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Abstract

The thesis is focused on the phenomenon of the cross–currency swap and tenor swap basis

spread in foreign exchange (FX) and interest rate markets, which contradicts textbook

no arbitrage conditions and has become an important feature of these markets since the

beginning of the Global Financial Crisis (GFC) in 2007.

The results demonstrate empirically that the basis spread can not be explained by trans-

action costs alone and is therefore due to a new perception by the market of risks involved

in the execution of textbook “arbitrage” strategies. We show that using the basis spread

as a proxy for the market valuation of these risks, a better empirical explanation than

hitherto found in the literature can be obtained for the “uncovered interest rate parity

(UIP) puzzle,” i.e. the phenomenon that carry trades taking advantage of interest rate

differentials between different currencies have positive excess returns on average. Fur-

thermore, considering the single–currency basis spread (the “tenor basis”), the empirical

analysis of market data since the GFC has led us to a model which reduces the dimen-

sionality of the tenor basis from observed term structures for every tenor pair down to

term structures of two factors characterising the driving liquidity risk, and demonstrates

that the tenor basis swap market is in the process of maturing since the turmoil of the

xii



GFC.

There are three main contributions in this thesis. In Chapter 3 we examine the role

of transaction costs in explaining the basis spread in cross–currency basis swaps. Based

upon transaction costs, we derive bounds which should eliminate arbitrage in practice.

The empirical results are consistent with the conventional market wisdom that to a large

extent, transaction costs alone precluded arbitrage opportunities before the GFC. How-

ever, the no–arbitrage bounds have been persistently violated since the GFC. We propose

that the market is prevented from exploiting such violations and making arbitrage profit

by increased market imperfections, in particular the currency liquidity risk. These imper-

fections have resulted in forward and currency swap prices being determined by supply

and demand pressures, rather than by arbitrage considerations.

In Chapter 4 we aim to explain the UIP puzzle by a model with liquidity risk. We em-

pirically examine the effect of FX market liquidity risk on the excess returns of currency

carry trades. Based upon Chapter 3 results, we use the violations of no–arbitrage bounds

as the proxy for the market expectation of liquidity risk. The liquidity proxy, along with

FX market volatility factors, is significant in explaining the abnormal returns of carry

trades, particularly after the GFC. Our liquidity proxy is also statistically more signif-

icant than alternative proxies for liquidity risk in related studies. Our findings provide

evidence that the UIP puzzle can potentially be resolved after controlling for liquidity risk.

In Chapter 5 and 6, we focus on the high–dimensional modelling problem existing in

xiii



the single–currency tenor swap market. Based on empirical results of recent studies, we

propose an intensity–based model to describe the arrival time of liquidity shocks in the

interbank market. With the no–arbitrage argument and non–linear constrained optimi-

sations, we calibrate the model parameters to quoted basis spreads in tenor swaps. Our

model reduces the dimensionality of the problem down to two factors: the intensity and

the loss rate characterising the driving liquidity risk. In contrast to the credit risk litera-

ture, the intensities and loss rates are calibrated simultaneously and results show that loss

rates display more variations than intensities. Another advantage of our modelling ap-

proach, compared to the ad–hoc modelling approach adopted by practitioners, is that our

model is motivated by the driving risk of market anomalies. It is hence more explanatory

and consistent with market fundamentals. In order to account for potential randomness,

we also set up stochastic models for the intensity and the loss rate. We show that under

certain conditions closed form solutions exist, which can be used to tractably calibrate or

estimate the model parameters.

xiv



Chapter 1

Introduction

1.1 Background and Motivation

The Global Financial Crisis (GFC), which started from August 2007 and reached its peak

around the collapse of Lehman Brothers in September 2008, has caused major changes

in the interest rates quoted in the market. Before the GFC, the market quotes had been

generally consistent with the textbook no–arbitrage principles, which require that two

floating rates should trade flat in a swap contract because floating–rate bonds are always

worth the par value at initiation, regardless of the tenor length of the underlying rate

(see, for example, Hull 2008). Therefore, theoretically the spread in floating–for–floating

swaps should be zero to avoid arbitrage profit. Before the crisis, a non-zero but negligible

spread (see, for example, Mercurio 2010) was usually added to the shorter tenor rate in

a single–currency interest rate swap (IRS) or to the floating rate of one currency in a

cross–currency swap (CCS). After controlling for transaction costs, such as the bid–ask

spread, such a small spread generally did not constitute arbitrage profit.

1
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Figure 1.1: USD tenor swap basis spread curves on 16/02/2009. (Data source:
Bloomberg )

Since the GFC, IRS and CCS have been quoted with substantially higher basis spreads

than before (see Figures 1.1 and 1.2).

In the IRS market, a tenor swap (TS) exchanges payments of the same currency based

on a notional amount and tenor indexes of two underlying floating rates. For example,

party A pays 3–month (3M) USD LIBOR1 quarterly to party B and in exchange receives

6–month (6M) USD LIBOR semi–annually. Only interest payments are exchanged and no

notional is exchanged. The interest payment is settled on a net basis. A TS can be used

1London Interbank Offered Rate is a daily reference rate published by the British Banker Association
(BBA) based on the interest rates at which panel banks borrow unsecured funds from each other in the
London interbank market.
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to hedge basis risk, due to the widening or narrowing spread between the two indexes.

Since the crisis, tenor swaps have displayed a persistent and unambiguous pattern. In

general, the shorter tenor rate is quoted with a large and positive spread in exchange

for the longer tenor rate. The magnitude of the spread tends to increase as the tenor

difference increases. Figure 1.1 shows the USD TS spread curves as at 16th of February,

2009, corresponding to 1M, 3M, 6M and 12M USD LIBOR. Swap maturity ranges from 1

year to 30 years. We see at the 1–year maturity end, the spread increased from 16 basis

points (bps) for the 1M vs. 3M TS to 65 bps for the 3M vs. 12M TS.

In the CCS market, a basis swap (CCBS) exchanges floating interest rates and prin-

cipal payments of two different currencies. The principal amounts are exchanged both

at the inception and at the end of swap period, based upon the spot exchange rate pre-
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vailing at the initiation date. The interest payment is exchanged on a net basis at each

tenor of the swap term. In the CCBS market similar anomalies developed since the GFC.

According to data obtained from Bloomberg, from the late 1990s until August 2007, the

spread of one–year EUR/USD swaps had ranged from 0 to 2.5 bps. This swap exchanges

3M EURIBOR2 plus the spread for 3M USD LIBOR, as well as the notional amounts.

However, since the end of August 2007, the spread added to 3M EURIBOR turned signif-

icantly negative. From the collapse of Lehman Brothers in September 2008 to February

2010, the average basis was -34 bps. This means that the USD borrower pays 3M USD

LIBOR flat but receives 3M EURIBOR minus 34 bps. The movements of the spread

for the JPY/USD and AUD/USD basis swaps, however, demonstrated different dynam-

ics from their European counterpart. The spreads of 5–year EUR/USD, JPY/USD and

AUD/USD currency swaps from 2006 to 2011 are shown in Figure 1.2. From late 1997

to mid 1999, the spread of JPY/USD swaps dropped significantly to below -30 bps. The

spread picked up from 2000 and traded between -8 to 5 bps before the crisis. During the

crisis, the basis declined, once again, into substantially negative territory. The basis for

AUD/USD currency swap had been historically in the positive territory (5 to 15 bps).

It also turned negative, though to a lesser extent in 2008. However, from early 2009 the

positive, sometimes large spread returned.

As noted in Bianchetti (2010), other market anomalies have also emerged, including large

and positive spreads between LIBOR and OIS3 rate of the same maturity. Forward Rate

2EURIBOR is the reference rate of unsecured borrowing of EUR between European prime banks
within the euro zone.

3An overnight indexed swap is an interest rate swap where the floating leg of the swap is equal to
the geometric average of the overnight cash rate over the swap period. Overnight lending involves little
default or liquidity risk, hence the LIBOR–OIS spread is an important measure of risk factors in the
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Agreement (FRA) rates4 observed in the market also significantly diverge from the rates

implied by the replication of two deposits at spot LIBOR of different maturities.

As discussed in Chapter 3 of this thesis, the aforementioned market changes would seem

to present textbook arbitrage opportunities. However, since the crisis they have per-

sisted, implying that such opportunities have not been fully exploited. Furthermore, these

anomalies have caused implications for the pricing methodology for interest rate derivative

products, such as the ad–hoc modelling approach of “one discount curve, multiple forward

curves” adopted by practitioners. We are therefore motivated to study three issues arising

from swap markets since the financial crisis. Firstly, by proposing no–arbitrage bounds

in the CCBS market we investigate whether transaction costs, by themselves, are able to

explain the unusually large movements of spreads. This is motivated by recent empirical

studies (discussed in the literature review in Chapter 2), which propose that fundamental

risks have caused such market anomalies. However, they do not explicitly control for the

effect of transaction costs. Secondly, we examine whether fundamental risks are predictive

for currency movements and helpful in resolving the uncovered interest rate parity (UIP)

puzzle. Thirdly, we propose a consistent framework for modelling the tenor swap market,

taking into account the observed anomalies.

interbank market. See, for example, Mercurio (2010).
4A FRA is a contract which is initiated at current time t and allows the holder to exchange, at maturity

S, a fixed payment (based on the fixed rate K) for a floating payment based on the spot rate L(T, S)
resetting at T with maturity S, with t ≤ T ≤ S. The FRA rate is the value of K which renders the
contract value 0 (i.e. fair) at t. E.g. Brigo and Mercurio (2006).
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1.2 Thesis Contents

We begin in Chapter 2 with a review of the related literature. We present recent studies

aiming to explain and/or model the observed large spreads in both single and cross–

currency products. Broadly speaking, these studies take two distinct approaches. The

ad–hoc modelling approach, mainly adopted by quantitative finance practitioners, extends

the interest rate derivative pricing models. On the other hand, the fundamental approach

identifies risk factors which may cause market anomalies. We also introduce literature

related to the UIP puzzle to motivate a liquidity based econometric model and study the

performance of currency carry trades.

Chapter 3 investigates the behaviour of the basis of cross–currency basis swaps by ex-

plicitly considering transaction costs and proposing no–arbitrage bounds. We assume a

risk free market and derive bounds for the forward exchange rates and CCBS basis rates,

which should eliminate arbitrage opportunities in practice. The bounds are examined

with market data and results demonstrate that the no–arbitrage bounds held strongly

before the GFC. Since the second half of 2007 the bounds have been persistently violated.

We propose that currency liquidity risk explains these violations and has limited the ef-

fectiveness of arbitrage transactions which exploit these violations.

In Chapter 4 we empirically examine the effect of foreign exchange (FX) market volatility

and liquidity risk on the excess returns of currency carry trades. We use the violations of

no–arbitrage bounds in Chapter 3 as the proxy of liquidity risk, and use volatility smile

data to capture FX market specific volatility. The sample data cover periods both be-
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fore and after the GFC. Both proxies are significant in explaining the abnormal returns

of carry trades, particularly after the GFC. Our findings provide evidence that the UIP

puzzle can potentially be resolved after controlling for liquidity risk and market volatility.

Chapter 5 and 6 cover the third component of the thesis. We focus on the tenor swap mar-

ket and propose an intensity–based model to describe the arrival time of liquidity shocks.

With the no–arbitrage argument and non–linear constrained optimisations we calibrate

the model parameters to quoted tenor swap basis spreads. In contrast to the credit risk lit-

erature, the intensities and loss rates are calibrated simultaneously and results show that

loss rates display more variations than intensities. To allow also for potential stochasticity

of model parameters, we set up Cox–Ingersoll–Ross (CIR) type (Cox et al. 1985) models

for the intensity and the loss rate.

Chapter 7 concludes the thesis, discusses our main contributions and proposes future

research avenues based upon the thesis results.



Chapter 2

Literature Review

2.1 Introduction

In this chapter we review studies which aim to explain and/or model the observed large

spreads in both single–currency and cross–currency swaps. We separate these studies into

two broad categories: the ad–hoc modelling approach and the fundamental approach,

depending upon whether fundamental factors which drive market anomalies are explicitly

examined. Since, in subsequent chapters, we will investigate the predictive power of

liquidity risk in the foreign exchange (FX) market for exchange–rate movements, we also

review literature related to the uncovered interest rate parity (UIP) puzzle.

2.2 Ad–hoc Approach

The first approach is mainly adopted by quantitative finance practitioners to extend the

existing interest rate derivative pricing models, such as the LIBOR market model (e.g.

8



9 2.2 Ad–hoc Approach

Brace et al. 1997). The price of interest–rate derivative products depends on the present

value of future cash flows linked to interest rates. For the pricing purpose, we need a

forward curve to generate future cash flows and a yield curve to discount them.

2.2.1 No Arbitrage Relationship Before and After the Crisis

Before the crisis, the standard market practice was to build a single curve to both generate

and discount cash flows. A set of the most liquid interest–rate instruments based upon

underlying rates of different tenors (e.g., deposits on 1M LIBOR, FRA or interest futures

on 3M LIBOR and IRSs on 6M LIBOR) are selected to construct the yield curve. Discount

factors off the yield curve are used to calculate the forward rates (e.g. Brigo and Mercurio

2006),

F (t;T1, T2) =
1

τ(T1, T2)

(
P (t, T1)

P (t, T2)
− 1

)
, t ≤ T1 ≤ T2, (2.1)

where F (t;T1, T2) is the simple compounded forward rate contracted at t and applicable

between the year fraction of the time interval τ(T1, T2). P (t, T ), also known as the discount

factor, is the price at time t of a zero–coupon bond maturing at T with face value of unity.

The pre–crisis single curve approach ensures the no-arbitrage relationship

P (t, T2) = P (t, T1)P (t;T1, T2), t ≤ T1 ≤ T2, (2.2)

where P (t;T1, T2) is the forward discount factor defined by F (t, T1, T2) and τ(T1, T2) via,
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P (t;T1, T2) =
1

1 + F (t;T1, T2)τ(T1, T2)
. (2.3)

Table 2.1: Arbitrage Strategy

Strategy t T1 T2

Buy 1 bond maturing T2 -P (t, T2) 1

Short P (t,T2)
P (t,T1)

bonds maturing T1 P (t, T2) - P (t,T2)
P (t,T1)

Borrow P (t,T2)
P (t,T1)

cash at F (t, T1, T2)
P (t,T2)
P (t,T1)

- P (t,T2)
P (t,T1)

(1 + F (t;T1, T2)τ(T1, T2))

Net Cash Flow 0 0 0

We employ an arbitrage strategy in Table 2.1 to prove Eqn. (2.2). Because the net cash–

flow is zero both at t and T1, to eliminate arbitrage opportunity we have to ensure

P (t, T2)

P (t, T1)
(1 + F (t;T1, T2)τ(T1, T2)) = 1. (2.4)

Eqn. (2.2) then is proved by putting together Eqns. (2.3) and (2.4). Eqn. (2.1) can also

be proved from Eqn. (2.4). Eqn. (2.2) basically states that for a cash flow at T2, its

present value at t must be unique. We can either discount the cash flow by P (t, T2) in one

step, or we can first discount from T2 to T1 by the forward discount factor P (t;T1, T2),

then discount from T1 to t by the discount factor P (t, T1). From the way that the single

yield curve is constructed before the crisis, we see that all discount factors and forward

rates are calculated from a unique curve, hence the no–arbitrage relation is guaranteed.

Now if we consider a generic LIBOR L(T1, T2) which is simply compounded between



11 2.2 Ad–hoc Approach

T1 and T2. L(T1, T2) and the forward rate F (t;T1, T2) is related by,

lim
T1→t

F (t;T1, T2) = L(T1, T2). (2.5)

It then follows from Eqn. (2.1) that

L(T1, T2) =
1

τ(T1, T2)

(
1

P (T1, T2)
− 1

)
. (2.6)

From the interest rate derivative pricing perspective, forward rate F (t;T1, T2) is the ex-

pectation of L(T1, T2) at t under the T2 forward measure,1

ET2 [L(T1, T2) | Ft] = F (t;T1, T2), t ≤ T1 ≤ T2. (2.7)

Eqn. (2.7) is an important tool to price LIBOR–linked derivatives, such as interest caps,

floors and swaptions. It provides a link between LIBORs and forward rates, hence we can

express the expected LIBOR under the associated forward measure by discount factors

via Eqn. (2.1). Again, the internal consistency of the single curve framework is crucial in

no–arbitrage pricing of such derivatives.

A yield curve is supposed to produce interest rates as a smooth function of any arbitrary

time to maturity, hence a continuous function. However, in real markets we only have a

1See the proof of Eqn. (2.7) in Appendix A.



12 2.2 Ad–hoc Approach

set of instruments of discrete maturities quoted, including zero–coupon products such as

deposits at LIBORs, and coupon–bearing products such as interest rate swaps. For the

short–end of this discrete set of points on the yield curve, we compute the corresponding

interest rates from the zero–coupon instruments. Given these yields, the longer–maturity

zero–coupon yields can be recovered from the coupon–bond products by solving for them

iteratively by forward substitution. This process is the so called bootstrap method in

constructing yield curves2. This discrete set of yields is calculated to eliminate arbi-

trage opportunities. For time points that fall between any two maturities in the discrete

set, some interpolation scheme has to be employed because no instrument is quoted in

the market corresponding to that maturity. Many arbitrary and different interpolation

algorithms are used in practice (see Hagan and West 2006). Therefore together with

bootstrapping, interpolation completes, in a non–unique way, the construction of yield

curves. As noted by Bianchetti (2010), such a yield curve is not strictly guaranteed to be

free of arbitrage because discount factors through interpolation are not always consistent

with those obtained by a stochastic interest rate model which belongs to the no–arbitrage

framework developed by Heath et al. (1992). Researchers have extended arbitrage–free

interpolation schemes from discrete to continuous settings (e.g. Schlögl 2002). In practice

the transaction costs in general cancel such arbitrage opportunities. Therefore, this draw-

back of the single–currency–single–curve approach, as far as practitioners are concerned,

was of second-order importance.

After the crisis, the single–curve approach described above is not valid. The reason is

that the interest rate market is segmented and rates of different tenors display distinct dy-

2See Section 3 of Chapter 3 for a detailed description of the bootstrap method.
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namics, reflected in the large spreads in tenor swaps, as well as in LIBOR vs. OIS spreads

of a given currency. Such “segmentation” reflects varying levels of risk premia driving

rates of different tenors. The pre–crisis single curve approach which mixes instruments

of different tenors of underlying rates characterized by significantly different risk premia

would result in inconsistencies across market segments. To consistently account for the

market segmentation, as well as explain the reason that textbook arbitrage opportunities

are not exploited, approaches based on explanatory factors are required. Recent studies

generally attribute such market anomalies to default and liquidity risk, but acknowledge

that a consistent framework incorporating these risks is not easy to construct (see, for

example, Bianchetti 2010 and Mercurio 2010) .

Bypassing a consistent framework, practitioners have tackled this issue by constructing

multiple forward curves based on the length of the tenor to forecast future cash flows (i.e.

1M, 3M, 6M, 12M forward curves). Each forward curve is built with vanilla instruments

homogeneous in the underlying rate tenor. For example, the 1M USD forward curve is

bootstrapped with instruments on 1M USD (spot and forward) LIBOR only. On the other

hand, the curve for discounting has to be unique to preclude arbitrages. By the “Law of

One Price”, two identical future cash flows must have same present value. The unique

discount curve is constructed with the pre–crisis approach, which mixes instruments on

rates of different tenors.

The current practice of “one discount curve, multiple forward curves” contradicts the

single curve approach which precludes arbitrage. Forward rates of a particular tenor are
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calculated from the corresponding forward curve, whereas the discount factors are from

the discount curve. A natural consequence of this approach is that if we calculate the

forward discount factor P (t;T1, T2) from Eqn. (2.3), each curve would give us a differ-

ent result. The present value of a particular cash flow is no longer unique. If we only

use P (t;T1, T2) off the discount curve, then the relationship defined by Eqn. (2.3) is im-

mediately invalidated. Consequently, this created a clear need for a unified, consistent

framework to reconcile inconsistencies and simplify the pricing methodologies of interest

rate derivatives.

2.2.2 Mercurio (2010)

The classic LIBORMarket Model (LMM) models the joint evolution of a set of consecutive

forward LIBORs. Mercurio (2010) points out that two complications arise when we move

to a multi-curve setting. The first is the co–existence of several yield curves. The second

is that forward LIBORs are no longer equal to the corresponding ones defined by the

discount curve. Mercurio addresses the first issue by adding extra dimensions to the

vector of modelled rates and suitably modelling their instantaneous covariance structure.

For the second issue, Mercurio models the joint evolution of forward rates calculated from

the OIS discount curve3 and the spread between OIS forward rates and forward LIBORs.

For a given tenor, forward OIS rates are defined as

Fk(t) = FD(t;Tk−1, Tk) =
1

τk

(
PD(t, Tk−1)

PD(t, Tk)
− 1

)
, t ≤ Tk−1 ≤ Tk, (2.8)

3Because OIS swap rates are perceived as entailing little default or liquidity risk, since the crisis
market participants increasingly construct OIS–based discount curve to discount collateralized contracts.
Section 3 in Chapter 5 provides a detailed procedure of OIS curve construction.
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where the subscript D refers to the discount curve built with the OIS rates, which are

considered effective risk–free rates since the GFC. There are two reasons for directly

modelling OIS forward rates. First, as in Kijima et al. (2009), which proposes a three

yield–curve model (discount curve, LIBOR curve and government bond curve), the pricing

measures in Mercurio (2010) (including the spot LIBOR measure Qτ
D and the forward

measure QTk
D ) are associated with the OIS discount curve. Secondly, forward swap rate

depends on the OIS discount factors. The spread between forward LIBOR and forward

OIS rate is defined as

Sk(t) = Lk(t)− Fk(t), (2.9)

where Lk(t) is the forward LIBOR for the given tenor. By construction, both Lk(t) and

Fk(t) are martingales under the forward measure QTk
D with the zero–coupon bond P Tk

D as

the numéraire. Therefore Sk(t) is also a martingale under QTk
D . Sk(t) is modelled with a

continuous and positive martingale which is independent of the OIS forward rate. The

model is calibrated to market caplet smile and model volatilities fitted the market almost

perfectly, though the sample size is small.

2.2.3 Bianchetti (2010)

Bianchetti (2010) incorporated the forward basis to recover the no–arbitrage relationship

between forward curves and the discount curve. The no–arbitrage relationship between

two curves is expressed as
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Ff (t;T1, T2)τf (T1, T2) = Fd(t;T1, T2)τd(T1, T2)BAfd(t;T1, T2), (2.10)

where the subscripts f and d denote forward curves and the discount curve from which

forward rates (or discount factors) are extracted and obviously τf (T1, T2) = τd(T1, T2).

The multiplicative forward basis BAfd(t;T1, T2) is the ratio between forward rates (or

equivalently in terms of discount factors) from forward curves and from the discount

curve

BAfd(t;T1, T2) =
Ff (t;T1, T2)τf (T1, T2)

Fd(t;T1, T2)τd(T1, T2)
=

Pd(t, T2)

Pf (t, T2)

Pf (t, T1)− Pf (t, T2)

Pd(t, T1)− Pd(t, T2)
. (2.11)

Eqn. (2.11) can be easily derived from Eqn. (2.1). Hence the forward basis is a measure

of the difference between the forward rates from the forward curve and forward rates from

the discount curve.

Alternatively, the additive forward basis BA′
fd(t;T1, T2) is defined as

BA′
fd(t;T1, T2) = Fd(t;T1, T2)[BAfd(t;T1, T2)− 1]. (2.12)

In the single curve setting, the basis should be zero because there is only one curve, hence

we expect BAfd(t;T1, T2) = 1 and BA′
fd(t;T1, T2) = 0. Bianchetti (2010) then constructed

the forward basis curve through bootstrapping. The finding is that the short–term for-
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ward basis is wide ranging, with the multiplicative forward basis ranging from 0.7 (12M

tenor forward curve versus the discount curve) to 1.3 (1M tenor forward curve versus

the discount curve). However, the longer term (up to 30 years maturity) forward basis

tends to 1 (resp. 0) for the multiplicative case (resp. additive case). It is important

to note that the term structure of the forward basis curve as constructed by Bianchetti

(2010) oscillates. The oscillations are demonstrated especially in the longer term forward

basis curve. This suggests that there may be some over–fitting in the bootstrap curve

construction.

The discount curve was built with the traditional “pre–crisis” approach. The instru-

ments included liquid deposits, FRAs on 3M EURIBOR and swaps on 6M EURIBOR.

