is shown as below:  

Table 1. Pseudo-code for DE 

1. Initialize a population of candidate solution vectors in D-dimensional 
search space. 

2. Loop  
a. Perform evaluation on each candidate solution   

   
b. Generate the trial candidate solution vectors by given  

# Update Equations 
c. Compare the quality of with   

 

d. Update  with the best success in  
3. Exit loop if criterion is met 

 

 

 

 

 

The update equations for DE are based on the framework of evolutionary algorithm that 

involves mutation and crossover phases. In mutation phase, one of the DE schemes is 

applied to create a set of new mutant vectors . During the 

mutation phase, mutated vectors are synthesised from G-1  generation’s 

population . The mutation strategy plays important role in DE algorithm. Many 

mutation strategies have been proposed and they all implemented for reasons. The 

following shows the list of frequently used strategies: 

Table 2 DE mutation schemes 

Strategy  equation 

DE/best/1 (Storn, 1996)  

DE/rand/1 (Storn, 1996)  

DE/best/2 (Storn, 1996)  
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DE/rand/2 (Qin et al., 

2009)  

DE/rand-to-best/1 (Storn, 

1996) 
 

DE/rand-to-best/2 (Qin et 

al., 2009)  

DE/current-to-rand/1 

(Iorio and Li, 2005) 
 

 

 
Crossover Phase:  

  

 

(8) 

However, DE performance is highly dependent on its control parameters such as 

crossover rate , scaling rate , and selection of mutation scheme. As it can be seen 

from Table 2,  there are at least seven most frequently used mutation strategies used in 

DE algorithm (Mallipeddi et al., 2011). With the different configuration settings, DE 

can be used for increasing either exploration, or exploitation. For solving a specific 

optimization problem, trial-and-error search for appropriate strategy is not only time 

consuming, but also increases the computational cost.  Here, in order to achieve 

balancing exploration and exploitation, the thesis suggests to concurrently using 

different mutation strategies. The detail discussion will be presented in Chapter 3.  
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 Particle Swarm Optimization (PSO)  2.2.2

PSO (Kennedy and Eberhart, 1995) is population based search algorithm with a set of 

random solutions called particles.  The inspiration comes from the nature behaviours 

such as bird flocking and fish schooling.  Particles are flying through the search space. 

At each time point, particles migrate to new positions and their velocities change over 

time. The new positions and velocities for individual particles are dynamically adjusted 

according to their last positions, previous successes (pbest), and previous successes of 

its neighbours. Assume the population size NP, the population of D-dimensional 

solution vectors  at time G with velocity vectors . The pseudo-

code of PSO algorithm is shown as below:  

Table 3. Pseudo-code for PSO 

1. Initialize a population of particles with random positions and velocities 
in D-dimensional search space. 

2. Loop  
a. Perform evaluation on each particle   
b. Each particle move toward its best previous position ( ) and 

towards the best particle in the whole swarm ( ). 
Compare   with   

 

c. Update  with the best success in  
d. Update the velocity and position of the particles  

 #Update mechanism 
3. Exit loop if criterion is met 

 

The update mechanism is the heart of the entire algorithm. Since 1995 the original PSO 

has been proposed, many continuous research are carried on enhancing the learning 

strategy. The original version PSO is shown as below (Kennedy and Eberhart, 1995):  

Original PSO update mechanism 
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  (9) 

Where and . and are predefined control 

parameters.   is kept in the range between  where  is the control 

parameter.  

In 1998, Shi and Eberhart (Shi and Eberhart, 1998a) modified the update mechanism by 

adding a control parameter, inertia weight  :  

Modified PSO update mechanism 

  (10) 

Based on the empirical study by Shi and Eberhart (Shi and Eberhart, 1999), The 

recommended inertia weight selection is   if  is not reduced with time. 

Otherwise,  is suggested to decay from 0.9 to 0.4 during the optimization process. 

Clerc and Kennedy implemented the constriction coefficients for controlling the 

convergence of the particle and eliminating the arbitrary   parameter(Clerc and 

Kennedy, 2002): 

Constriction Coefficients update mechanism 

 

 

 
 

 

 

(11) 



33 

 

 

Commonly, is set to 4.1 and . The constraint multiplier  is set to 

approximately 0.7298. . The random numbers   and  are 

limited within the range [0, 1.49618]. 

Based on the neighbourhood structure, there are two common versions of PSO. One is 

global version that each particle is neighboured to the entire population. The other is 

local version in which an individual particle is neighboured to limited numbers of 

particles on its sides (Eberhart and Shi, 2004). In general, local version PSO with small 

neighbourhoods may achieve better performance with slow convergence on complex 

problems. In contrast, global version PSO (or local version PSO with large 

neighbourhoods) is able to achieve faster convergence, but often suffer from local 

optimal regions.  

By reviewing the factors that impacting optimization performance in PSO and DE, the 

neighbourhood structure is to the update mechanism in PSO; mutation strategy selection 

is to the entire population in DE. These two concepts bring a new hypothesis of 

designing hybrid algorithm structure: the entire population is vaguely structured into 

groups and applied with different update equations. Each equation presents an 

independent way to form neighbour relation with other particles. The more detail 

explanation will be presented in Chapter 3 and chapter 4.  

 Simplified Swarm Optimization (SSO)  2.2.3

SSO was proposed by Yeh (Yeh et al., 2009). Initially, it was implemented for solving 

discrete data optimization problems that the shortcoming of PSO (Particle Swarm 

Optimization) algorithm (Yeh, 2009). PSO is an efficient optimization method for the 

problem within continuous space, but it easily suffers from local minima in discrete 

space. SSO originally named as discrete PSO and it solves the optimal problem by 

applying the particle swarm update strategy. For the particle, its new candidate is 

synthesised from either the particle itself, the currently best solution overall particles, 



34 

 

 

the generation best solution of particle, or random variables. The Pseudo-code of 

SSO algorithm is shown as below: 

Table 4. Pseudo-code for SSO 

1. Initialize a population of candidate solution vectors in D-dimensional 
search space. 

2. Loop  
a. Perform evaluation on each candidate solution vector 

 
b. Compare   with , and update  

 

c. Update  with the best success in  
d. Update the candidate solutions  

 #Update mechanism  
3. Exit loop if criterion is met 

 

Although the principle of SSO is similar to the crossover technique in EA (Evolution 

Algorithm), the concepts are different. In addition to the parameters NP and g, SSO 

takes four extra parameters  to declare the thresholds for four crossover 

strategies: 

SSO update mechanism: 

 

 
 

 

 

 

(12) 

 

where  is the best solution for ith candidate solution overall iterations.  is 

the current best solution of all candidates. SSO employs the crossover operation to 

produce new candidate solutions. The current candidate solutions crossover with , 
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, random, or remaining the same based on the random number , where 

.   

Similar to Roulette Wheel Selection (RWS) in genetic algorithm (GA) (Brindle, 1981), 

SSO uses four condition rules which can be imagined as four slots with different sizes 

in roulette wheel. However, SSO update mechanism is different from RWS, which does 

not calculate the Probability  and cumulative probability  see equation (13). In other 

words, the slots in SSO update mechanism are statically defined. Besides, SSO update 

mechanism syntheses new solution candidates, whereas GA uses RWS to select parent 

vectors. 

Roulette Wheel Selection 

 Population Size:  
Problem Dimension:  
Fitness cost:  
population:  
uninform random number 
Probability(slot size):  

Cumulative Probability:  

Selection:  

 

 

 

 

(13) 

 

In short, SSO update mechanism (12) uses four control parameters  to 

dynamically select different update equations for generating diverse solution candidates 

from the current ones. Its operation mechanism can be applied to different use. The 

swarm optimization algorithms proposed in this thesis are developed based on SSO 

framework. As it can be seen in Chapter 3 and 4, both two algorithms extends SSO 

algorithm framework to randomly partition the entire population into sub-groups and 

apply different mutation strategies dynamically.  
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 Artificial Bee Colony (ABC)  2.2.4

ABC is a population based optimization algorithm inspired from the nature behaviour of 

honey bee swarm proposed by Karaboga and Basturk (Karaboga and Basturk, 2007). 

The agents in ABC algorithm is called bees and the food sources are candidate 

solutions. One of the characteristics of ABC is the population structure that there are 

three types of bees in the colony: employed bees, onlookers, and scouts. Assumed the 

food sources can only be discovered by employed bees, so the number of employed 

bees is equal to the number of food sources. Employed bees pass the knowledge about 

food sources to onlookers by dancing. Then onlookers pick up one food source 

respectively and try to discover the honeys from their food sources. That is, perform 

local search on the food sources in order to find the local optima. The employed bees 

whose food sources have been abandoned, which means they cannot discover better 

local optima after a period of time,  become scouts to start finding new food sources. 

The Pseudo-code of ABC is shown as below:  

Table 5. Pseudo-code for ABC 

1. Initialize food sources discovered by employed bees .  
2. Loop  

2.1. Perform evaluation on each food source  
2.2. Employed bees try to discover better food sources neighbouring to the 

current ones. 
2.2.1. Update mechanism  

2.2.2.  

2.3. Onlookers try to perform local search based on the food sources . 
Each food source has its own probability value . The selection of 
food source depends on  (see probability equations).  

   
2.3.1. Update mechanism 

2.3.2.  

   
2.4. While a employed bee cannot update  after predefined a period of 

times 
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2.4.1. The employed bee becomes scout by randomly search for new 
food source 

2.5. Update  with the best success in  
3. Exit loop if criterion is met 

Each food source has a corresponding probability value  and it is calculated by 

the following equation:  

Probability equation: 

 
 

(14) 

Where  is the fitness value of food source  which indicates the amount of nectar 

near the position. If the  will be selected for performing local 

search by onlooker.  

ABC uses the following equations to update the trial food sources: 

ABC update mechanism: 

 

 

(15) 

In brief, the idea behind ABC algorithm is to perform multiple times local search in the 

suspicious fields where may contain better solutions. The fields that cannot find better 

solutions after a certain number of iterations will be replaced with new regions in space. 

 Ant Colony Optimization (ACO) 2.2.5

Ant Colony Optimization(ACO), also known as Ant Colony System (ACS), which is a 

meta-heuristic algorithm inspired from the foraging behaviour of real ants (Dorigo and 

Gambardella, 1997). Ants are searching for food source via random paths. Once they 
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discover the food source, they go back to the nest and deposit pheromone on their return 

routes. Higher quantities of pheromone deposited on the paths means more ants use 

them to find food source. As a result, the most preferable path to food source would be 

the one with the highest quantity of pheromone on the ground. ACO was initially 

proposed for solving the optimization issue of TSP.  

  

In TSP, there are n  nodes which have to be visited exactly once. The population of the 

ant colony is . The solution components  indicate the edges between pairs 

of cities to be visited one after another (see Figure 2 (Dorigo et al., 2006)).   means 

the node  to node . Individual ants discover the food source according to the 

pheromones on the edge . Initially, ants have no knowledge of path from their 

nest to food source, so the pheromone on each path is the same   where  

is the predefined constant parameter. 

Table 6. ACO framework: 

Initialize  
 

While  
 Loop (Ant 1~NP) 

 
 

   ---- (optional)  
 
#Evaluation and update  

 
 

 
 

} 
 End-loop 

 
End-while 

 

Figure 2. construction 
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Individual ants construct the solution  from the set of 

solution components . Initially, ants have no knowledge 

about the path, so their knowing solution is empty at the 

beginning . At each iteration of the algorithm, 

individual ants move from one node to another and 

extended the partial solution . How an ant moves to next 

node is depended on the transition probability  

 

 

Transition 

Probability 

 

 

 

 

(16) 

Table 7. ACO decision rule 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

  

graph for 4 nodes tsp  
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ACS uses pseudo-random proportional rules that  is the probability of ant  moves 

from node to node  at iteration .  is the random variable uniformly distributed 

between 0 and 1.  is the predefined control parameter by user.    is the set 

of solution components which can be added in the current partial solution .  is the 

one of the nodes which is not yet visited by ant .  and  are the control parameters 

for controlling the relative importance between pheromone  and edge distance . The 

construction process will continuously perform until individual ants’  are generated. 

    

Local search is an optional step in ACO. The solutions discovered by 

 can further improved by the ants through a local search. 

The algorithm is usually varying for different problem.  

  

There are two ways to update pheromone level on each edge. One is to increase the 

pheromone level for the edges which are associated with good solutions.  Another is 

called pheromone evaporation, which is to decrease the pheromone level on all edges. 

Thus, the solution components for satisfactory results will be relatively clear than 

others. The pheromone update is performed by all ants after 

, evaluation and solution update.  

Pheromone 

update 

formula 

 

 

 

(17) 

Where  is pheromone evaporation rate, commonly  (Dorigo and Blum, 

2005).  means ant  leaves a quantity of pheromone on the edge from node  to 
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node .  is the length of the best solution. The best solution can be either for 

iteration best solution, best-so-far solution, or combination of both.  

The movement behaviour of real ants is often simulated as Biased Correlated Random 

Walk (BCRW). When ants move from one node to another, they often select the 

direction with higher pheromone level along its edge. Meanwhile, there is still a chance 

to choose any other track. Besides, an ant changes its direction gradually from step to 

step. The next destination chosen to move on is related to its current position. Thus, 

based on the shared knowledge in the population, individual ants make their own 

decisions to find food sources with independent trajectories.  

2.3 Nature-inspired mechanism 

In SI system, many researchers seeking for the inspiration form nature. Up to now, 

many reprehensive Swarm optimization algorithms have been reviewed. Many of them 

are inspired from nature phenomena such as ant colony system. However, ant foraging 

behaviour is merely an example of biological behaviours in nature. For different 

purposes and different species, animals present various ways and rules to achieve their 

goals (i.e. to survive in their living environments). Before understanding and mimicking 

a particular example, it is important to investigate their common fundamental feature. 

