A Study on the Behaviour of Guided Wave Propagation in Utility Timber Poles

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in the field of

Civil and Structural Engineering

by

Mahbube Subhani

March 2014
Abstract

Timber is a widely used engineering material because of its availability and good engineering properties. The round timber is suitable for electricity poles, wharfs, piles, bridge piers, etc. There are nearly 7 million utility poles in the current network in Australia, in which around 5 million timber poles are used for distribution of power and communications. The utility pole industry in Australia spends about $40–$50 million annually on maintenance and asset management to avoid failure of the utility lines. Each year about 30,000 electricity poles are replaced in the eastern states of Australia, despite the fact that up to 80% of these poles are still in a very good serviceable condition. In addition, with discovery of scour problems in bridge foundations in the past 30 years, a study on the USA’s national bridge stock showed that out of approximately 580,000 highway timber bridges in the National bridge inventory, about 104,000 of these bridges had unknown foundations depth. Therefore, a reliable non-destructive evaluation technique is essential for the condition assessment of timber poles/piles to ensure public safety, operational efficiency and to reduce the maintenance cost.

Different types of non-destructive tests (NDT) were developed during the last decades to evaluate the embedment depth and the quality of materials of embedded structures. Some of these methods have also been utilised for timber piles or poles. However, the extent of knowledge developed on non-destructive tests for timber piles is far from adequate and the effectiveness and reliability of current NDTs are questionable due to uncertainty on materials, structures and environment. In addition, one dimensional assumption is usually considered while dealing with timber poles/piles which is insufficient to reflect the actual behaviour of stress wave propagation in the columnar structures. Also, the anisotropic behaviour of timber and the effects of environment are not taken into account in numerous conventional non-destructive evaluations (NDE) that leads to errors regarding the condition assessment of timber poles.

Waves propagating along a pile/pole include different clusters of waves, called guided waves (GWs). In GW, the velocities of a wave (such as phase velocity, group velocity, energy velocity) become a function of frequencies (i.e. wave dispersion behaviour) and displacement magnitude varies when waves propagate along the pole. Besides, GWs
that have the same frequencies possess shorter wavelengths than their counterpart of conventional surface wave. Hence, it is possible to detect smaller sized defects with a guided wave technique than a surface wave technique. Hence, it is essential to model the actual three dimensional behaviour of wave propagation inside the timber pole instead of one dimensional assumption, and the environmental factors in conjunction with the actual timber pole situation is necessary to be addressed before suggesting an experimental set up and verification.

This thesis investigates the GW propagation inside the timber pole using an analytical, one semi analytical and one numerical method. The actual GW equations are solved analytically considering the timber as both isotropic and transversely isotropic material to emphasize the importance of modelling timber as an anisotropic material. Some parametric studies are also carried out to show the effect of the diversity in material properties of timber on the stress wave propagation. Also, the dispersion curves, mode shapes, contribution of different branches of longitudinal and flexural waves in a signal are presented in order to propose a suitable input frequency and number of cycles, the distances among the sensors, the location and orientation of sensors, etc. Although the analytical GW solution can offer a number of suggestions for the experimental set up, the time domain results cannot represent the actual boundary conditions due to the complexity involved in solving the partial embedment of soil that reflects the actual field behaviour. Besides, the impact location and orientation cannot be implemented in the analytical GW solution. Accordingly, a semi analytical method, namely, Spectral finite element method (SFEM) is employed to model the timber pole with the actual boundary conditions together with the impact location and orientation to illustrate the propagation of different kind of waves and branches. Even though SFEM can explain both the dispersion curves and time domain reconstruction, the dispersion curves are only accurate up to a certain frequency. Further, the three dimensional behaviour is unavailable in SFEM as this method cannot present the wave propagation in the circumferential direction. To overcome this issue, a numerical technique is implemented using the Finite Element method, and based on the signal obtained from this method, the three dimensional behaviour is explained which is then utilized to separate different kind of waves. Beyond that, two popular advanced signal processing techniques are applied to the numerical signals to compare the efficiency of these two approaches leading to determining the wave velocity and the embedment length of the timber pole.
Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