On the other hand, forward curves were constructed from instruments with homogeneous

underlying tenor. For instance, 3M forward curve was based upon instruments linked to

3M EURIBOR. Hence the discount curve mixed rates of different underlying tenors with

distinct dynamics, whereas a forward curve corresponded to one particular underlying

tenor. Bianchetti (2010) therefore attributed oscillations in the forward basis curve to the

amplification of small local differences between the two curves. The author also suggested

to use the forward basis term structure as a tool to assess the distinct risk dynamics in

the interest rate market because it provides a sensitive indicator of the tiny, but observ-

able statical differences between different interest rate market sub-areas in the post GFC

world.
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2.2.4 Henrard (2007, 2010)

As a sequel of Henrard (2007), Henrard (2010) proposed a framework to price interest rate

derivatives based on different LIBOR tenors by introducing a deterministic, and maturity

dependent, spread between the forward curve and the discount curve. In Henrard (2007)

the spread was assumed to be constant across maturities. Hence this extension is a natural

adaptation to the post-crisis market reality. Henrard (2010) assumed that the discount

curve is given and proceeded to construct the forward curves based on the spreads. Simple

vanilla instruments were selected to achieve this purpose, including FRA, futures and IRS.

Henrard then proposed to extend this framework to cross currency products and the object

to be modelled is the cross-currency basis, which had also become substantially higher

since the crisis.

2.2.5 Fujii et al. (2009)

Fujii et al. (2009) proposes a Heath–Jarrow–Morton (HJM, see Heath et al. 1992) model

framework to adapt to new developments in the interest rate markets: large spreads in

LIBOR vs. OIS and widespread use of collateral. The underlying quantities in the model

are the instantaneous forward OIS rate and the spread, which measures the difference

between the forward LIBOR under the collateralized forward measure and the OIS forward

rate. The model is set up as follows,

dc(t, s) = σc(t, s) ·
(∫ s

t

σc(t, u) du

)
dt+ σc(t, s) · dWQ(t), (2.13)
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dB(t, T ; τ)

B(t, T ; τ)
= σB(t, T ; τ) ·

(∫ s

t

σc(t, s) ds

)
dt+ σB(t, T ; τ) · dWQ(t), (2.14)

where c(t, T ) is the instantaneous forward collateral rate and in Eqn. (2.13) the standard

arbitrage–free HJM dynamics applies under the risk–neutral measure Q. B(t, T ; τ) is the

spread and by construction a martingale under the collateralized forward measure τ c. τ

stands for a particular LIBOR tenor. The stochastic differential equation is written as

dB(t, T ; τ)

B(t, T ; τ)
= σB(t, T ; τ) · dW τc(t). (2.15)

The Brownian motion W τc(t) under the measure τ c is related to WQ(t) by the the Gir-

sanov theorem (Girsanov 1960),

dW τc(t) =

(∫ s

t

σc(t, s) ds

)
dt+ dWQ(t). (2.16)

The details of the volatility processes σc(t, s) and σB(t, T ; τ) are not specified in Fujii et

al. (2009). It is also clear from Eqn. (2.14) that σB(t, T ; τ) needs to be specified for

all relevant LIBOR tenors (i.e. 1M, 3M, 6M and 12M), hence this is a high–dimensional

approach.

These papers endeavor to reconcile inconsistencies caused by the multi–curve framework

used by practitioners. They appear promising in fitting model prices to market prices by
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incorporating the spreads of LIBORs of different tenors. The drawback of this approach

is that it does not relate the spreads to more fundamental risks, which preclude the ex-

ploitation of textbook arbitrage opportunities seemingly created by the presence of these

spreads. Furthermore, one quickly ends with a multitude of basis spread dynamics, which

should be related at a fundamental level. However, these relationships are not addressed

by this ad-hoc approach.

2.3 Fundamental Approach

Different from the ad-hoc approach, the fundamental approach aims to identify the risk

factors causing market anomalies. Although market anomalies are commonly considered

entailing default and liquidity risk premiums, empirical evidence shows that liquidity risk

plays a more significant role.

2.3.1 Default Risk

Morini (2009) examined two particular instruments in interest rate markets: FRA and

tenor swaps. Before the crisis, the market FRA rate was well approximated by the

LIBOR–based replication. After the crisis, the LIBOR–based replication of the FRA

rate has been persistently higher than the market quotes of FRA rates. Morini used two

different discount curves, the LIBOR–based curve and the OIS curve to bridge the gap

between the market FRA and the replicated FRA by incorporating the basis spreads of

LIBORs of different tenors. Therefore, two issues are reduced to one: why has the basis

attached to the leg of the shorter–tenor LIBOR been persistently large and positive?

Morini explicitly assumed an unexplained axiom proposed by Tuckman and Porfirio (2003)
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that lending at longer–tenor LIBOR involves higher counterparty default risk and liquidity

risk than rolling lending at shorter–tenor LIBORs. Morini then argued that it is difficult to

separate default risk and liquidity risk because the two risks are highly correlated. Hence

Morini used default risk only to approach the question. Morini conjectured that a LIBOR

panel bank today may not be a LIBOR bank in the future, due to its worsening credit

rating. For example, the roll–over lender at 6M LIBOR can reassess the credit quality of

the borrowing bank and may choose to replace with a counterparty that remains to be a

LIBOR bank. There is a cap to how much the credit standing of a current LIBOR bank

can worsen before it is excluded from the LIBOR Panel. This conjecture motivated Morini

to model the spread of a generic LIBOR LX0
over the market OIS rate EM between time

α and 2α as

SX0

(α, 2α) = LX0

(α, 2α)− EM(α, 2α), (2.17)

where SX0
(α, 2α) is the spread, X0 denotes a generic LIBOR panel bank and the subscript

M refers to market rate. The forward spread at time t ≤ α is then the spread between

the forward rate FStd replicated by LIBORs and the forward rate EStd replicated by OIS

rates,

SX0

(t;α, 2α) = FStd(t;α, 2α)− EStd(t;α, 2α). (2.18)

A particular LIBOR counterparty is excluded from the LIBOR panel if
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SX0

(α, 2α) > SX0

(t;α, 2α). (2.19)

The interpretation of the inequality in (2.19) is that a current counterparty defaults if

its LIBOR–OIS spread at α exceeds a prespecified level. The spread thus is reduced

to a call option with the strike SX0
(t;α, 2α). Morini further assumed that the spread

evolves as a driftless geometric Brownian motion and priced the option with the standard

Black–Scholes formula (Black and Scholes 1973). The formula was calibrated to market

quotes of basis of EURIBORs and closely tracked the shape of traded 6M/12M basis

from July 2008 to May 2009, though there are discrepancies in levels. Morini attributed

level discrepancies to a lack of more appropriate volatility inputs during the sample period.

Taylor and Williams (2009) use a no–arbitrage model of term structure to examine the

effect of default risk and liquidity risk on 3M LIBOR-OIS spread. They consider a range

of possible measures of default risk, such as the credit default swap (CDS) premium,

TIBOR–LIBOR spread4 and asset–backed commercial paper spread. The effect of liq-

uidity risk is measured by a dummy variable, Term Auction Facility (TAF). TAF was

provided by the US Federal Reserve to inject liquidity into financial institutions. Results

find that default risk measures explain most of the variations of LIBOR–OIS spread. The

TAF dummy variable is either statistically insignificant or of the wrong sign5.

4TIBOR is the reference rate of unsecured lending of JPY to Japanese prime banks in the Tokyo
interbank market. Taylor and Williams argue that because Japanese banks were less affected by the
financial crisis than US banks, TIBOR-LIBOR spread reflected default risk differential between two
markets.

5TAF announcements are supposed to decrease the level of LIBOR-OIS spread, hence the sign is
expected to be negative.
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In the cross–currency market, Baba and Packer (2009) used the difference in CDS spreads

between European and US financial institutions as a measure of the default risk premium

differential. They found that this measure has a significant negative correlation with the

basis of EUR/USD currency swaps. In other words, the riskier the European banks than

US counterparts, the more negative the basis. The effect of counterparty default risk on

the movement of the basis in currency swaps is probably best illustrated in the JPY/USD

pair. Kanaya and Woo (2000) provided a comprehensive account of the credit deteriora-

tion of Japanese banking industry in the 1990s. When the asset and property bubbles

burst in 1990s, almost all Japanese banks were downgraded by credit rating agencies.

The cost of funding of Japanese banks in the overseas interbank market dramatically

increased, hence the “Japan premium”. Covrig et al. (2004) examined the determinants

of the “Japan premium”, which is measured by the JPY TIBOR–LIBOR spread. JPY

TIBOR is the reference rate of unsecured lending of JPY to Japanese banks in the Tokyo

market and JPY LIBOR is the reference rate of unsecured lending of JPY to panel banks

in the London market, with a majority of the panel members being non–Japanese banks.

Hence the spread is a measure of the default–risk premium of Japanese banks over non–

Japanese banks. Naoki (2005), Amatatsu and Baba (2008) examined the effect of “Japan

premium” on the basis in JPY/USD currency swaps. They found significant negative im-

pact of “Japan premium” on the basis. The large premium resulted in large and negative

basis for JPY/USD currency swaps in late 1990s.
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2.3.2 Liquidity Risk

Brunnermeier and Pedersen (2009) develop a theoretical liquidity risk model in which

market liquidity and funding liquidity reinforce each other. Market liquidity is defined

as the ease of trading securities, including low bid–ask spread, market depth and mar-

ket resilience. On the other hand, funding liquidity is the ease of raising funds, with

own capital or loans. During the financial crisis, initial losses in the sub–prime mortgage

market forced financial institutions to exit positions in other asset classes (e.g. stocks)

to meet margin calls and other funding needs. Funding constraints prompted traders to

sell securities at “fire sale” prices, which resulted in even larger losses. In such volatile

market conditions, market liquidity also deteriorated and positions in illiquid assets (e.g.

structured products due to highly customized nature and held–to–maturity investment

strategy) were particularly difficult to unwind. Selling such assets meant even greater

losses than selling in a liquid market. Both market liquidity and funding liquidity disap-

peared and banks faced a double jeopardy: they found it difficult to sell assets to raise

funds exactly at a time it was difficult to borrow. The double “liquidity shock” forced

them to hoard cash and other liquid instruments which they might otherwise have lent

to others. They were reluctant to make lending to inter–bank counterparties for longer

than three months (see Mollenkamp and Whitehouse 2008). Brunnermeier (2009) iden-

tifies liquidity risk, lending channel, bank run and network effects as main amplification

mechanisms through which a relatively small shock in the mortgage market transmitted

to other asset classes and resulted in a full-blown financial crisis.

Ivashina and Scharfstein (2010) and Cornett et al. (2011) identify three factors which
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led banks to manage liquidity and reduce lending during the crisis. Firstly, the extent to

which a bank is financed by short–term debt, as opposed to insured deposits. Short–term

debts are subject to rollover risks6. On the other hand, insured deposits are a more sta-

ble source of capital. Before the crisis, financial institutions relied heavily on short–term

funding, such as Asset–Backed Commercial Papers and Repurchase (Repo) Agreements,

to finance their long-term assets. The average maturity of such instruments ranges from

overnight to 90 days. After initial losses in mortgage securities, investors refused to roll

over and banks had to refinance from other sources. The second factor is banks’ exposure

to credit-line draw downs. Ivashina and Scharfstein (2010) show that during the crisis

firms drew on their credit lines primarily because of concerns about the ability of banks

to fund these commitments, as well as due to firms’ desire to enhance their own liquidity7.

Lastly, on the asset side, banks holding illiquid loans and securities tended to increase

holdings of liquid assets and decreased new lending.

In contrast to Taylor and Williams (2009), McAndrews et al. (2008) find that TAF

announcements and operations significantly reduced the 3M LIBOR–OIS spread, which

points to the importance of the liquidity risk premium. The authors argue that in order to

test the effect of the TAF dummy variable, the dependent variable should be the change,

not the level of the LIBOR–OIS spread. The use of the spread level as the dependent

6Rollover risk is associated with debt refinancing. It arises when existing debt is about to mature and
needs to be rolled over into new debt and interest rates increase. The debt issuer hence needs to refinance
at a higher interest rate and incur more interest payments in the future. Recent studies on rollover risk
during the GFC include Acharya et al. (2011) and He and Wei (2012), etc.

7For example, FairPoint Communications drew down 200 million from the committed credit line
supplied by Lehman Brothers as the lead bank on September 15th, 2008. In the SEC filing, the company
“believes that these actions were necessary to preserve its access to capital due to Lehman Brothers’ level
of participation in the company’s debt facilities and the uncertainties surrounding both that firm and the
financial markets in general”.
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variable, as in Taylor and Williams (2009), is only valid under the assumption that the

effect of TAF auction disappears immediately after the auction. If the liquidity risk pre-

mium stays low over days after the auction, the coefficient of the TAF dummy cannot be

interpreted as the TAF effect.

Michaud and Upper (2008) aim to identify the drivers of the increase of the 3M LIBOR–

OIS spread. Acknowledging that it is difficult to disentangle default risk and funding

liquidity risk, as well as the measurement problem of bank–specific funding liquidity,

Michaud and Upper examine only the effect of default risk and market liquidity risk.

Funding liquidity is treated as an unobserved variable whose effects will appear as a

residual once the impact of all other variables has been taken into account. The default

risk is measured by the spread between the unsecured and secured interbank rate, as well

as the CDS premiums. The measures of market liquidity are number of trades, volume,

bid–ask spreads and price impact of trades. The finding is that while default risk plays

a role, the significance is stronger in market liquidity measures. Furthermore, due to

potential positive correlation between default risk and funding liquidity risk, the effect of

default risk may have been overestimated.

Acharya and Merrouche (2013) examine the UK interbank market during the crisis and

empirical results are in favor of precautionary liquidity hoarding over default risk in ex-

plaining the increase of the 3M LIBOR–OIS spread. They find that liquidity hoarding

substantially increased after structural breaks (e.g. BNP Paribas froze withdrawals on

08/09/2007, Bear Stearns in March 2008). Secondly, the hoarding of liquidity by banks
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was precautionary in nature, especially for banks with large losses in sub-prime mortgage

securities. Thirdly, liquidity hoarding drove up interbank lending rates, both secured and

unsecured. The effect of liquidity hoarding is to raise overnight inter–bank rates after

the crisis. In contrast, before the crisis an increase in the overnight liquidity buffer was

associated with a decline in overnight spreads. This confirms the authors’ hypothesis that

in stressed conditions banks only release liquidity at a premium that exceeds the direct

cost of using the emergency lending facility offered by the central bank and the indirect

stigma cost (e.g. bank run, credit line draw downs). The fact that the effects on rates are

similar for secured and unsecured inter-bank rates implies that the market stresses were

not per se due to default risk concerns. Instead, the stresses were most likely due to each

bank engaging in liquidity hoarding as the precautionary response to its own heightened

funding risk.

Schwarz (2010) is the first paper, to our best knowledge, to deliberately separate the

effect of default risk and liquidity risk on the LIBOR–OIS spread. Researchers com-

monly agree that it is difficult to disentangle default risk and funding liquidity risk, e.g,

Michaud and Upper (2008). A bank with a funding shortage is more likely to default

than a bank with ample funding. On the other hand, if a bank’s credit rating worsens, it

becomes more difficult to secure external funding. In fact, initial losses in the sub–prime

mortgage market may have increased both default risk and funding liquidity risk. Hence,

these two risk factors are highly interrelated. Schwarz measures market liquidity with the

yield spread between German government bonds and KfW agency bonds. KfW bonds

are fully guaranteed by the German government hence entail no default risk, but are less
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liquid in the bond market than the government bonds. The measure of default risk is the

dispersion of borrowing rates of banks with different credit standings. Schwarz argues

that a market–wide liquidity shock should have similar effect on banks’ borrowing rates,

hence the dispersion is relatively unchanged. On the other hand, a market–wide credit

shock affects banks with bad credit rating more than banks with good credit, hence the

dispersion increases. The correlation between the two risk measures is 0.07 and Schwarz

claims that the regression results show the “clean” (i.e. independent) effect of each risk.

The finding is that, though both risks are significant, nearly 70% of the increase of the

3M LIBOR–OIS spread and nearly 90% of the sovereign bond spread (Italy–Germany

ten–year spread) increase can be explained by the market liquidity measure.

In the cross–currency market, it has been observed in the literature that there is a short-

age of US Dollars in the global banking industry and the USD funding gap is especially

large for European banks. Fender and McGuire (2010) and McGuire and Peter (2009)

noted that European banks’ total USD–denominated assets were more than 800 billion by

mid-2007, immediately before the crisis. European banks have traditionally used short–

term USD borrowing to fund these long–term assets. The funding channels are mainly

the USD interbank market and swap market. Due to the mismatch of maturities of assets

and liabilities, these banks are exposed to funding or rollover risk. As the financial crisis

unfolded from 2007, it became increasingly difficult, or almost impossible, to borrow USD

in the unsecured interbank market. To fund USD assets, European banks could only rely

on the swap market. They raised funds domestically and then swapped them into USD.

Hence there was a huge demand for USD in the swap markets. However, the demand
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of USD from European banks is not matched by the demand of EUR from US banks.

Due to the heightened liquidity risk of USD, European banks borrowing USD in currency

swaps had to pay a price for the demand and the price was reflected in the large and

negative basis added to EURIBOR. Although Japanese banks had a smaller USD funding

gap than European banks, the basis of JPY/USD currency swap also declined. There is

anecdotal evidence that some non–Japanese banks raised funds in JPY and swapped JPY

into USD. Hence the relative demand of USD over JPY may also have dislocated during

the crisis.

To provide more liquidity of USD to non–US financial institutions, the US Federal Reserve

established swap lines with major central banks, including ECB, SNB, BoE and BoJ8 (see

Baba and Packer 2009). Baba and Packer tested the effect of the government swap lines

on the basis and found significant positive impact on the basis of EUR/USD, CHF/USD

and GBP/USD currency swaps.

In contrast to European and Japanese counterparts, Australian banks are mainly funded

with longer term bond issuances and not exposed to maturity mismatch and rollover risk

(see Ossolinski and Zurawski 2010). The basis of AUD/USD currency swap had been

generally positive. From a currency demand/supply point of view, before the crisis, there

had been a persistent premium to receive AUD in currency swaps. In other words, the de-

mand to receive AUD exceeded the supply of it in the currency swap market. Ryan (2007)

shows that the offshore bond issuance denominated in foreign currencies by Australian

8European Central Bank, Swiss National Bank, Banks of England and Bank of Japan.
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institutions far exceeds the Kangaroo bond9 issuance by foreign investors in Australia.

Australian issuers typically swap their offshore issuance proceeds back into Australian

dollar, with Kangaroo bond issuers as the counterparty. There is a high demand for AUD

but insufficient supply of it. The Australian banks therefore are willing to pay a premium

to receive Australian dollars in a currency swap, hence the positive basis.

The basis also became negative from mid 2008. However, Blees (2010) notes that this

should not be viewed as a sudden stronger demand for USD from Australian banks, nor

does this reflect higher a default risk premium of Australian banks. The unusual move of

the basis was a result of international banks using AUD as a source of funds to exchange

for USD funding, coupled with major rehedging of Japanese power reverse dual currency

(PRDC) notes10. The negative basis was also relatively short–lived. From early 2009,

the basis returned to positive levels, which again reflected the strong demand for AUD in

the swap market. The offshore issuance of Australian bank paper had a strong increase

during 2009 due to high credit rating and government guarantees, while there was no

Kangaroo bond issuance in the first quarter at all.

9A kangaroo bond is issued in the Australian market by non–Australian firms and is denominated in
AUD.

10A PRDC note is an exotic structured product where domestic investors seek higher yields by taking
advantage of the interest rate differentials between two currencies, which is a form of leveraged carry
trade. PRDC note holders initially receive fixed coupon rate, then the coupon rate rises (decreases) as
the domestic/foreign exchange rate depreciates (appreciates).
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2.4 Uncovered Interest Parity Puzzle

In a carry trade investors borrow funds in a low–yield currency (funding currency) and

lend in a high–yield currency (investment currency) to gain the interest rate differential.

UIP predicts that, on average, the carry should be exactly offset by the depreciation of

the investment currency. If UIP holds in practice, carry trades should have zero excess

return. In practice, UIP often fails and investment currencies have been found to actually

appreciate on average against funding currencies, this has been termed the UIP puzzle.

The UIP puzzle is the reason that carry trades are historically profitable with high Sharpe

ratios (Burnside et al. 2011).

The UIP puzzle is among the most prominent puzzles in international economics and

finance, see Engel (1996) for a comprehensive survey. Original works on the failure of

UIP date back to Hansen and Hodrick (1980), who reject the Foreign Exchange (FX)

market efficiency hypothesis that speculations in the FX forward market should have zero

return. Meese and Rogoff (1983) find that exchange rates can be modelled by a “random

walk” and investors are able to exploit interest rate differentials between currencies. Fama

(1984) labels the failure of UIP as the “forward discount puzzle”.

Among more recent works, Chinn and Meredith (2004) find that UIP fails at short–

run horizons but recovers at long–run horizons and they attribute the failure of UIP to

the interaction of random FX market shocks with endogenous monetary policy reactions.

Lusting and Verdelhan (2007) assert that, conditional upon the interest–rate differen-

tial, aggregate consumption growth risk is useful in explaining the UIP puzzle. Burnside
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(2008) challenges the results in Lusting and Verdelhan (2007) by arguing that the covari-

ance between the excess portfolio return and risk factors is not significant.

Brunnermeier and Pedersen (2009) use a liquidity–based model to explain some styl-

ized facts, including the correlation between market liquidity and volatility. They also

predict that speculative investments have negative skewness, arising from the asymmet-

ric response to liquidity shocks: shocks leading to losses are amplified through liquidity

spirals and shocks leading to gains are not amplified. Built upon the theoretical liquid-

ity framework, Brunnermeier et al. (2008) approach the UIP puzzle by examining the

performance of carry trades. They propose that carry trades tend to be unwound when

speculators near their funding constraints. The unwinding of carry trades results in large

losses and currency crashes. Key findings in Brunnermeier et al. (2008) include: 1) In

the short–run, carry trades are profitable due to under–reaction to shocks to interest rate

differentials. The initial under–reaction arises from liquidity frictions in the market and

speculative capital arrives slower than predicted by UIP (Mitchell et al. 2007). However,

in the long–run, speculators tend to over–react and bubbles are built in exchange rates.

Abreu and Brunnermeier (2003) argue that bubbles build up due to dispersion of opinions

and the need for coordination among arbitrageurs, hence a “synchronization” problem.

2) Carry trade crashes are positively correlated with funding liquidity measures: VIX11

and TED spread12. 3) Controlling for liquidity effects, the interest rate differential is not

significant in forecasting the excess returns of carry trades, which helps resolve the UIP

11VIX is a trademarked ticker symbol for the Chicago Board Options Exchange Market Volatility Index,
a popular measure of the implied volatility of S&P 500 index options.

12TED spread is the difference between 3M Eurodollar LIBOR and 3M Treasury-bill rate. Eurodollars
are deposits denominated in USD outside the United States.
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puzzle.

As commented in Burnside (2008), a model with liquidity frictions is a plausible can-

didate to explain the UIP puzzle, particularly when empirical evidence fails to support

other leading explanations such as risk premium, skewness of carry trade payoffs and

“peso problems”13. In this respect, Brunnermeier et al. (2008) provides support for the

liquidity model proposed by Brunnermeier and Pedersen (2009). On the other hand, the

lack of statistical significance of liquidity measures, especially TED spread, implies that

these measures may be improved. For example, in the panel regression with weekly data,

although the sign of the coefficient is correct, the change of TED spread is not contempo-

raneously significant in explaining excess return of carry trades. The significance is also

only marginal with one–week delay. In the panel regression with interest rate difference,

the liquidity measures are not significant in predicting excess returns for the immediate

following quarters.

Among related studies, Ranaldo and Soderlind (2010) study safe–haven properties of high–

frequency exchange rates with market volatility and liquidity. The proxies for volatility

are realized exchange rate volatility and VIX. The TED spread is used to measure liquid-

ity. The FX realized volatility is found to be significant in affecting the excess return of

all exchange rates in the sample, while VIX is only significant for JPY/USD. The TED

spread is not significant for any of the exchange rates. Christiansen et al. (2011) employ

a similar factor model to study the risk exposure of carry trade returns. The risk expo-

13Peso problems refer to the situation that in an investment there is a high probability of small gains,
and a small probability of large losses.
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sures are allowed to be regime–dependent to account for FX time–varying risk premia. As

regime variables, FX market volatility and TED spread are found to be more significant

than VIX and bid–ask spreads.



Chapter 3

On the Behavior of the

Cross–Currency Swap Basis:

Empirical Observations Before and

During the Recent Financial Crises

3.1 Introduction

A cross–currency basis swap (CCBS) exchanges floating interest rates of two different

currencies at each tenor of the swap term. Different from basis swaps within a single

currency, the notional amount of a CCBS is also exchanged both at the beginning and

the end of swap term, based upon the spot exchange rate at initiation.