That is, the basic concept of motion behaviour and random walk. The more detail 

review is shown in subsubsection 2.3.1.  

Moreover, the world, reality, and nature that everyone lives and sees every day are 

governed by unfamiliar laws. The laws which cannot be fully described, observed, or 

interpreted, but it is believed they are real. There must be hidden variables between 

inputs and outcomes. Although discovering the hidden rules behind the system is one 

research branch, it might be a debate whether the deterministic rules exist, especially for 

the study which is incomplete. One example is quantum mechanics. In great debate 

between Bohr and Einstein, Einstein wrote: “God does not play dice”, which means 
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determinism that the future is completely determined by the present. Nevertheless, Bohr 

replied: “Einstein, stop telling God what to do”. Bohr and Copenhagen interpretation 

believe indeterminism can be applied on everything due to the nature itself is 

fundamentally fuzzy. Only the observation can collapse the uncertainty (with many 

probabilities) into one possible result. Similarly, swarm optimization algorithms often 

treat the given problems as black-boxes. The problem landscape is unknown (or not 

necessary to be knowable) and, in any instant of time, individual search agents 

stochastically move to somewhere in space. Only the evaluation results can present the 

meaningful information. A brief review of quantum mechanics is shown in 

subsubsection 2.3.2. 

 Motion behaviour and random walk 2.3.1

The moving way of an object which can be observed by naked eyes is often continuous 

in space-time. It follows certain laws, such as Newton’s laws of motion. For instance, 

while observing a bird foraging behaviour in a period of time, a bird flies toward the 

food source with a particular trajectory. However, an object can only exist in one place 

in any one instant of time. The movement of an object consists of series of infinitesimal 

interval states, which can be considered as a continuous point set with infinite 

innumerable positions in space. According to the point set theory, the precise positions 

for point set cannot be found without measurement. They are discontinuous somewhere 

in space, even if the law for motion is known (Shan, 2001). That is, by giving a time-

interval, the moving way of an object is continuous which is constituted with infinite 

discontinuous random positions, a sequence of hops, in space.  

For animal locomotion, an animal performs random walk at every instant of time 

(Codling et al., 2008). Its motion could be uncorrelated random walk (URW) or 

correlated random walk (CRW).  URW means each hop performed by an organism is 

independent to prior hops. In contrast, the animal movement described by CRW is that 

there are certain dependencies (i.e., number of hops, move length, and distribution of 
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random turning angels) between individual hop and its successive hops. For animal 

swarm, the movement of an individual random walker is not only correlated with its 

previous moving pattern, but may also depend on its neighbours moving behaviours. 

Meanwhile, animals often respond to the environmental stimulus and introduce bias into 

their movement (e.g., bacteria movement is biased by the concentration gradient of a 

particular chemical).  

In addition, for complex animal societies (i.e., human societies), or symbiosis between 

different species (i.e., human-E.coli, ant-plant), the distinct types of behavioural 

mechanisms cooperate and interact with one another to achieve the common goals e.g. 

for better living condition and survival. In the research of nature-inspired optimization 

algorithm, the behavioural mechanisms can be illustrated as random walk strategies, as 

well as the recombination operators, for dealing with all sorts of strange shapes in the 

given problem landscape. In this sense, the hybridization between different strategies is 

very important, since every technique has a chance to cause a search agent stuck in local 

optima. The search agents that suffered from local optima regions are expecting to be 

“rescued” by other recombination operators. More detail discussion will be presented in 

Chapter 3 and 4. 

The object which can be observed by naked eyes is in macro-scale. Macroscopic 

phenomena often can be described by classical mechanics (Newton's mechanics). In 

short, the motion of a particle can be described by a definite trajectory. Its position and 

momentum (or velocity) can be measured precisely and the future path can be predicted 

correctly. However, the mechanics in microscopic phenomena such as electrons is 

completely different story.  

 The basic quantum mechanics and uncertainty  2.3.2

Quantum mechanics is used to describe the nature phenomena in microscopic world. In 

quantum mechanics, particles are wave-particle duality in nature. Each particle can be 
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illustrated as a wave packet, the composite of many waves, and it makes quantum 

particles have wave and particle-like properties. The motion of particles can be 

described by wave function, which is a mathematical function, determines the 

probability density of the particles appearing in the certain positions. According to the 

Heisenberg uncertainty principle, there is an uncertainty relation between position and 

momentum. While the uncertain range for a quantum particle position is narrow, its 

uncertain range for momentum is wide, and vice versa (Hameka, 2004, Wimmel, 1992). 

The quantum objects exist in superposition, which is the combination of all possible 

states, until the measurement takes place. According to Copenhagen interpretation of 

quantum mechanics, the measurement is not passing the observation, is interaction 

between a particle and result in both way. Even more, one of the interesting quantum 

phenomena is quantum entanglement.  

Similar to the evaluation process in SI system, the quality of solution cannot be certain 

due to search agents (particles) are constantly moving through the solution space via 

stochastic recombination operators. Assume a well-designed operator which is able to 

guide particles approaching to global optimal regions. Although the discovered 

solution(s) is attempted to be refined iteratively, the convergence to better results is not 

always guaranteed. The system may experience several numbers of iterations with 

unsatisfied evaluation results, and then occasionally find better solution candidates.  

Therefore, how to increase the probability of gathering satisfactory evaluation results is 

important. The more specific discussion regarding to evaluation process will be 

presented in chapter 4.  

2.4 Evaluating optimization algorithms 

In order to evaluate and compare different optimization algorithms, the public 

mathematical benchmark functions are used as black-box objective functions (see 

Appendix A). The performance is measured by the difference of evaluation result 

between discovered solution and predefined global best solution, called error value. See 
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equation (2). There are two algorithms are presented in this thesis (Chapter 3 and 4). 

The more specific experiment designs are explained individually (see subsection 3.4 and 

4.4). 

The boundary handling method called Periodic mode (Zhang et al., 2004) is applied to 

solve beyond boundary problem (18). 

 

 

 

 

 
(18) 

By definition, modulus is the amount by which a number exceeds the largest integer 

multiple of the divisor that is not greater than the number. However, in many 

programming languages, such as Java or C, modulus function is implemented as 

remainder function. Therefore, by replacing modulus with remainder, the equation (18) 

can be written as follow (19): 

 

 

 

 

 

(19) 

2.5 Chapter summary 

By reviewing many scientific literatures on various types of optimization algorithms, 

their researches are carried on following areas:   

 Ideas or techniques are inspired from nature or existing algorithms. 

 Update mechanism for synthesis new candidate solutions. 

 High-level Algorithm framework implementation.  
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Table 8 population based algorithm common framework 

4. Initialize Population X 
5. Initial Evaluation:  eval(X) 
6. Update the best solutions 
7. Repeat until ( ) 

a) Reproduction process 
(i) Emerge trial population U 
(ii) Evaluation:  eval(U) 
(iii) Re-constitute population  X   

b) Update the best solutions discovered so far 
8. END 

Some algorithms are implemented base on common principles or well-known 

approaches, but not in detail. For instance, SSO, DE, and PSO are implemented based 

on the common population based  algorithm procedures (Storn and Price, 1997, 

Kennedy, 2006) (Table 8). However, they all use different update mechanisms to 

generate new candidate solutions. In DE, there is no  matrix for storing the best 

solutions discovered so far by individual particles. The current particles’ positions in the 

solution space are continuously updated to the best positions. In contrast, SSO and PSO 

iteratively update the current particles into new positions in solution space, which is 

different from the ones in  matrix. The update mechanism for DE involves the 

calculation of vector difference and biological concept, mutation and crossover phase, 

from Genetic Algorithm. The update mechanism for PSO involves the calculation of 

position and velocity which is inspired from bird flocking or fish schooling. ABC and 

ACO algorithms present distinct algorithm frameworks and update mechanisms that 

simulate the intelligent of foraging behaviours of honey bee swarm and ant colony 

respectively. In addition, although different algorithms present different methods and 

principles to solve optimization problems, the techniques and formulae they use often 

refer to fundamental mathematical concepts. E.g. the equations used in DE, PSO, and 

ABC update mechanisms involve the calculation of vector difference. 

In this thesis, the research is focused on designs and implements new methods to 

efficiently and effectively solve black box optimization problem with swarm 
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intelligence. Since the characteristics of the solutions are unknowable beforehand, the 

iterative optimization procedures can be illustrated as a set of search agents moving 

their positions in solution space. Agents make biased random walk move toward to 

global optima according to the predefined rules or strategies. In the following chapter 

(chapter 3), the hybrid algorithm with different mutation strategies is proposed.  
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3 SIMPLIFIED SWARM OPTIMIZATION WITH 

DIFFERENTIAL EVOLUTION MUTATION STRATEGY 

FOR PARAMETER SEARCH 

3.1 Introduction 

Many soft computing based optimization algorithms have been proposed for locating 

the global and local optima parameters for functions within predefined search space. For 

instance, evolutionary computation methods  such as Genetic Algorithm (GA)(Dong 

Seong et al., 2005), particle swarm optimization (PSO)(Poli et al., 2007), Differential 

Evaluation (DE) (Chakraborty, 2008), and so forth are well known algorithms for 

finding optima. Researchers propose many different concepts and assumptions for 

enhancing the usage of existing algorithms or introducing the new approaches. At the 

time point their papers been published, their ideas were guaranteed to solve particular 

optimization problems based on their hypotheses. Therefore, solving any optimization 

problems with existing methods seems to be a good starting point.  

However, according to the No Free Lunch Theorem (NFL) (Wolpert and Macready, 

1997), it is little possible to find a uniformly best search or optimization algorithm for 

solving all possible problems. An algorithm A might outperform algorithm B in some 

problems, then there must be some other problems algorithm B outperforms algorithm 

A (see subsubsection 2.1.3). Even more, due to the fact that focuses can be varying 

according to different methods and their settings, the ways of balancing exploitation and 

exploration are different. Hybridization of different algorithms’ operators and 

incorporating their knowledge would be increase the general efficiency of searching 

methods (Grosan and Abraham, 2007). Hybrid evolutionary algorithm is able to handle 

the problems involving complexity, noisy environment, imprecision, uncertainty, and 

vagueness.  
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The proposed new global optimization algorithm is Simplified Swarm Optimization 

(SSO) with Differential Evolution (DE) mutation strategy SSODE. SSODE is 

developed to overcome the difficulty of choosing mutation strategy and scaling rate in 

DE. One drawback of DE is the mutation strategy and scaling rate need to be predefined 

constantly. They are not adaptively selected according to the quality measures of current 

particles. Many mutation strategies have been proposed (see Table 2) and they all 

implemented for reasons. E.g., DE/best/2/bin strategy provides good convergence, 

whereas, DE/rand/2/bin strategy provides good diversity (Lampinen and Zelinka, 2000). 

Although fast convergence leads to efficiently discover the optimal solution, it is easy to 

suffer from local optima; diversity ability too high may cause the function never 

converge to global optima. If the predicted global best result is closed to global optima, 

DE/best/2/bin strategy is probably more preferred than DE/rand/2/bin. 

3.2 Inspiration 

Assume the solution space of an objective function has one global extremum and many 

local extrema. Swarm Intelligence (SI) approach is used for discovering the best 

solutions.  Many well-known SI-based algorithms have certain characteristics. First, 

algorithms search the areas of interest in solution space which possibly return good 

evaluation results (exploration). Second, algorithms tend to iteratively improve the 

current solutions by small changes, which try to make them approach to the extrema in 

these good regions (exploitation). Third, there is a trade-off to be had between 

exploitation and exploration. Algorithms that favour to exploitation are able to achieve 

fast convergence, but may be suffered from premature convergence. Whereas, 

algorithms that favour to exploration can possibly avoid failing into local optima, but 

may never form convergence.  

During the processing of a SI-based optimization algorithm, particles are flying over the 

solution space according to the predefined rules. The new solution particles are emerged 

from a group of existing particles in every iteration time. The evaluation process is 
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relied on objective function for measuring the quality of discovered solutions. Although 

the quality of solution often reflects the importance of particle position in solution 

space, however, it does not tell which regions (in solution space) are worth to perform 

exploitation process.  

One of the simple clustering methods is k-nearest neighbour (KNN) algorithm (Tan, 

2007). Based on the Nearest Neighbour (NN) problem that determining the closest data 

points near the given query point (Beyer et al., 1999), KNN assigns the query point as 

the same class as the majority group of its nearest neighbours. However, with the 

increase of dimensionality, the different in distance from the query point to its nearest 

neighbour and other points becomes insignificant (Beyer et al., 1999). The clustering 

result becomes unstable. Besides, the algorithm requires longer computation time to 

process high dimensional data.  

3.3 SSODE algorithm  

SSODE algorithm assumes particles in solution spaces can be formed as clusters, or will 

form clusters, since their movements are coordinated by other members in the 

population. Different clusters of particles indicate they are in different regions of 

solution space. Therefore, the different update mechanism rules should be applied for 

individual regions. The clustering principle in SSODE is based on the evaluation results 

of particles. Inspired from the nearest neighbour concept in KNN, the particles that 

return similar evaluation results can be clustered together. The evaluation process can 

be considered as the projection of individual particles from high dimensional solution 

space to low dimensional space, with the aspect of the distances between individual 

particles to the real target position.  

SSODE fuzzily clusters and ranks the particles into four different classes according to 

their evaluation results with descending order Table 9) : 
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Table 9 One population has four classes of particles 

Good Region Class A Particles are almost formed convergence to the extrema in 

global best or local best regions (exploitation) 

Class B Particles in the global or local best regions, but have not 

been formed convergence yet. (exploitation) 

Hesitant 

region 

Class C Particles are approaching to good regions (exploration) 

Class D Random-like particles in the solution space  (exploration) 

Based on the fitness function evaluation, the particles with the lower error or higher 

accuracy are probably the ones close to global optima or local optima. Therefore, they 

belong to Class A (the best solution group) and Class B (the second best group).  The 

particles in hesitant region are probably meaningful particles, cannot be seen from 

evaluation result.  The particles with normal evaluation results are belong to Class C 

(normal group) and the rest of particles belong to Class D.  