__
Mahbube Subhani

Date:
To my loving younger sister Ummul Afia Shammi
Acknowledgements

I would like to express my deepest appreciation to my supervisors Prof. Bijan Samali and A/Prof Jianchun Li over the last four years as the completion of my research and the dissertation would have never been possible without their guidance. From the very beginning of the postgraduate study till now, I have been receiving advice from them not only on the planning for the research study and analysing the test results but also on my future career. As an international student, it was not so easy for me to adapt to a totally new environment initially, but Prof. Samali always helped me to make a right decision and to cope with challenge. I still recall most of the meetings I had with Prof. Bijan, where I always felt very comfortable to express my opinion regarding the research and discuss my personal issues. The kindness and co-operation of him would always be memorable throughout my life. I was very lucky that A/Prof Jianchun Li’s office was on the same floor as mine, which allowed me to meet him any time I required to. Specially, in the case of any new observations related to my research, I could freely discuss them with him which certainly helped me in explaining the findings. Prof Li’s door was always open for discussion about technical and even for any personal issues. His constant inspiration and critical reasoning about my work gave me the enthusiasm to pursue for the better.

I would also like to give special thanks to Dr Hamid Reza Valipour who was the panel member for my Master’s assessment, for his inspirations which made it possible to upgrade my course of study from Masters by research to PhD. I am also very thankful to Dr. Ali Saleh, Dr. Emre Erkmen and Prof. Keith Crews because of the time they spent with me for strengthening some of my fundamental concepts on Structural Analysis, Numerical Modelling and properties of timber materials.

I am also grateful to all the members of the timber pole project. Mr. Amir Zad always helped me to learn about all the experimental work in the laboratory and in the field. And the other members, Mr. Roman Elsener, Mr. Bahram Jozi, Ms. Ning Yan, Dr. Ulrike Dackermann, and the capstone student Mr. Andrew Tang, who always helped me to develop a holistic view of the project, and I was always comfortable to work as a
team with them. I cannot thank enough the laboratory staff, especially Mr. Peter Brown for his patient and cordial support and teaching me about the instrumentation and different equipment. Also, Mr. Rami Haddad and Mr. David Dicker always came forward to help me for conducting any kind of test under the best possible circumstances.

My parents and siblings certainly have made an invaluable contribution to the completion of my research as I would have never been able to come overseas for postgraduate studies without their support and encouragement. Many times during my PhD, I felt it was impossible to take it to the next stage; however, I was always motivated by my family to complete my research study.

I cannot but mention about some of my colleagues and friends who have contributions to the successful completion of my dissertation. Firstly, I would like to thank Mr. Aslan Hokmabadi and Mr. Mohsen Askari with whom I discussed about many technical details of my work and they helped me with their best as a friend to overcome my difficulties. Secondly, I am very thankful to Mr Chij Shrestha, Mr. Ikramul Kabir, Dr. Yancheng Li and Ms. Yukari Aoki who were not only my fellow researchers but also very good friends.

Finally, I would like to acknowledge the financial supports provided by the ARC linkage project in conjunction with Ausgrid for conducting my research. Also, the IRS scholarship offered by UTS provided me extensive support to accomplish my PhD goal.

Mahbube Subhani

March 2014
List of Publications based on this research

Journal Publications

Conference Publications

(* indicated peer-reviewed publications)
Table of contents

Abstract .. i
Certificate of authorship/originality... iii
Acknowledgements ... v
List of Publications based on this research ... vii
Table of contents .. ix
List of Tables ... xv
List of Figures .. xvi
List of Abbreviations and Notations .. xxviii

1. Introduction ... 1
 1.1 Background .. 1
 1.2 Statement of the problem and aim of the research ... 3
 1.3 Objectives of the thesis ... 4
 1.4 Organisation of the thesis ... 5

2. Background and Literature review .. 7
 2.1 Introduction .. 7
 2.2 Stress wave based Non Destructive Testing ... 8
 2.2.1 The Sonic Echo and Impulse Response method ... 9
 2.2.2 The bending wave method .. 11
 2.2.3 Limitations of surface NDT methods... 12
 2.3 Importance of guided wave and consideration of guided wave theory for anisotropic materials ... 14
 2.4 Properties of timber .. 14
 2.5 Literature review of GW theory for anisotropic media 17
TABLE OF CONTENTS