Currency swaps are a popular tool to swap the currency exposure and manage adverse

35
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movements of foreign exchange rates. For instance, Ossolinski and Zurawski (2010) note

that Australian banks have long issued bonds overseas (e.g. Yankee bond in US, Samurai

bond in Japan) to reduce funding costs. To hedge the currency risk, Australian issuers

often choose to swap the foreign currency proceeds into AUD, with Kangaroo bond is-

suers as the counterparty. Kangaroo bonds are issued by foreign investors in Australia

and denominated in AUD. As another example, European banks which need USD funding

may choose to raise EUR domestically and then swap EUR proceeds into USD with US

counterparties (see Fender and McGuire 2010, McGuire and Peter 2009).

By the classical no–arbitrage pricing principle, two floating rates should trade at par

to ensure that the initial value of the swap is zero (see Hull 2008). In practice, a basis

is often added to the floating rate of the left–hand side (LHS) currency by market con-

vention. Chapter 2 shows that the basis spreads of major currency swaps against USD

all experienced large movements during the crisis, especially after the collapse of Lehman

Brothers in September 2008.

In Chapter 2 we identified potential risk factors which may have caused unusual changes

in the basis spreads of currency swaps. It is important to realize that default risk and

liquidity risk also existed before the crisis, but at significantly lower levels (see Tuck-

man and Porfirio 2003). Boenkost and Schmidt (2005) attributed the basis spreads to

liquidity premium and proposed valuation methodologies taking into account the basis

spreads. However, the spreads prior to the crisis were small and it is commonly agreed

that arbitrage opportunities exploiting the spreads could be easily canceled by transaction
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costs (see, for example, Bianchetti 2010). We are hence motivated to examine whether

after taking into account transaction costs, can arbitrage profits presented by much larger

spreads in currency swaps still be cancelled in the post–GFC world? If transaction costs

per se are insufficient in explaining observed spreads, what has prevented market partic-

ipants from executing textbook arbitrage?

Suppose an arbitrageur is willing to exploit the large spreads in a CCBS and execute

an associated arbitrage strategy, there are two main transaction costs: spread of LIBOR–

LIBID1 and bid-offer spread of FX forward rate2. An arbitrageur in the interbank market

has to pay LIBOR when borrowing funds but only get LIBID when lending funds. He/she

also must pay the offer price of the FX forward when buying foreign currency but can

only sell at the bid price, which is lower than the offer price. If spreads in interest rates

and forward exchange rates are sufficient to cancel the arbitrage profit, the basis spread in

CCBSs must be bounded by some function of interest rates and forward exchange rates.

Similarly, to preclude arbitrage, the FX forward rates should be bounded by a function

of FX spot rate and interest rates of two currencies.

In this chapter we aim to examine the role of transaction costs in explaining the ba-

sis spreads of CCBSs3. We propose no–arbitrage bounds for FX forward rates and basis

spreads of currency swaps. We then examine whether these bounds hold in practice with

1London Interbank Bid Rate is a bid rate at which a bank is willing to borrow from other banks, while
LIBOR is the ask rate.

2The FX forward rate is the exchange rate at which two parties in the forward contract agree to
exchange one currency for another at a future date. Maturities of major FX forward rates are normally
quoted up to 12 months.

3This chapter extends the work done in Chang (2009).
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market data. The remainder of Chapter 3 is organized as follows. Section 2 derives

no–arbitrage bound formulae. Section 3 describes the data and methodologies used for

empirical tests. Section 4 summarizes and analyzes the findings and Section 5 concludes.

3.2 No-Arbitrage Bounds

3.2.1 Bounds for FX Forward Rates

In order to make riskless profit from FX forward contracts, an arbitrageur must engage in

transactions simultaneously in both the domestic market and the foreign market. The ar-

bitrageur borrows funds at LIBOR, but can only lend at LIBID. In the forward exchange

market, the arbitrageur can only sell a currency at the bid price but have to pay the offer

price when buying. The arbitrage strategy is proposed in Table 3.1 and notations are

explained as follows,

X0: spot mid price of domestic currency/unit foreign currency at time 0;

F(0,t): forward price of domestic currency/unit foreign currency at time 0 with maturity

t, t > 0;

Xbid: spot bid price of domestic currency/unit foreign currency at time 0;

Xoffer: spot offer price of domestic currency/unit foreign currency at time 0;

Fbid(0,t): forward bid price of domestic currency/unit foreign currency at time 0 with ma-

turity t, t > 0;

Foffer(0,t): forward offer price of domestic currency/unit foreign currency at time 0 with
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maturity t, t > 0;

rLIBOR(0,t): annual domestic currency LIBOR rate applicable between time 0 and t,

t > 0;

rLIBID(0,t): annual domestic currency LIBID rate applicable between time 0 and t, t > 0;

rLIBOR(0,t): annual foreign currency LIBOR rate applicable between time 0 and t, t > 0;

rLIBID(0,t): annual foreign currency LIBID rate applicable between time 0 and t, t > 0;

τ(0,t): year fraction of time to maturity, t > 0;

Table 3.1: Arbitrage Strategy 1 for FX Forward

Initiation Maturity t

borrow unit domestic currency −(1 + rLIBOR(0,t)τ)

sell at 1
Xoffer

and invest at rLIBID(0,t)

buy forward contract at Fbid(0,t)
1

Xoffer
(1 + rLIBID(0,t)τ)Fbid(0,t)

At maturity the arbitrageur repays his liability from domestic currency proceeds. To

ensure the no–arbitrage condition, we require the net cash flow to be non–positive, i.e.

1

Xoffer

(1 + rLIBID(0,t)τ)Fbid(0,t) − (1 + rLIBOR(0,t)τ) ≤ 0. (3.1)

Hence we must have

Fbid(0,t) ≤
Xoffer(1 + rLIBOR(0,t)τ)

1 + rLIBID(0,t)τ
. (3.2)
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(3.2) is the upper bound for the bid price of the forward exchange rate. Alternatively,

the arbitrageur can start from borrowing the foreign currency and the arbitrage strategy

is as in Table 3.2,

Table 3.2: Arbitrage Strategy 2 for FX Forward

Initiation Maturity t

borrow unit foreign currency −(1 + rLIBOR(0,t)τ)

sell at Xbid and invest at rLIBID(0,t)

buy forward contract at 1
Foffer(0,t)

Xbid(1 + rLIBID(0,t)τ)/Foffer(0,t)

No arbitrage condition requires that

Xbid

(1 + rLIBID(0,t)τ)

Foffer(0,t)

− (1 + rLIBOR(0,t)τ) ≤ 0. (3.3)

Hence, we must have

Foffer(0,t) ≥
Xbid(1 + rLIBID(0,t)τ)

1 + rLIBOR(0,t)τ
. (3.4)

(3.4) is the lower bound for the offer price of the forward exchange rate. We propose

that bounds (3.2) and (3.4) must hold in order to eliminate arbitrage opportunities in the

forward currency market.
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3.2.2 Bounds for Basis of Currency Swaps

By market convention, a generic CCBS is quoted as: left–hand side (LHS) currency LI-

BOR + B / right–hand side (RHS) currency LIBOR. B is the mid rate of the basis

spread. The pay rate BP added to the LHS LIBOR is the price that a market maker

(MM) is willing to pay for receiving the RHS currency LIBOR. The receive rate BR is

the price that a MM receives when paying the RHS currency LIBOR. BP ≤ B ≤ BR

and BR− BP is the profit for the MM.

Let [0, T ] be the term of the swap, i.e. time 0 is initiation and T is maturity. Let ti

(i =1, 2 ,..., n, where tn = T ) denote a pre-specified set of payment exchange dates, i.e.

tenors. Let Y denote the RHS LIBOR-LIBID spread and Z denote the LHS LIBOR-

LIBID spread. We examine both sides of the CCBS.

1) Pay RHS LIBOR and Receive LHS LIBOR + BP

If one counterparty receives LHS LIBOR + BP and pays RHS LIBOR, then at initi-

ation it receives the RHS principal and pays the LHS principal. The LHS principal is

borrowed at LHS LIBOR and the RHS principal can be invested at RHS LIBID. Its cash

flow position is in Table 3.3.

We see that the principal amounts cancel and the net cash flow position at every tenor is

LHS principal× BP − RHS principal× Y . BP is a fixed quantity and Y is the LIBOR–

LIBID spread of the RHS currency. Conventionally Y is fixed at 12.5 bps for all currencies
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Table 3.3: Cash Flow 1 in CCBS

Cash flow Initiation Each tenor ti Maturity T

positive RHS principal LHS LIBOR + BP (swap), RHS LIBID (deposit) LHS principal

negative LHS principal RHS LIBOR (swap), LHS LIBOR (loan) RHS principal

quoted by British Banker Association (see, for example, Coyle 2001). If the spread is

indeed fixed, cash flows are fixed at LHS principal× BP − RHS principal× 12.5 bps at

each tenor. The no arbitrage condition requires that the total present value (PV) of these

cash flows must not be greater than zero. To properly discount the negative cash flows,

we need to convert all cash flows to a common currency, say RHS currency and use RHS

LIBIDs as discount rates. We use LIBIDs because the arbitrageur should discount these

cash flows at his investment rate, hence LIBIDs. The total present value is calculated as

n∑
i=1

{
(
LHS principal · BP

Fofferti

− RHS principal · 12.5 bps) · dti
}
. (3.5)

In (3.5) dti is the discount factor applicable between time 0 and ti. Fofferti is the forward

offer price of LHS/unit RHS that can be locked in at time 0 and exercised at time ti.

We must use the offer price because 1
Fofferti

is the price the arbitrageur has to take when

selling LHS for RHS in the forward market. We firstly solve BP for

n∑
i=1

{
(
LHS principal · BP

Fofferti

− RHS principal · 12.5 bps) · dti
}

= 0. (3.6)

Suppose BP0 is the solution. By market convention, the principal amounts in a CCBS
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are based upon the spot mid exchange rate at initiation. Therefore X0 is the ratio of LHS

principal over RHS principal. We then simplify Eqn. (3.6) as

n∑
i=1

{
(
X0 · BP0

Fofferti

− 12.5 bps) · dti
}

= 0. (3.7)

Solving Eqn. (3.7) for BP0 yields

BP0 =

∑n
i=1 (12.5 bps · dti)
X0 ·

∑n
i=1

dti
Fofferti

. (3.8)

For any BP ≤ BP0 the no–arbitrage inequality holds, BP0 is hence the upper bound for

the basis pay rate.

The upper bound BP0 has been derived by assuming Y is constant. However, in the

case of unfixed spread, the net position is exposed to uncertain cash flows. To fully elim-

inate this risk, we propose the alternative strategy. The counterparty can enter an IRS

contract in the RHS currency. In the IRS, the counterparty pays fixed RHS interest rate

and receives RHS LIBORs. Let H denote the fixed rate of the IRS, the cash flows are

summarized in Table 3.4.

Only one component in the net cash flow of Table 3.4 is uncertain, the RHS LIBID.

However, we can view this series of cash flows as a floating rate bond without notional

payment at maturity. As a result, we know for certain that the PV of this bond is

RHS principal× (1− dtn). Hence we have completely eliminated the risk of uncertain
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Table 3.4: Cash Flow 2 in CCBS

Cash flow Initiation Each tenor ti Maturity T

positive RHS principal LHS LIBOR+BP , RHS LIBOR (IRS), RHS LIBID LHS principal

negative LHS principal RHS LIBOR, LHS LIBOR, RHS fixed H (IRS) RHS principal

net cash flow LHS principal ·BP − RHS principal ·H +RHS LIBID

cash flows. The PV of total net cash flows is

RHS principal · (1− dtn) +
n∑

i=1

{
(
LHS principal · BP

Fofferti

− RHS principal ·H) · dti
}
. (3.9)

Solving (3.9) for BP0 gives

BP0 =

∑n
i=1 (H · dti) + dtn − 1

X0 ·
∑n

i=1

dti
Fofferti

. (3.10)

2) Receive RHS LIBOR and Pay LHS LIBOR + BR

The other counterparty of the swap pays LHS LIBOR + BR and receives RHS LIBOR. At

initiation he pays the RHS principal and receives the LHS principal. The RHS principal

is borrowed at RHS LIBOR and the LHS principal is invested at LHS LIBID. The cash

flow position is in Table 3.5.

The net cash flow position for this counterparty is different from the other counterparty



45 3.2 No-Arbitrage Bounds

Table 3.5: Cash Flow 3 in CCBS

Cash flow Initiation Each tenor ti Maturity T

positive LHS principal RHS LIBOR (swap), LHS LIBID (deposit) RHS principal

negative RHS principal LHS LIBOR + BR (swap), RHS LIBOR (loan) LHS principal

net cash flow −LHS principal · (BR+ Z)

because there is only LHS currency is involved. Therefore there is no need to involve FX

forward rates for this side of the swap. The total PV of the cash flow positions should be

non-positive to ensure the no arbitrage condition

n∑
i=1

−(LHS principal · (BR + Z) · dti) ≤ 0. (3.11)

Because LHS principal and the sum of discount factors must be both positive, if Z is a

fixed quantity, we must have

BR ≥ −Z. (3.12)

Hence −Z is the lower bound for the basis receive rate. If we assume that Z is fixed at

12.5 bps, then the lower bound is simply

BR ≥ -12.5 bps. (3.13)

Alternatively, to eliminate the risk of uncertain cash flows, we assume the IRS swap fixed

rate is G for the LHS currency. The lower bound then becomes
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BR ≥ 1− dtn∑n
i=1 dti

−G. (3.14)

3.3 Data and Methodology

3.3.1 Description of Data

We collect daily data from January 3, 2006 to August 12, 2011. This sample period is

chosen to span pre–GFC, GFC and the ongoing Eurozone crisis that started since late

2009.

1) Spot and Forward Exchange Rates

We select four major currencies in the FX and swap markets: USD, JPY, EUR and

AUD. We use USD as the foreign currency and the other three currencies respectively

used as the domestic currency. All exchange rates, including spot and forward, represent

the price of one unit foreign currency in domestic currency. For example, the EUR/USD

spot rate is the spot price of unit USD in EUR. Hence we have three currency pairs. The

data source is Bloomberg. Excluding missing data, there are 1419 trading days during this

period. One each trading day, we collected the spot rate, 1-day (1D), 1M, 3M, 6M, 12M,

2-year (2Y), 3Y, 4Y and 5Y forward rates. Because we explicitly examine the effect of

transaction costs, we also obtain the mid, bid and offer rate for each spot and forward rate.
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2) LIBOR / LIBID and IRS Rates

We collect USD LIBOR/ LIBID, JPY LIBOR/ LIBID, EURIBOR/EURIBID4 (source:

Bloomberg) and AUD Bank Bill Bid and Offer Rates5 (source: Reserve Bank of Aus-

tralia). These rates are selected because they represent the borrowing and lending costs

for an arbitrageur in each currency. They are also the references rates used in currency

swaps. We use Bank Bill rates to proxy AUD Bank Bill Swap rate (BBSW)6, which is

the reference rate used in AUD currency swaps.

We need IRS bid and offer rates for two purposes. Firstly, LIBOR/LIBID rates have

maturities up to 12 months. Because LIBOR is often used as the reference rate in an

IRS, IRS rates can be used as proxies to extend the LIBOR zero curve beyond 12M ma-

turity. Secondly, in deriving the bounds for the basis spreads of CCBSs, we eliminate

the uncertain cash flow risk by entering an IRS. We use the IRS bid rate to approximate

LIBID and the ask rate to approximate LIBOR. All IRS data are sourced from Bloomberg.

We obtain daily data of overnight (O/N), 1M, 3M, 6M and 12M USD LIBOR/ LIBID,

4EURIBID is the bid rate at which European prime banks are willing to borrow unsecured EUR from
each other within the Euro zone, while EURIBOR is the ask rate.

5The bank bill interest rate is the wholesale interbank rate within Australia published by the Australian
Financial Markets Association (AFMA). It is the borrowing rate among the country’s top market makers,
and is widely used as the benchmark interest rate for financial instruments

6The BBSW rates are independent and transparent rates for the pricing and revaluation of privately
negotiated bilateral Australian dollar interest swap transactions, published by AFMA. BBSW data are
not available for all maturities and on all sample period trading days. Based upon available BBSW data,
we computed the error of using Bank Bill rates to approximate. The average error is 0.3 basis points
(bps) for 1M maturity and 0.1 bps for 3M rates. The errors are sufficiently small.
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JPY LIBOR/ LIBID and EURIBOR/EURIBID. AUD Bank Bill bid and offer rates are

only available for O/N, 1M, 3M and 6M. Hence we use 1Y AUD IRS rates to proxy. The

maturities of IRS data are as follows, USD and JPY: 18M, 2Y, 3Y, 4Y and 5Y; EUR: 2Y,

3Y, 4Y and 5Y; AUD: 1Y, 2Y, 3Y, 4Y and 5Y. Maturities vary for different currencies

due to different payment frequencies of IRS rates and data availability. USD, JPY and

AUD swap rates are paid semi-annually and EUR swap rates are paid annually.

3) CCBS Basis Spread

Daily data of CCBS basis rates, including mid rate, pay rate and receive rate, are col-

lected for the sample period. Maturities include 1Y, 2Y, 3Y, 4Y and 5Y. We have three

sets of CCBSs. For each set, the LHS currency and the RHS currency are respectively

EUR/USD, JPY/USD and AUD/USD.

3.3.2 Methodology

To test no-arbitrage bounds proposed in section 3.2, we build two discount curves, one

based upon LIBOR with IRS ask rates and the other upon the LIBID with IRS bid rates.

Because it is easier to work with discount factors due to different compounding frequencies

of interest rates across currencies, we rewrite the FX forward rate bounds (3.2) and (3.4)

respectively as

Fbid(0,t) ≤ Xoffer · dLIBID(0,t)

dLIBOR(0,t)

, (3.15)
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and

Foffer(0,t) ≥
Xbid · dLIBOR(0,t)

dLIBID(0,t)

. (3.16)

In (3.15) and (3.16), dLIBOR(0,t) (dLIBID(0,t)) represents the foreign currency discount curve

while dLIBOR(0,t) (dLIBID(0,t)) represents the domestic currency discount curve.

1) Discount Curves with LIBORs (LIBIDs)

We firstly construct the discount curve out to 12M maturity with LIBORs (LIBIDs).

They are inherently zero coupon rates and we can directly convert them to discount fac-

tors. For the sake of consistency, all LIBORs (LIBIDs), which are simply compounded by

market conventions, are converted to continuously compounded rates LIBORc (LIBIDc):

LIBORc =
1

τ
· ln(1 + LIBOR · τ). (3.17)

where τ is the year fraction of the LIBORs of a particular maturity. We assume the

Act/365 day count convention. For instance, the O/N LIBOR has year fraction of 1/365.

The continuously compounded discount factor then is

dLIBOR(0,t) = exp(−LIBORc · τ(0, t)). (3.18)
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2) Discount Curves with IRS Rates

Discount curves beyond one year and out to five-year maturity are extracted from IRS

rates. Different from LIBORs, par swap rates are not zero coupon rates. An IRS can be

considered as a contract in which a coupon bearing bond is exchanged for a floating-rate

bond (see Brigo and Mercurio 2006). Because the initial value of an IRS must be zero

to preclude arbitrage and floating-rate bonds always trade at par, the swap fixed rate is

simply the coupon rate for a par-value coupon bond. Assuming unit notional amount,

swap fixed rate StN must satisfy

(StN · F ) ·
N∑
i=1

dti + dtN = 1. (3.19)

where F is the payment frequency of the IRS rate and N is the total number of coupon

payments. The payment frequency of IRS rates varies across different currencies. For

USD, JPY and AUD the frequency is semi-annual, hence F is 1
2
. F is 1 for EUR IRS

rates. From Eqn. (3.19) we obtain the final discount factor

dtN =
1− (StN · F ) ·∑N−1

i=1 dti
1 + (StN · F )

. (3.20)

To apply Eqn. (3.20), we need all discount factors and swap rates before the final maturity,

i.e. from t1 to tN−1. We start from available discount factors and work iteratively to obtain

dtN , which is the bootstrap method for discount curve construction (see, for example, Ron



51 3.3 Data and Methodology

2000). Suppose we want to construct the 5Y USD discount curve based on LIBORs and

IRS ask rates. Firstly, we use the 18M USD IRS ask rate and Eqn. (3.20) to obtain

18M discount factor, based upon the 6M and 12M discount factors calculated from Eqn.

(3.18). We then use the 2Y USD IRS ask rate to calculate the 2Y discount factor with

Eqn. (3.20), based upon the 6M, 12M and 18M discount factors. Because the USD IRS

rate is paid-semiannually, if we have 2.5Y 3Y, 3.5Y, 4Y, 4.5Y and 5Y IRS ask rates,

repeating this process we eventually get the 5Y discount factor. However, the 2.5Y , 3.5Y

and 4.5Y IRS rates are not available from Bloomberg. We hence linearly interpolate these

rates from available swap rates:

St = Sti + (
t− ti

ti+1 − ti
) · (Sti+1

− Sti), ti < t < ti+1. (3.21)

3) Formulae Specification

We use (3.15) and (3.16) to test the bounds of forward exchange rates. We test the

upper bound of the CCBS basis pay rate with (3.8) and the lower bound with (3.13).

We decide not the use expression (3.10) and (3.14) after analysing the data. For the

sample period, the LIBOR-LIBID spread for USD and EUR stays constant at 12.5 bps

and the AUD Bank Bill bid-offer spread is constantly 10 bps. The only exception is JPY

LIBOR-LIBID spread. However, the variation of the spreads is sufficiently small. For

example, the 3M JPY LIBOR-LIBID spread is only different from 12.5 bps on 36 trading
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days and the average spread of the sample period is 12.49 bps. For such a small uncer-

tainty, it is not worthwhile to engage in the strategy in Table 3.4, because the arbitrageur

also bears transaction costs in the IRS contract. The transaction costs would clearly more

than offset the benefit. Hence we use (3.8) and (3.13) to test the bounds. We also change

12.5 bps to 10 bps when testing AUD/USD swap basis bounds.

Another modification we make is the IRS bid-ask spread. Our data show that the IRS

bid-ask spread is much smaller than the LIBOR-LIBID spread. For instance, the aver-

age 2Y USD IRS bid-ask spread during the sample period is merely 0.74 bps, while the

LIBOR-LIBID spread over the same period is 12.5 bps. Because we proxy LIBID rates

by IRS bid rates for maturities beyond one year, without modifications we would have

to assume that the arbitrageur’s borrowing-lending spread drops by more than 10 bps

beyond 1Y maturity. This is clearly unrealistic. To better reflect reality, we assume that

the borrowing-lending spread is constant for all maturities. The IRS ask rates are from

the market data, but bid rates are obtained by subtracting the constant spread from the

ask rate. As a result, the USD, JPY and EUR IRS bid-ask spread is fixed at 12.5 bps

and AUD spread is fixed at 10 bps for all maturities7.

7Note that this is a conservative approach in our context, as we seek to identify violations of no-
arbitrage bounds, which are wider if the bid-ask spreads are wider.
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3.4 Results

3.4.1 Forward Exchange Rate

We tested bounds of 1D, 1M, 3M and 6M forward rates because FX forwards are mostly

liquid for maturities less than one year8. The results are summarized by two quantities,

1) Upper bound minus forward bid rate.

2) Forward offer rate minus the lower bound.

If bounds strictly hold, these two quantities should be non-negative. The results are

plotted for each currency pair in Figures 3.1, 3.2 and 3.3. These figures clearly demon-

strate a change of pattern, with the GFC as the turning point. In addition, tests of 4

different maturities demonstrate very similar results. Hence, in the following discussions

we focus on the 6M maturity only.

We find that for the EUR/USD currency pair, the upper bound of the 6M forward bid

rate holds strongly. In Figure 3.1 the test result stayed positive and stable on all trading

days before the GFC. From August 2007, it showed more fluctuations and peaked on

September 30th 2008, two weeks after the fall of Lehman Brothers 9. It then fluctuated

but remained significantly positive.

8Investors tend to hedge currency risks with forward contracts for maturities less than one year. For
terms greater than or equal to one year, currency swaps provide greater liquidity. See Baba et al. 2008.

9Lehman Brothers filed for bankruptcy protection on September 15, 2008.
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On the other hand, the lower bound test result of the 6M forward offer rate shows almost

an mirror image. Before the crisis, it held tightly. Starting from the crisis, the bound

has been persistently violated. The difference between the offer rate and its lower bound

dropped to the lowest level on September 30th 2008. From there it went back to the

positive region on only 27 trading days but remained negative on others.

The JPY/USD findings are similar, with the upper bound strongly holds for the whole

sample period but the lower bound violated since the GFC. There are two notable dif-

ferences between JPY/USD and EUR/USD 6M forward rates. Firstly, the lower bound

of the JPY/USD 6M forward offer rate did not hold as strongly as its EUR/USD coun-

terpart before the crisis, though only a small portion (12.47%) in Figure 3.2 went below

zero. Secondly, unlike the lower bound of EUR/USD 6M offer rate, the JPY/USD lower

bound held for a majority of the period from January to May of 2009.

Lastly, the AUD/USD 6M forward rate bounds behave significantly different from

JPY/USD and EUR/USD. In Figure 3.3 we see both upper and lower bounds held strongly

before the crisis. From January to May of 2009, the upper bound of the forward bid rate

was violated on 50% of the trading days. It then remained stable and held until present.