For different classes, the different formulas for mutation (see Table 10) are used to 

generate new mutated vectors .  The formulae used in SSODE are 

inspired by DE mutation strategies with slightly change.  

While more in-depth study of DE mutation strategies (Table 2), the mutation vectors are 

generated in the following ways:  

 Synthesised from the best particle with randomly selected other particles. 

 Synthesised from the current particle with randomly selected other particles. 

 Synthesised from one randomly selected particle with randomly selected other 

particles. 
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Table 10 SSODE four formulas for mutation 

Formula 1:  

  

Formula 2:  

  

Formula 3:  

  

Formula 4:  

  

Formula 1  is inspired by DE/current-to-rand/1 by replace  with   (Iorio and Li, 

2005); Formula 2 is inspired by DE/best/2 (Storn, 1996) and DE/rand/2 (Qin et al., 

2009) by replacing  with current and are replaced with  ; 

Formula 3 refers to DE/best/2 (Storn, 1996); and Formula 4 refers to DE/current-to-

rand/1 (Iorio and Li, 2005). Based on the predefined Crossover rate , the candidate 

solutions elements   are crossover with   and generate new particle position  

for next generation. The crossover operation is the same as the one in DE algorithm (eq 

(8)). SSODE takes parameters  (population size),  (maximum generation), 

and  (Crossover Rate). Besides, inspired from the update mechanism used in 

Simplified Swarm Optimization (SSO), SSODE takes four additional control 

parameters , , , and  to define the proportion of particles sequentially assigned 

to Class A, Class B, Class C, and Class D (see Table 1). The algorithm is shown as 

bellow:  
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Table 11 SSODE algorithm 
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When the particles is sorted with descending order according to the evaluation result 

based on fitness function, from top to bottom, the first group (NP×gm particles) belongs 

to Class A with the smallest scaling rate ( ); the second group (NP×cp particles) 

belongs to Class B with slightly larger scaling rate ( ); the third group 

(NP×gr particles) belongs to Class C with the largest scaling rate ( ); and the last 

group (NP×cr particles) belongs to Class D with random scaling rate. The mutation 

formulas for individual classes are listed in (Table 10). Figure 3  shows the detail steps 

of SSODE algorithm. 
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ENDNo

Start
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Figure 3 the flow diagram of SSODE algorithm 

3.4  Experiment   

Two Experiments are carried on to verify the performance of SSODE algorithm. Here, 

the proposed algorithm SSODE is compared with original SSO and various types of DE 

algorithms. For SSO(2-3-3-2) algorithm, the selection of control parameters 

Cwpgr=[0.2, 0.3, 0.3, 0.2] is based on trial and error. These parameter values are also 

been selected for SSODE(2-3-3-2) [gm, cp gr, cr] =[0.2, 0.3, 0.3, 0.2] and  SSODE(4-2-
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2-2)  [gm, cp gr, cr] =[0.4, 0.2, 0.2, 0.2]. For DE algorithm, the source code is 

downloaded from Differential Evolution Homepage in Matlab code section (Price and 

Storn, 1996). Based on the demo source code, the scaling rate  and crossover 

rate CR=0.8 are chosen. Similarly, SSODE also use crossover rate  for 

manipulate diversity, but the calculation for scaling rates s are calculated by [gm, cp 

gr, cr] according to Table 11. The population size is 10*D = 20, which is the 

recommended setting by Storn and Price (Storn and Price, 1997). 

Due to the DE and SSODE algorithms may generate the variables that exceeded the 

boundary, the boundary handling method called Periodic mode (Zhang et al., 2004) is 

applied to solve beyond boundary problem (18) . 

 Hyper-parameter selection for Support Vector Machine (SVM)  3.4.1

The aim of this experiment is to test the performance of SSODE for solving hyper-

parameter tuning problem. The data mining toy problem is based on the supervised 

learning algorithm Support vector machine (SVM) (Vapnik, 1995) and public 

benchmark dataset.  The public SVM package, LIBSVM (Chang and Lin, 2011) is 

selected and the tool C-Support Vector Classification (C-SVC) with Radial Basis 

Function (RBF) kernel is used for this experiment. The benchmark dataset “spambase” 

is downloaded from UCI machine Learning Repository created by Hopkins, et al.(Blake 

and Merz, 1998). The dataset consist 4601 email instances with 1813 spams and 2788 

non-spam emails with 57 attributes. The goal is to find the best hyper parameters: cost 

value  for C-SVC and the best gamma value for RBF kernel functions. 

Both parameters and  are within the range -10~10. The spam e-mail 

database ‘spambase’ is used for the experiment which gatheredThe 5-fold stratified 

cross-validation (cv=5) (Witten et al., 2011) technique is used and in each iteration, the 

original data is randomly partitioned into non-overlapped 50% training set  and 20% 

testing set. The statistical analysis will based on minimum, maximum and mean of 
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accuracy, and the standard deviation overall 30 times experiment. The comparison of 

the optimization result is based on 100 times of generation.  

The results, as shown in Figure 4 and Table 12, is quite revealing in several ways. The 

medians of all algorithms are almost the same and close to 87% accuracy. The 

Interquartile range (IQR) for SSO is more spread than other algorithms. The DE with 

DE/rand/1 has the second large IQR. There is an extreme outlier in SSO, which may be 

the indication of suffer from strong local optima. Although DE is able to achieve 

appropriate results, with the different mutation strategy, the distributions of results are 

different. Thus, choosing appropriate mutation strategy plays important role for solving 

a particular problem. The prior knowledge or trial-and-error search for finding 

appropriate strategy is not only time consuming, but also increases the computational 

cost. In contrast, the IQR for SSODE is small and there is no significant skewness in the 

distribution. Besides, the amounts of outlier points are small. To sum up, the experiment 

shows SSODE and DE achieve better performance than SSO.  
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Figure 4 boxplot results among different approaches 

 

Table 12 summary results among different algorithms and settigns 

SSODE
(4-2-2-2)

SSODE
(2-3-3-2) DE/best/1DE/rand/1

DE/rand-
to-best/1 DE/best/2DE/rand/2

SSO
(2-3-3-2)

max 87.39 87.39 87.61 87.5 87.5 87.5 87.5 87.61
min 86.74 86.41 86.41 86.63 86.85 86.74 86.63 82.07
avg 86.98 86.96 87.01 87 87.03 87.04 87 86.65
std 0.19 0.19 0.23 0.21 0.18 0.22 0.25 1.14

Over 30 times
Experiment with
cv=5

Ac
cu

ra
cy

%
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 Performance test based on public benchmark functions 3.4.2

In this experiment, SSODE is compare with SSO and DE algorithms based on some 

public benchmark functions from  CEC 2005 special session on real-parameter 

optimization (Suganthan et al., 2005) (see Table 13). 

Table 13 benchmark functions 

*f(x)=f(x)+f_bias
No. Benchmark function f(x) boundary f_bias
Unimodal function
bm1 Shifted Sphere Function separable [-100,100] -450

bm2 Shifted Schwefel 's  Problem 1.2 non-separable [-100,100] -450

bm3
Shifted Rotated High 
Conditioned El l iptic Function non-separable [-100,100] -450

bm4
Shifted Schwefel 's  Problem 1.2 
with Noise in Fi tness  non-separable [-100,100] -450

bm5
Schwefel 's   Problem 2.6 with 
Global  Optimum on Bounds non-separable [-100,100] 310

Multimodal function
bm6 Shifted Rosenbrock's   Function non-separable [-100,100] 390

bm7
Shifted Rotated Griewank's   
Function without Bounds non-separable [-600, 600] -180

bm8

Shifted Rotated Ackley's   
Function with Global  Optimum 
on Bounds non-separable [-32,32] -140

bm9 Shifted Rastrigin's   Function separable [-5,5] -330

bm10
Shifted Rotated Rastrigin's   
Function non-separable [-5,5] -330

bm11
Shifted Rotated Weierstrass  
Function non-separable [-0.5,0.5] 90

bm12 Schwefel 's   Problem 2.13 non-separable [-100,100] -460

bm13

Expanded Extended Griewank's   
plus  Rosenbrock's   Function 
(F8F2) non-separable [-3,1] -130

bm14
Expanded Rotated Extended 
Scaffe's   F6 non-separable [-100,100] -300  

This time, the Dimension of parameter search domain is ; the population size 

; and the maximum generation time is . The control 

parameters for DE is set:  and , which is the common satisfactory 

setting for unimodal and multimodal functions (Storn and Price, 1997). SSO control 
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parameter is set Cwpgr=[0.1, 0.3, 0.5,0.1], which is the same setting as Yeh et al. 

experiment (Yeh et al., 2009). SSODE (1,3,5,1) uses for , 

and  (the same setting as SSO) with the  (the same setting as DE). 

Even more, the custom control parameters for , and  

with  are selected for testing the performance of SSODE (1,2,4,8).  The 

statistical analysis is based on minimum, maximum and mean of error values overall 30 

times experiment. The results are shown in Table 14. 

Table 14 boxplot results for 14 benchmark functions among different 

algorithms 

  

Label Algorithm 

1 DE/Best/1 

2 DE/Rand/1 

3 DE/Rand-to-best/1 

4 DE/best/2 

5 DE/rand/2 

6 SSO(1,3,5,1) 

7 SSODE(1,3,5,1) 

8 SSODE(1,2,4,8) 
 

bm1 bm2 

bm3 bm4 bm5 
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bm6 bm7 bm8 

bm9 bm10 bm11 

bm12 bm13 bm14 

Based on these 14 benchmark functions, the results can be analysed in many ways. For 

SSO algorithm, it can achieve good performance in bm9, bm11, bm12, bm13, and bm14 

functions. However, except bm7, bm9, bm12, and bm13, SSO has larger box size and 
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longer whiskers length than DE and SSODE in many benchmark functions. This 

indicates the best and the worst solutions discovered by SSO may have significant 

difference. For DE algorithm, the selection of mutation strategy does influence the DE 

performance. With appropriate mutation strategy, DE can often achieve satisfactory 

results with small variance distributions, whereas it would be suffered from local optima 

if the inappropriate mutation strategy is applied. In comparison, SSODE can achieve 

satisfactory performance in bm1, bm2, bm4, bm6, and bm7 functions. The box size is 

often smaller than SSO, which indicates the performance of SSODE would be steadier 

than SSO.  

3.5 Chapter summary  

SSODE provides the ability for particles to apply the suitable mutation strategies 

adaptively in each generation according to the output of fitness function. These two 

experiments indicate that within small dimensional problem (e.g. 2 parameters), the 

performance of SSODE is superior to SSO and is non-inferior to DE algorithm.  In the 

large search dimension, the selection of satisfactory optimization algorithms is 

dependent on problem domains. Similar superior result can also be achieved based on 

the benchmark functions tests.  

In conclusion, SSODE is a practical algorithm in certain according to the experiments 

results. It achieves satisfactory performance for unimodal, multimodal, separable and 

non-separable functions. However, the results also show that SSODE may not 

significantly outperform other classic optimization algorithms, such as DE and SSO. 

There are many factors which can affect the efficiency and effectiveness of an 

algorithm. For instance, hyper-parameter selections, the equations used in update 

mechanism, evaluation procedures, and so forth. The further study based on the notion 

of SSODE is represented in the next chapter. 
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4 MACROSCOPIC INDETERMINACY SWARM 

OPTIMIZATION (MISO) ALGORITHM 

In the previous chapter, the SI based algorithm SSODE has been proposed. This chapter 

extends previous research and focuses on the update mechanism and evaluation strategy 

in SSODE. The new algorithm Macroscopic Indeterminacy Swarm Optimization 

(MISO) is proposed in this chapter. 

4.1 Introduction 

Swarm Intelligence (SI) has become robust methods for dealing with global 

optimization issues. Swarm behaviour is a collective motion of a set of self-propelled 

particles (O'Loan and Evans, 1999). Particles propose solutions to problem and 

iteratively refine them by interacting with neighbours. How efficient movement toward 

to global optima is important. Many well-known algorithms, such as DE(Storn and 

Price, 1997), PSO(Poli et al., 2007), and SSO(Yeh, 2009), proposed different update 

mechanisms for manipulating the particles’ movements in solution space. They often 

mimic the phenomena in nature, such as collective behaviour, emergent behaviour, self-

organization, etc.. One characteristic that all SI-based algorithms have in common is 

that though particles emerge from the interaction of other members, they behave 

chaotically and independently. Similar to the reproduction process in nature, without 

violating the rules of reproduction, the offspring of individuals in a population are 

independent and variant to one another. Another example is animal flocking 

phenomenon, though the individuals self-propel to unique positions at any point in time, 

they follow the certain interaction rules to manipulate their movements to form a group.  

Although update mechanism and its formulae and equations play important roles in 

optimization algorithm, they do not guarantee success. Different update mechanisms 

model different particles movement patterns in solution space. Before the evaluation 

process taken place, the exact positions of particles are indeterminate. Due to the fact 
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that new particles often resampled with stochastic techniques, they are spreading out in 

space and can only be assure that they probably resided in certain regions. Similar to the 

microscopic indeterminacy in quantum mechanics (Wimmel, 1992). Quantum particles 

have both wave and particle properties known as wave-particle duality.  Each quantum 

particle is guided by a composite of many waves. Since the measurement can only 

observe one of them, the momentum before the observation is uncertain. Thus, the 

quantum objects exist in superposition, which is the combination of all possible states, 

until the observation takes place.  

Imagine, a SI system discovers satisfactory solutions after a number of iterations. The 

evaluation results are recorded and plot with line chart (quality against evaluation time 

interval). Then the curve in the plot can be illustrated as the movement of swarm in 

continuous space time. Every time the algorithm runs will plot different curves due to 

the stochastic method is used in the algorithm. The positions of particles before 

evaluation take place are indeterminate. Therefore, how individual particles move in 

search space cannot be directly known from the evaluation.  

