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ABSTRACT

Design of floor systems for commercial and multi-residential buildings in many parts of
the world is currently dominated by the use of structural materials other than timber,
such as reinforced concrete systems. Recent research in Australia has shown that the
major barriers to using timber in non-residential buildings are the fire performance and
the lack of designer confidence in commercial and industrial timber-based
constructions. In this regard, significant research initiatives have commenced in
Australia and New Zealand with the aim of developing timber and timber hybrid
systems for large span commercial and industrial applications. This PhD research
provides a detailed procedure for designing and investigating the short term static
behaviour of a proposed long span timber floor system for non-residential applications
that meets serviceability and ultimate limit design criteria, with the use of timber as the
only structural load bearing part of the system. The specimen’s responses to long-term
loading, in-plane loading, dynamic excitation, cyclic loading and loading history are
outside the scope of this PhD research. Moreover, other aspects of performance such as
assessment of acoustic performance, dynamic performance and the possible
interconnection systems alongside floor modules are not covered in the scope of this

research project.

In this study the behaviour of two types of LVL are investigated through a number of
experimental and analytical tests. As a result of the tension and compression tests, a
suitable constitutive law is developed which can accurately capture the stress-strain
relationship and the failure behaviour of LVL, and it can also be incorporated into FE
analysis of any LVL beam with similar structural features to the tested specimens.
Further, the results of the full scale four point bending tests on LVL sections are used to
identify the behaviour of LVL up to the failure point and to develop a finite element
model to capture the behaviour and failure of LVL.

Moreover, after investigating the long span timber floors, one system is proposed to be
fabricated for the extensive experimental and numerical investigation. The experimental

investigation involved subjecting the full scale proposed floor modules (6m and 8m
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clear span LVL modules) to both serviceability and ultimate limit state static loading to
assess the strength and serviceability performance of the proposed system. A
continuum-based finite element model is also developed to capture the behaviour and
failure of the long span LVL modules and to adequately predict the serviceability and

ultimate limit performance of the proposed floor system.

To evaluate the partially-composite strength and serviceable performance of LVL floor
system, a series of push-out tests are conducted on the fabricated timber connections
using normal screws as the shear connectors, and the stiffness of the connections are
assessed at serviceability and ultimate limit state. A number of LVL beams (3.5m “T”
shaped beams) were also fabricated using only normal screws as the load bearing shear
connectors at the interfaces, and are tested under serviceability and ultimate limit state
loads with different screw spacing. Furthermore, a closed-form prediction analysis is
conducted to calculate the partially-composite ultimate load of the beams. A comparison
between the experimental results and the closed-from predicted results is undertaken,
and the results are used for predicting the partially-composite behaviour of long span

6m and 8m LVL modules.

The results of the full scale experimental tests together with the numerical investigation
provide a robust model for predicting the performance of any timber beams with similar
structural features to the proposed system while the dimensions and spans can be varied
according to special requirements such as dynamic performance or fire resistance

requirements.
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