The lower bound test shows even greater differences from JPY/USD and EUR/USD for-

ward rates. After a relatively short period of violations (roughly from August to November

2008), the lower bound of the offer rate held on a majority (77.15%) of total number of

trading days since the beginning of 2009.
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Figure 3.1: Violations of no-arbitrage bounds of EUR/USD forward rates. Pos-
itive parts in the figure imply no arbitrage opportunities considering transac-
tion costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the forward market.
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Figure 3.2: Violations of no-arbitrage bounds of JPY/USD forward rates. Pos-
itive parts in the figure imply no arbitrage opportunities considering transac-
tion costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the forward market.
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Figure 3.3: Violations of no-arbitrage bounds of AUD/USD forward rates. Pos-
itive parts in the figure imply no arbitrage opportunities considering transac-
tion costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the forward market.
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3.4.2 Currency Swap Basis Rates

To test the upper bound and lower bound of the CCBS basis rate, we calculate two quan-

tities,

1) Upper bound minus the pay rate.

2) Receive rate minus the lower bound.

If bounds hold, these two quantities should not be negative. Results are presented in

Figures 3.4, 3.5 and 3.6 for 1Y, 3Y and 5Y swaps of each currency pair10. Similar to what

we find in the forward rate tests, the GFC is a destabilizing event for the bounds.

For the EUR/USD CCBS, we see in Figure 3.4 that both upper and lower bounds held

before the crisis. Starting from October, 2007, two bounds went in the opposite directions.

Both results showed significantly greater volatility. However, the upper bound result be-

came even more positive for the whole post-crisis period whereas the lower bound result

stayed mostly negative since the second half of 2008. As a result, the no-arbitrage lower

bound for the receive rate has been consistently violated. The JPY/USD results in Figure

3.5 show some resemblances to the EUR/USD counterpart. Both upper and lower bounds

held tightly before the GFC. For a majority of the post-crisis sample period, the lower

bound is violated but the upper bound holds.

10For clarity of presentation, 2Y and 4Y results are omitted. The results are very similar to 1Y, 3Y
and 5Y results.
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Figure 3.4: Violations of no-arbitrage bounds of EUR/USD CCBS basis rates.
Positive parts in the figure imply no arbitrage opportunities considering trans-
action costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the currency swap market.
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Figure 3.5: Violations of no-arbitrage bounds of JPY/USD CCBS basis rates.
Positive parts in the figure imply no arbitrage opportunities considering trans-
action costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the currency swap market.
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Figure 3.6: Violations of no-arbitrage bounds of AUD/USD CCBS basis rates.
Positive parts in the figure imply no arbitrage opportunities considering trans-
action costs. Negative parts of the figure indicate that arbitrage opportunities
are present in the currency swap market.
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The results in Figure 3.6 show that the AUD/USD bounds responded to the GFC from

March 2008. The immediate effect of the shock is that the lower bound was violatedbut

the upper bound became stronger. However, since November 2008 the pattern has been

completely different from EUR/USD and JPY/USD: the lower bound result remains pos-

itive and with the exception of 1Y maturity, the upper bound no longer holds.

3.4.3 Exploit Violations

If violations of no-arbitrage bounds do admit arbitrage opportunities, an arbitrageur can

exploit and make riskless profits. We present two examples.

1) Forward Offer Rate

The lower bound of the 3M EUR/USD forward offer rate has been persistently violated

since the crisis. For example, on September 30th 2008, the lower bound calculated by

(3.16) should be 0.6996, but the market offer rate is 0.6958. The 3M USD LIBOR dis-

count factor is 0.9900 and EURIBID discount factor is 0.9873.

The arbitrageur can borrow unit USD at USD LIBOR and sell for EUR in the spot

market. The proceeds is 0.6977 EUR. EUR is then lent at EURIBID for 3 months. Si-

multaneously the arbitrageur enters a 3M forward contract to sell the EUR investment

for USD and the rate 1/0.6958 = 1.4372 is secured.
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At maturity, the investment grows to 0.6977/0.9873 = 0.7067 EUR. It can be sold for

USD at the forward rate and the proceeds is 1.0157 USD. The USD loan now grows to

1/0.9900 = 1.0101. The arbitrageur repays the loan and makes a profit of 0.0056 USD.

2) Currency Swap Basis Receive Rate

Violations of the lower bound of the receive rate of 5Y EUR/USD swap can be exploited.

On March, 2nd of 2009 the lower bound by (3.13) should be -12.5 bps, but the observed

receive rate is -60 bps. The arbitrageur should enter the 5Y EUR/USD CCBS in which

he/she pays 3M EURIBOR minus 60 bps (receive rate for the market maker) and receives

3M USD LIBOR. At initiation the arbitrageur also pays the USD principal and receives

the EUR principal. The principal amounts are based on the spot mid rate, say USD 1

million for EUR 0.7942 million. The USD principal is borrowed at USD LIBOR and EUR

principal is invested at EURIBID. According to Table 3.5, the arbitrageur’s net cash flow

at each tenor is 47.5 bps of the EUR principal, which becomes the profit.

3.4.4 Making Sense of Violations

The bound violations contradict the no-arbitrage methodology in pricing forward rates

and CCBSs. Clearly the persistence of the observed bound violations demonstrate that

the market has not taken advantage of the apparent opportunities. We propose that

the market is prevented from doing so by increased market imperfections, in particular
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the currency liquidity risk. These imperfections have developed in the forward and spot

currency market since the GFC and result in forward and currency swap prices being

determined by supply and demand pressures, rather than by arbitrage considerations.

In this study all forward rates are quoted as the price of unit USD in the domestic

currency. If supply exceeds demand, the MM can buy the forward contract at a rate

lower than the no-arbitrage level and the upper bound of the bid rate holds even tighter.

On the other hand, the MM can afford to sell at a level lower than the no-arbitrage lower

bound. We therefore propose that the lower bound of the offer rate can be violated if

supply exceeds demand. This implies that the relative demand for USD is lower in the

forward market than in the spot market, which is consistent with the USD liquidity risk.

The USD funding shortage during the crisis has driven the demand to secure USD in the

spot market, hence the demand for USD is relatively lower in the forward market. On the

other hand, the upper bound violations of the AUD forward bid rate indicate that the

relative demand for USD is lower in the spot market than in the forward market. This

is also consistent with the observation in Ossolinski and Zurawski (2010) that Australian

banks do not have USD funding shortage. Instead they have high demand of AUD fund-

ing in international markets.

The supply/demand imbalance also occurred in the CCBS market. Since the crisis, in

the currency swap market the demand for USD borrowing far exceeds demand for EUR

and JPY. The USD borrowers are willing to pay a liquidity premium to secure USD.

Hence the lower bounds of EUR/USD and JPY/USD basis receive rates are substantially
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violated. On the other hand, the violation of the upper bound of AUD/USD basis pay

rates implies that demand for AUD exceeds the demand for USD.

3.4.5 Limits to Arbitrage

If the no-arbitrage bound violations did represent practical opportunities, we would ex-

pect that arbitrageurs take large positions in forward contracts and currency swaps to

make profit. Standard theories in finance, such as the Arbitrage Pricing Theory (Ross

1976), assume that such violations should be exploited and no-arbitrage equilibria should

be quickly restored. However, since the crisis the violations have persisted. We propose

that USD liquidity risk is the plausible factor which may have rendered textbook arbi-

trage strategies ineffective. For instance, our arbitrage example in CCBS assumes that the

arbitrageur can borrow USD principal at USD LIBOR for 5 years. However, during the

crisis, banks faced liquidity squeeze and were reluctant to make lending to LIBOR coun-

terparties for longer than three months (see, for example, Mollenkamp and Whitehouse

2008). Consequently, although the market may appear rife with arbitrage opportunities,

the strategy may break down.

Under extreme market circumstances, arbitrage is risky and ineffective. The theory of

“limits of arbitrage” was first proposed in the seminal work of Shleifer and Vishny (1997).

Arbitrageurs invest clients’ money. In the short run, if mispricing persists due to uncertain

market conditions, arbitrageurs may face margin calls or withdrawal of funds. To meet

funding needs, arbitrageurs have to unwind positions at losses. A high profile example of
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‘limits to arbitrage’ is the failure of Long Term Capital Management (LTCM) in 1998.

The Russian government’s default on its debt caused investors to panick and trade against

LTCM’s positions. Although the arbitrage strategy of LTCM was sound in principle, the

bond prices which were supposed to converge in the long run were driven further apart.

LTCM was forced to unwind postilions and eventually failed.

3.5 Conclusion

In this study we formulate no-arbitrage bounds for forward exchange rates and currency

swap basis rates with transaction costs. We examine these bounds with market data and

find that some bounds have been persistently violated since the GFC. In theory, violations

admit arbitrage opportunities. However, in real markets such transactions may have been

limited, due to heightened currency liquidity risk.

These arbitrage violations may carry information about supply and demand pressures

in currency markets. In the next chapter, we explore whether this information may be

helpful in resolving the uncovered interest parity (UIP) puzzle.



Chapter 4

Carry Trade and Liquidity Risk:

Evidence from Forward and

Currency Swap Markets

4.1 Introduction

This chapter empirically tests the effect of liquidity risk and volatility in the FX market

on the performance of currency carry trades. In a carry trade investors borrow funds in a

low-yield currency (funding currency) and lend in a high-yield currency (investment cur-

rency) to gain the interest rate differential. The uncovered interest parity (UIP) predicts

that on average the carry should be exactly offset by the depreciation of the investment

currency. If UIP holds in practice, carry trades should have zero expected excess return.

In practice, UIP often fails and investment currencies have been found often to actually

appreciate on average against funding currencies, this has been termed the UIP puzzle.

67
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Researchers have tackled the UIP puzzle from various approaches, see Section 2.4 for a

detailed review of the related literature. Among them, Brunnermeier, Nagel and Pedersen

(2008) employ a model with funding liquidity risk to approach the UIP puzzle by studying

carry trade performance. In this model carry trades tend to be unwound and incur losses

when traders’ funding constraints become binding. Therefore proxies for liquidity risk

should be significant in explaining carry trade excess returns. These findings provide sup-

port for the theoretical liquidity model developed in Brunnermeier and Pedersen (2009).

A key result is that after controlling for liquidity proxies, the interest rate differential is

not significant in predicting carry returns, which points to a potential resolution of the

UIP puzzle. However, the statistical significance of Brunnermeier et al. (2008) is not suffi-

ciently strong. In particular, the liquidity proxy TED spread, is in general insignificant or

only marginally significant. Nevertheless Brunnermeier et al. (2008) offers an alternative

approach to explaining the UIP puzzle.

We propose that the liquidity measures employed by Brunnermeier et al. (2008), VIX

and the TED spread, may not proxy FX market liquidity risk well. Firstly, VIX, which

is the implied volatility index for stock options, is not directly related to the FX market.

Burnside (2008) also points out that the link between VIX and the FX market is less

clear if changes in VIX are interpreted as changes in implied or actual volatility of the

underlying asset. Hence VIX is not an ideal measure of FX market liquidity risk. Sec-

ondly, the TED spread is also not specific to the FX market. We conjecture that these

issues may have caused the lack of statistical significance. We therefore are motivated to

identify alternative proxies of FX market liquidity to tackle the UIP puzzle. In addition,
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we build upon the theoretical liquidity model of Brunnermeier and Pedersen (2009) and

allow for the effect of market volatility.

We propose a FX market specific proxy for liquidity risk - violations of no arbitrage

bounds in the forward and currency swap markets - which measures market expectation

of future liquidity risk. The bounds are examined with market data in Chapter 3 and

results demonstrate that the no-arbitrage bounds held strongly before the GFC, but were

substantially violated after the crisis. By construction, we propose that this proxy in-

corporates both market liquidity risk and funding liquidity risk. Market liquidity risk

is proxied by transaction costs, i.e. bid-ask spreads quoted in the forward and currency

swap contracts, whereas funding liquidity risk is proxied by the magnitude of violations of

the no-arbitrage bounds. In this study we specifically examine if this alternative liquidity

proxy can better explain the UIP puzzle by testing its effect on carry trade excess returns.

To allow for the effect of volatility specific to the FX market, we use volatility smile

data from the FX option market. Volatility smile information represents market partici-

pants’ views of future volatility of the underlying exchange rate until the option maturity.

We propose that this proxy should have a significant effect on explaining exchange rate

movement and hence carry trade return.

Our sample data cover periods both before and after the GFC because both liquidity

risk and market volatility have substantially heightened since the GFC. It is thus inter-

esting to investigate if there are structural breaks in the effects of our proposed proxies.
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Econometric results demonstrate that both proxies have significant effects on carry trade

performance, particularly after the GFC. Furthermore, the interest-rate differential is not

significant in predicting carry trade returns after controlling for volatility and liquidity,

hence providing a potential resolution of the UIP puzzle.

The remainder of this chapter is organized as follows. Section 2 describes the data.

Section 3 develops methodologies used for our econometric tests. Section 4 presents and

analyzes results and Section 5 concludes.

4.2 Data

The data on our proxy of FX liquidity risk - violations of no arbitrage bounds in the

forward and currency swap markets - are based upon the results of Chapater 3.

For FX market volatility, we consider two measures: realized volatility of exchange rates

and FX option market volatility smile. Due to lack of higher frequency data, we can only

calculate realized volatilities with daily data. The common practice in calculating daily

volatility is to square that day’s return (see, for example, Brooks 2008). This way of

computing volatility with daily data depends on the assumption that the expected daily

return is zero. However, the squared daily return is a potentially poor proxy for the true

volatility and ideally we should compute the volatility by using higher frequency, intra-

day data (see Andersen and Bollerslev 1998). We therefore decide not to use this measure
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and instead collect volatility proxies from FX option markets. To better understand the

mechanics of FX volatility smiles, we describe basic terminologies and conventions.

4.2.1 FX Option Pricing Formula

Based upon the seminal work of Black and Scholes (1973), Garman and Kohlhagen (1983)

model the underlying spot exchange rate as a geometric Brownian Motion

dSt = (rd − rf )Stdt+ σStdWt, (4.1)

where St is quoted as FOR-DOM (foreign-domestic) (see Wystup 2006) and represents

the price of one unit of foreign currency in terms of domestic currency. rd (rf ) denotes the

continuously compounded domestic (foreign) risk free rate. σ is the volatility of underlying

asset and Wt is a standard Brownian Motion. An application of It̂o’s formula (Îto 1944)

to the natural logarithm of St produces the solution for the geometric Brownian Motion

under the domestic risk-neutral measure P d:

St = S0 · e((rd−rf− 1
2
σ2)t+σWt). (4.2)

Under the domestic risk-neutral measure P d, the current value of an European call option

is the discounted expected value of the final payoff:
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Vt = e−rdτEd[(ST −K)+]

= e−rdτEd[(ST −K)I(ST≥K)]

= e−rdτEd[ST I(ST≥K)]−Ke−rdτEd[I(ST≥K)]

= e−rdτEd[ST I(ST≥K)]−Ke−rdτP d[ST ≥ K], (4.3)

where τ is the time to maturity and I is the indicator function. The change of measure

from domestic risk-neutral to foreign risk-neutral measure P f via Radon-Nikodym deriva-

tive yields

Vt = Ste
−rf τP f [ST ≥ K]−Ke−rdτP d[ST ≥ K]. (4.4)

We compute probabilities in Eqn. (4.4) and obtain the Garman-Kolhagen formula for a

vanilla European option:

Vt = ωSte
−rf τN(ωd1)− ωKe−rdτN(ωd2). (4.5)

In Eqn. (4.5), ω is 1 for a call and -1 for a put. N(x) =
∫ x

−∞n(u) du and n(x) = 1√
2π
e(
−x2

2
).

N(x) is the cumulative distribution function (CDF) and n(x) is the probability density

function (PDF) for the standard normal distribution N ∼ (0, 1) . Lastly,
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d1,2 =
ln(St

K
) + (rd − rf ± 1

2
σ2)τ

σ
√
τ

. (4.6)

The Garman-Kolhagen formula is often expressed as

Vt = ωe−rdτ [F (t, T )N(ωd1)−KN(ωd2)], (4.7)

where F (t, T ) = Ste
(rd−rf )τ is the forward price of the underlying exchange rate at time

t, with maturity T and (4.6) is rewritten as

d1,2 =
ln(F (t,T )

K
)± 1

2
σ2τ

σ
√
τ

. (4.8)

Formula (4.7) recovers the Black (1976) model, in which the forward process F(t,T ) is

modeled as a driftless geometric Brownian motion.

4.2.2 FX Volatility Smile

Although the Black-Scholes model (or Garman-Kolhagen formula for FX options) is a

benchmark for the industry, the assumption of constant volatility throughout all matu-

rities and all moneyness levels (deltas) is clearly a limitation. A constant volatility σ

implies that the volatility surface, when plotted as a function of time to maturity and

delta, should be flat. However, the implied volatility levels for out-of-money (OTM) op-
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tions, generated by market data, are usually higher than for the at-the-money (ATM)

options based upon the same underlying asset. Hence, the two-dimensional plot of im-

plied volatility as a function of option deltas, takes a “smile” shape.

The volatility smile arises from a key limitation of Black-Scholes model: underlying assets

follow a lognormal distribution. In FX markets, the natural logarithm of exchange rate

returns is in general not normally distributed (see Hull 2008). Instead, the distribution is

leptokurtic in the sense that it exhibits excess kurtosis, hence excess probability mass in

tails and more peakedness around the mean of the distribution. Leptokurtic distribution

of exchange rates is consistent with empirical observations in the FX market, which often

experiences extreme moves. For instance, Clark (2010) notes that the likelihoods for rare

events (beyond ±3 standard deviations) under leptokurtic distribution are considerably

greater than under normal distribution.

A natural consequence of the excess kurtosis of exchange rates is that FX option traders

place higher level of probabilities for “tail events” than assumed by Black-Scholes model.

Therefore the implied volatility are higher for OTM options than for ATM options. If the

market takes no view on the movement of underlying exchange rate, the volatility smile is

symmetric around the ATM option volatility. Otherwise, the smile is skewed either to the

left or right, depending on the market expectations. Below is an illustration of volatility

smile from 1M EUR/USD options as at May 14th, 2007.
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Figure 4.1: Volatility Smile of 1-month EUR/USD options. Source: Bloomberg
Finance L.P.

We see from Figure 4.1 that both OTM call and OTM put have higher implied volatilities

than ATM option. However, the smile is not symmetric and the volatility of an OTM call

is greater than the corresponding OTM put, such as the 25-delta (25-d) options. Options’

time value is an increasing function of volatility, hence in this scenario the 25-d call is

more valuable than the 25-d put. The call (put)option is quoted as EUR call(put)/USD

put(call), therefore the market expects that EUR will appreciate against USD. We also

find the implied volatilities are plotted against delta (moneyness) levels rather than against

strikes. Strike level is not chosen to parameterize volatility smiles because a particular
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strike may correspond to options with different deltas. For example, depending on time to

maturity, an OTM option strike for a small τ may be close to an ATM strike for a larger τ .

The strike K of an ATM FX option is equal to the forward rate F (t, T ). Differenti-

ating (4.7) w.r.t the forward rate we get the delta1:

∂V

∂F
= ωe−rdτN(ωd1) = ωe−rdτN(ω

1

2
σ
√
τ). (4.9)

From (4.9) we see that for a relatively small volatility σ and time to maturity τ , the ATM

call (put) delta is approximately 50% (-50%). This is consistent with Figure 4.1 where

ATM options corresponds to approximately 50% absolute delta. OTM options therefore

have less than 50% absolute delta. The smile usually quotes the volatility levels for 25-d

options. In order to capture the skewness and kurtosis of the smile, market also quotes risk

reversals (RR) and butterflies (BF ). RR is defined as the implied volatility of OTM call

options minus the implied volatility of OTM put options with the same absolute delta,

which is a measure of the skewness of the smile and can be interpreted as the market

view of the direction of the spot exchange rate movement until option maturity. This

can be seen from Figure 4.1. A positive (negative) RR indicates that the option market

participants place a higher value on the call (put) option and expects the currency on the

call (put) side of the quote to appreciate against the currency on the put (call) side. On

the other hand, BF measures the kurtosis of the smile and represents the market view

1See the Appendix B for the proof.
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on the likelihood of large moves in the spot price towards either direction. It is defined

as the difference between the average volatility of the OTM call and the OTM put and

the corresponding ATM volatility. A high (low) BF indicates the market expectation of

higher (lower) volatility in the exchange rate movements until option maturity. By using

25-d OTM options, the relationship between ATM volatility (ATMV OL), RR and BF

is as follows:

RR = σ(25−d−call) − σ(25−d−put), (4.10)

BF =
σ(25−d−call) + σ(25−d−put)

2
− ATMV OL, (4.11)

σ(25−d−call) = ATMV OL+ BF +
1

2
RR, (4.12)

σ(25−d−put) = ATMV OL+ BF − 1

2
RR. (4.13)

Graphically, the relationship between ATMV OL, RR and BF can be illustrated in Figure

4.2 (source: Wystup 2006). From the above description of the FX option volatility smile

conventions we see that ATMV OL, RR and BF provide us with three measures of

FX market volatility. ATMV OL measures the market expectation of future volatility

of underlying exchange rate until the option’s maturity, while RR and BF respectively

measure the skewness and kurtosis of the volatility smile. It is intuitively appealing to

investigate whether these proxies have predictive power on spot exchange rate movements,
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Figure 4.2: ATM VOL, RR and BF for a given FX vanilla option

hence affecting carry trade excess returns. To this end, we collect the most liquid 1M

ATMV OL, 25-d RR and 25-d BF data on EUR/USD, JPY/USD and AUD/USD options

from Bloomberg. Following Christiansen et al. (2011), we collect daily closing data. The

sample period is from January 3, 2006 to August 12, 2011.

4.3 Empirical Methodology

4.3.1 Specifications of Model Variables

We follow Brunnermeier et al. (2008) and calculate the carry trade return in excess of the

return predicted by UIP, hence the abnormal return. We follow the FOR-DOM quotation

style and treat USD as the foreign currency in all three pairs. In each currency carry



79 4.3 Empirical Methodology

trade, USD is the funding currency. Hence funds are borrowed at the USD money market

rate and invested at the EUR, JPY and AUD interest rates respectively. The daily excess

return Zk
t is thus

Zk
t = (rkt−1 − rUSD

t−1 )− (Xk
t −Xk

t−1). (4.14)

In Eqn. (4.14) Xk
t is the logarithm spot exchange rate at the end of day t for currency

k and rkt−1 is the continuously compounded overnight money market rate at the end of

day t− 1 for currency k. Hence the excess return is equal to the interest rate differential

between currency k and USD locked in at the end of day t − 1, minus the return of the

spot rate from day t−1 to t. The term Xk
t −Xk

t−1 stands for the depreciation of currency

k against USD. The UIP predicts that the interest rate differential rkt−1 − rUSD
t−1 should

be exactly offset by the depreciation of currency k, hence Et−1(Zt) = 0. The UIP puz-

zle arises from empirical observations that the abnormal return Zk
t is often positive, i.e.

investment currencies do not depreciate as much as predicted by UIP, instead in many

cases they appreciate against the funding currency.

We define the violations of no-arbitrage bounds for forward rates and currency swaps

as liquidity basis BS, which is the proxy for USD liquidity risk. In Subsection 4.4 of

Chapter 3 we proposed that violations of the no-arbitrage lower bound of the forward

offer rate and of the cross-currency basis swap receive rate represent the higher demand

of USD borrowing in the spot market, hence the increased USD liquidity risk. Therefore,

we calculate BS for each currency pair as follows. We use the observed rate to subtract
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the lower bound. Negative results imply that the lower bounds are violated. We then

change the sign of all results. For example, if the quoted basis receive rate for a 5Y

EUR/USD currency swap is -30 bps and the no-arbitrage lower bound is -12.5 bps, then

BS is 17.5 bps after the sign change. The reason we change the sign is for the ease of

the interpretation of the estimated coefficient of BS in the test of the econometric model

(proposed in Subsection 4.3.2). The more positive the BS, the higher the USD liquidity

risk. Therefore the sign of the estimated coefficient of BS can be directly interpreted as

the effect of USD liquidity risk on the excess return of the carry trade Zt.

The maturities of BS include 1M, 3M and 6M for forward rates and 1Y, 2Y, 3Y, 4Y

and 5Y for currency swaps for each currency pair. We conjecture that BS of different

maturities are closely related to each other because they are driven by some common liq-

uidity events. They are not sufficiently independent of each other and from a statistical

point of view, it is sensible to include all maturities in our empirical tests. Since there are

8 maturities, in order to reduce dimensionality we employ the principal component anal-

ysis (PCA) to transform these closely related variables into uncorrelated new variables 2.

4.3.2 Econometric Model

To test the effects of FX market volatility and liquidity basis on the excess return of

carry trades, we propose a linear factor distributed lag model for each currency pair (i.e.