For the optimization problems which the characteristics of solutions are unknowable 

beforehand, like a black box, the observation for solution quality can only be evaluated 

by objective function. The aim of optimization algorithm is to find the solutions which 

can maximize or minimize the function outcome. E.g. for iterative method, the wanted 

evaluation outcome is significantly smaller or larger than the one in previous iteration 

time. Think differently, the algorithm is expecting the occurrence that a satisfactory 

solution is collected because the objective function been applied. This idea brings out a 

new thinking: the evaluation take place at different time will possibly gather different 

result. In what situation at what time, the objective function should be applied on a 

solution vector and probability return satisfied outcome.  

All in all, SI based optimization algorithm is a method to discover the approximate ideal 

solutions for the given problem. Although its update mechanism is often inspired from 

swarm behaviour in nature, the root of matter is particles’ motion behaviour in solution 
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space. A swarm can be considered as a macro object, which is the projection of its 

individual members on a micro scale. There is a relationship between the movement of 

particles and the motion behaviour of an entire swarm.  

4.2 Inspiration 

While a SI system discovers satisfactory solutions after a number of iterations, the 

whole progression is similar to animals’ food finding behavior in nature. Individual 

swarm particles move toward to global optima through random walk biased by the 

predefined evaluation criteria and update mechanism. In macro scales, the movement of 

particles is continuous in solution space over iteration. Similar to the moving object 

which can be observed by naked eyes is in continuous space-time, which can be 

explained by classical mechanics. On the other hand, an object can only exist in one 

place in any one instant of time. In micro scale, the movement of particles consists of 

series of infinitesimal interval states. That is, the infinite numbers of discontinuous 

points in space summates to a continuous point set. Before the evaluation process taken 

place, the exact positions of particles are indeterminate due to new particle positions 

often resampled with stochastic techniques. Similar to the uncertainty principle in 

quantum mechanics, the precise positions of point set cannot be established without 

observation even if the predicted law of motion is known (Shan, 2001).  

When millions of particles clumped together into a macroscopic object, classical 

physics such as Newton’s laws can be used to describe the motion of an object. In 

general, the indeterminacy of quantum phenomenon still exists, albeit with little effects 

to macroscopic world. Nevertheless, the thought experiment Schrodinger's Cat (Gribbin, 

1984) shows the indeterminacy in microscopic world may leak to the uncertain macro-

state. A living cat is put into a sealed box for an hour, with a poison gas device which 

can be triggered by radioactive substance (atom decays). Since there is a 50% chance 

the radioactive substance decays within that an hour and triggers the poison gas been 

released, there is an equal chance the cat is either dead or alive. Without opening the 



66 

 

 

box and observe it, the cat is in superposition both dead and alive as well as the 

radioactive substance decayed and not decayed.  

4.3 Macroscopic Indeterminacy Swarm Optimization (MISO) 

algorithm 

START
Initial population

Create initial 
particle positions in 

solution space

Evaluation process
Verify the quality of 

solution

Update mechanism
move particles to new 

positions in solution space

Information update
(survival of the fittest)

Check and refine the results
Update important factors

Termination ENDYes

No

Reproduction process

 

Figure 5 main stages of swarm optimization algorithm 

MISO believes algorithm efficiency and effectiveness are depended on the regulatory 

coordination between update mechanism and evaluation process. The common steps of 

swarm optimization algorithm are shown in Figure 5. An update mechanism, which 

consists of well-designed formulae and equations, is able to fairly address the 

exploration and exploitation of a search space. Every time the system wants to collect 

and integrate useful information, such as  or other variables required by update 

mechanism, the evaluation process needs to be performed. Based on the concept of 

survival of the fittest, only the better solution candidates can trigger the information 

update phase. An execution of evaluation process appears to be superfluous, if it cannot 

return positive feedback. However, without evaluation taking place, the quality of a 
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solution candidate is indeterminate. In order to improve the performance of optimization 

algorithm, MISO considers well-designed update mechanism and suitable evaluation 

strategy need to be auxiliary to each other.  

The new reproduction process is proposed. The algorithm is shown as below:  

Table 15 MISO algorithm 

1. Initialize Population X with NP particles 
2. Initial Evaluation:  eval(X) 
3. Update  pbest and gbest 
4. Repeat until ( =0~ ) 

a) Reproduction process 
 

 
 

 
 

 
 

 

 
 

(i) Evaluation:  eval(U) 
(ii) Re-constitute population    

 

b) Update  

5. END 
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Figure 6 MISO algorithm structure 

The MISO algorithm is shown inFigure 6. By extending the previous study in SSODE, 

the population is divided into four groups (class A to D). A new update mechanism 

(PUO) controls the mutation strategies of individual classes. In order to simulate the 

uncertain moment in time for performing evaluation, each particle executes PUO a 

random number of times ( ) prior before evaluation takes place. More detail 

explanation will be shown in the following subsubsections.  

 Crucial vectors for particle interaction  4.3.1

Where  and  are two crucial matrix which contains important solution 

vectors for emerging new solution candidates. The mechanisms are shown in (20) and 

(21):   

 Function:  

 

 

IF (  )  
 

 
END 

(20) 

The significant difference is measured by the variance interval 0.05. is updated 

every time the better solution is discovered, whereas,  only records if it 
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is significantly better than the last element in  array. This prevents the 

array are contaminated by the latest generations’ results. After many iteration 

times, particles would be formed convergence to local or global optima. Therefore, the 

diversities of particles with their neighbours are decreased and less likely to produce 

significantly different particles. In order to maintain a certain level diversity, a certain 

number of vectors are taken from  in descending order and are added into . 

Function:  

 

 

IF ( )  
=  

=  
ELSE 

=  
=  

END 

 

(21)  

is a set of vectors which stores the important knowledge learnt from previous 

generations.  is composed by two types of particles: 

 A number of particles from  

 A number of particles from significantly different  which have learnt so far 

in   array.  

 Update mechanism: Position Updates Operator (PUO) 4.3.2

Based on literature review of SSO(Yeh et al., 2009), DE(Storn and Price, 1995), 

PSO(Kennedy and Eberhart, 1995), and ABC(Karaboga and Basturk, 2007) algorithms, 

the formulae and equations they used in update mechanisms share the similar features. 

Table 16 lists partial equations used in these algorithms.  

Table 16 some equations used in DE, PSO, ABC, and SSO 

DE/best/1  (see Table 2) 
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PSO 
 (see Eq. (9), 

(10), and (11))  

ABC  (see Eq. (15)) 

SSO  (see Eq. (12)) 

The emergence of a new vector is calculated using vector difference. The pattern of 

these equations can be summarized as (22): 

  (22) 

Where  are crucial vectors for synthesis new vector  and  are the 

amplifiers to increase or decrease the vector differences. The idea can be interpreted by 

classical mechanics. The average of velocity over given time is:

. For the computer simulation of motion behavior in solution 

space,  is assigned for a change of position. The equation can be rewrite 

as: . Accordingly, different algorithms 

propose different position updates mechanisms and they all implemented for reasons. 

No matter what theories behind their designs, the essence is the vector difference 

equations of displacement in solution space.  

To recall the concept of SSODE, the entire swarm is partitioned into four different 

proportions of sub-swarms, corresponding to four different mutation strategies to 

synthesis new set of solution candidates. However, based on the benchmark 

experiments, the results (see Table 14), the performance on of SSODE is often superior 

to SSO(Yeh et al., 2009) and is non-inferior to DE(Storn and Price, 1995) algorithm. 

This indicates that SSODE framework is efficacious in dealing with many general 

optimization problem, but further research needs to be carried on to improve algorithm 
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performance. Here, the new update mechanism Position Update Operator (PUO) is 

proposed (see Table 17). 

Table 17 update mechanism: PUO 
Control parameters:  

  
 

 

 

 

 

   

# Class A 
 

 
 

 
# Class B 

 
 

 
 

# Class C 
 

 
 

 
# Class D 

 

 
 

 
 
* and are non-repeated random sequence where . 
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Where the four ratios , , , and control the number of particles in individual 

four classes: Class A, Class B, Class C, and Class D. That is, 3 thresholds separate the 

population into four groups. The scaling rate F amplifies the differential variation 

between vectors which is dynamically generated according to different equations for 

different classes. Three equations (Table 18) are introduced in PUO and they are applied 

to four classes in dynamic ways.  

Table 18 formulae used in PUO 

Formula 1:  (for class A) 

 

Formula 2:  (for class B & C) 

 

Formula 3:  (for class D) 

 

 

 Uncertain time-interval for performing evaluation 4.3.3

 One hop per generation 
 By reviewing many algorithms (e.g. SSO(Yeh et al., 2009), DE, PSO(Kennedy and 

Eberhart, 1995), and ABC(Karaboga and Basturk, 2007)), a trial solution vector is 

synthesised by one-round update mechanism, then immediately followed by evaluation 

process. That is, particles may perform only one hop before evaluation. It was more like 

interpreting the motion behaviour on a micro scale than mimicking the swarming 

behaviour in nature. According to the general presuppositions about motion in 

continuous space-time(Shan, 2001), the motion of particle can be illustrated as 

infinitesimal interval state of particle, which is the point set in time and space. 

Similarly, while a particle can only move one hop per generation, then it represents an 



73 

 

 

instant state of particle. The movement of one particle in solution space is the set of its 

positions overall generations.  

 

Figure 7 one hop per generation 

Figure 7 illustrates a particle movement from the previous position  to current one . 

Due to the fact that update mechanism stochastically update the particle’s position,  

cannot be certain until the evaluation takes place. While performing the same process on 

the same particle position , it may appear on other position, denote as hollow point in 

the figure. Some hollow points may be closer to the global optimum than the actual 

position .  

In General, iterative methods often perform evaluation process immediately after 

individual particles shifting their positions. However, though the desired outcome of 

evaluation is locating better solution, it does not always presents positive feedback. It 

brings a new area to think about: is the evaluation process necessary to be applied every 

time particles update their position?   
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 Multi-hops per generation 

While a particle is able to perform multi-hops in one generation, it moves a number of 

displacements within a time interval (number of hop count). That is, in every 

generation, a particle performs an action instead of merely change one position in space. 

The entire optimization process is a goal-directed movement consist of sequencing 

actions. In other words, Individual particles are interacting with one another and 

performing random walk. The algorithm is able to randomly choose exploitation and 

exploration in each generation. If particles move a small number of hops away from 

their original positions, the new positions vectors might be near to the current ones. 

Else, if particles move a large number of hops, their final positions could be anywhere 

in solution space.  

As an example shown in Figure 8, from position , the particle can arrive  with four 

hops. However, during its journey toward to , it may visit position , which is even 

closer to global optimum, with only two hops. If the evaluation is performed on  

instead of , the result would be better. This is the key concept of uncertain time-

interval for evaluation.  

 

Figure 8 multi-hops per generation 
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From equation (23),   is randomly generated in every iteration time. It simulates the 

uncertain number of instants of time between current and previous evaluations 

performed on individual particles. That is, the simulation of uncertain time-interval for 

performing evaluation. The related code gathered from (23) is shown below  

(23): 

 

 
 

 
 

 

 

 
 

 

(23) 

In every iteration, individual particles perform  times movements and 

recombination to arrive their final positions. This simulates the movement of living 

creatures. One type of animal orientation behaviour is kinesis, which is the random 

change in the animal’s speed or direction caused by nature stimuluses. Instead of 

moving with straight line, they often follow nonlinear paths to arrive their next 

positions, which is the moment observation performed.  

4.4 Experiment   

All algorithms are implemented in C language. The computer specification is: Intel(R) 

Core(TM) i5-2400 CPU @ 3.10GHz with 4GB memory. The operating system is 64-bit 

windows 7.  

The purpose of this experiment is to evaluate the performance of proposed algorithm 

MISO. The default MISO algorithm with no control parameter setting is compared with 

DE (Price and Storn, 1996, Storn and Price, 1997), ABC(Karaboga and Basturk, 2007) , 

SSO (Yeh, 2009, Wei-Chang, 2012, Yeh, 2013) and PSO(Kennedy and Eberhart, 1995). 



76 

 

 

Here, DE/best/1 and DE/rand/1 mutation strategies are selected. Three recommended 

setting for DE parameters are chosen (Storn and Price, 1997, Mallipeddi et al., 2011). 

The benchmark ABC source code is downloaded from ABC algorithm homepage 

(Karaboga, 2011). SSO control parameter is set =[0.1, 0.3, 0.5,0.1], which is the 

same setting as Yeh et al. experiment (Yeh et al., 2009).  The setting for PSO is 

 with decaying weight , which is able to perform global 

search at the beginning and local search at the end (Shi and Eberhart, 1998b, Shi and 

Eberhart, 1999). The population size  for all algorithms, except ABC 

 (Karaboga, 2011). The equation (18) is applied to solve beyond boundary 

problem. 