2.6 The Spectral Finite Element Method (SFEM) and Conventional Finite Element Method (FEM) ... 19

2.7 Advanced signal processing ... 26

 2.7.1 Time frequency analysis ... 27

 2.7.2 Time scale or multi resolution analysis ... 30

2.8 Conclusions .. 31

3 A Study of behaviour of guided wave propagation in a cylindrical structure 33

 3.1 Introduction .. 33

 3.2 Wave theories for isotropic material ... 34

 3.2.1 Theory of one dimensional wave ... 34

 3.2.2 Theory of elasticity .. 36

 3.2.3 Theory of guided wave .. 37

 3.2.3.1 Dispersion relation ... 39

 3.2.3.2 Spectrum relation .. 40

 3.2.3.3 Displacement field .. 41

 3.2.3.4 Mode shapes ... 42

 3.3 Wave theories for anisotropic material .. 43

 3.3.1 The compliance matrix .. 44

 3.3.2 Dispersion relation of a transversely isotropic material 45

 3.3.3 Displacement field .. 46

 3.4 Dispersion curves for isotropic material ... 46

 3.4.1 Traction free condition ... 46

 3.4.1.1 Effect of modulus and density ... 47

 3.4.1.2 Effect of Poisson’s ratio ... 49

 3.4.1.3 Comparison between solid and layered timber modelling 50

 3.4.1.4 Effect of temperature and moisture content 52

 3.4.1.5 Effect of radius ... 53
3.4.1.6 Group velocity and wavelength ... 54

3.4.2 Embedded condition ... 57

3.4.2.1 Comparison of velocity curves between traction free and embedded condition .. 57

3.4.2.2 Attenuation curves ... 60

3.4.2.3 Effect of soil properties .. 61

3.4.2.4 Normalised power flow .. 64

3.4.2.5 Normalised displacement ... 70

3.5 Effect of elastic modulus and Poisson’s ratio on guided wave dispersion using transversely isotropic material modelling .. 75

3.6 Dispersion curves for transversely isotropic material 83

3.6.1 Wavelength ... 83

3.6.2 Energy velocity ... 85

3.6.3 Normalised displacement and propagation shape 87

3.7 Simulated signal ... 91

3.7.1 Transversely isotropic material ... 92

3.7.1.1 Effect of bandwidth ... 92

3.7.1.2 Effect of input frequency ... 99

3.7.1.3 Combination of longitudinal and flexural wave and contribution of individual modes .. 102

3.7.1.4 Effect of propagation distance .. 114

3.7.2 Isotropic material .. 117

3.7.2.1 Final signal or summation of all modes ... 119

3.7.2.2 Contribution of individual modes ... 122

3.8 Limitations of guided wave theory .. 127

3.9 Conclusions ... 130

4 Study of guided wave propagation using the Spectral Finite Element Method... 133
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>4.2</td>
<td>Theories of SFEM</td>
<td>134</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Theories related to isotropic rod like structures</td>
<td>135</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Spectral analysis</td>
<td>135</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Solution for displacement</td>
<td>138</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Theories related to isotropic beam like structures</td>
<td>141</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Spectral analysis</td>
<td>141</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Solution for displacement</td>
<td>143</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Theories for anisotropic material</td>
<td>145</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Spectral analysis</td>
<td>146</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Solution for displacement</td>
<td>148</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Boundary conditions for timber pole situation</td>
<td>150</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The forward and inverse FFT</td>
<td>154</td>
</tr>
<tr>
<td>4.3</td>
<td>Frequency domain comparison</td>
<td>155</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Input signal and dispersion relation</td>
<td>156</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Spectrum relation</td>
<td>159</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Isotropic rod and beam</td>
<td>160</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Anisotropic cylinder</td>
<td>164</td>
</tr>
<tr>
<td>4.4</td>
<td>Time domain reconstruction</td>
<td>168</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Isotropic rod element</td>
<td>169</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Isotropic beam element</td>
<td>173</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Anisotropic cylinder</td>
<td>177</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>Impact at top (vertically)</td>
<td>177</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>Impact at top (horizontally)</td>
<td>184</td>
</tr>
<tr>
<td>4.4.3.3</td>
<td>Impact at top (inclined load)</td>
<td>190</td>
</tr>
<tr>
<td>4.4.3.4</td>
<td>Impact at the middle of the pole</td>
<td>194</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>204</td>
</tr>
</tbody>
</table>
A Study on the Behavior of Guided Wave Propagation in Utility Timber Poles