USD/JPY, USD/EUR and USD/AUD):

2See Appendix C for a brief introduction of PCA.
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Zt = β0 + β1Zt−1 + β2IRDIFFt−1 + β3ATMV OLt + β4ATMV OLt−1

+ β5RRt + β6RRt−1 + β7BFt + β8BFt−1 + β9BSt + β10BSt−1 + εt, (4.15)

where Zt is the abnormal return of carry trade between day t − 1 and t, IRDIFFt−1 is

the overnight interest rate difference at the end of day t− 1 between the investment cur-

rency and USD, ATMV OLt, RRt and BFt are respectively the ATM volatility, 25-delta

risk reversal and 25-delta butterfly at the end of day t for the 1M FX option, quoted

as USD/investment currency. Lastly, BSt is the liquidity basis based on PCA at the

end of day t. We include one-day lags to account for potential autocorrelations in the

exchange rates. The inclusion of lags in the regression model also enables us to capture

both inertia of the dependent variable to explanatory factors and contemporaneous effects.

Compared to related literature (Brunnermeier et al. 2008, Ranaldo and Söderlind 2010),

variables in our regression model may better proxy risk factors. Firstly, ATMV OLt, RRt

and BFt, which represent FX option market practitioners’ expectations. Therefore they

should better measure FX market volatility. Secondly, TED spread is also not specific to

the FX market. This may potentially explain the lack of significance of TED in related

works. In our study TED is replaced with a new measure, liquidity basis of forward

exchange rates and currency swaps, which captures both market liquidity and funding

liquidity risks specific to the FX market.
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We make several hypotheses with respect to the effects of explanatory variables. Firstly,

the effect of ATMV OLt is negative if the investment currency on average depreciates

against USD when FX market volatility increases. Secondly, RR is negatively correlated

with Zt because FX options in our study are quoted as USD/investment currency. If RR

increases, then the USD call is more favored than the USD put, hence the market expects

that the investment currency depreciates against the USD. Thirdly, we take an agnostic

view on butterfly because higher BF indicates larger movements of exchange rates to-

wards either direction. Fourthly, we expect that BS negatively impacts Zt if carry traders

unwind positions when liquidity risk increases, hence suffering losses. Finally, after con-

trolling for these factors, if IRDIFF is not significant in affecting carry returns, we have

contributed to the resolution of the UIP puzzle.

4.3.3 Panel Regression

The model in Eqn. (4.15) is used to test effect of explanatory variables for each individual

currency pair. In order to control for individual currency heterogeneity we also construct

panel data, which combine both time series of all variables in the distributed lag model

and cross-sectional elements, namely three currency pairs. Compared to the distributed

lag model, which is based on pure time-series data for each currency pair, panel data offer

several benefits. Baltagi (2008) summarizes the advantages of panel data over time-series

data as,

(1) Panel data control for individual heterogeneity and account for any common struc-
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tures present, hence avoid the risk of obtaining biased results.

(2) Panel data present more information, more variability, more degrees of freedom and

less collinearity. The latter is especially important because time-series data are often char-

acterized by multicollinearity. Hence the problem of multicollinearity can be mitigated

with panel data.

(3) The appropriate structure of panel data can remove certain forms of omitted vari-

ables bias.

We construct a balanced panel dataset with same number of time-series observations for

each currency pair. The panel technique we employ is the currency-fixed effects model. In

this panel regression, we allow the intercept to differ cross-sectionally but not over time,

and the slope coefficients are fixed both cross-sectionally and over time. We follow Brooks

(2008) to describe the properties of panel regression with cross-sectionally fixed effects.

The model is set up as

yit = α + βxit + uit, (4.16)

where yit is the dependent variable, α is the constant term, β is a k× 1 vector of parame-

ters to be estimated on the independent variables and xit is a 1× k vector of independent

variable observations, t = 1, ..., T is the index of the time series and i = 1, ..., N is the

index of cross sections. The total number of observations in the panel regression is thus
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N × T . In our study N = 3 and T = 1419.

To estimate the fixed effects cross-sectionally, we decompose the error term uit into an

individual effect μi, which encapsulates all information that affects the dependent variable

cross-sectionally but does not vary over time; and the “remainder disturbance” term νit.

νit is allowed to vary both over time and cross sectionally. The regression model (4.16) is

rewritten as

yit = α + βxit + μi + νit. (4.17)

This model is estimated by the least squares dummy variable (LSDV) approach:

yit = βxit + μ1D1 + μ2D2 + μ3D3 + · · ·+ μNDN + νit. (4.18)

where D1 is the dummy variable that takes the value of 1 for all observations on the first

cross-sectional entity and 0 otherwise. D2 is the dummy variable that takes the value

of 1 for all observations on the second cross-sectional entity and 0 otherwise, and so on.

The constant term α does not appear in the equation to avoid the problem of perfect

multicollinearity between the dummy variables and the intercept. In Eqn. (4.18), there

are N +K parameters to estimate.
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4.4 Results

4.4.1 Principal Component Analysis

Table 4.1 shows the results of PCA based upon the correlation matrix for the liquidity

basis. The first PC explains 84.42% of total variance of liquidity basis for EUR. For JPY

and AUD, two PCs are needed to explain at least 80% of total variance. In order to

reduce dimensionality and ease the interpretation, we take the first PC for EUR, but first

and second PC for JPY and AUD respectively. The factor loadings on the first PC all

take positive values and are approximately equally weighted for maturities beyond one

year. We interpret that the first PC captures the common level change of the bases and

the second PC represents the slope change of the term structure of the bases.

Table 4.1: Principal Component Analysis

JPY EUR AUD

Eigenvalue number 1 0.6717 0.8442 0.5926

Eigenvalue number 2 0.1984 0.0978 0.2596

cumulative variance explained 0.8702 0.9420 0.8520

4.4.2 Summary Statistics

Table 4.2, 4.3 and 4.4 show the summary statistics of each variable for each currency pair,

both before and after the crisis. We split the full sample period at August 10th of 2007

and treat the period before and after as two sub-samples, in order to capture potential

structural breaks in the relationship between carry trade return and explanatory variables.
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From mid-August 2007 the financial markets started to experience turmoils (see Baba

and Packer 2009). Our calculations of liquidity bases also show that in the forward and

currency swap markets, the no-arbitrage bounds of JPY and EUR started to be violated

around this time3.

In Table 4.2 we see that for the USD/JPY pair, all variables show large movements in

level and standard deviation after the crisis. For example, the mean of the first PC of the

liquidity basis increased by 55 bps. The standard deviation of the basis surged to more

than 10 times its level before the crisis. Similarly, FX option market volatility variables:

ATMV OL, RR and BF , also significantly changed in both mean and standard deviation.

The interest rate difference substantially decreased after the crisis, due to the stimulatory

policies taken by the US Federal Reserve. The carry trade excess return on average has

been profitable after the crisis, due to the much smaller interest rate difference and the

substantial appreciation of JPY against USD. The results are similar in the EUR and

AUD summary statistics. The standard deviation of the first PC of EUR liquidity basis

increased about 25 times after the crisis, and about 10 times for AUD basis. FX option

volatility measures in both currencies demonstrate much greater variations. In all three

currency pairs, most of the variables experienced greater kurtosis, reflecting large market

movements and heightened uncertainties since the crisis. Finally, for all the variables (ex-

cept EUR RR and first PC of AUD liquidity basis before the crisis), normal distribution is

rejected at 5% significance level. The summary statistics clearly show different dynamics

of the variables before and after the crisis, which provide us with further motivation to

investigate if there exist structural changes.

3The AUD bounds violations started from March of 2008.
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Table 4.2: JPY Summary Statistics

Variables Z IRDIFF ATMVOL BF RR BS1 BS2

Before Crisis

Mean -0.0001 -0.0479 8.0525 0.1766 -0.9864 -31.23 8.89

Median -0.0007 -0.0482 8.0500 0.1750 -0.8250 -31.84 9.23

Maximum 0.0250 -0.0424 11.4750 0.2500 -0.1485 -23.37 15.84

Minimum -0.0160 -0.0526 5.7750 0.1250 -2.5740 -37.24 -0.82

Std. Dev. 0.0055 0.0019 1.2122 0.0355 0.4714 3.50 3.22

Skewness 0.7506 0.7178 0.2854 -0.1158 -0.8677 0.39 -0.61

Kurtosis 4.3516 3.4778 2.4602 1.7887 3.5067 1.94 3.08

Jarque-Bera 69.03 38.72 10.44 25.73 55.29 29.22 25.28

Probability 0.0000 0.0000 0.0054 0.0000 0.0000 0.0000 0.0000

After Crisis

Mean 0.0004 -0.0091 13.2211 0.2892 -2.3635 24.24 -7.95

Median 0.0003 -0.0013 12.1500 0.2990 -1.9650 32.40 -9.82

Maximum 0.0538 0.0036 43.0000 0.8787 0.9000 116.86 40.95

Minimum -0.0348 -0.0584 6.3500 0.1260 -10.4000 -76.42 -40.65

Std. Dev. 0.0081 0.0143 3.9948 0.0771 2.0261 35.72 13.88

Skewness 0.3828 -1.5297 2.3474 2.0217 -1.7958 -0.47 0.33

Kurtosis 6.2908 4.0158 12.0836 15.3900 6.6356 2.18 2.32

Jarque-Bera 481.35 438.19 4408.64 7162.52 1101.28 65.66 38.51

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.3: EUR Summary Statistics

Variables Z IRDIFF ATMVOL BF RR BS1

Before Crisis

Mean 0.0003 -0.0193 6.9864 0.1298 -0.1880 -31.69

Median 0.0004 -0.0197 6.9375 0.1250 -0.2000 -31.65

Maximum 0.0177 -0.0110 9.6750 0.1800 0.2500 -28.55

Minimum -0.0106 -0.0262 4.6500 0.0957 -0.7500 -36.58

Std. Dev. 0.0043 0.0039 1.3141 0.0160 0.1831 1.2618

Skewness 0.4067 0.2218 0.1295 0.1896 0.0658 -0.3058

Kurtosis 4.0785 2.0101 1.8180 2.1343 3.3733 3.1645

Jarque-Bera 30.87 19.91 24.77 15.11 2.65 6.78

Probability 0.0000 0.0000 0.0000 0.0005 0.2657 0.0336

After Crisis

Mean 0.0001 0.0058 12.4031 0.3126 0.7642 25.39

Median 0.0004 0.0040 11.2898 0.2625 0.6840 24.27

Maximum 0.0351 0.0329 29.5000 0.9555 3.3500 156.57

Minimum -0.0430 -0.0270 6.1500 0.1125 -1.4000 -31.31

Std. Dev. 0.0079 0.0088 3.8731 0.1577 0.8771 31.6158

Skewness -0.1798 0.2971 1.5265 2.1142 0.5010 0.6381

Kurtosis 5.3384 3.4659 5.5565 6.9245 3.0745 3.9736

Jarque-Bera 236.03 24.04 668.63 1403.36 42.57 108.65

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.4: AUD Summary Statistics

Variables Z IRDIFF ATMVOL BF RR BS1 BS2

Before Crisis

Mean 0.0004 0.0089 8.0011 0.1539 0.3913 -39.52 8.51

Median 0.0007 0.0097 7.9500 0.1500 0.3750 -39.61 8.87

Maximum 0.0189 0.0126 11.5500 0.2004 1.5000 -32.78 12.97

Minimum -0.0246 0.0043 5.9750 0.1250 -0.1750 -45.94 0.35

Std. Dev. 0.0054 0.0017 1.1114 0.0145 0.1901 2.3680 2.34

Skewness -0.6296 -0.5062 0.7352 0.9210 0.8852 0.1550 -0.73

Kurtosis 4.9953 3.1192 3.3047 4.4039 6.4794 2.8169 3.45

Jarque-Bera 94.17 17.58 38.14 90.74 257.82 2.19 39.54

Probability 0.0000 0.0002 0.0000 0.0000 0.0000 0.3342 0.000

After Crisis

Mean 0.0003 0.0379 15.7495 0.3296 2.0029 -54.67 9.43

Median 0.0012 0.0418 13.7000 0.3000 1.6813 -56.81 10.40

Maximum 0.0724 0.0567 48.5000 0.8250 8.0000 99.11 36.52

Minimum -0.0824 0.0018 8.4936 0.1340 -0.6000 -107.89 -48.18

Std. Dev. 0.0120 0.0102 6.2230 0.1001 1.4798 22.2220 12.38

Skewness -0.5053 -0.8182 2.2310 1.4285 1.8265 0.6974 -0.73

Kurtosis 9.5888 2.9997 8.6008 5.5514 6.6963 5.4547 4.38

Jarque-Bera 1873.62 112.93 2162.26 618.66 1138.78 336.13 171.81

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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4.4.3 Unit Root Tests

Given likely serial correlations, we perform the Phillips–Perron test of unit roots with

Newey–West automatic bandwidth using Bartlett kernel. The tests are taken on both

level and first difference of the variables, before and after the crisis. Table 4.5 presents

the probabilities of t statistics of the tests, with the null hypothesis that unit root is

present. We see that the first differences of all variables are stationary, which is expected

for financial time–series data. However, the levels of all independent variables except BF

are shown to be integrated of order one (I(1)) at 5% significance level4, at least for a

particular currency during a particular sub-period. To avoid non-stationarity we rewrite

the regression model in Eqn. (4.15) by taking the first differences of independent variables:

Zt = β0 + β1�IRDIFFt−1 + β2�ATMV OLt + β3�ATMV OLt−1

+ β4�RRt + β5�RRt−1 + β6�BFt + β7�BFt−1 + β8�BSt + β9�BSt−1 + εt.

(4.19)

4.4.4 Factor Model Regression Results

Regression results of the model in (4.19) for each currency pair are presented in Table 4.6,

4.7 and 4.8. To find if there is a structural break before and after the crisis, we use the

4In Table 4.5, if the reported probabilities exceed 5%, the null hypothesis of non–stationarity cannot
be rejected at 5% significance level. If a non-stationary series must be differenced d times before it
becomes stationary, then it is said to be integrated of order d.
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Table 4.5: Unit Root Test

JPY EUR AUD

Before Crisis Level 1st Diff Level 1st Diff Level 1st Diff

Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IRDIFF 0.1034 0.0000 0.4937 0.0000 0.1063 0.0000

ATMV OL 0.0537 0.0000 0.2767 0.0000 0.4629 0.0000

BF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RR 0.4071 0.0000 0.0178 0.0000 0.0002 0.0000

BS1 0.0320 0.0000 0.0547 0.0000 0.0113 0.0000

BS2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

After Crisis

Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IRDIFF 0.0240 0.0000 0.0007 0.0000 0.0012 0.0000

ATMV OL 0.0003 0.0000 0.1095 0.0000 0.1105 0.0000

BF 0.0000 0.0000 0.0098 0.0000 0.0000 0.0000

RR 0.1367 0.0000 0.0719 0.0000 0.0362 0.0000

BS1 0.5112 0.0000 0.0379 0.0000 0.0423 0.0000

BS2 0.1178 0.0000 0.0291 0.0000 0.0012 0.0000
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Chow Breakpoint test to identify if parameters are stable over the whole period, with Au-

gust 10th, 2007 as the break date. Test results5 show that the break date is supported for

JPY and EUR, but not for AUD. Figure 4.2 shows a plot of the first principal component

of AUD liquidity bases. The jump is around observation 560, corresponding to March

18th, 2008. Chow test result supports March 18th, 2008 as the break point for AUD. We

hence use August 10th, 2007 for JPY and EUR and March 18th, 2008 for AUD to split

the full sample into two sub-periods. The model is then tested for both sub-periods as

well as the full period.

The factor model (4.19) is estimated with ordinary least squares for each currency pair.

To account for heteroskedasticity and autocorrelation 6, the test statistics are based upon

Newey-West estimator with two lags.

Table 4.6 results show that in the USD/JPY carry trade, ATMV OL has significant pos-

itive contemporaneous effect on excess returns in all periods. RR is significantly negative

for all three periods. BF and BS principal components are not significant. Controlling

for other variables, IRDIFF is insignificant in explaining carry trade excess returns. The

one-day lag terms have no predictive power for excess returns.

The EUR regression results in Table 4.7 show that ATMV OL is only significant before

the crisis. The first PC of BS is insignificant before the crisis, but significantly negative

after the crisis. Findings of other variables are similar to those of the JPY regression.

5See the Chow Breakpoint test results in the Appendix D.
6Diagnostic tests are performed for each currency pair. Heteroskedasticity (White’s test) and auto-

correlation (Breusch-Godfrey test) are both present.
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Figure 4.3: First Principal Component of AUD Liquidity Basis.
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Table 4.6: JPY Regression Results

Full Sample Before After

Variables Coeffi. Prob. Coeffi. Prob. Coeffi. Prob.

C 0.0002 0.08 -0.0002 0.12 0.0004 0.01*

�IRDIFF (−1) 0.0046 0.94 0.2272 0.72 -0.0048 0.95

�ATMV OL 0.0026 0.00** 0.0058 0.00** 0.0025 0.00**

�ATMV OL(−1) -0.0004 0.13 -0.0015 0.06 -0.0003 0.16

�RR -0.0094 0.00** -0.0130 0.00** -0.0090 0.00**

�RR(−1) -0.0007 0.36 -0.0027 0.13 -0.0006 0.39

�BF -0.0028 0.48 -0.0064 0.34 -0.0027 0.53

�BF (−1) -0.0008 0.72 0.0035 0.70 -0.0016 0.47

�BS1 0.0000 0.80 0.0003 0.24 0.0000 0.80

�BS1(−1) -0.0001 0.08 0.0000 0.93 -0.0001 0.07

�BS2 0.0000 0.71 0.0000 0.67 -0.0001 0.38

�BS2(−1) 0.0000 0.76 0.0001 0.67 0.0000 0.83

R2 0.4475 0.4635 0.4649

*Regression results of model (4.19) for JPY. The dependent variable Z is the carry trade

excess return by borrowing USD and investing in JPY. The table presents the regres-

sion coefficients and probabilities of test statistics. To account for heteroskedasticity

and autocorrelation, the test statistics are based upon Newey-West estimator with two

lags. Individual coefficients are statistically significant at the *5% or **1% significance

level. Results are based on daily data. The full sample period is from 01/04/2006 to

08/12/2011. The before crisis period is 01/04/2006 to 08/10/2007 and the after crisis

period is 08/12/2007 to 08/12/2011.
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Table 4.7: EUR Regression Results

Full Sample Before After

Variables Coeffi. Prob. Coeffi. Prob. Coeffi. Prob.

C 0.0002 0.19 0.0003 0.03* 0.0001 0.43

�IRDIFF (−1) -0.0652 0.41 0.0785 0.72 -0.0581 0.48

�ATMV OL -0.0006 0.29 0.0049 0.00** -0.0010 0.12

�ATMV OL(−1) 0.0007 0.06 -0.0015 0.13 0.0008 0.05

�RR -0.0239 0.00** -0.0272 0.00** -0.0232 0.00**

�RR(−1) -0.0004 0.78 -0.0035 0.20 -0.0006 0.70

�BF 0.0076 0.17 0.0020 0.92 0.0073 0.19

�BF (−1) 0.0055 0.18 0.0150 0.49 0.0047 0.25

�BS1 -0.0002 0.00** -0.0002 0.22 -0.0002 0.00**

�BS1(−1) 0.0000 0.29 -0.0002 0.46 0.0000 0.27

R2 0.3218 0.2874 0.3392

*Regression results of model (4.19) for EUR. The dependent variable Z is the carry

trade excess return by borrowing USD and investing in EUR. The table presents the

regression coefficients and probabilities of test statistics. To account for heteroskedasticity

and autocorrelation, the test statistics are based upon Newey-West estimator with two

lags. Individual coefficients are statistically significant at the *5% or **1% significance

level. Results are based on daily data. The full sample period is from 01/04/2006 to

08/12/2011. The before crisis period is 01/04/2006 to 08/10/2007 and the after crisis

period is 08/12/2007 to 08/12/2011.
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Table 4.8: AUD Regression Results

Full Sample Before After

Variables Coeffi. Prob. Coeffi. Prob. Coeffi. Prob.

C 0.0004 0.04* 0.0005 0.02* 0.0003 0.23

�IRDIFF (−1) 0.0090 0.96 -0.4312 0.09 -0.0018 0.99

�ATMV OL -0.0046 0.00** -0.0042 0.00** -0.0044 0.00**

�ATMV OL(−1) 0.0006 0.14 -0.0004 0.55 0.0006 0.17

�RR -0.0121 0.00** -0.0079 0.00** -0.0146 0.00**

�RR(−1) -0.0015 0.19 -0.0003 0.89 -0.0018 0.12

�BF -0.0029 0.53 -0.0165 0.02* 0.0023 0.67

�BF (−1) 0.0007 0.90 0.0058 0.22 0.0021 0.76

�BS1 -0.0001 0.04* 0.0001 0.59 -0.0002 0.01*

�BS1(−1) 0.0000 0.40 0.0000 0.86 0.0001 0.29

�BS2 -0.0001 0.09 0.0000 0.68 -0.0002 0.10

�BS2(−1) -0.0003 0.00** -0.0002 0.06 -0.0002 0.02*

R2 0.4569 0.2803 0.5080

*Regression results of model (4.19) for AUD. The dependent variable Z is the carry

trade excess return by borrowing USD and investing in AUD. The table presents the

regression coefficients and probabilities of test statistics. To account for heteroskedasticity

and autocorrelation, the test statistics are based upon Newey-West estimator with two

lags. Individual coefficients are statistically significant at the *5% or **1% significance

level. Results are based on daily data. The full sample period is from 01/04/2006 to

08/12/2011. The before crisis period is 01/04/2006 to 03/18/2008 and the after crisis

period is 03/19/2008 to 08/12/2011.
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In Table 4.8, the AUD results show that ATMV OL effect is significant for all periods.

However, different from JPY and EUR, the contemporaneous effect is negative. BF has

significant negative effect on excess returns before the crisis. The first PC of BS is signifi-

cantly negative after the crisis. The second PC has no significant contemporaneous effect

on excess returns, but the one-day lag term has significant negative effect. This implies

that if the slope of the term structure of the liquidity bases increases, the excess return

of the next day is expected to decrease, holding other principal components fixed. Other

findings are similar to those of the JPY and EUR regressions .

We discuss several important findings in the regression results. Firstly, for all curren-

cies and in all test periods, IRDIFF is not significant in explaining the carry trade

excess return. This points to a potential resolution of the UIP puzzle. Secondly, among

our proposed FX market volatility proxies, ATMV OL is in general significant, but the

effect is different for different currencies. RR is significantly negative for all currencies and

BF is only significant for AUD during the pre-crisis period. Thirdly, the newly proposed

liquidity proxy, BS, is highly significant for EUR and AUD after the crisis. However, this

effect does not appear in the USD/JPY trade.

4.4.5 Panel Regression Results

The individual currency regression results show that the liquidity basis is insignificant

in the USD/JPY carry trade. This is possibly driven by fundamental differences across

currencies. For example, Ranaldo and Soderlind (2010) find that JPY possesses “safe
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haven” properties. Safe-haven currencies provide hedging benefits during market stress

periods. The sharp appreciation of JPY since the GFC offers further support for the haven

status of JPY. On the other hand, Ranaldo and Soderlind (2010) find no significant ev-

idence that EUR is a safe–haven currency. AUD generally appreciates and depreciates

with investors’ risk appetite (Melvin and Taylor 2009). In order to control for currency

individual heterogeneity and identify common structures, we test the model in (4.19) with

the balanced panel data with currency-fixed effects. The results are summarized in Table

4.9.

We see in Table 4.9 that after controlling for currency specific effects, IRDIFF is in-

significant, both before and after the crisis. This suggests that the UIP puzzle can poten-

tially be explained after accounting for the effects of FX market volatility and liquidity.

ATMV OL is insignificant before the crisis, but significantly negative after the crisis. RR

is significantly negative both before and after the crisis. BF is not significant. Since the

crisis the effect of the level (first PC) of BS is significantly negative. For all variables

the one-day lags are not predictive of the excess returns7. Lastly, the R2 increases from

24.70% before the crisis to 34.31% after the crisis, which supports the assertion that the

break date is reasonably chosen.

7Thus one should interpret the regression model as explanatory rather than predictive, i.e. the ex-
planatory variables which are significant point to risks in carry trades for which investors are compensated
by expected return - and not to variables which would allow investors to anticipate positive returns on
carry trades.
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Table 4.9: Panel Regression Results

Full Sample Before After

Variables Coeffi. Prob. Coeffi. Prob. Coeffi. Prob.