The experiment is carried on 28 benchmark functions from CEC 2013 Special Session 

on Real-Parameter Optimization (Liang et al., 2013). Table 19 and Table 20 list all 28 

benchmark functions and more detail information are explained in Appendix A. 
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Table 19 benchmark functions 

No. Function name fbias
Bm1 Sphere Function -1400
Bm2 Rotated High Conditioned Elliptic Function -1300
Bm3 Rotated Bent Cigar Function -1200
Bm4 Rotated Discus Function -1100
Bm5 Different Powers Function -1000
Bm6 Rotated Rosenbrock's Function -900
Bm7 Rotated Schaffers F7 Function -800
Bm8 Roated Ackley's Function -700
Bm9 Rotated Weierstrass Function -600
Bm10 Rotated Griewank’s Function -500
Bm11 Rastrigin’s Function -400
Bm12 Rotated Rastrigin’s Function -300
Bm13 Non-Continuous Rotated Rastrigin’s Function -200
Bm14 Schwefel's Function -100
Bm15 Rotated Schwefel's Function 100
Bm16 Rotated Katsuura Function 200
Bm17 Lunacek Bi_Rastrigin Function 300
Bm18 Rotated Lunacek Bi_Rastrigin Function 400
Bm19 Expanded Griewank’s plus Rosenbrock’s Function 500
Bm20 Expanded Scaffer’s F6 Function 600  

Table 20 composition benchmark functions 

No. Function name elements fbias
Bm21 Composition Function 1 (n=5,Rotated) Bm1,Bm3,Bm4,Bm5,Bm6 700
Bm22 Composition Function 2 (n=3,Unrotated) Bm14 800
Bm23 Composition Function 3 (n=3,Rotated) Bm15 900
Bm24 Composition Function 4 (n=3,Rotated) Bm9,Bm12,Bm15 1000
Bm25 Composition Function 5 (n=3,Rotated) Bm9,Bm12,Bm15 1100
Bm26 Composition Function 6 (n=5,Rotated) Bm2,Bm9,Bm10,Bm12,Bm15 1200
Bm27 Composition Function 7 (n=5,Rotated) Bm1,Bm9,Bm10,Bm12,Bm15 1300
Bm28 Composition Function 8 (n=5,Rotated) Bm1,Bm7,Bm15,Bm19,Bm20 1400  

Three measure criteria are examined: 1) performance within limited Function 

Evaluation times, 2) algorithm complexity, and 3) overall real-time performance in 

seconds.  
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 Performance test in limited number of function evaluations 4.4.1

The maximum function evaluation times  is set for all algorithms. 

The main consideration for optimization algorithm is the quality of discovered 

solutions. The experiment is based on the CEC evaluation criteria. Assume the objective 

function , the optimum discovered by algorithm , and the predefined global 

optimum , and then the evaluation is based on the error value

.  The statistical analysis is based on minimum, maximum and mean of 

error values, and the standard deviation of 30 applications of experiment. The detail 

experiment result is shown in Appendix C. According to the No Free Lunch Theorem 

(Wolpert and Macready, 1997), there is no algorithm can outperform all others in all 

problems. Therefore, the algorithm which can achieve the best performance overall 

given problems would be the most generalized optimization method. Overall 28 

benchmark functions, MISO can achieve better performance and generalization ability 

than DE, ABC, SSO, and PSO algorithms in 14 benchmark functions (Table 21).  

Table 21 summary of algorithms performances over 28 benchmark 

functions 

NP=40 w=0.9~0.4
MISO DE/best/1DE/rand/1 DE/best/1DE/rand/1 DE/best/1DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

max 13 11 0 0
min 13 8 3 1
mean 14 10 1 0
std 8 8 0 0

3
12

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

4
3

 

Table 22 The Average of the discovered results for all 28 functions 

NP=40 w=0.9~0.4
Error value MISO DE/best/1DE/rand/1 DE/best/1DE/rand/1 DE/best/1DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

max 6.86E+06 1.52E+08 4.92E+08 4.28E+08 5.26E+08 5.21E+08 1.22E+09 7.87E+07 4.78E+08 1.96E+09
min 2.43E+04 4.41E+07 2.00E+08 9.55E+07 1.94E+08 2.67E+08 4.84E+08 8.81E+06 1.46E+07 2.81E+08
mean 6.57E+05 8.75E+07 3.93E+08 2.44E+08 3.64E+08 3.89E+08 8.63E+08 3.06E+07 1.35E+08 9.00E+08
std 1.86E+06 4.51E+07 1.45E+08 1.34E+08 1.66E+08 1.49E+08 3.18E+08 3.01E+07 1.86E+08 6.55E+08

A
ve

ra
ge

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9
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Figure 9 efficiency comparison over 28 functions: error vs. algorithm 

From Table 22 and Figure 9, the average evaluation results of the worst (maximum), 

mean, and the best (minimum) solutions discovered by MISO are significantly smaller 

than other algorithms. This means even though MISO cannot achieve better results than 

other algorithms in some benchmark problems, it can still discover acceptable solutions 

in many of them.  Table 23 lists all benchmark functions that MISO outperforms other 

algorithms. 
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Table 23 Summary results obtained by MISO, DE, ABC, SSO, & PSO 

NP=40 w=0.9~0.4
MISO DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

bm2 mean 1.82E+03 2.54E+07 3.34E+07 3.01E+07 3.03E+07 5.49E+07 6.62E+07 1.50E+07 2.85E+07 5.02E+07
std 4.51E+03 6.24E+06 5.92E+06 6.47E+06 5.72E+06 1.12E+07 1.14E+07 3.14E+06 1.34E+07 2.14E+07

bm3 mean 1.84E+07 2.42E+09 1.10E+10 6.81E+09 1.02E+10 1.08E+10 2.41E+10 8.42E+08 3.76E+09 2.51E+10
std 3.23E+07 6.78E+08 2.02E+09 2.11E+09 2.47E+09 2.01E+09 4.25E+09 5.22E+08 3.33E+09 1.08E+10

bm4 mean 6.69E-04 7.17E+04 7.56E+04 7.97E+04 7.75E+04 5.86E+04 6.94E+04 7.12E+04 1.28E+04 1.28E+04
std 7.66E-04 9.06E+03 8.02E+03 1.03E+04 8.55E+03 8.78E+03 8.00E+03 8.22E+03 2.79E+03 7.50E+03

bm6 mean 1.15E+01 3.00E+01 1.12E+02 3.80E+01 1.04E+02 7.45E+01 3.24E+02 1.51E+01 7.14E+01 6.13E+02
std 1.60E+01 1.25E+01 1.45E+01 7.18E+00 1.13E+01 9.73E+00 3.82E+01 2.66E+00 3.33E+01 2.42E+02

bm7 mean 1.40E+01 9.07E+01 1.13E+02 1.11E+02 1.13E+02 1.08E+02 1.42E+02 1.19E+02 1.17E+02 1.40E+02
std 8.62E+00 1.06E+01 1.19E+01 1.26E+01 1.29E+01 1.03E+01 1.49E+01 1.79E+01 2.90E+01 4.55E+01

bm9 mean 2.79E+01 2.97E+01 2.98E+01 2.93E+01 2.93E+01 3.30E+01 3.30E+01 2.97E+01 2.92E+01 3.43E+01
std 3.11E+00 1.35E+00 1.19E+00 1.72E+00 1.72E+00 1.18E+00 1.36E+00 1.83E+00 3.11E+00 4.23E+00

bm10 mean 1.54E-02 3.03E+01 1.83E+02 7.18E+01 1.54E+02 2.03E+02 6.74E+02 3.86E-01 2.58E+01 7.49E+02
std 2.09E-02 7.27E+00 2.60E+01 1.35E+01 2.33E+01 3.00E+01 8.49E+01 1.22E-01 1.11E+01 2.43E+02

bm12 mean 1.19E+02 1.53E+02 2.50E+02 2.10E+02 2.47E+02 2.27E+02 3.09E+02 2.63E+02 1.40E+02 2.35E+02
std 2.66E+01 1.79E+01 1.71E+01 2.03E+01 1.90E+01 1.39E+01 1.74E+01 3.43E+01 4.52E+01 5.44E+01

bm13 mean 1.62E+02 1.85E+02 2.84E+02 2.41E+02 2.78E+02 2.36E+02 3.23E+02 3.12E+02 2.16E+02 3.02E+02
std 2.55E+01 1.63E+01 1.66E+01 1.83E+01 1.50E+01 1.55E+01 1.98E+01 3.18E+01 4.71E+01 4.91E+01

bm18 mean 2.06E+02 2.33E+02 3.26E+02 2.84E+02 3.33E+02 2.70E+02 3.86E+02 3.40E+02 2.57E+02 2.20E+02
std 1.07E+01 1.53E+01 1.75E+01 1.69E+01 1.75E+01 1.28E+01 2.24E+01 2.82E+01 4.42E+01 5.01E+01

bm20 mean 1.19E+01 1.41E+01 1.40E+01 1.43E+01 1.43E+01 1.39E+01 1.39E+01 1.45E+01 1.22E+01 1.35E+01
std 3.05E-01 3.64E-01 4.76E-01 3.65E-01 4.19E-01 2.56E-01 2.96E-01 2.80E-01 4.90E-01 8.74E-01

bm24 mean 2.26E+02 2.77E+02 2.86E+02 2.83E+02 2.85E+02 2.87E+02 2.96E+02 2.87E+02 2.87E+02 3.04E+02
std 7.59E+00 5.60E+00 4.55E+00 5.75E+00 5.31E+00 4.69E+00 4.74E+00 4.96E+00 1.06E+01 1.40E+01

bm25 mean 2.34E+02 2.98E+02 3.03E+02 3.02E+02 3.04E+02 3.10E+02 3.15E+02 3.07E+02 3.01E+02 3.45E+02
std 2.02E+01 4.46E+00 4.07E+00 4.25E+00 3.51E+00 3.55E+00 2.81E+00 4.30E+00 8.59E+00 1.05E+01

bm26 mean 2.00007E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02 2.06E+02 2.06E+02 2.0084E+02 2.43E+02 2.01E+02
std 6.75498E-03 5.46E-01 6.15E-01 5.83E-01 6.69E-01 1.36E+00 1.50E+00 2.0228E-01 7.57E+01 9.95E-01

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

 

To sum up, MISO would be the recommended method for solving black-box 

optimization problem due to it can achieve the satisfactory results within limited 

function evaluation times (FEs).  

 Algorithm complexity measurement 4.4.2

The Performance measurement based on the solution quality within  is not 

always a fair approach way for testing algorithm. One of the key issues is algorithmic 

complexity, which commonly refers to the amount of time for an algorithm to run. For 
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solving the same problems within , some algorithms finish earlier than others. 

Based on the  evaluation criteria for algorithm complexity in CEC 2013 Special Session 

(Liang et al., 2013), the results is shown in Table 24.  

Table 24 summary of algorithm time complexity over 28 benchmark functions 

DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1

mean 1.48E+01 3.46E+00 3.31E+00 3.22E+00 4.10E+00 3.79E+00 3.35E+00 3.35E+00 1.03E+01 8.51E+00

sum 4.13E+02 9.69E+01 9.27E+01 9.03E+01 1.15E+02 1.06E+02 9.37E+01 9.38E+01 2.87E+02 2.38E+02

SSO PSO
Time
 (sec) Miso

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

ABC

 
The experiment result shows MISO has the highest algorithm complexity, which means 

MISO takes the longest time to run. It is reasonable because every iteration MISO 

executes the update mechanism multiple times before an evaluation takes place. 

However, inefficiency does not always mean to be ineffectiveness. In the next section, 

the real-time analysis is presented for verifying the true convergence performance based 

on the benchmark functions. 

 Real-time performance measurement 4.4.3

The function error value is recorded in varying pause time 

 (see Table 25).  

Table 25 sequence of seconds 

Time (sec)  
0.5 2.0 4.5 8.0 12.5 18.0 24.5 40.5 50.0 60.5 72.0 84.5 98.0 

The statistical analysis is based on of error values of 30 applications of experiment. The 

experiment results are shown in Appendix D. Here, we display the convergence graphs 

for some descriptive benchmark functions (See Figure 10 ~21). In the graphs, the solid 

bold triangle line represents MISO algorithm. If error value  1.00E-08, than set it to 

1.00E-08.  
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Figure 10 Rotated High Conditioned 

Elliptic Function 
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 Bm3 
Figure 11 Rotated Bent Cigar Function
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 Bm4 
Figure 12 Rotated Discus Function 
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 Bm6 
Figure 13 Rotated Rosenbrock's Function
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 Bm7 
Figure 14 Rotated Schaffers F7 Function
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 Bm9 
Figure 15 Rotated Weierstrass Function 
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 Bm12 
Figure 16 Rotated Rastrigin’s Function 
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 Bm13 
Figure 17 Non-Continuous Rotated 

Rastrigin’s Function 
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 Bm20 
Figure 18 Expanded Scaffer’s F6 Function 
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 Bm23 
Figure 19 Composition Function 3 
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Figure 20 Composition Function 5 
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Figure 21 Composition Function 6
 

The graphs indicate that many algorithms like SSO, DE, ABC, and PSO are able to 

form fast convergence at the beginning. However, they may have premature 

optimization issue and suffer from local optima. Besides, as it can be seen from the 

experiment results of benchmarks: bm2, bm3, bm4, bm6, bm7 & bm13. After 

algorithms running a period of time, the performance of MISO is gradually improving. 

Finally, MISO achieves either fast convergence, or discovers the better optimal 

solutions than others. From the boxplot graphs (see Appendix D: Boxplot section), 

within approximate 98 seconds, MISO is able to perform effective search in many 

benchmark problems. Except the benchmark functions bm14, bm15, bm16, bm17, 

bm22 & bm23, MISO is able to discover satisfactory results with small standard 

deviation range.  

After all, according to these three experiments, we can conclude that an algorithm with 

high time complexity can be complemented by small number of function evaluation 

times. Despite of the fact that every iteration MISO takes longer time to execute, it can 
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achieve satisfactory result within less number of function evaluations. Consuming lots 

of time in every iteration might pay off in the end.  

  Chapter summary 4.4.4

The update mechanism, which is a strategy or set of steps and equations to produce new 

solutions, plays important role for discovering new solution candidates. Many 

representative algorithms such as SSO, DE, PSO, and ABC, have been proposed to 

solve global optimization problems. Their ideas were assured to solve the optimization 

problems based on their hypotheses. However, they do not guarantee success.  Even 

more, they seem to be too ambitious, and try to synthesis better solution candidates in 

every iteration.   