TABLE OF CONTENTS

5 Study of guided wave propagation using Finite Element Method 207
5.1 Introduction .. 207
5.2 Theories of signal processing techniques ... 208
 5.2.1 Continuous Wavelet Transform (CWT) .. 208
 5.2.2 Short Kernel Method (SKM) ... 209
5.3 Numerical modelling of timber pole .. 210
5.4 Guided wave behaviour in three dimensional analysis .. 211
 5.4.1 Displacement components .. 212
 5.4.2 Velocity calculation ... 220
 5.4.3 Calculation of embedment length .. 241
5.5 Calculation of embedment length for the flexural wave propagation 245
 5.5.1 Numerical properties ... 245
 5.5.2 Velocity calculation ... 246
 5.5.3 Calculation of embedment length .. 248
5.6 Conclusions ... 251
6 Conclusions ... 254
 6.1 Summary .. 254
 6.2 Main findings .. 255
 6.3 Recommendations for future work ... 258
References ... 259
Appendices .. 269
Appendix A: The dispersion relation of guided wave equation for cylindrical structures .. 271
Appendix B: The mode shapes of analytical guided wave equation for cylindrical structures .. 275
Appendix C: The time domain results of analytical guided wave equation for cylindrical structures .. 285
Appendix D: The time domain reconstruction of guided wave equation for cylindrical structures using SFEM .. 293

Appendix E: The CWT and SKM coefficient plots of a signal from timber pole obtained using FEM .. 308
List of Tables

TABLE 3.1 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF MODULUS ON PHASE VELOCITY ... 47
TABLE 3.2 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF DENSITY ON PHASE VELOCITY ... 47
TABLE 3.3 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF POISSON’S RATIO ON PHASE VELOCITY ... 49
TABLE 3.4 DIFFERENT RADIUS AND THICKNESS OF HEARTWOOD AND SAPWOOD 51
TABLE 3.5 DIFFERENT MATERIAL PROPERTIES OF HEARTWOOD AND SAPWOOD 51
TABLE 3.6 PROPERTIES OF TIMBER AND SOIL USED IN THE ANALYSIS OF DISPERSION CURVES FOR EMBEDDED CONDITION ... 57
TABLE 3.7 MATERIAL PROPERTIES USED IN THE ANALYSES OF ORTHOTROPIC MATERIAL 76
TABLE 3.8 DIFFERENT SETS OF MATERIAL PROPERTIES USED IN THE ANALYSES OF TRANSVERSELY ISOTROPIC MATERIAL ... 76
TABLE 4.1 EQUATIONS OF TYPICAL BOUNDARY CONDITIONS FOR RODS [56] 152
TABLE 4.2 EQUATIONS OF TYPICAL BOUNDARY CONDITIONS FOR BEAMS [56] 152
TABLE 4.3 MATERIAL PROPERTIES USED FOR THE ANISOTROPIC MATERIAL MODELLING 156
TABLE 4.4 MATERIAL PROPERTIES USED FOR ISOTROPIC MATERIAL MODEL 158
TABLE 5.1 COMMON FREQUENCIES BETWEEN SENSORS ... 231
TABLE 5.2 WAVELENGTHS OF FLEXURAL WAVE AT VARIOUS FREQUENCIES 232
TABLE 5.3 COMMON FREQUENCIES AMONG SENSORS AT 0° AND 180° ORIENTATION 237
TABLE 5.4 CALCULATION OF EMBEDDED LENGTH FOR CASE 1 242
TABLE 5.5 CALCULATION OF EMBEDDED LENGTH FOR CASE 2 243
TABLE 5.6 CALCULATION OF EMBEDDED LENGTH FOR CASE 3 (LONGITUDINAL WAVE) . 244
TABLE 5.7 CALCULATION OF EMBEDDED LENGTH FOR CASE 3 (FLEXURAL WAVE) 245
TABLE 5.8 CALCULATION OF EMBEDDED LENGTH BY CWT ... 250
TABLE 5.9 CALCULATION OF EMBEDDED LENGTH BY SKM ... 250
List of Figures