C 0.0003 0.04* 0.0001 0.49 0.0003 0.05

�IRDIFF (−1) -0.0703 0.50 -0.2497 0.36 -0.0710 0.52

�ATM -0.0011 0.00** 0.0012 0.14 -0.0011 0.00**

�ATM(−1) 0.0000 0.92 -0.0009 0.08 0.0000 0.98

�RR -0.0184 0.00** -0.0213 0.00** -0.0182 0.00**

�RR(−1) 0.0003 0.72 -0.0012 0.39 0.0003 0.74

�BF -0.0013 0.66 -0.0127 0.09 -0.0011 0.73

�BF (−1) 0.0015 0.63 0.0096 0.24 0.0010 0.76

�BS1 -0.0001 0.00** -0.0001 0.37 -0.0001 0.00**

�BS1(−1) 0.0000 0.81 -0.0001 0.36 0.0000 0.76

�BS2 -0.0001 0.41 0.0001 0.23 -0.0001 0.32

�BS2(−1) -0.0001 0.22 0.0000 0.87 -0.0001 0.27

R2 0.3281 0.2470 0.3431

*This table reports panel regression results with currency-fixed effects. Regression coef-

ficients and probabilities of test statistics are presented. Standard errors are robust to

cross-section heteroscedasticity and contemporaneous correlation among cross-sections,

with White cross-section method. Individual coefficients are statistically significant at

the *5% or **1% significance level. Results are based on daily data. The full sample

period is from 01/04/2006 to 08/12/2011. The before crisis period is 01/04/2006 to

08/10/2007 and the after crisis period is 08/12/2007 to 08/12/2011.
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4.4.6 Robustness Check

The settlement convention in the FX market is t+2 days. Strictly speaking, the overnight

carry trade return based on Xk
t and Xk

t−1 should be calculated with rkt+1 and rUSD
t+1 . We

hence modify the dependent variable and re-estimate all regressions:

Zk
t = (rkt+1 − rUSD

t+1 )− (Xk
t −Xk

t−1). (4.20)

Results based upon the adjusted excess return are almost unchanged. We therefore pro-

pose that the effect of settlement lag is negligible.

4.5 Conclusion

This study provides empirical support for a liquidity based model to explain the UIP

puzzle. We study the effects of liquidity and volatility on carry trade excess returns. We

develop an alternative proxy for FX market liquidity - violations of no-arbitrage bounds

for forward exchange rates and currency basis swaps. We also propose FX market specific

volatility proxies. Our hypothesis is that both proxies should be significant in explaining

carry trade performance and hence useful for a resolution of the UIP puzzle.

The sample is chosen to cover periods both before and after the GFC in order to capture

structural breaks. A linear factor model is proposed and tested for both individual cur-

rencies and the panel data. Both proxies are significant. The results are robust to the



101 4.5 Conclusion

settlement lag in the FX market.

We contribute to the extant literature from three perspectives. Firstly, our liquidity proxy

captures both market liquidity risk and funding liquidity risk. Secondly, we demonstrate

that liquidity and volatility factors change effects since the GFC. Lastly, we provide evi-

dence that the UIP puzzle may be resolved after controlling for liquidity risk and market

volatility.



Chapter 5

A Consistent Framework for

Modelling Spreads in Tenor Basis

Swaps

5.1 Introduction

In this chapter we focus on the single currency tenor swaps (TS) and propose a consis-

tent framework to reconcile the differences between the classic “single curve” approach

and practitioners’ “multiple curve” approach. We conjecture that liquidity risk is the

fundamental factor that has caused large spreads in tenor swaps since the GFC. We

then construct an intensity model to describe the arrival time of liquidity shocks with

a time-inhomogeneous Poisson process. With the no-arbitrage argument and non-linear

constrained optimisations, we calibrate the model parameters to quoted basis spreads in

tenor swaps .

102



103 5.1 Introduction

We present an arbitrage strategy to exploit the large basis in a TS. Assume that for

a given currency, the current market quote is 3M LIBOR + 50 bps exchanging 6M LI-

BOR flat for 6 months. The notional amount is 1 unit and there are no transaction costs.

An arbitrageur, which we assume is a LIBOR counterparty, such as an AA-rated bank,

can then make arbitrage profit by,

(1) Enter the TS in which the arbitrageur pays 6M LIBOR and receives 3M LIBOR

+ 50 bps.

(2) Roll over 3M borrowing at 3M LIBOR for 6 months, with unit notional.

(3) Deposit the notional at 6M LIBOR.

The net cash flows are summarized in Table 5.1. In Table 5.1, L3m(0) refers to the

3M LIBOR fixed at time 0. L3m(0.25) is the 3M LIBOR fixed at the end of 3 months and

0.25 is the year fraction. L6m(0) refers to the 6M LIBOR fixed at time 0.

The notional is canceled by the loan and deposit at time 0 and at the end of 6 months.

The floating payment of the loan is canceled by the receipt from the TS. The payment

of 6M LIBOR in the TS is financed by the interest income of the deposit. All cash flows

are netted out except the spread of the TS, which becomes the profit every 3 months.

Because the arbitrageur has zero initial cost, this is clearly an arbitrage.
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Table 5.1: Arbitrage Strategy for Tenor Swap

Strategy t = 0 t = 0.25 t = 0.5

Loan 1 -L3m(0) · 0.25 -L3m(0.25) · 0.25− 1

Deposit -1 0 L6m(0) · 0.5 + 1

Swap 0 (L3m(0) + 50bps) · 0.25 (L3m(0.25)) + 50bps) · 0.25− L6m(0) · 0.5
Net Cash Flow 0 12.5 bps 12.5 bps

If the arbitrage strategy in Table 5.1 is practical, we would expect that arbitrageurs take

large positions in TSs to make riskless profit. However, during the crisis such large spreads

persisted and exceeded transaction costs from bid/ask spreads, and apparent arbitrage

opportunities do not seem to be taken.

The remainder of this chapter is organized as follows. Section 2 sets up the model frame-

work. Section 3 presents the empirical results and Section 4 concludes.

5.2 Model Set-up and Implementation

5.2.1 Liquidity risk, Basis Spreads and Limits to Arbitrage

We propose that liquidity risk is the fundamental factor that led to anomalies in the

TS market, as well as prevented arbitrage opportunities from being fully exploited. We

choose a liquidity based model for TS spreads for two reasons. Firstly, liquidity is the
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factor which empirically seems to be driving the spreads in the TS market 1. Secondly,

there is a need to reduce dimensionality from having a separate basis spread term struc-

ture for each tenor pair, which is the case in the “multiple curve” modelling approach.

To illustrate the effect of liquidity risk, we revisit the arbitrage strategy in Table 5.1.

During the crisis, suppose a lender in the interbank (i.e. LIBOR) market rolls over

two consecutive 3-M lending. At the end of 3 months if there is funding shortage, the

lender can choose not to make the second lending. In contrast, if the lender makes a

6M lending, there is no such flexibility. Ceteris paribus, because the 6M lending involves

higher liquidity risk than the 3M roll-over lending, 6M LIBOR should entail a liquidity

premium over the 3M LIBOR. As the crisis developed and intensified, liquidity risk was

amplified, which led to large liquidity risk premium for longer term loans over the short

term ones.

However, since the GFC tenor swaps are “almost” free of counterparty credit risk due

to the widespread use of collateral. Johannes and Sundaresan (2007) find that due to

collateral, market participants commonly view swaps as risk free and swap cash flows

should be discounted at the risk-free rate. Bianchetti (2010), Mercurio (2010) and Piter-

barg (2010) also note that it makes sense to discount collateralized cash flows by the

OIS rate, which is regarded as the best proxy for the risk free rate. It is hence incorrect

to compensate the party receiving 6M LIBOR in a swap (rather than a loan) with the

liquidity premium. To make the contract fair, a positive spread equal to the liquidity

premium should be added to the 3M LIBOR. We propose that this is the reason the

1See Subsection 2.3.2 for for a review of recent studies.
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spread is always added to the shorter tenor rate. Large liquidity risk premium during the

crisis hence also explains the large spreads quoted in tenor swaps .

In the arbitrage strategy proposed in Table 5.1, if a liquidity shock arrives between

initiation and the end of 3 months, the lender may refuse to roll over the loan to the

arbitrageur. Because the arbitrageur is committed to the 6M lending, he/she has to re-

finance in a stressed market. The potential loss due to refinancing (i.e. at a higher rate

than L3m(0.25)) could offset or even exceed the gain from the spreads in the swap. There-

fore, although the market may appear rife with arbitrage opportunities, the strategy may

break down.

5.2.2 Model and Implementation

We use an intensity model to describe the arrival time of liquidity shocks with a time-

inhomogeneous Poisson process N(t), with deterministic intensity λ(t). The basic idea of

intensity models is to describe the shock time τ as the first jump time of a Poisson process.

Although shocks are not induced by observed market information or economic fundamen-

tals, by formulation intensity models are suited to model credit spreads and calibrate to

credit default swap (CDS) data (see Brigo and Mercurio 2006). In this study we adopt

this technique and propose an intensity model for basis spreads in TSs and calibrate to

market data. See Appendix E for basic properties of time-inhomogeneous Poisson process.

We consider a N -year maturity TS which exchanges the i-th tenor LIBOR plus a spread
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Bi,j,N for the the j-th tenor LIBOR, where i < j and Bi,j,N > 0. N , i and j are expressed

in terms of year fractions. We assume that an arbitrageur follows the arbitrage strategy in

Table 5.1. The arbitrageur gains Bi,j,N ∗ i at the end of each i-th tenor. We propose that

the expected loss due to refinancing given a liquidity shock explains why the arbitrage

strategy breaks down. Hence we impose the no-arbitrage condition that the expected loss

offsets the expected gain. To gain more model tractability, we make several simplifying

assumptions,

1) The TS is perfectly collateralized with zero threshold, which means the posted col-

lateral must be 100% of the contract’s mark-to-market value. The amount of collateral

is continuously adjusted with zero minimum transfer amount (MTA) 2. Because daily

margin call is quite common in the market, continuous adjustment should reasonably well

approximate the actual practice (see Fujii et al. 2009).

2) The first jump of the Poisson process can occur within any shorter tenor of the swap

and there can be at most one jump within each shorter tenor. Upon the first liquidity

shock, the arbitrageur is unable to roll over the shorter tenor loan and has to refinance

until the end of the associated longer tenor. The instantaneous loss rate due to refinancing

is π(t). The arbitrageur then shuts down the borrowing, the lending and the TS in the

arbitrage strategy at the end of the longer tenor within which the first jump occurs. To

illustrate this assumption, we use a 3M vs 12M TS for 12 months. If the first liquidity

shock occurs between initiation and 3 months, the borrowing and lending can only be

2The smallest amount of value that is allowable for transfer as collateral. This is the lower threshold
below which the collateral transfer is more costly than the benefits.
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shut down at the end of 12 months. The arbitrageur also unwinds the TS at the end of

12 months.

3) We assume remaining risks are negligible for the arbitrageur, including the default

risk of the longer tenor lending and the mark–to–market value of the TS at the termina-

tion time.

Based on such simplifying assumptions, we calculate the present value (PV) of the ex-

pected gain and of the expected loss of the arbitrage strategy. We firstly examine the

distribution of the first jump time τ . We assume that τ can occur within any shorter

tenor. However, if τ arrives within the last shorter tenor for a given longer tenor, it is

irrelevant because the arbitrageur can shut down the strategy at the end of the longer

tenor without refinancing. Hence total number of relevant shorter tenors within which τ

occurs is N
j
∗ ( j

i
− 1) and the PV of expected loss is expressed as

PVLoss =
K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)
PQ(Tk−1 < τ ≤ Tk)D

OIS(T0, Tη(k)) (5.1)

=
K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)(
e−

∫ Tk−1
0 λ(u) du − e−

∫ Tk
0 λ(u) du

)
DOIS(T0, Tη(k)),

where PQ denotes the probability under the risk-neutral measure Q, DOIS(·, ·) is the

discount factor from the OIS curve. K = N
i
is the total number of shorter tenors until

maturity and Tk = k · i. ηk is expressed as
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η(k) = min (m |Tk ≤ Tm·n) · n, (5.2)

where n = j
i
. On the other hand, the PV of expected gain is

PVGain =
K∑
k=1

(Bi,j,N · i)
(
e−

∫ T(η(k)−n)

0 λ(u) du

)
DOIS(T0, Tk). (5.3)

The no–arbitrage condition is hence

K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)(
e−

∫ Tk−1
0 λ(u) du − e−

∫ Tk
0 λ(u) du

)
DOIS(T0, Tη(k))

=
K∑
k=1

(Bi,j,N ∗ i)
(
e−

∫ T(η(k)−n)

0 λ(u) du

)
DOIS(T0, Tk). (5.4)

Given the OIS discount curve, we can use Eqn. (5.4) to calibrate the loss rate π(t) and

a risk–neutral intensity function λ(t) to the selected set of tenor swaps. In credit risk

literature (e.g. Schönbucher 2003) where the intensity model is used to calibrate credit

spreads, joint calibration of the recovery rate and the deterministic intensity functions

often produces unstable results. Hence the recovery rate, comparable to our π(t), is often

made constant and calibrated separately. We adopt this technique to calibrate a constant

loss rate π and λ(t).
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To obtain an estimate of π, as the first step we assume λ(t) = λ, where λ is a constant

and jointly calibrate π and λ. To do this we use the mean-squared deviation function to

obtain the optimal fit by minimizing the function by varying π and λ:

N∑
i=1

(
PV i

Loss(π, λ)

PV i
Gain

− 1

)2

, (5.5)

where N is the number of TSs used for the calibration. This measure uses relative devi-

ations and hence is independent of the scale of individual PVs.

In the second step, we use the estimated π from step 1 as the input and calibrate time-

dependent and piecewise constant λ(t) to the same set of selected swaps. To achieve a

perfect fit and impose minimal structure on the intensity curve, we use the bootstrap

method to strip λ(t) from observed spreads. The bootstrap procedure is as follows,

1) Tenor swaps are ordered in the appropriate order 3.

2) λ(t) is piecewise constant. We first find λ1 such that

PV 1
Loss(π, λ1) = PV 1

Gain. (5.6)

We then work iteratively to evolve the intensity curve. Eventually, given λ1, ..., λN−1 we

find λN such that

3See details in Table 5.3 of subsection 5.3.2.
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PV N
Loss(π, λ1, ..., λN−1;λN) = PV N

Gain. (5.7)

5.3 Data, Methodologies and Results

Because the set-up and implementation of the intensity model is currency independent,

we collect USD data only. The calibration procedure is identical for currencies other than

USD.

5.3.1 Construction of OIS Discount Factors

We use the standard bootstrap with interpolation method to construct the USD OIS dis-

count factors required for both sides of Eqn. (5.4). To this end, we collect USD OIS rates

available from Bloomberg. Maturities include 1-week (1W), 2W, 1M, 2M, 3M, 4M, 5M,

6M, 7M, 8M, 9M, 10M, 11M, 1Y, 15M, 18M, 21M, 2Y, 3Y, 4Y, 5Y and 10Y. The sample

period starts from July 28th, 2008, since when the 10Y OIS rates are available, and ends

at April 2nd, 2013. OIS rates beyond the 10Y maturity are only quoted from September

27th, 2011.

In order to extend the OIS curve to 30Y maturity, we use the USD Fed Funds (FF)

basis swap quotes to approximate OIS rates (see, for example, Bloomberg 2011). FF

basis swaps exchange the non-compounded daily weighted average of the overnight FF

effective rate 4 for a 90-day period plus a spread and 3M USD LIBOR flat, with quar-

4FF rate is the interest rate at which depository institutions trade funds held at the U.S. Federal
Reserve with each other. The weighted average of FF rate across all transactions is the FF effective rate.



112 5.3 Data, Methodologies and Results

terly payment frequency. On the other hand, two parties in an OIS agree to exchange

the difference between interest accrued at the fixed rate and interest accrued at the daily

compounded FF effective rate, with annual payment frequency. Although having differ-

ent payment frequency and compounding conventions, both OIS and FF basis swaps are

defined in terms of the daily reset FF effective rate, hence they are observables of the

same underlying security.

By ignoring minor discrepancies such as compounding for weekends and holidays,

Bloomberg (2011) proposes a quick approximation of OIS rates with IRS rates and FF

basis swap spreads. Firstly, a fixed-floating FF swap can be set up by simultaneously

entering an IRS and an FF basis swap. In the IRS, the fixed rate is received and the 3M

LIBOR is paid. In the FF basis swap, the 3M LIBOR is received and FF rate plus the

spread is paid. The net position is therefore IRS fixed rate vs daily average FF rate plus

the spread. Based upon this setup, let SN and FFN denote the N-year IRS fixed rate and

FF basis swp spread, the OIS rate OIStN can be approximated as

OIStN =

⎛
⎝(

1 +
̂OIStN

360

)90

− 1

⎞
⎠× 4, (5.8)

where

̂OIStN =

(
1 +

rQ − FFN

4

)4

− 1, (5.9)
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and

rQ =

((
1 +

SN × 360
365

2

) 2
4

− 1

)
× 4. (5.10)

Eqn. (5.10) converts the semiannually paid IRS rate to quarterly paid (i.e. 3M LI-

BOR) rate and ̂OIStN annualizes the quarterly paid FF effective rate. OIStN then is the

OIS rate with the daily compounding adjustment.

We then collect the IRS rates and FF basis spreads with corresponding maturities to

approximate 12Y, 15Y, 20Y, 25Y and 30Y OIS rates. These maturities are chosen be-

cause they started to be quoted from September 27th, 2011. Because FF basis swaps are

quoted from September 22nd, 2008, we approximate OIS rates from September 22nd, 2008

to September 26th, 2011. To evaluate how well this method performs, we compare actual

quotes of OIS rates and approximated OIS rates from September 27th, 2011 to April 2nd,

2013. Table 5.2 shows that the approximated rates track the actual rates reasonably well.

Table 5.2: Average OIS Rate Approximation Errors

Maturity 12-year 15-year 20-year 25-year 30-year

Basis Points 0.71 0.94 1.17 0.98 0.70

Percentage 0.37% 0.43% 0.51% 0.40% 0.28%
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We therefore have OIS rates with maturities from 1 week up to 30 years. Since OIS swaps

have annual payment frequency, there is only one exchange of payments up to 1 year.

Therefore to bootstrap the OIS curve up to 1 year, OIS rates are treated as deposit rates.

With the day count convention of Actual/365, the OIS discount factors are calculated as

DOIS(ti) =
1

1 + τi ·OIS(ti)
, (5.11)

where τi is the year fraction of maturity ti. Similar to using IRS rates to construct the

LIBOR discount curve, OIS discount curves from 1Y to 30Y are extracted from par OIS

rates with the standard bootstrap method. Eqn. (5.12), (5.13) and (5.14) summarize this

method:

OIS(tN) ·
N∑
i=1

DOIS
ti

+DOIS
tN

= 1, (5.12)

where N is the total number of payments. Discount factors DOIS
tN

are iteratively obtained

with

DOIS
tN

=
1−OIS(tN) ·

∑N−1
i=1 DOIS

ti

1 +OIS(tN)
. (5.13)

For maturities not quoted from Bloomberg, OIS rates are linearly interpolated with avail-

able quotes:

OISt = OISti +

(
t− ti

ti+1 − ti

)
× (OISti+1

−OISti), ti < t < ti+1. (5.14)
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5.3.2 Bootstrap Liquidity Spreads

We bootstrap piecewise constant intensity λt to achieve perfect fits without imposing any

functional form. We collect available TS data from Bloomberg, including 1M vs 3M, 3M

vs 6M and 3M vs 12M swaps. We aim to include all TS instruments in order to capture as

much market information as possible and evolve maturities up to 30 years. To illustrate

our bootstrap approach, consider the 1M vs 3M swap with 3M maturity. Based upon

the model assumptions, the first liquidity shock can arrive between 0 and 1 month, 1 and

2 months or 2 and 3 months. However, if the shock is between 2 and 3 months, it is

irrelevant because the arbitrageur shuts down the strategy at the end of 3 months and

does not need to refinance. Therefore, we assume a constant intensity between 0 and 2

months and use the 1M vs 3M swap with 3M maturity to calculate the intensity λ1 with

Eqn. (5.4). With λ1, we are then able to calculate the constant intensity λ2 between 2

and 3 months, by using the 3M vs 6M swap with 6M maturity. With this approach, we

establish 36 piecewise constant intensities, which are summarized in Table 5.3.

In the bootstrap procedure, we exclude 3M v 12M swaps for two reasons. Firstly, 3M v

12M swaps quotes are only available from August 6th, 2009. Secondly, in our approach

to extending bootstrap intervals, 3M v 12M swaps are redundant once we have used 3M

v 6M swaps. Because 3M v 6M swaps have been quoted for a much longer period, we

propose the quotes should be more consistent and reliable. Having established the boot-

strap procedure, we use Eqn. (5.4) to calculate piecewise constant intensities. We start
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Table 5.3: Bootstrap Piecewise Constant Intensities

Piecewise Constant λt Bootstrap Interval Tenor Swap
λ1 0-2 months 1v3 3-month
λ2 2-3 months 3v6 6-month
λ3 3-5 months 1v3 6-month
λ4 5-8 months 1v3 9-month
λ5 8-9 months 3v6 1-year
λ6 9-11 months 1v3 1-year
λ7 11-15 months 3v6 18-month
λ8 15-17 months 1v3 18-month
λ9 17-21 months 3v6 2-year
λ10 21-23 months 1v3 2-year
λ11 23-33 months 3v6 3-year
λ12 33-35 months 1v3 3-year
λ13 35-45 months 3v6 4-year
λ14 45-47 months 1v3 4-year
λ15 47-57 months 3v6 5-year
λ16 57-59 months 1v3 5-year
λ17 59-69 months 3v6 6-year
λ18 69-71 months 1v3 6-year
λ19 71-81 months 3v6 7-year
λ20 81-83 months 1v3 7-year
λ21 83-93 months 3v6 8-year
λ22 93-95 months 1v3 8-year
λ23 95-105 months 3v6 9-year
λ24 105-107 months 1v3 9-year
λ25 107-117 months 3v6 10-year
λ26 117-119 months 1v3 10-year
λ27 119-141 months 3v6 12-year
λ28 141-143 months 1v3 12-year
λ29 143-177 months 3v6 15-year
λ30 177-179 months 1v3 15-year
λ31 179-237 months 3v6 20-year
λ32 237-239 months 1v3 20-year
λ33 239-297 months 3v6 25-year
λ34 297-299 months 1v3 25-year
λ35 299-357 months 3v6 30-year
λ36 357-359 months 1v3 30-year
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from the 1M v 3M with 3M maturity swap to calculate λ1, then work iteratively to find

λ2, λ3, ..., λ36.

The bootstrap results demonstrate two problems. Firstly, the term structure of calibrated

intensities severely oscillates. Secondly, many of the intensities are negative. Severe os-

cillations are an undesirable property for the term structure of intensities. Even worse,

negative intensities invalidate the fundamental model assumption because λ(t) must be

a positively valued function. To illustrate, Figure 5.1 shows the bootstrap results on Oct

10th, 2008, with π = 0.1 which minimizes the deviation function (5.5). The order of

intensities in Figure 5.1 follows the sequence of intensities constructed in Table 5.3.
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Figure 5.1: Bootstrapped Piecewise Constant Intensities as at 10/10/2008.
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5.3.3 Analytical Analyses

To understand the cause of the problems shown in the bootstrap results, we perform an

analytical analysis of the sample data. We conjecture that the oscillations and negative

intensities result from the data. In the standard bootstrap of interest rate term structure

with LIBOR/IRS data, in general the shape of the curve is monotonic or humped, with-

out oscillations. The positivity of the curve is also almost always guaranteed. Compared

to IRS, TSs, especially those of longer maturities, are only recently quoted. Table 5.4

summarizes the starting year of IRSs and TSs of various maturities,

Table 5.4: Starting Year of Swap Quotes from Bloomberg

Maturity 1-yr 5-yr 10-yr 15-yr 20-yr 25-yr 30-yr

IRS 1996 1988 1988 1994 1994 1999 1994

1M v 3M TS 1997 1997 1997 2008 2007 2008 2007

3M v 6M TS 1997 1997 1997 2008 2008 2008 2008

We find from Table 5.4 that TSs beyond 10Y maturity have been quoted for a much

shorter period of time, compared to corresponding IRSs. In addition, since these instru-

ments were introduced, financial markets have experienced turmoils such as the GFC and

European sovereign-debt crisis. We hence suspect that the TS market is much less ma-

ture and consistent than the IRS market and the quotes may have caused the problems

in the bootstrap results. To find out whether this is the case, we analyze respectively the

shape of the term structure of the quoted spreads of 1M v 3M swaps and 3M v 6M swaps.

To control for transaction costs, we also consider the bid-ask spread of the quotes. The
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analysis takes the following steps,

1) For each sample date, we extract the bid rate and the ask rate of the basis spread

for each swap and list them in two rows. The ask rates are in the upper row and bid

rates in the lower row. For each row, we order the rates in the ascending order of swap

maturity. Hence a matrix S of 2 rows and 19 columns is formed for 1M v 3M swaps (17

columns for 3M v 6M swaps). Matrix elements are denoted as Si,j, where i is the row

index and j is the column index.