Macroscopic Indeterminacy Swarm Optimization (MISO) algorithm is proposed in this 

chapter. In order to improve the performance of optimization algorithm, MISO 

considers well-designed update mechanism and suitable evaluation strategy need to be 

auxiliary to each other. Macroscopic Indeterminacy refers to biased random walk 

phenomena in nature. Lives find ways out to survive. Living organisms constantly 

change their positions in response to the stimuli from colleagues and their environment. 

Similarly, particle agents constantly change their positions in response to the stimuli 

from colleagues, and frequently response to conditions (solution quality) in solution 

space. That is, particles may update their positions multiple times before evaluation take 

place.  

Based on benchmark functions provided by CEC conference (Liang et al., 2013), the 

experiments show MISO is superior SSO, DE, PSO, and ABC in many of them. In spite 

of the fact that algorithm complexity for MISO is significantly higher than others, it can 

achieve good results within small number of function evaluations. By given enough of 

processing time, MISO is able to come from behind and achieve efficient and effective 
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results in many benchmark problems. The overall performance of MISO is significantly 

better than others.  
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5 CONCLUSION AND FINAL REMARKS 

This thesis has demonstrated the research of SI based system for solving global 

optimization problem. Before solving any problem, it is essential to understand and 

formulize a problem into objective function. Then the second consideration is the 

method for minimizing or maximizing the outcome(s) of objective function(s). The 

literature review is demonstrated in chapter 2. By reviewing existing SI-based 

algorithms, many of them focus on implementing new formulae and updating equations 

to achieve emerging new solutions. It is believe the appropriate equations can efficiently 

and effectively form convergence to global optima.  

However, it is not practical to design an algorithm which is uniformly best in all 

possible problems due to No Free Lunch Theorem. An algorithm may be well suited for 

solving particular types of problems, but inappropriate for others.  Hybridization of 

different algorithms’ operators and incorporation of their knowledge would complement 

one another’s strength and weakness. In Chapter 3, the new hybrid evolutionary 

algorithm SSODE is proposed. SSODE uses four update formulae which are 

summarized from many well-known mutation strategies from DE. Inspired from SSO 

algorithm structure, these four update formulae are dynamically applied for synthesis 

new solution candidates. The experiment results show that the general efficiency of 

SSODE is better than SSO and DE. Although the performance of SSODE may not be 

superior to SSO and DE, SSODE is able to present similar results in many benchmark 

problems.  

In chapter 4, the further research is carried on SSODE and new algorithm MISO is 

proposed. There are two research focuses. One is to improve the efficiency of SSODE. 

A well-defined update mechanism can speed up the convergence while avoiding local 

optima. The other is to present a new schema for evaluation process. Inspired from 

phenomena in nature such as living creatures find ways out to survive or quantum 
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particles movement in space, everything in the universe is considered to be moving. 

Evaluation or observation is the moment that a system interacts or reflects to the 

environment. The moment for performing evaluation can be considered as sudden 

occurrences to make decisions and conclusions. That is, it seems to be unnecessary to 

evaluate a particle every time it moves one position.  

In addition, the time complexity is of an algorithm is the amount of the time it took to 

run. In general, the most effective algorithm is the one which takes the shortest time to 

execute. However, effectiveness and efficiency do not always equate. Some algorithms 

can complete all processing steps in a short time, but they may not achieve good results. 

In comparison, a high algorithm complexity method often takes longer time to run, but 

if it can achieve the similar or even better results with less processing steps, it may meet 

the termination requirement earlier than others. The implication is that by given a 

certain period time, an algorithm which can achieve the more accurate results will be 

more preferable one to use.  

5.1 Contributions 

The thesis offers several contributions to swarm intelligence in optimization algorithm 

research. First, a multi-groups hybrid strategies algorithm is proposed. Particles (a set of 

search agents) are partitioned into different groups. Based on the special designed 

algorithms, different mutation strategies are applied stochastically. Secondly, a new 

update mechanism for generating new solution candidates is proposed. A well-designed 

position update mechanism is able to provide both global and local search abilities. 

Moreover, the selection of parent vectors for emerging new solution candidates is a key 

factor affecting algorithm performance. Apart from interacting with neighbouring 

particle vectors, some of the best solutions discovered in previous iterations provide 

important information. Finally, the moment to evaluate new solution candidates is 

another key factor affecting algorithm effectiveness, especially for iterative method. 

While a method that possible solves problems, then the matter is when to verify 
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discovered solutions. In the proposed hybrid algorithm MISO, the position update 

mechanism (PUO) dynamically applied different search strategies for different groups 

of particles. The evaluation process is performed after uncertain time of PUO has been 

executed for each individual particle.   
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APPENDIX A 

Benchmark functions 

The benchmark functions used in this paper are presented by Congress of evolutionary 

computation (Tang et al., 2007, Liang et al., 2013) 

 Objective function 

 Dimension of solution space 

 Decision vector/solution vector/position vector in solution space 

 

 Shifted distance vector  

 Shifted solution vector  

 the bias in the function value 

 Transformation function for creating smooth local irregularities 

(Hansen et al., 2009) 

 

 

 

 Transformation function to break the symmetry of the functions  

(Hansen et al., 2009). 

 

 Rotation matrix generated from standard normally distributed entries 
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by Gram-Schmidt orthonormalization. 

 D-dimensional diagonal matrix with diagonal elements . 

For creating ill-conditioning (Hansen et al., 2009). 

Shifted Sphere Function   

 
 

Schwefel’s Function   

+002 

 

Rotated Schwefel's Function   

+002 

 

Shifted Schwefel’s Problem 1.2   
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Shifted Schwefel’s Problem 1.2 with Noise in Fitness   

 

 

Schwefel’s Problem 2.6 with Global Optimum on Bounds   

 For 2-dimensional problem 

 

For D-dimensional problem 

 

 

 

  

Schwefel's  Problem 2.13   

 

 

Schwefel’s Problem 2.21   

  

Shifted Elliptic Function   

 
 

Rotated High Conditioned Elliptic Function   
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Rotated Rosenbrock's Function   

 

 

Shifted Rosenbrock’s Function   

 
 

Rotated Griewank’s Function   

 
 

 

Shifted Rotated Griewank’s Function without Bounds   

 
 

 

 

Rotated Expanded Griewank’s plus Rosenbrock’s Function   

Basic Griewank’s function:  

Basic Rosenbrock’s function:  

 

Rotated Ackley’s Function   
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Shifted Rotated Ackley’s Function with Global Optimum on Bounds   

 

 

 

Shifted Rastrigin’s Function (Suganthan et al., 2005)   

 
 

Shifted Rotated Rastrigin's  Function (Suganthan et al., 2005)   

 
 

Rastrigin’s Function   

 

 

Rotated Rastrigin’s Function   
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Lunacek Bi_Rastrigin Function   

 

Rotated Lunacek Bi_Rastrigin Function   

 

Non-Continuous Rotated Rastrigin’s Function   

 

 

Rotated Schaffers F7 Function   

 

 

Rotated Bent Cigar Function   

 
 

Rotated Discus Function   
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Different Powers Function   

 

 

Rotated Weierstrass Function   

 

Shifted Rotated Weierstrass Function   

 

Rotated High Conditioned Elliptic Function   

 
 

Shifted Rotated High Conditioned Elliptic Function (Suganthan et al., 

2005) 

  

 
 

Rotated Katsuura Function   
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Rotated Expanded Scaffer’s F6 Function   

 
Scaffer’s F6 function:   

 

Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2) 

Griewank’s Function:  

Rosenbrock’s Function:  

F8F2:  
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Composition benchmark functions 

 

 

Composition Function 1   

 - -26 -

Rotated Rosenbrock’s Function 

Rotated Different Powers Function 

Rotated Bent Cigar Function 

Rotated Discus Function 

Sphere Function 

Composition Function 2   

 

Schwefel's Function 

Schwefel's Function 

Schwefel's Function 

Composition Function 3   

 

Rotated Schwefel's Function 

Rotated Schwefel's Function 

Rotated Schwefel's Function 
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Composition Function 4   

 

Rotated Schwefel's Function 

Rotated Rastrigin’s Function 

Rotated Weierstrass Function 

Composition Function 5   

 

Rotated Schwefel's Function 

Rotated Rastrigin’s Function 

Rotated Weierstrass Function 

Composition Function 6   

 -

Rotated Schwefel's Function 

Rotated Rastrigin’s Function 

Rotated High Conditioned Elliptic Function 

Rotated Weierstrass Function 

Rotated Griewank’s Function 

Composition Function 7   

 

Rotated Griewank’s Function 

Rotated Rastrigin’s Function 

Rotated Schwefel's Function 

Rotated Weierstrass Function 

Sphere Function 
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Composition Function 7   

 - -

Rotated Expanded Griewank’s plus Rosenbrock’s Function 

Rotated Schaffers F7 Function 

Rotated Schwefel's Function 

Rotated Expanded Scaffer’s F6 Function 

Sphere Function 
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APPENDIX B  
Benchmark test for SSODE 

DE/Best/1 DE/Rand/1
DE/

rand-to-best/1 DE/best/2 DE/rand/2
SSO 

(1-3-5-1)
SSODE 

(1-3-5-1)
SSODE 

(1-2-4-8)

Bm1 max 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.31E-03 5.71E+03 3.53E-03 0.00E+00

min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.51E-04 1.44E+04 1.37E-04 0.00E+00

mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.31E-04 2.74E+04 9.92E-04 0.00E+00

std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.82E-04 5.96E+03 6.57E-04 0.00E+00

Bm2 max 0.00E+00 8.38E+01 0.00E+00 1.13E+01 1.19E+03 6.74E+01 1.83E+02 8.85E+00

min 0.00E+00 4.91E+01 0.00E+00 2.81E+00 6.27E+02 7.65E+01 4.73E+01 3.55E+00

mean 0.00E+00 6.28E+01 0.00E+00 7.35E+00 9.46E+02 8.49E+01 9.36E+01 6.15E+00

std 0.00E+00 8.62E+00 0.00E+00 1.70E+00 1.29E+02 4.87E+00 2.95E+01 1.35E+00

Bm3 max 4.22E+07 1.15E+08 2.26E+07 8.08E+07 1.27E+08 4.47E+07 6.94E+07 3.02E+07

min 9.28E+06 5.49E+07 8.44E+06 2.71E+07 6.36E+07 8.90E+06 2.17E+07 1.28E+07

mean 2.56E+07 8.75E+07 1.49E+07 5.52E+07 9.49E+07 2.30E+07 4.24E+07 2.12E+07

std 8.84E+06 1.43E+07 3.11E+06 1.15E+07 1.70E+07 8.79E+06 1.36E+07 4.21E+06

Bm4 max 5.62E-03 1.06E+03 1.05E-03 5.49E+03 5.49E+03 6.47E+02 1.00E+03 8.29E+02

min 2.82E-04 6.23E+02 1.90E-04 3.27E+03 3.27E+03 6.75E+02 3.29E+02 3.86E+02

mean 1.26E-03 8.56E+02 4.27E-04 4.30E+03 4.30E+03 7.13E+02 6.28E+02 5.91E+02

std 1.05E-03 1.00E+02 1.50E-04 4.68E+02 4.68E+02 1.68E+01 1.90E+02 1.01E+02

Bm5 max 3.73E+03 4.63E+03 2.35E+03 4.30E+03 6.63E+03 6.76E+02 3.68E+03 3.96E+03

min 9.52E+02 3.54E+03 8.46E+02 1.98E+03 5.04E+03 6.89E+02 1.96E+03 2.62E+03

mean 1.96E+03 4.28E+03 1.55E+03 2.82E+03 5.94E+03 7.08E+02 3.05E+03 3.30E+03

std 6.32E+02 2.31E+02 3.48E+02 5.23E+02 3.38E+02 1.07E+01 5.20E+02 2.91E+02

Bm6 max 3.99E+00 2.09E+01 7.91E+01 4.91E+00 5.10E+01 8.75E+03 4.76E+02 2.84E+01

min 0.00E+00 1.94E+01 1.42E+01 2.31E-01 3.53E+01 2.40E+02 2.19E+01 2.27E+01

mean 6.65E-01 2.01E+01 2.87E+01 2.69E+00 4.10E+01 1.57E+03 9.00E+01 2.43E+01

std 1.51E+00 3.73E-01 2.20E+01 1.03E+00 3.18E+00 1.97E+03 1.09E+02 1.47E+00

Bm7 max 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.72E+03 4.70E+03 5.52E-01

min 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.71E+03 4.70E+03 2.77E-01

mean 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.71E+03 4.70E+03 4.29E-01