3) For 1M v 3M swaps, a matrix R of 2 rows and 19 columns (17 columns for 3M v 6M

swaps) is used to record the results of the analysis. We initialize R by setting R1,1 = S1,1

and R2,1 = S2,1. For i = 1, we evolve the matrix R along the columns as follows:

If Ri,j ≥ Si,j+1 ≥ Si+1,j+1, then Ri,j+1 = Si,j+1;

If Si+1,j+1 < Ri,j < Si,j+1, then Ri,j+1 = Ri,j;

Else, Ri,j+1 = Si+1,j+1.

For i = 2, the algorithm is:

If Ri,j ≥ Si−1,j+1 ≥ Si,j+1, then Ri,j+1 = Si−1,j+1;
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If Si,j+1 < Ri,j < Si−1,j+1, then Ri,j+1 = Ri,j;

Else, Ri,j+1 = Si,j+1.

The above algorithm is designed such that potential oscillations in the term structure

of spreads are minimized. The rationale is that the actual transacted spread should al-

ways be bounded by the bid and the ask rate. Hence, in evolving the spread curve, we

set the spread that spans a particular interval at the rate which minimises the change

from the previous spread, with the constraint that the rate must be within the bid-ask

bounds. As a result, for 1M v 3M swaps, we have two term structures of spreads on each

sample date, one consists of R1,1, R1,2, ..., R1,19 and the other consists of R2,1, R2,2, ..., R2,19.

We then examine the shape of the spread curves resulting from the algorithm. If both

term structures oscillate, we conclude that even after considering the bid-ask spread, the

oscillations still persist on that sample date. By this criteria, we identify 90 days which

shows oscillations for the 1M v 3M swaps and 68 days for the 3M v 6M swaps. After

counting for overlapping days, there are 142 distinct days of oscillations. Table 5.5 shows

a breakdown of these days by years.

Table 5.5: Days of Oscillations by Year

Year 2008 2009 2010 2011 2012 2013

Days 33 11 22 62 12 2
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It is worth noting that the sample period is from September 22nd, 2008 to April 2nd,

2013. Hence for 2008 and 2013 we do not have a full year. However we can observe that

a large number of oscillation days occurred in the last three months of 2008. The number

of such days dropped significantly during 2009, but started to pick up in 2010 and inten-

sified in 2011. Since 2012 such anomalies have stabilized and only occurred infrequently.

Such an observation broadly corresponds to major financial market developments during

the sample period. The late 2008 marked the peak the GFC. The European sovereign

debt-crisis emerged in early 2010, intensified during 2011 and started to stabilize since

mid-2012.

This finding lends support to our conjecture that during market turbulence, the quotes

of TSs are inconsistent and the shape of the spread curve is not well-behaved. This could

potentially be explained by the observation that TS market is less mature and developed,

a problem that could be amplified during stressed market conditions.

The other analysis we perform on the sample data is related to the negative quotes.

Because we propose that the transacted spread should be bounded by the bid and the

ask rate, if the ask rate is negative, a negative transacted spread is necessarily implied.

In principle, the arbitrage strategy in Table 5.1 can be reversed 5 to exploit the negative

basis spread attached to the shorter tenor LIBOR. However, based on the model setup, a

negative spread would imply a negative intensity or a negative loss rate or both. Hence

model assumptions are violated. There are 74 days in our sample on which negative ask

5By reversing the strategy, the arbitrageur should borrow at 6M LIBOR and lend at 3M LIBOR. In
the TS, the arbitrageur receives 6M LIBOR and pays the 3M LIBOR plus the negative spread.
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rates are quoted. The distribution of these days are as follows,

Table 5.6: Days of Negative Spreads

Year 2008 2009 2010 2011 2012 2013

Days 39 29 6 0 0 0

From Table 5.6 we observe that the days with negative spreads are concentrated around

the peak of the GFC. We surmise that inconsistent and less meaningful quotes may have

resulted from large volatility and uncertainty associated with the market stresses. Taking

into account overlapping days, we identify 192 distinct days with oscillations and/or nega-

tive spreads. In our subsequent analysis, we decide to exclude these days from the sample

because these data lack meaningful behavior and/or conflict with the proposed model,

and we justify this choice by the above argument that these days represent anomalies

due to an immature market, which seem to be disappearing as the tenor swap market

matures. As a result, the final sample period includes 787 trading days.

5.3.4 Global Optimization

Recognizing the problems with the bootstrap results and data issues, we instead calibrate

model parameters with global optimization. By optimization, structures and constraints

can be imposed to avoid oscillations and negative intensities. To achieve best fits, both

intensities and loss rates are made time-dependent and piecewise constant.
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The global optimization is implemented as follows. We denote PVGainBid and PVGainAsk

respectively as the PV of the gains based on the bid rate and the ask rate of the TS

spread. To fully take account of transaction costs in the arbitrage strategy proposed in

Table 5.1, we subtract the LIBOR-LIBID spread (assumed to be fixed at 12.5 bps) from

the bid rate of TS spread to calculate PVGainBid. This is appropriate because when the

arbitrageur lends fund, the deposit rate is the LIBID rate. Therefore the lower bound of

the arbitrage profit is PVGainBid. For each trading day, we then minimize the loss function

G:

G =
N∑
i=1

[max (PV i
Loss − PV i

GainAsk, 0) + max (PV i
GainBid − PV i

Loss, 0)]
2, (5.15)

where N = 36 is the number of swaps used in the global optimisation. Thus the loss

function is chosen such that for a given set of parameters πi and λi, the optimisation error

is zero if the following condition is satisfied:

PV i
GainBid ≤ PV i

Loss ≤ PV i
GainAsk. (5.16)

In (5.16) we set PV i
GainBid as the lower bound and PV i

GainAsk as the upper bound for

PV i
Loss. If PV i

Loss based upon the calibrated parameters falls within the bounds, we as-

sume that the PVGain based on the actual transacted rate is matched and the error is set

to zero. Therefore we only have positive error terms if PV i
Loss is below the lower bound

or above the upper bound.

In order to obtain sensible fits and avoid severe oscillations, we also impose a measure of
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smoothness on the optimization. We use the following smooth measure to penalize large

oscillations of the intensities:

Smoothλ =
N−2∑
i=1

[(λi+2 − λi+1)− (λi+1 − λi)]
2

=
N−2∑
i=1

(λi+2 + λi − 2λi+1)
2. (5.17)

We therefore minimize the objective function - weighted sum of the loss function and the

smoothness measure:

Scaleloss ·G+ Scalesmooth · Smoothλ. (5.18)

where Scaleloss is the damping factor on the loss function and Scalesmooth is the damping

factor on the smoothness measure. The damping factors can be adjusted, depending on

the main objective of the optimization. If the dominating objective is to minimize the

fitting errors, Scaleloss should be assigned a higher weight than Scaleλ. On the other

hand, if the main objective is to have a smooth term structure of intensities without large

fluctuations, Scaleλ should be assigned a higher weight than Scaleloss.

To implement the global optimization scheme, we set initial values for intensities prior to

optimisation as

λi = e(−0.1Ti) · Spread1
100

, ∀i ∈ [1, 2, ..., N ], (5.19)
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and apply the constraint

0.00001 < λi < 0.99999, ∀i ∈ [1, 2, ..., N ]. (5.20)

The time-decay function in (5.19) is chosen because based upon the analysis of the sample

data, the shape of the spread curve is monotonically decreasing on most of the trading

days. Ti stands for the maturity of each bootstrap interval end. The weight factor of the

decay function Spread1
100

is used to assign different sets of initial intensities for each sample

date, based upon the spread level of 1M v 3M TS with 3M maturity on that day. Eqn.

(5.19) is used to both avoid oscillations and ensure smoothness of the calibrated intensi-

ties. The constraint in (5.20) is imposed to guarantee positivity of intensities, as well as

prevent unusually high values.

We also set initial conditions for the loss rates. As we have no view on the shape of

the loss rates, a constant is chosen as initial inputs for the optimization:

πi = 0.01, ∀i ∈ [1, 2, ..., N ], (5.21)

Similarly, positive bounds are imposed:

0.0001 < πi < 0.1, ∀i ∈ [1, 2, ..., N ]. (5.22)
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5.3.5 Optimisation Results

We have three key results from the proposed global optimisation scheme, in relation to

the fitting errors, intensities and loss rates.

1) On 247 sample days the fitting error is zero, i.e. the loss function G in Eqn. (5.15) is

zero and the condition in (5.16) is satisfied. The bounds we set for the intensities and the

loss rates are obeyed for all sample days.

2) The term structure of the calibrated intensities monotonically decreases on all sample

days. This is expected given the initial condition we set for intensities in Eqn. (5.19).

3) The loss rate curve repeatedly oscillates on 111 sample days.

Figure 5.2, 5.3 and 5.4 are used to illustrate the optimisation results. In Figure 5.2

we observe that on January 27th, 2010, for all tenor swaps included in the sample, the

PV of loss based on the calibrated intensities and loss rates is bounded by the PV of gains

based on the bid rate of the spread (lower bound) and the ask rate of the spread (upper

bound). Hence the fitting error is zero. In Figure 5.3 we see on April 20th, 2009 the

calibrated piecewise constant intensities monotonically decrease. However, on the same

day the loss rate curve in Figure 5.4 repeatedly oscillates.
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Figure 5.2: Global optimisation Fits as at 27/01/2010.
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Figure 5.3: Global optimisation Intensity Curve as at 20/04/2009.
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Figure 5.4: Global optimisation Loss Rate Curve as at 20/04/2009.

5.4 Conclusion

In this chapter we focus on the high-dimensional modelling problem, i.e. “multiple curve”

approach by practitioners, existing in the single-currency TS market. In order to model

the observed large spreads in market instruments, we propose an intensity-based model

to describe the arrival time of liquidity shocks. Such an approach also helps to reduce

the modelling dimension down to two economically fundamental variables: the intensity

of liquidity shocks and loss due to refinancing in an illiquid market.
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The analytical analyses of the problems in the bootstrap results show that the TS market,

compared to the more established IRS market, is less mature and consistent. The immatu-

rity and inconsistency of the market quotes is especially demonstrated during the market

turbulence. We then propose a global optimisation scheme to calibrate time-dependent,

piecewise constant model parameters. The optimisation results show the symptom of

many degrees of freedom in this set-up. Though perfect fits are achieved and term struc-

tures of intensity of liquidity shock are mostly well-behaved, the loss rates repeatedly

oscillate, leading us to address this by constructing a more parsimonious model in the

next chapter.



Chapter 6

Parsimonious Modelling of Intensity

and Loss Rate

6.1 Introduction

Our optimization results in Chapter 5 show symptoms of overparameterisation. Firstly

both intensities and loss rates are made piecewise constant, deterministic functions of

time, resulting in 72 degrees of freedom. Secondly, the loss rate curves show a lack of

structure through repeated oscillations on 111 sample days.

A model with a large number of parameters, such as the one used in our optimization,

is able to perfectly fit the observed data. However, it is less likely to explain well than

a parsimonious model which assumes more smoothness. Furthermore, the fitting errors

of the parsimonious model may represent an opportunity to study the systematic and

idiosyncratic features of the data that the model fails to capture (see, for example, Nelson

130
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and Siegel 1987).

We are thus motivated to propose a parametrically parsimonious model for both intensi-

ties and loss rates, which allows us to capture a family of curve shapes. Nelson and Siegel

(1987) proposed a model to fit the term structure of interest rates. The Nelson-Siegel

model is consistent with a level-slope-curvature factor interpretation of the term struc-

ture (e.g, Litterman and Scheinkman 1991) and widely used in academia and practice.

Nelson and Siegel (1987) models the instantaneous forward rate f(τ) as

f(τ) = β0 + β1e
(−τ/s) + β2(τ/s)e

(−τ/s), (6.1)

where τ is time to maturity and β0, β1, β2 and s are constants to be estimated. The model

hence consists of three factors: the constant β0 represents the long term interest level, the

exponential decay function β1e
(−τ/s) and a Laguerre function in the form of xe−x. The

role of the factors can be seen by examining the limiting behavior of time to maturity.

If we let τ → ∞, the second and the third factor vanish and the long-term forward rate

converges to β0. As τ → 0, the Laguerre function vanishes and the forward rate converges

to β0 + β1. Hence −β1 measures the slope of the yield curve, where a positive (negative)

β1 represents a downward (upward) slope. Lastly, the Laguerre function represents the

curvature of the yield curve and the shape parameter s > 0 determines the rate at which

the slope and the curvature decay to zero. The location of the maximum (minimum) value

of the curvature is determined by the value of s. Small (large) values of s correspond to

rapid (slow) decay and therefore suitable for fitting curvatures at low (longer) maturities.
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By pre-specifying a grid of shape parameters, Nelson and Siegel (1987) transformed the

non-linear model in Eqn. (6.1) to a linear model and performed ordinary least squares

(OLS) regressions for 37 data sets. The regression results explained a large fraction of the

variations in the yields of treasury bills, with a median R2 of 96%. Although the best-

fitting shape parameter s varies for different data sets, by fixing s at its median value for

all data sets only resulted in little loss of explanatory power. An important observation in

Nelson and Siegel (1987) is that by plotting the time series of the estimated parameters, a

breaking point October 1982 was identified, after which the importance of the curvature

factor was evidently less. Since October 1982, both the magnitudes and variations of

estimated β1 and β2 became much smaller and the yield curve shapes became simpler

and more stable. The authors attributed such a structural break to the change of Federal

Reserve monetary policy in October 1982, a switch from stabilizing the monetary aggre-

gates to stabilizing interest rates. Nelson and Siegel argued that the market quotes may

have become more accurate with more certainty in interest rates and resulted in simpler,

lower-order yield curves. Such a structural break effect is particularly relevant with our

study. It would be interesting to see if the intensity and loss rate curves become more

stable during more recent periods than during the crises.

Therefore in this chapter we employ a Nelson-Siegel type model, which allows us to

parsimoniously describe intensities and loss rates of the liquidity shock. To account for

randomness, we also propose a preliminary stochastic model for these two parameters.

The rest of the chapter proceeds as follows. In Section 2 we set up the Nelson-Siegel type

model for intensities and loss rates. Section 3 proposes constraints and initial conditions
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for the optimisation scheme, which is used to calibrate the model parameters. The optimi-

sation results are presented and discussed in Section 4. We then propose the preliminary

stochastic model in Section 5 and conclude in Section 6.

6.2 Model Set-up

We propose a Nelson-Siegel type model for both the intensity λ(t) and the instantaneous

loss rates π(t):

λ(τ) = λ0 + λ1e
(−τ/S1) + λ2(τ/S1)e

(−τ/S1), (6.2)

π(τ) = π0 + π1e
(−τ/S2) + π2(τ/S2)e

(−τ/S2), (6.3)

where τ is time to maturity. λ0, λ1, λ2 (π0, π1, π2) are respectively coefficient for the level,

slope and curvature factor of the intensity (loss rate) and S1 (S2) is the shape parameter

for the intensity (loss rate). Hence for each sample trading day there are 8 parameters to

estimate, a drastic reduction compared to the global optimization in the previous chapter.

In general researchers fix the shape parameter and estimate the linearized version of the

Nelson-Siegel parameters. However, the linear regression method has been reported to

behave erratically over time and have large variances. Annaert et al.(2012) showed that

these problems result from multicollinearity. Alternatively, nonlinear optimization tech-

niques can be used to estimate model parameters. The drawback of this approach is that

the estimators are sensitive to the initial values used in the optimization (see Cairns and
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Pritchard 2001). In the global optimisation scheme of Chapter 5 we deliberately account

for transaction costs and fit the PV of losses with respect to two bounds, therefore we

maintain this optimization approach and the associated conditions in Eqn. (5.15) and

(5.16).

We integrate λ(τ) and π(τ) specified by Eqn. (6.2) and (6.3), the no-arbitrage condi-

tion in Eqn. (5.4) then becomes

K∑
k=1

(eA − 1)(e−B − e−C)DOIS(T0, Tη(k)) =
K∑
k=1

(Bi,j,N · i)e−DDOIS(T0, Tk), (6.4)

where A, B, C and D are respectively 1,

A =

∫ Tη(k)

Tk

π(u) du

= (Tη(k) − Tk)π0 − π1S2

(
e
(−Tη(k)

/S2) − e(−Tk/S2)
)

− π2

(
e
(−Tη(k)

/S2)(Tη(k) + S2)− e(−Tk/S2)(Tk + S2)
)
, (6.5)

B =

∫ Tk−1

0

λ(u) du

= Tk−1λ0 + (λ1 + λ2)S1(1− e(−Tk−1/S1))− λ2Tk−1e
(−Tk−1/S1), (6.6)

1See Appendix F for the proof.
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C =

∫ Tk

0

λ(u) du

= Tkλ0 + (λ1 + λ2)S1(1− e(−Tk/S1))− λ2Tke
(−Tk/S1), (6.7)

and

D =

∫ T(η(k)−n)

0

λ(u) du

= T(η(k)−n)λ0 + (λ1 + λ2)S1(1− e
(−T(η(k)−n)/S1))− λ2T(η(k)−n)e

(−T(η(k)−n)/S1). (6.8)

Eqn. (6.4) is then used in the optimisation to calibrate the parameters for λ(τ) and π(τ).

6.3 Optimization Scheme

In this section we establish the constraints and initial values for the optimisation, which

is used to calibrate parameters of λ and π.

6.3.1 Optimization Constraints

We establish parameter constraints for the nonlinear optimization scheme. For the inten-

sity parameters, because λ0 is the long-term level of intensity, we require that

0.000435 ≤ λ0 ≤ 0.23872, (6.9)
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where the lower bound (resp. upper bound) is the minimum (resp. maximum) λ0 cal-

culated from the global optimization results in Chapter 5. The shape parameter S1 is

bounded by the maturities of tenor swap data and as such

0 ≤ S1 ≤ 30. (6.10)

The constraints for λ1 and λ2 are derived from the positivity of the model in Eqn. (6.2).

Take the first derivative of Eqn. (6.2) with respect to τ we have

λτ =
−λ1

S1

e(−τ/S1) − λ2

S1

(τ/S1)e
(−τ/S1) +

λ2

S1

e(τ/S1). (6.11)

Let (6.10) equal to 0 we obtain

τ =

(
λ2 − λ1

λ2

)
S1. (6.12)

The second derivative of (6.10) with respect to τ is

λττ =
1

S2
1

(
λ1 − 2λ2 +

λ2τ

S1

)
e(−τ/S1). (6.13)

Substitute (6.11) into (6.12), the second derivative becomes
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λττ = −λ2

S2
1

e

(
λ1−λ2

λ2

)
. (6.14)

Therefore the second derivative is positive if λ2 < 0. It follows that the function λ(τ) has

the local minimum at τ = (λ2−λ1

λ2
)S1 and the function value is

λ(τ) = λ0 + λ2e

(
λ1−λ2

λ2

)
. (6.15)

To ensure the positivity of the minimum, we examine the location of critical value of τ in

(6.11). If τ = (λ2−λ1

λ2
)S1 < 0, because λ2 < 0, we must have λ2 > λ1. Then all is required

is that λ(0) = λ0 + λ1 > 0, which ensures that λ(τ) > 0 for all positive maturities.

Therefore, in this case the constraints are

λ2 < 0, λ2 > λ1, λ0 + λ1 > 0. (6.16)

On the other hand, if τ = (λ2−λ1

λ2
)S1 ≥ 0, then λ1 ≥ λ2. We require that λ0+λ2e

(
λ1−λ2

λ2

)
>

0, which leads to λ2 >
−λ0

e
(λ1−λ2

λ2
)
. Therefore the constraint for λ2 is

λ2 < λ1,
−λ0

e

(
λ1−λ2

λ2

) < λ2 < 0. (6.17)

In a parallel fashion, the constraints of the loss rate parameters are set as follows,
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0.0001 ≤ π0 ≤ 0.02, (6.18)

and

0 ≤ S2 ≤ 30. (6.19)

The constraints for π1 and π2 are

π2 < 0, π2 > π1, π0 + π1 > 0, (6.20)

or

π2 < π1,
−π0

e

(
π1−π2

π2

) < π2 < 0. (6.21)

6.3.2 Initial Values

To ensure stability and smoothness in the estimated parameters, we use the estimated

parameters on one day as the initial values for the next day. For the first sample date,

03/03/2009, the initial values are chosen and listed in Table 6.1.

Table 6.1: Initial Values for Optimisation as at 03/03/2009

Parameter λ0 λ1 λ2 S1 π0 π1 π2 S2

Value 0.1789 0.6406 -0.35 2 0.01 0.0702 -0.06 2

Based upon the optimisation results in Chapter 5, we fix he value of λ0 by the 30Y inten-
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sity. We then approximate λ(0) = λ0 + λ1 by the 2M intensity. Taking the difference of

λ(0) and λ0, we obtain the initial value of λ1. Initial values of π0 and π1 are chosen with

the same procedure. We set the shape parameters S1 and S2 to be 2, which means at such

initial values the location of the hump or trough of the Laguerre function β2(
τ
s
)e(−

τ
s
) is at

τ = 2. Finally, we search over a grid of values for λ2 and π2 and choose the set of values,

which in conjunction with other initial values, produces the least optimisation error.

6.4 Results

The calibration results of the model parameters are presented in Figures 6.1 and 6.2. In

Figure 6.1 we observe that, except for the initial sample period when the market was

still experiencing turmoils, the intensity parameters, λ0, λ1, λ2 and S1, show little time

variations. In Figure 6.2 we have similar findings for the loss rate parameters S2. On the

other hand, π0, π1 and π2 exhibit significant time variations. Different from the estimation

of default risk, where the standard calibration to market instruments (e.g. CDS spreads)

normally assumes a constant recovery rate and calibrates time-varying default intensities,

our optimisation jointly calibrates loss rates and intensities. We therefore propose that

the time variations of liquidity risk in our model are mainly captured by the loss rate

parameters.

The calibrated model parameters fit 178 sample days perfectly, or a proportion of 22.61%

of the whole sample period. It needs to be pointed out that, it is not the objective of

the Nelson-Siegel type model to achieve perfect fits. Instead, we aim to identify the un-
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derlying relation of the model. Fitting errors may present an opportunity to examine

the systematic and idiosyncratic features of the sample data. To this end, we study the

distribution of the fitting errors across the sample period. Table 6.2 presents the distribu-

tion of the largest 10% fitting errors. The sample mean and standard deviation of fitting

errors are summarized in Table 6.3.

Table 6.2: Distribution of the largest 20% of fitting errors

Year 2009 2010 2011 2012 2013

Days 78 0 0 1 0

Table 6.3: Sample Mean and Standard Deviations of Fitting Errors

Year 2009 2010 2011 2012 2013

mean 2.78E-06 3.92E-09 2.01E-08 1.87E-07 2.51E-09

standard deviation 3.96E-06 1.15E-08 5.39E-08 1.63E-07 2.36E-09

We see from Table 6.2 that the almost all large fitting errors are in the early sample period

(i.e. 2009). Table 6.3 shows that since 2009, the fitting errors are characterized by both

lower level and volatility, particularly in the most recent sample period (i.e. 2013). This

lends support for our conjecture that the consistency of tenor swap market has improved

since the crisis and liquidity risk in the market has gradually stabilized.

We also examine shapes of the intensity curve and the loss rate curve. As expected,
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both curves are well behaved without oscillations. On all sample days, both the inten-

sity curve and the loss curve firstly decreases then increases. Figures 6.3 illustrates these

curves on 03/03/2009.

Lastly, in Figure 6.2 we find that the upper bound (2%) of π0 imposed for the opti-

misation is binding and hit on 36 sample days. We therefore increase the upper bound

(to 5% and 7% respectively) and re-optimise. The results are summarized in Figures 6.4

and 6.5 (for 5%) and Figures 6.6 and 6.7 (for 7%). We see that the upper bound is only

hit on 9 days (for 5%) and 1 day (for 7%) and such days all fall at the very beginning the

sample period. We conclude that the boundary hitting is due to the heightened market

stress and there is no need to further increase the upper bound of the long–term loss

rate. The distribution of the fitting errors and curve shapes of intensity and loss rate are

virtually unchanged after increasing the upper bound for π0.
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Figure 6.1: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.2). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is 0.02.
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Figure 6.2: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.3). Parameters include π0, π1, π2 and S2. The upper bound of π0 is 0.02.
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Figure 6.3: Term Structure of the calibrated intensities and loss rates on
03/03/2009.
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Figure 6.4: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.2). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is 0.05.
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Figure 6.5: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.3). Parameters include π0, π1, π2 and S2. The upper bound of π0 is 0.05.
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Figure 6.6: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.2). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is 0.07.
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Figure 6.7: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(6.3). Parameters include π0, π1, π2 and S2. The upper bound of π0 is 0.07.
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6.5 A Stochastic Model

We have thus far modelled time-dependent, deterministic intensity and loss rate. To ac-

count for potential randomness, in this section we set up a preliminary stochastic model

for these two parameters.