std 9.25E-13 9.25E-13 9.25E-13 9.25E-13 2.93E-06 3.04E+00 2.65E-05 7.72E-02

Bm8 max 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01

min 2.09E+01 2.08E+01 2.07E+01 2.08E+01 2.08E+01 2.07E+01 2.08E+01 2.07E+01

mean 2.10E+01 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01 2.09E+01

std 4.42E-02 4.17E-02 5.90E-02 5.17E-02 5.19E-02 7.34E-02 5.12E-02 6.05E-02

Bm9 max 1.89E+01 8.30E+01 6.54E+01 9.22E+01 1.01E+02 1.09E+00 2.10E+01 8.69E+01

min 2.98E+00 6.34E+01 3.88E+01 6.41E+01 8.02E+01 2.15E-01 7.59E+00 5.30E+01

mean 1.08E+01 7.47E+01 5.28E+01 8.04E+01 9.25E+01 5.49E-01 1.36E+01 7.13E+01

std 3.78E+00 5.56E+00 5.59E+00 7.11E+00 5.64E+00 2.09E-01 3.16E+00 6.60E+00

Bm10 max 1.91E+02 2.17E+02 1.88E+02 2.16E+02 2.33E+02 2.20E+02 2.23E+02 1.77E+02

min 1.26E+02 1.77E+02 1.36E+02 1.60E+02 1.91E+02 9.30E+01 9.97E+01 1.30E+02

mean 1.66E+02 1.96E+02 1.66E+02 1.95E+02 2.15E+02 1.50E+02 1.78E+02 1.55E+02

std 1.73E+01 9.53E+00 1.18E+01 1.15E+01 1.07E+01 2.95E+01 2.69E+01 1.09E+01

Bm11 max 4.06E+01 4.06E+01 3.78E+01 4.07E+01 4.12E+01 3.66E+01 3.52E+01 3.48E+01

min 3.07E+01 3.61E+01 3.23E+01 3.45E+01 3.58E+01 2.45E+01 2.64E+01 2.71E+01

mean 3.76E+01 3.87E+01 3.58E+01 3.82E+01 3.86E+01 3.10E+01 3.13E+01 3.20E+01

std 1.98E+00 1.06E+00 1.18E+00 1.18E+00 1.17E+00 3.08E+00 2.18E+00 1.58E+00

Bm12 max 4.94E+05 4.86E+05 4.78E+05 4.82E+05 4.85E+05 8.11E+04 4.68E+05 1.16E+05

min 3.13E+05 3.23E+05 2.90E+05 2.12E+05 2.59E+05 9.25E+03 2.94E+05 5.85E+04

mean 4.02E+05 4.19E+05 3.93E+05 4.03E+05 4.13E+05 2.80E+04 4.07E+05 8.38E+04

std 4.84E+04 3.91E+04 4.11E+04 5.60E+04 5.58E+04 1.43E+04 4.48E+04 1.46E+04

Bm13 max 7.44E+00 9.46E+00 7.64E+00 1.00E+01 1.15E+01 2.04E+00 9.38E+00 8.49E+00

min 2.74E+00 7.09E+00 5.56E+00 6.53E+00 8.80E+00 9.93E-01 2.11E+00 6.77E+00

mean 5.76E+00 8.28E+00 6.59E+00 8.64E+00 1.03E+01 1.40E+00 5.41E+00 7.64E+00

std 1.08E+00 5.67E-01 4.29E-01 7.75E-01 7.33E-01 2.37E-01 1.67E+00 5.37E-01

Bm14 max 1.35E+01 1.37E+01 1.35E+01 1.35E+01 1.37E+01 1.36E+01 1.36E+01 1.34E+01

min 1.26E+01 1.29E+01 1.28E+01 1.28E+01 1.28E+01 1.20E+01 1.31E+01 1.28E+01

mean 1.32E+01 1.34E+01 1.32E+01 1.33E+01 1.34E+01 1.28E+01 1.33E+01 1.31E+01

std 1.91E-01 1.67E-01 1.43E-01 1.67E-01 1.76E-01 4.03E-01 9.99E-02 1.45E-01

Benchmark
(error value)
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APPENDIX C  
Benchmark test for MISO 

NP=40 w=0.9~0.4
MISO DE/best/1DE/rand/1 DE/best/1DE/rand/1 DE/best/1DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

max 6.86E+06 1.52E+08 4.92E+08 4.28E+08 5.26E+08 5.21E+08 1.22E+09 7.87E+07 4.78E+08 1.96E+09
min 2.43E+04 4.41E+07 2.00E+08 9.55E+07 1.94E+08 2.67E+08 4.84E+08 8.81E+06 1.46E+07 2.81E+08
mean 6.57E+05 8.75E+07 3.93E+08 2.44E+08 3.64E+08 3.89E+08 8.63E+08 3.06E+07 1.35E+08 9.00E+08

Total
Mean

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

 
NP=40 w=0.9~0.4

MISO DE/best/1DE/rand/1 DE/best/1DE/rand/1 DE/best/1DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2
max 13 11 0 0
min 13 8 3 1
mean 14 10 1 0
std 8 8 0 0

3
12

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

4
3

 
NP=40 w=0.9~0.4

MISO DE/best/1DE/rand/1 DE/best/1DE/rand/1 DE/best/1DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2
max bm1 3.15E-05 1.00E-08 2.26E+02 7.00E-08 1.39E+02 4.38E-03 3.83E+03 0.00E+00 2.19E+00 5.69E+03

bm2 3.15E+04 3.99E+07 4.38E+07 4.15E+07 4.02E+07 7.49E+07 8.50E+07 2.14E+07 5.88E+07 1.10E+08
bm3 1.92E+08 4.22E+09 1.37E+10 1.20E+10 1.47E+10 1.45E+10 3.42E+10 2.18E+09 1.33E+10 5.49E+10
bm4 2.95E-03 8.84E+04 9.13E+04 1.01E+05 9.07E+04 7.42E+04 8.61E+04 8.92E+04 2.01E+04 4.03E+04
bm5 5.99E-03 1.00E-08 5.35E+01 4.35E-05 3.59E+01 6.18E-02 1.09E+03 0.00E+00 1.04E+00 7.97E+02
bm6 7.41E+01 8.15E+01 1.35E+02 5.83E+01 1.29E+02 9.93E+01 3.90E+02 1.88E+01 1.43E+02 1.46E+03
bm7 3.98E+01 1.12E+02 1.38E+02 1.39E+02 1.40E+02 1.24E+02 1.71E+02 1.47E+02 1.89E+02 3.16E+02
bm8 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01
bm9 3.44E+01 3.21E+01 3.20E+01 3.20E+01 3.18E+01 3.49E+01 3.55E+01 3.31E+01 3.72E+01 4.11E+01
bm10 1.27E-01 5.33E+01 2.38E+02 9.75E+01 2.06E+02 2.83E+02 8.69E+02 8.09E-01 5.69E+01 1.37E+03
bm11 1.37E+02 1.00E-08 5.35E+01 1.93E-06 4.42E+01 2.88E+01 1.93E+02 0.00E+00 2.98E+00 3.66E+02
bm12 1.72E+02 1.84E+02 2.83E+02 2.49E+02 2.79E+02 2.50E+02 3.48E+02 3.20E+02 2.86E+02 3.57E+02
bm13 1.93E+02 2.22E+02 3.17E+02 2.87E+02 3.04E+02 2.69E+02 3.59E+02 3.73E+02 3.09E+02 4.20E+02
bm14 7.37E+03 1.37E+00 5.81E+02 6.99E+00 4.98E+02 1.95E+03 2.61E+03 7.55E+00 1.32E+01 4.06E+03
bm15 7.76E+03 5.98E+03 6.02E+03 6.06E+03 5.80E+03 7.24E+03 7.19E+03 4.70E+03 5.63E+03 7.79E+03
bm16 2.95E+00 2.57E+00 2.68E+00 2.42E+00 2.43E+00 2.90E+00 2.85E+00 2.00E+00 2.99E+00 3.08E+00
bm17 2.12E+02 3.04E+01 1.02E+02 3.31E+01 8.63E+01 9.62E+01 2.64E+02 3.06E+01 3.71E+01 4.38E+02
bm18 2.27E+02 2.58E+02 3.56E+02 3.13E+02 3.64E+02 2.93E+02 4.15E+02 3.89E+02 3.87E+02 3.49E+02
bm19 1.67E+01 2.80E+00 1.45E+01 3.64E+00 1.23E+01 8.71E+00 1.67E+02 8.39E-01 2.74E+00 3.22E+03
bm20 1.25E+01 1.48E+01 1.47E+01 1.50E+01 1.50E+01 1.43E+01 1.44E+01 1.50E+01 1.32E+01 1.48E+01
bm21 4.44E+02 4.44E+02 5.13E+02 4.49E+02 4.93E+02 4.45E+02 9.68E+02 3.00E+02 4.44E+02 1.33E+03
bm22 7.48E+03 3.17E+02 9.39E+02 4.05E+02 7.63E+02 2.86E+03 3.16E+03 1.39E+02 2.34E+02 6.80E+03
bm23 8.01E+03 6.68E+03 6.86E+03 6.67E+03 6.73E+03 7.81E+03 7.72E+03 5.75E+03 6.64E+03 8.38E+03
bm24 2.47E+02 2.87E+02 2.93E+02 2.94E+02 2.94E+02 2.97E+02 3.04E+02 2.97E+02 3.05E+02 3.33E+02
bm25 2.81E+02 3.07E+02 3.10E+02 3.11E+02 3.10E+02 3.17E+02 3.20E+02 3.15E+02 3.19E+02 3.63E+02
bm26 2.00028E+02 2.03E+02 2.04E+02 2.04E+02 2.04E+02 2.09E+02 2.10E+02 2.0144E+02 3.90E+02 2.04E+02
bm27 7.93E+02 4.39E+02 4.82E+02 4.32E+02 4.46E+02 1.24E+03 1.26E+03 4.00E+02 1.31E+03 1.43E+03
bm28 3.00E+02 3.08E+02 1.26E+03 6.35E+02 1.20E+03 3.39E+02 2.08E+03 3.00E+02 9.95E+02 3.57E+03
MEAN 6.86E+06 1.52E+08 4.92E+08 4.28E+08 5.26E+08 5.21E+08 1.22E+09 7.87E+07 4.78E+08 1.96E+09
Total 1.92E+08 4.26E+09 1.38E+10 1.20E+10 1.47E+10 1.46E+10 3.43E+10 2.20E+09 1.34E+10 5.50E+10

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9
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NP=40 w=0.9~0.4
MISO DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

min bm1 5.10E-07 1.00E-08 1.05E+02 2.00E-08 6.27E+01 2.01E-03 2.04E+03 0.00E+00 4.29E-01 4.36E+02
bm2 1.05E+01 1.13E+07 2.01E+07 1.75E+07 1.95E+07 2.92E+07 4.49E+07 9.50E+06 5.42E+06 1.56E+07
bm3 6.54E+05 1.22E+09 5.58E+09 2.66E+09 5.41E+09 7.45E+09 1.35E+10 2.37E+08 4.04E+08 7.86E+09
bm4 2.59E-05 4.47E+04 5.90E+04 5.63E+04 4.60E+04 3.57E+04 4.88E+04 4.99E+04 8.05E+03 3.67E+03
bm5 3.11E-04 1.00E-08 1.52E+01 1.64E-05 1.99E+01 2.86E-02 2.76E+02 0.00E+00 2.37E-01 8.13E+01
bm6 1.40E-03 1.86E+01 7.30E+01 2.71E+01 7.81E+01 5.53E+01 2.27E+02 8.17E+00 1.58E+01 8.94E+01
bm7 2.73E+00 6.18E+01 8.53E+01 7.67E+01 7.44E+01 8.64E+01 1.15E+02 5.70E+01 4.81E+01 7.64E+01
bm8 2.09E+01 2.08E+01 2.08E+01 2.08E+01 2.08E+01 2.08E+01 2.07E+01 2.08E+01 2.08E+01 2.08E+01
bm9 2.02E+01 2.63E+01 2.72E+01 2.39E+01 2.39E+01 3.05E+01 2.97E+01 2.42E+01 2.25E+01 2.36E+01
bm10 1.12E-04 1.76E+01 1.20E+02 3.90E+01 9.82E+01 1.34E+02 4.91E+02 1.95E-01 7.73E+00 2.42E+02
bm11 5.51E+01 1.00E-08 3.53E+01 4.20E-07 2.97E+01 1.85E+01 1.45E+02 0.00E+00 3.91E-01 1.31E+02
bm12 6.22E+01 1.13E+02 2.08E+02 1.65E+02 2.01E+02 1.92E+02 2.65E+02 1.63E+02 6.06E+01 1.24E+02
bm13 7.95E+01 1.46E+02 2.45E+02 1.92E+02 2.32E+02 2.00E+02 2.78E+02 2.21E+02 1.10E+02 1.96E+02
bm14 5.76E+03 1.30E-01 3.37E+02 4.83E-01 2.96E+02 1.25E+03 1.82E+03 3.10E-01 3.07E+00 1.89E+03
bm15 6.44E+03 4.48E+03 4.85E+03 4.37E+03 4.58E+03 5.94E+03 5.52E+03 3.28E+03 3.10E+03 3.71E+03
bm16 1.53E+00 1.36E+00 1.52E+00 1.32E+00 1.33E+00 1.52E+00 1.72E+00 1.06E+00 1.05E+00 1.67E+00
bm17 1.36E+02 3.04E+01 7.28E+01 3.12E+01 6.91E+01 7.72E+01 2.20E+02 3.04E+01 3.33E+01 1.72E+02
bm18 1.71E+02 1.89E+02 2.85E+02 2.43E+02 2.90E+02 2.32E+02 3.25E+02 2.66E+02 1.58E+02 1.41E+02
bm19 8.65E+00 1.52E+00 8.71E+00 2.36E+00 8.18E+00 6.08E+00 4.22E+01 2.83E-01 1.28E+00 5.12E+01
bm20 1.11E+01 1.31E+01 1.29E+01 1.32E+01 1.29E+01 1.33E+01 1.27E+01 1.37E+01 1.11E+01 1.18E+01
bm21 2.00E+02 2.00E+02 4.69E+02 2.71E+02 4.27E+02 2.04E+02 6.60E+02 1.01E+02 1.26E+02 5.40E+02
bm22 5.32E+03 1.44E+02 5.55E+02 2.28E+02 3.93E+02 1.95E+03 2.12E+03 1.85E+01 1.51E+01 2.16E+03
bm23 5.71E+03 5.15E+03 5.30E+03 5.26E+03 4.99E+03 5.77E+03 6.45E+03 4.04E+03 3.50E+03 4.45E+03
bm24 2.10E+02 2.63E+02 2.72E+02 2.68E+02 2.62E+02 2.78E+02 2.83E+02 2.75E+02 2.59E+02 2.72E+02
bm25 2.07E+02 2.85E+02 2.88E+02 2.90E+02 2.94E+02 3.02E+02 3.09E+02 2.98E+02 2.77E+02 3.14E+02
bm26 2.00001E+02 2.01E+02 2.01E+02 2.01E+02 2.01E+02 2.03E+02 2.03E+02 2.0052E+02 2.01E+02 2.00E+02
bm27 4.96E+02 4.08E+02 4.17E+02 4.13E+02 4.15E+02 1.08E+03 1.08E+03 4.00E+02 8.73E+02 9.42E+02
bm28 1.00E+02 2.86E+02 7.72E+02 3.93E+02 7.49E+02 3.21E+02 1.67E+03 1.35E+02 1.23E+02 1.44E+03
MEAN 2.43E+04 4.41E+07 2.00E+08 9.55E+07 1.94E+08 2.67E+08 4.84E+08 8.81E+06 1.46E+07 2.81E+08
Total 6.80E+05 1.24E+09 5.61E+09 2.67E+09 5.43E+09 7.48E+09 1.35E+10 2.47E+08 4.09E+08 7.88E+09