As in Chapter 5, we assume that when a liquidity shock occurs, the arbitrageur is unable

to roll over the shorter tenor loan and has to refinance until the end of the associated

longer tenor, shutting down the borrowing and lending in the arbitrage strategy at the

end of the longer tenor within which the first jump occurs. However suppose now that

the liquidity shock is triggered by a Cox process (Cox 1955)2 with stochastic intensity λ.

Assume that this process is independent of any interest rate dynamics and is given by a

sum of d independent factors yi, i.e.

λ(t) =
d∑

i=1

yi(t), (6.22)

where the yi follows the Cox-Ingersoll-Ross (CIR) dynamics (Cox et al. 1985) under the

pricing measure, i.e.

dyi(t) = (θi − aiyi(t))dt+ σi

√
yi(t)dW

λ
i (t), (6.23)

where dW λ
i (t) (i = 1, · · · , d) are independent Wiener processes. The CIR-type model is

chosen for its analytical tractability, as well as the guaranteed positivity of the modelled

object, with the condition which ensures that the origin is inaccessible. In order to keep

2See Appendix G for a description of the Cox process, or doubly stochastic Poisson process.
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the model analytically tractable we do not allow for time-dependent coefficients at this

stage. Since each of the factors follow independent CIR-type dynamics, the sufficient

condition for each factor to remain positive is 2θi > σ2
i , ∀i, as discussed for the one-factor

case in Cox et al. (1985).

For stochastic intensity λ, the LHS and RHS of the condition proposed in Eqn. (5.4)

respectively becomes

K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)(
E
[
e−

∫ Tk−1
0 λ(u) du

]
− E

[
e−

∫ Tk
0 λ(u) du

])
DOIS(T0, Tη(k)), (6.24)

and

K∑
k=1

(Bi,j,N ∗ i)E
[
e−

∫ T(η(k)−n)

0 λ(u) du

]
DOIS(T0, Tk). (6.25)

The expectations under the pricing measure can be evaluated in the same manner as the

multifactor CIR zero coupon bond price given in Chen and Scott (1995), i.e.

E
[
e−

∫ T
t λ(u) du | Ft

]
= A(t, T ) · e−B(t,T )y(t), (6.26)
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with

y(t) =

⎛
⎜⎜⎜⎜⎝
y1(t)

...

yd(t)

⎞
⎟⎟⎟⎟⎠ ,

and B(t, T ) similarly a vector with components:

Bi(t, T ) = 2wi

(
eci(T−t) − 1

)
. (6.27)

Furthermore,

A(t, T ) =
d∏

i=1

Ai(t, T ), (6.28)

with

Ai(t, T ) =
(
2ciwie

1
2
(ci+ai)(T−t)

)(2θi/σ
2
i )

. (6.29)

The coefficients ci and wi are given by

wi =
(
(ci + ai)e

ci(T−t) + ci − ai
)−1

, (6.30)
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and

ci =
√

a2i + 2σ2
i . (6.31)

Similarly, in addition we may assume stochastic dynamics for the refinancing loss rate as

well by setting π as a sum of d̃ independent factors zi:

π(t) =
d̃∑

i=1

zi(t), (6.32)

with the stochastic process independent of interest rates and λ given by

dzi(t) = (ξi − bizi(t))dt+ γi
√

zi(t)dW
π
i (t), (6.33)

where dW π
i (t) (i = 1, · · · , d̃) are independent Wiener processes. We interpret the

stochastic π as the instantaneous spread representing the cost of refinancing after a liq-

uidity shock, meaning that if a liquidity shock occurs at time τ between Tk−1 and Tk, the

actual refinancing cost is represented by an implicit term structure of refinancing spreads.

Denote this actual refinancing spread cost for the period from Tk to Tη(k) by π̃(τ), which

is a continuously compounded, per annum rate. Then we model this by

e
π̃(τ)(Tη(k)

−Tk) =
E
[
e−

∫ Tk
τ π(s) ds | Fτ

]
E

[
e−

∫ Tη(k)
τ π(s) ds | Fτ

] . (6.34)

Thus quantity with a direct economic interpretation is π̃(τ), observable at the time τ of
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the liquidity shock, while the modelling of π as a multifactor CIR-type process serves to

endow the π̃(τ) with a tractable stochastic dynamic; i.e. the term structure of incremental

refinancing costs a the τ is given by the “discount factors”:

E
[
e−

∫ T
τ π(s) ds | Fτ

]
= Ã(τ, T ) · e−B̃(τ,T )z(τ), (6.35)

with

z(τ) =

⎛
⎜⎜⎜⎜⎝
z1(τ)

...

zd̃(τ)

⎞
⎟⎟⎟⎟⎠ ,

and B̃(τ, T ) similarly a vector with components:

B̃(τ, T ) = 2w̃i

(
ec̃i(T−τ) − 1

)
. (6.36)

Furthermore,

Ã(τ, T ) =
d̃∏

i=1

Ãi(τ, T ), (6.37)

with

Ãi(τ, T ) =
(
2c̃iw̃ie

1
2
(c̃i+bi)(T−τ)

)(2ξi/γ
2
i )

. (6.38)
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The coefficients c̃i and w̃i are given by:

w̃i =
(
(c̃i + bi)e

c̃i(T−τ) + c̃i − bi
)−1

, (6.39)

and

c̃i =
√

b2i + 2γ2
i . (6.40)

Under the present independence assumptions, it therefore remains to calculate

E
[
e
π̃(τ)(Tη(k)

−Tk)
]
=

Ã(τ, Tk)

Ã(τ, Tη(k))
E
[
e
(B̃(τ,Tη(k)

)−B̃(τ,Tk))z(τ)
]

=
Ã(τ, Tk)

Ã(τ, Tη(k))

d̃∏
i=1

E
[
e
(B̃i(τ,Tη(k)

)−B̃i(τ,Tk))zi(τ)
]
. (6.41)

If B̃i(τ, Tη(k)) − B̃i(τ, Tk) <
1
2
, we can apply Lemma 2.5 in Schlögl and Schlögl (2000) to

obtain

E
[
e
(B̃i(τ,Tη(k)

)−B̃i(τ,Tk))zi(τ)
]
=

e(ζL/(1−2L))

(1− 2L)δ/2−1
, (6.42)

with,

L = B̃i(τ, Tη(k))− B̃i(τ, Tk), (6.43)
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ζ =
4bie

−bi(τ−T0)

γ2
i (1− e−bi(τ−T0))

zi(T0), (6.44)

and

δ =
4ξi
γ2
i

, (6.45)

where δ and ζ are respectively the degrees of freedom and the non-centrality parameter

for the non-central chi-squared distribution function χ2(·, δ, ζ). The density function of

χ2(·, δ, ζ) has the following representation (see, for example, Johnson and Kotz, 1970):

pχ2(δ,ζ)(x) =
e(−

1
2
(ζ+x))

2δ/2

∞∑
j=0

ζj

22jj!Γ( δ
2
+ j)

x(δ/2+j−1). (6.46)

The density function of z is

pz(x) = cpχ2(δ,ζ)(cx), (6.47)

where

c =
4bi

γ2
i (1− e−bi(τ−T0))

. (6.48)

If B̃i(τ, Tη(k))− B̃i(τ, Tk) ≥ 1
2
, the calculation of this expectation is less tractable and we

resort to numerical integration techniques.
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We therefore propose that the stochastic models of λ and π can be used to estimate

the parameters in Eqn. (6.23) and (6.33), with observed spreads in the tenor swap market.

6.6 Conclusion

In this chapter we address the issues which arise from the optimisation results in Chapter

5. We propose a Nelson-Siegel type model to parsimoniously capture the dynamics of

intensity λ and loss rate π of the liquidity shock. The model is calibrated to the observed

spreads in the tenor swap market. The results show good fits and well-behaved intensity

and loss rate. An important finding is that the time variations of the liquidity risk are

mainly captured by the loss rate parameters, while the intensity parameters show little

variations over time. This contrasts with the standard default risk estimation, where

time-variations of the default risk are captured by default intensities only. The results

also demonstrate that since the turmoil of the GFC, the tenor swap market is in the

process of maturing and stabilizing.

In order to account for potential randomness, as a preliminary step, we also set up stochas-

tic CIR-type models for intensity and loss rate. We show that under certain conditions

closed form solutions exist, which can be used to to tractably calibrate or estimate the

model parameters.



Chapter 7

Conclusion

In this thesis, we investigated issues arising in the interest rate market since the GFC,

specifically the large basis spreads quoted in single–currency basis swaps and cross–

currency basis swaps. According to textbook theories, such anomalies present arbitrage

opportunities, which should be efficiently exploited by market participants. Hence, the

persistence of large spreads violates the textbook no–arbitrage conditions.

To explain and model such market changes, we proceeded in three stages. We firstly

controlled for the effect of transaction costs in arbitrage strategies in the cross–currency

market. The proposed no–arbitrage bounds for the basis spreads held consistently before

the GFC. However, the violations of these bounds have been persistent since the crisis.

Therefore, transaction costs are insufficient in explaining the large spreads. By textbook

theory, this implies practical arbitrage profit. We drew upon recent empirical studies and

attributed the persistent violations of no–arbitrage bounds to a new perception by the

market of risks, in particular currency liquidity risk, involved in the execution of textbook
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“arbitrage” strategies.

As the second step, in order to identify the predictive power of liquidity risk for exchange

rate movements, we used the violations of no–arbitrage bounds in the cross–currency

market as a proxy for the market valuation of liquidity risk. FX market specific volatility

proxies were also proposed. The empirical study of carry trade excess returns provided

empirical support for a liquidity based model in explaining the UIP puzzle.

The third study of this thesis focused on the single–currency basis swap spreads and

proposed a consistent framework to reconcile the differences between the classic “single

curve” approach and practitioners’ “multiple curve” approach. We used liquidity risk as

the fundamental factor and set up an intensity–based model to describe the arrival time

of liquidity shocks. The risk–neutral model parameters can be calibrated to quoted basis

spreads. We also developed parsimonious modelling approaches for model parameters.

The time–dependent, deterministic model was calibrated and the results showed that the

tenor swap market is in the process of maturing since the turmoils of the GFC. Based on

this analysis, we also set up a tractable stochastic model for liquidity risk.

There are various ways in which future research can build upon this thesis. Firstly, our

studies concerning the cross–currency market (Chapter 3 and 4) can be extended to other

currency pairs, particulary emerging market currencies, given their increasing importance

in global economy. Secondly, our empirical studies use daily data. It would be interesting

to see if results in this thesis hold for lower–frequency, such as weekly or quarterly data,
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or for high frequency intra–day data. Lastly, the parameters of the stochastic model de-

veloped in this thesis can be estimated, with either closed form solutions or numerical

techniques, in order to examine its ability to fit observed basis spreads.



Appendix A

Proof of Equation (2.7)

We follow the theorem of general numéraire change proposed by Geman et al. (1995) to

prove Eqn. (2.7).

Consider a probability space (Ω, F , Ft(t ≥ 0), P ) which satisfies the usual hypothe-

ses that the filtration Ft(0 ≤ t ≤ T ) is right continuous with left limits and represents

the uncertainty for a given economy for a time horizon T > 0. Ω is the set of possible

states, the σ-field F represents the collection of sub-events of Ω. Ft is the information

available at t and P is the probability measure that assigns probabilities to events in

Ω. In the fundamental theorems of asset pricing, Harrison and Kreps (1979), Harrison

and Pliska (1981, 1983) show the connection between the absence of arbitrage and the

existence of the equivalent martingale measure1 (or risk-neutral measure) Q, such that

the discounted asset price between two payment dates is a martingale under probability

1Two probability measures P and Q on (Ω, F) are equivalent if P is absolutely continuous with respect
to Q, and Q is absolutely continuous with respect to P. i.e. P (A) = 0 ⇔ Q(A) = 0, ∀A ∈ F (see, for
example, Shreve 2008).

160



161

measure Q. Given the existence of an equivalent martingale measure, then there exists

a unique no-arbitrage price for any attainable contingent claim2. When the market is

complete, every contingent claim is attainable and the martingale measure is unique.

Geman et al. (1995) shows that though the use of risk-neutral probability measure is

useful in pricing contingent claims in complete markets, Q is not always the most natural

and efficient measure for the pricing of a given contingent claim. The change of measure

technique is then proposed by Geman et al. (1995) is described as follows.

Definition. A numéraire is any positive non-dividend-paying asset.

Proposition. Assume there exists a numéraire N(t) and a probability measure π equiva-

lent to initial probability measure p, such that the price of any traded asset X (without

intermediate payments) relative to N(t) is a martingale under π,

X(t)

N(t)
= Eπ

(
X(T )

N(T )

∣∣∣∣Ft

)
, 0 ≤ t ≤ T. (A.1)

Let U(t) be an arbitrary numéraire. Then there exists a probability measure QU , which

is equivalent to p, such that the price of any attainable claim H normalized by U is a

martingale under QU ,

2A contingent claim C is a positively valued random variable which belongs to L2(Ω,F , P ), i.e. C is
square integrable with respect to P and EP (C2) < ∞. A trading strategy φ is self-financing if there is
no exogenous infusion or withdrawal of cash and the value only changes due to changes in the prices of
the assets in the strategy. C is said to be attainable if there exists some φ such that the value of φ at
maturity is equal to C. C is said to be generated by φ.
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H(t)

U(t)
= EQU

(
H(T )

U(T )

∣∣∣∣Ft

)
, 0 ≤ t ≤ T. (A.2)

The Radon-Nikodym derivative defining the measure QU is given by

dQU

dπ

∣∣∣∣FT =
UTN0

U0NT

. (A.3)

Following from the proposition by Geman et al. (1995), we assume the existence of an

equivalent martingale measure (such as the risk-neutral measure Q), then the price of any

asset relative to a numéraire is a martingale under the associated probability measure

(see Brigo and Mercurio 2006).

We rewrite Eqn. (2.1) as

F (t;T1, T2)P (t, T2) =
1

τ(T1, T2)
(P (t, T1)− P (t, T2)), (A.4)

where F (t;T1, T2)P (t, T2) is a portfolio of two zero coupon bonds, hence a portfolio of two

assets. The zero coupon bond P (t, T2) is a strictly positive non-dividend-paying asset,

hence it is a numéraire under the QT2 forward probability measure. The Radon-Nikodym

derivative which changes measure Q to QT2 is given by

dQT2

dQ

∣∣∣∣FT2 =
P (T2, T2)B(0)

P (0, T2)B(T2)
=

e−
∫ T2
0 r(u) du

P (0, T2)
, (A.5)
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where B(t) is the numéraire under the risk-neutral measure Q. The savings account B(t)

accrues the instantaneous spot rate r(t) from time 0 to t,

B(t) = e
∫ t
0 r(u) du. (A.6)

Hence,

F (t;T1, T2) =
F (t;T1, T2)P (t, T2)

P (t, T2)
=

P (t, T1)− P (t, T2)

τ(T1, T2)P (t, T2)
(A.7)

must be a martingale under the T2 forward measure, i.e.

EQT2 [L(T1, T2) | Ft] = EQT2 (F (T1;T1, T2) | Ft) = F (t;T1, T2). (A.8)



Appendix B

Proof of Equation (4.9)

From Eqn. (4.8)

d2 = d1 − σ
√
τ , (B.1)

d22 = d21 − 2d1σ
√
τ + σ2τ

= d21 − 2ln[F (t, T )/K], (B.2)

n(d2) =
1√
2π

e[−d22/2)]

=
1√
2π

e[−
1
2
d21+ln(F (t,T )/K)]

=
1√
2π

e[−
1
2
d21]e[ln(F (t,T )/K)]

= n(d1)
F (t, T )

K
. (B.3)
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The partial derivatives of N(x) w.r.t F is

∂N(x)

∂F
= n(x)

∂x

∂F
. (B.4)

From (B.1) we see that

∂d1
∂F

=
∂d2
∂F

. (B.5)

Hence, for a call option Vc,

∂Vc

∂F
= e−rdτN(d1) + e−rdτF

∂N(d1)

∂F
−Ke−rdτ

∂N(d2)

∂F

= e−rdτN(d1) + e−rdτF
∂N(d1)

∂d1

∂d1
∂F

−Ke−rdτ
∂N(d2)

∂d2

∂d2
∂F

= e−rdτN(d1) + Fe−rdτn(d1)
∂d1
∂F

−Ke−rdτn(d2)
∂d2
∂F

= e−rdτN(d1) + Fe−rdτn(d1)
∂d1
∂F

−Ke−rdτn(d1)
F

K

∂d1
∂F

= e−rdτN(d1). (B.6)

Equation (4.9) is hence proved for ω = 1. Put options (ω = −1) can be proved similarly.



Appendix C

Principal Component Analysis

Principal component analysis (PCA) is a mathematical factor model that uses orthogonal

transformation technique to convert possibly correlated variables into uncorrelated vari-

ables. The uncorrelated variables are the so called principal components, which are linear

combinations of the original variables. The main objective of PCA is to reduce dimension-

ality to capture the most important influences from all variables simultaneously. Suppose

the original correlated variables are X1, X2, · · · , Xn, then the principal components can

be denoted as

P1 = α11X1 + α12X2 + · · ·+ α1nXn

P2 = α21X1 + α22X2 + · · ·+ α2nXn

...

Pn = αn1X1 + αn2X2 + · · ·+ αnnXn (C.1)
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where αij are the factor loadings, which are the coefficients of the jth original variable in

the ith principal component. If each original independent variable has m observations,

then there will be m observations on each principal components. We also require that the

square terms of the coefficients in each principal component sum to one

α2
11 + α2

12 + · · ·+ α2
1n = 1

α2
21 + α2

22 + · · ·+ α2
2n = 1

· · · · · · · · ·

α2
n1 + α2

n2 + · · ·+ α2
nn = 1. (C.2)

The principal components are calculated based upon constrained optimization without

assuming any particular distribution of the original variables. They are in fact the eigen-

values of the matrix X
′
X, where X is the matrix of original variable observations. X

′
X is

a n×n square matrix. Hence the matrix has n number of eigenvalues. If we denote these

eigenvalues by λi(i = 1, · · · , n), the proportion of total variations in the observations of

the original variables that can be explained by each principal component is

φi =
λi
n∑

i=1

λi

. (C.3)

The principal components are derived in a way such that the proportions φi are in the



168

descending order. If the first k principal components (0 < k < n) are considered sufficient

to explain the total variations in the matrix X
′
X, then the remaining n− k components

are abandoned and the final regression model only includes the first k components. PCA

is intended to maintain most of the useful information contained in the original variables.

The benefit is the reduction of dimensionality and the removal of high correlations in the

original variables, hence the ordinary least squares (OLS) estimators with PCA are more

efficient.

Despite such benefits, PCA has limitations, in particular the lack of theoretical moti-

vation and economic interpretation. A more technical introduction of PCA can be found

in Alexander (2008).



Appendix D

Chow Breakpoint Test Results

We present in Table D.1 the Chow Breakpoint test results in Subsection 4.4.4 of Chapter

4. The break date is August 10th, 2007. The null hypothesis of the test is that there is

no break at the specified break date.

Table D.1: Chow Breakpoint Test Results

Currency JPY EUR AUD

F–statistic 3.8633 2.5146 0.8344

Prob. F 0.0000 0.0054 0.6148

Hence the null hypothesis is rejected at 1% significance level for JPY and EUR, but we

fail to reject the null for AUD. We then choose March 18th, 2008 as the break point and

test for AUD. The F–statistic is 2.7156 and the probability of the F–statistic is 0.0012.

The break date is hence supported.
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Time-Inhomogeneous Poisson

Process

We follow Brigo and Mercurio (2006) to describe basic properties of the time-inhomogeneous

Poisson process N(t), with deterministic time-dependent intensity λ(t).

λ(t) is assumed to be a positive and piecewise, right continuous, function of process time

t. N(t) is a non-decreasing, integer-valued process with null initial condition N(0) = 0

and independent increments. The hazard function Γ(t) is defined as the integral of the

intensity,

Γ(t) =

∫ t

0

λ(u) du. (E.1)

N(t) can also be defined by the standard Poisson process M(t) with constant intensity
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one

Nt = MΓt . (E.2)

Define τ as the first jump time of Nt, then M(t) jumps the first time at Γτ . Because the

first jump time of a standard Poisson process follows the standard exponential distribution

we have

Γτ =: ξ ∼ Exp(1). (E.3)

Hence, the hazard function of N(t) at the first jump time τ is a standard exponential

random variable. Due to the memoryless property of the exponential distribution, Γτ is

independent of previous processes in the given filtered probability space (Ω, F , Ft(t ≥
0), P ). A random variable known at t is measurable with respect to the filtration Ft.

By definition, the hazard function is a strictly increasing function of time. Hence the

probability that the first jump has not occurred by t is

P (τ > t) = P (Γτ > Γt)

= P (Exp(1) > Γt)

= e−Γt

= e−
∫ t
0λ(u) du. (E.4)
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Similarly, the probability that the first jump occurs between t1 and t2 is

P (t1 < τ < t2) = P (Γt1 < Γτ < Γt2)

= P (Γt1 < Exp(1) < Γt2)

= P (Exp(1) > Γt1)− P (Exp(1) > Γt2)

= e−Γt1 − e−Γt2

= e−
∫ t1
0 λ(u) du − e−

∫ t2
0 λ(u) du. (E.5)

Lastly, the process N(t) satisfies the Poisson Law,

P [N(T )−N(t) = n] =
1

n!

(∫ T

t

λ(u) du

)n

e−
∫ T
t λ(u) du. (E.6)



Appendix F

Proof of Equation (6.5), (6.6), (6.7)

and (6.8)

We prove Eqn. (6.5) as follows.

∫ Tη(k)

Tk

π(u) du =

∫ Tη(k)

Tk

(
π0 + π1e

(−u/S2) + π2(u/S2)e
(−u/S2)

)
du

= (Tη(k) − Tk)π0 + π1

∫ Tη(k)

Tk

e(−u/S2) du+ π2

∫ Tη(k)

Tk

(u/S2)e
(−u/S2) du

= (Tη(k) − Tk)π0 − π1S2

(
e
(−Tη(k)

/S2) − e(−Tk/S2)
)
+ π2

∫ Tη(k)

Tk

(u/S2)e
(−u/S2) du.

(F.1)

With integration by parts,
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π2

∫ Tη(k)

Tk

(u/S2)e
(−u/S2) du = (π2/S2)

∫ Tη(k)

Tk

ue(−u/S2) du

= (π2/S2)

(
u

∫ Tη(k)

Tk

e(−u/S2) du+

∫ Tη(k)

Tk

S2e
(−u/S2) du

)

= −π2

(
Tη(k)e

(−Tη(k)
/S2) − Tke

(−Tk/S2)
)
− π2S2

(
e
(−Tη(k)

/S2) − e(−Tk/S2)
)

= −π2

(
e
(−Tη(k)

/S2)(Tη(k) + S2)− e(−Tk/S2)(Tk + S2)
)
. (F.2)

Substitute (E.2) into (E.1) we get

∫ Tη(k)

Tk

π(u) du = (Tη(k) − Tk)π0 − π1S2

(
e
(−Tη(k)

/S2) − e(−Tk/S2)
)

− π2

(
e
(−Tη(k)

/S2)(Tη(k) + S2)− e(−Tk/S2)(Tk + S2)
)
. (F.3)

Eqn. (6.5) is hence proved. Eqn. (6.6), (6.7) and (6.8) can be proved similarly.



Appendix G

Cox Process

We follow Duffie (2001) and give a brief description of the Cox process, or doubly stochas-

tic Poisson process.

For a probability space (Ω, F , P ), a given filtration Ft(t ≥ 0) satisfies the usual con-

ditions (i.e. right continuous with left limits). Let N(t) be a Poisson process adapted to

Ft, i.e. Ft includes all information about N(t) up to time t. Let the stochastic intensity of

N(t) be λt, which is a non-negative process adapted to Ft such that
∫ t

0
λs ds < ∞ almost

surely (nonexplosive).

Let Gt(t ≥ 0) be an alternative filtration on the given probability space. Gt(t ≥ 0) is

constructed as the σ-algebra by Ft and N(s), 0 ≤ s ≤ t, hence Ft ⊂ Gt. N(t) then is

doubly stochastic, driven by Ft(t ≥ 0). For all t and τ > t, conditional upon the σ-algebra

Gt ∨ Fτ generated by Gt ∪ Fτ , N(τ) −N(t) has the Poisson distribution with parameter∫ τ

t
λs ds.
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The Poisson process N(t) is hence doubly stochastic because not only the jump time

is stochastic, the intensity, i.e. the probability of jumping, λt is also stochastic. Hence

the Cox process is a two step stochastic process. N(t) is generated as a Poisson process,

conditional upon λt , which is itself stochastic. Finally, under standard independence

assumptions it can be shown that the probability that the first jump time τ has not oc-

curred by t is

P [τ > t] = E
[
e−

∫ t
0λu du

]
. (G.1)

which is completely analogous to the zero-coupon bond price given by a short rate model

with λ replacing r.
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