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

 
NP=40 w=0.9~0.4

MISO DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2
mean bm1 5.55E-06 1.00E-08 1.58E+02 4.27E-08 1.07E+02 3.04E-03 3.01E+03 0.00E+00 1.01E+00 2.26E+03

bm2 1.82E+03 2.54E+07 3.34E+07 3.01E+07 3.03E+07 5.49E+07 6.62E+07 1.50E+07 2.85E+07 5.02E+07
bm3 1.84E+07 2.42E+09 1.10E+10 6.81E+09 1.02E+10 1.08E+10 2.41E+10 8.42E+08 3.76E+09 2.51E+10
bm4 6.69E-04 7.17E+04 7.56E+04 7.97E+04 7.75E+04 5.86E+04 6.94E+04 7.12E+04 1.28E+04 1.28E+04
bm5 2.24E-03 1.00E-08 3.73E+01 2.95E-05 2.55E+01 4.38E-02 6.95E+02 0.00E+00 6.36E-01 2.34E+02
bm6 1.15E+01 3.00E+01 1.12E+02 3.80E+01 1.04E+02 7.45E+01 3.24E+02 1.51E+01 7.14E+01 6.13E+02
bm7 1.40E+01 9.07E+01 1.13E+02 1.11E+02 1.13E+02 1.08E+02 1.42E+02 1.19E+02 1.17E+02 1.40E+02
bm8 2.09E+01 2.10E+01 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.09E+01
bm9 2.79E+01 2.97E+01 2.98E+01 2.93E+01 2.93E+01 3.30E+01 3.30E+01 2.97E+01 2.92E+01 3.43E+01
bm10 1.54E-02 3.03E+01 1.83E+02 7.18E+01 1.54E+02 2.03E+02 6.74E+02 3.86E-01 2.58E+01 7.49E+02
bm11 1.02E+02 1.00E-08 4.70E+01 1.05E-06 3.76E+01 2.42E+01 1.70E+02 0.00E+00 1.22E+00 2.28E+02
bm12 1.19E+02 1.53E+02 2.50E+02 2.10E+02 2.47E+02 2.27E+02 3.09E+02 2.63E+02 1.40E+02 2.35E+02
bm13 1.62E+02 1.85E+02 2.84E+02 2.41E+02 2.78E+02 2.36E+02 3.23E+02 3.12E+02 2.16E+02 3.02E+02
bm14 6.55E+03 2.88E-01 4.93E+02 2.44E+00 3.98E+02 1.67E+03 2.28E+03 3.48E+00 7.55E+00 2.75E+03
bm15 7.17E+03 5.31E+03 5.55E+03 5.37E+03 5.32E+03 6.76E+03 6.71E+03 4.11E+03 4.57E+03 6.32E+03
bm16 2.50E+00 1.99E+00 2.01E+00 2.01E+00 2.00E+00 2.39E+00 2.37E+00 1.61E+00 1.97E+00 2.46E+00
bm17 1.81E+02 3.04E+01 8.95E+01 3.20E+01 8.08E+01 8.64E+01 2.44E+02 3.05E+01 3.53E+01 2.47E+02
bm18 2.06E+02 2.33E+02 3.26E+02 2.84E+02 3.33E+02 2.70E+02 3.86E+02 3.40E+02 2.57E+02 2.20E+02
bm19 1.38E+01 2.32E+00 1.22E+01 3.05E+00 1.03E+01 7.60E+00 9.51E+01 5.18E-01 1.91E+00 4.28E+02
bm20 1.19E+01 1.41E+01 1.40E+01 1.43E+01 1.43E+01 1.39E+01 1.39E+01 1.45E+01 1.22E+01 1.35E+01
bm21 3.46E+02 3.19E+02 4.95E+02 4.33E+02 4.65E+02 3.46E+02 8.25E+02 2.25E+02 2.94E+02 9.37E+02
bm22 6.54E+03 2.14E+02 7.71E+02 2.91E+02 6.27E+02 2.51E+03 2.73E+03 1.04E+02 1.35E+02 3.69E+03
bm23 7.40E+03 5.98E+03 6.25E+03 6.03E+03 6.21E+03 7.13E+03 7.15E+03 5.07E+03 4.99E+03 7.25E+03
bm24 2.26E+02 2.77E+02 2.86E+02 2.83E+02 2.85E+02 2.87E+02 2.96E+02 2.87E+02 2.87E+02 3.04E+02
bm25 2.34E+02 2.98E+02 3.03E+02 3.02E+02 3.04E+02 3.10E+02 3.15E+02 3.07E+02 3.01E+02 3.45E+02
bm26 2.00007E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02 2.06E+02 2.06E+02 2.0084E+02 2.43E+02 2.01E+02
bm27 6.07E+02 4.14E+02 4.47E+02 4.21E+02 4.31E+02 1.17E+03 1.19E+03 4.00E+02 1.10E+03 1.14E+03
bm28 2.96E+02 3.00E+02 1.02E+03 5.58E+02 9.51E+02 3.27E+02 1.90E+03 2.60E+02 3.44E+02 2.38E+03
MEAN 6.57E+05 8.75E+07 3.93E+08 2.44E+08 3.64E+08 3.89E+08 8.63E+08 3.06E+07 1.35E+08 9.00E+08
Total 1.84E+07 2.45E+09 1.10E+10 6.84E+09 1.02E+10 1.09E+10 2.42E+10 8.57E+08 3.79E+09 2.52E+10

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9
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NP=40 w=0.9~0.4
MISO DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 ABC SSO(1351) PSO_c1_2_c2_2

std bm1 5.82E-06 5.05E-24 2.41E+01 1.11E-08 1.71E+01 5.87E-04 4.31E+02 0.00E+00 3.71E-01 1.14E+03
bm2 4.51E+03 6.24E+06 5.92E+06 6.47E+06 5.72E+06 1.12E+07 1.14E+07 3.14E+06 1.34E+07 2.14E+07
bm3 3.23E+07 6.78E+08 2.02E+09 2.11E+09 2.47E+09 2.01E+09 4.25E+09 5.22E+08 3.33E+09 1.08E+10
bm4 7.66E-04 9.06E+03 8.02E+03 1.03E+04 8.55E+03 8.78E+03 8.00E+03 8.22E+03 2.79E+03 7.50E+03
bm5 1.33E-03 5.01E-24 9.02E+00 6.50E-06 3.97E+00 8.05E-03 1.56E+02 0.00E+00 1.87E-01 1.63E+02
bm6 1.60E+01 1.25E+01 1.45E+01 7.18E+00 1.13E+01 9.73E+00 3.82E+01 2.66E+00 3.33E+01 2.42E+02
bm7 8.62E+00 1.06E+01 1.19E+01 1.26E+01 1.29E+01 1.03E+01 1.49E+01 1.79E+01 2.90E+01 4.55E+01
bm8 3.81E-02 5.81E-02 4.93E-02 5.35E-02 4.38E-02 4.69E-02 5.47E-02 5.30E-02 5.38E-02 5.05E-02
bm9 3.11E+00 1.35E+00 1.19E+00 1.72E+00 1.72E+00 1.18E+00 1.36E+00 1.83E+00 3.11E+00 4.23E+00
bm10 2.09E-02 7.27E+00 2.60E+01 1.35E+01 2.33E+01 3.00E+01 8.49E+01 1.22E-01 1.11E+01 2.43E+02
bm11 2.37E+01 5.01E-24 3.85E+00 3.25E-07 3.25E+00 2.56E+00 1.13E+01 0.00E+00 5.26E-01 5.27E+01
bm12 2.66E+01 1.79E+01 1.71E+01 2.03E+01 1.90E+01 1.39E+01 1.74E+01 3.43E+01 4.52E+01 5.44E+01
bm13 2.55E+01 1.63E+01 1.66E+01 1.83E+01 1.50E+01 1.55E+01 1.98E+01 3.18E+01 4.71E+01 4.91E+01
bm14 3.97E+02 2.19E-01 5.78E+01 1.32E+00 4.58E+01 1.58E+02 1.73E+02 1.67E+00 2.46E+00 4.93E+02
bm15 2.83E+02 4.13E+02 2.66E+02 3.54E+02 2.98E+02 2.87E+02 2.98E+02 3.30E+02 6.59E+02 1.32E+03
bm16 2.77E-01 2.29E-01 2.80E-01 2.40E-01 2.45E-01 3.03E-01 2.33E-01 2.00E-01 4.52E-01 3.21E-01
bm17 1.57E+01 3.50E-06 5.38E+00 4.32E-01 3.86E+00 4.50E+00 1.02E+01 4.27E-02 8.21E-01 5.09E+01
bm18 1.07E+01 1.53E+01 1.75E+01 1.69E+01 1.75E+01 1.28E+01 2.24E+01 2.82E+01 4.42E+01 5.01E+01
bm19 1.63E+00 2.60E-01 1.20E+00 3.27E-01 9.07E-01 5.50E-01 3.01E+01 1.43E-01 2.99E-01 5.29E+02
bm20 3.05E-01 3.64E-01 4.76E-01 3.65E-01 4.19E-01 2.56E-01 2.96E-01 2.80E-01 4.90E-01 8.74E-01
bm21 7.11E+01 1.04E+02 9.57E+00 4.59E+01 1.62E+01 1.07E+02 5.55E+01 4.25E+01 8.00E+01 2.01E+02
bm22 5.13E+02 3.68E+01 8.46E+01 3.46E+01 8.03E+01 2.10E+02 1.69E+02 2.72E+01 6.93E+01 7.95E+02
bm23 3.94E+02 3.79E+02 3.85E+02 3.22E+02 3.81E+02 4.03E+02 3.02E+02 3.81E+02 8.06E+02 1.14E+03
bm24 7.59E+00 5.60E+00 4.55E+00 5.75E+00 5.31E+00 4.69E+00 4.74E+00 4.96E+00 1.06E+01 1.40E+01
bm25 2.02E+01 4.46E+00 4.07E+00 4.25E+00 3.51E+00 3.55E+00 2.81E+00 4.30E+00 8.59E+00 1.05E+01
bm26 6.75498E-03 5.46E-01 6.15E-01 5.83E-01 6.69E-01 1.36E+00 1.50E+00 2.0228E-01 7.57E+01 9.95E-01
bm27 6.10E+01 5.93E+00 1.42E+01 4.76E+00 7.31E+00 3.60E+01 4.01E+01 1.14E-02 9.57E+01 1.20E+02
bm28 2.80E+01 2.36E+00 1.18E+02 4.73E+01 1.15E+02 4.43E+00 8.99E+01 5.66E+01 1.07E+02 4.82E+02
MEAN 1.15E+06 2.44E+07 7.23E+07 7.54E+07 8.84E+07 7.22E+07 1.52E+08 1.87E+07 1.19E+08 3.88E+08
Total 3.23E+07 6.85E+08 2.02E+09 2.11E+09 2.47E+09 2.02E+09 4.26E+09 5.25E+08 3.34E+09 1.09E+10

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9
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APPENDIX D 
Convergence graphs 
In the graphs, if error value  1.00E-08, than set it to 1.00E-08. 
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1.00E+02 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Min ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM9 

1.00E+00

1.00E+02 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Min
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM10 

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04
Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04
Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04
Min ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04
Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM11 

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Min
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
 



120 

 

 

BM12 

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

MISO (1111)

PSO

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04 Mean 
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM13 

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM14 

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)time(sec)

e
rr

o
r 

v
a

lu
e

 

 

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISOtime(sec) 

er
ro

r v
al

ue
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BM15 

1.00E+00

1.00E+02

1.00E+04

Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM16 

1.00E+00

1.00E+02 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-01

1.00E+01 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM17 

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM18 

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM19 

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)e
rr

o
r 

v
a

lu
e

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

e
rr

o
r 

v
a

lu
e

time(sec)e
rr

o
r 

v
a

lu
e

1.00E-02

1.00E+00

1.00E+02

1.00E+04

1.00E+06

Min

ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

Mean
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)e
rr

o
r 

v
a

lu
e

 

 

  

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

Mean 
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM20 

1.00E+00

1.00E+02 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM21 

1.00E+00

1.00E+02

1.00E+04

Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04 Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM22 

1.00E+00

1.00E+02

1.00E+04

Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E-01

1.00E+01

1.00E+03

Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04

Mean 
ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO

time(sec) 

er
ro

r v
al

ue
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BM23 

1.00E+00

1.00E+02

1.00E+04

Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04 Min
ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)
time(sec)

e
rr

o
r 

v
a

lu
e

 

 

  

1.00E+00

1.00E+02

1.00E+04

Mean ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO
time(sec) 

er
ro

r v
al

ue
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BM24 

1.00E+00

1.00E+02

1.00E+04 Max ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

Median ABC

DE/rand/1(0503)

DE/best/1(0503)

DE/rand/1(0901)

DE/best/1(0901)

DE/rand/1(0909)

DE/best/1(0909)

SSO (1351)

PSO

MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02

Min

ABC
DE/rand/1(0503)
DE/best/1(0503)
DE/rand/1(0901)
DE/best/1(0901)
DE/rand/1(0909)
DE/best/1(0909)
SSO (1351)
PSO
MISO (1111)

time(sec)

e
rr

o
r 

v
a

lu
e

1.00E+00

1.00E+02
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