Figure 2.1 Photographs of Earlywood and Latewood [29] ... 17
Figure 2.2 Photographs of Heartwood and Sapwood [29] .. 17
Figure 3.1 Comparison of Phase Velocities Among Sets 1 to 4 To Show the Effect
 of Modulus (L= Longitudinal, F= Flexural, S= Set) ... 48
Figure 3.2 Comparison of Phase Velocities Among Sets 5 to 9 To Show the Effect
 of Density (L= Longitudinal, F= Flexural, S= Set) .. 48
Figure 3.3 Comparison of Phase Velocities Among Sets 10 to 13 To Show the
 Effect of Poisson’s Ratio .. 50
Figure 3.4 Comparison of Phase Velocities Among Sets 14 to 16 and 11 To Show
 the Effect of Thickness of Sapwood .. 52
Figure 3.5 Comparison of Phase Velocities Among Sets 17 to 19 and 11 To Show
 the Effect of Difference of Material Properties Between Heartwood and
 Sapwood .. 52
Figure 3.6 Effect of Temperature and Moisture Content on Phase Velocity 53
Figure 3.7 Effect of Diameter of the Timber Pole on Phase Velocity 54
Figure 3.8 Group Velocity Curve of Set 11 ... 56
Figure 3.9 Wavelength of Set 11 Versus Frequency .. 56
Figure 3.10 Comparison of Phase Velocity Curves Between Traction Free and
 Embedded Condition .. 58
Figure 3.11 Comparison of Group Velocity Curves Between Traction Free and
 Embedded Condition ... 59
Figure 3.12 Comparison of Energy Velocity Curves Between Traction Free and
 Embedded Condition .. 59
Figure 3.13 Attenuation Curve of Soil 1 ... 60
Figure 3.14 Effect of Soil Parameter on Phase Velocity (T.F = Traction Free,
 S.S = Soft Soil, D.S = Dense Soil) ... 62
Figure 3.15 Up to 3 khz of Figure 3.14 ... 62
Figure 3.16 Effect of Soil Parameter on Energy Velocity (T.F = Traction Free,
 S.S = Soft Soil, D.S = Dense Soil) ... 63
Figure 3.17 Attenuation Curves of Soft Soil .. 63
FIGURE 3.18 ATTENUATION CURVES OF DENSE SOIL ... 64
FIGURE 3.19 POWER FLOW OF L(0,1) AT 3 KHZ (TRACTION FREE) ... 65
FIGURE 3.20 POWER FLOW OF L(0,1) AT 10 KHZ (TRACTION FREE) ... 65
FIGURE 3.21 POWER FLOW OF L(0,1) AT 20 KHZ (TRACTION FREE) ... 66
FIGURE 3.22 POWER FLOW OF L(0,2) AT 20 KHZ (TRACTION FREE) ... 66
FIGURE 3.23 POWER FLOW OF L(0,3) AT 20 KHZ (TRACTION FREE) ... 66
FIGURE 3.24 POWER FLOW OF F(1,1) AT 3 KHZ (TRACTION FREE) ... 66
FIGURE 3.25 POWER FLOW OF F(1,1) AT 10 KHZ (TRACTION FREE) ... 66
FIGURE 3.26 POWER FLOW OF F(1,1) AT 20 KHZ (TRACTION FREE) ... 66
FIGURE 3.27 POWER FLOW OF F(1,2) AT 10 KHZ (TRACTION FREE) ... 66
FIGURE 3.28 POWER FLOW OF F(1,2) AT 20 KHZ (TRACTION FREE) ... 66
FIGURE 3.29 POWER FLOW OF F(1,3) AT 10 KHZ (TRACTION FREE) ... 66
FIGURE 3.30 POWER FLOW OF F(1,3) AT 20 KHZ (TRACTION FREE) ... 67
FIGURE 3.31 POWER FLOW OF F(1,4) AT 20 KHZ (TRACTION FREE) ... 67
FIGURE 3.32 POWER FLOW OF L(0,1) AT 3 KHZ (EMBEDDED) ... 68
FIGURE 3.33 POWER FLOW OF L(0,1) AT 10 KHZ (EMBEDDED) ... 68
FIGURE 3.34 POWER FLOW OF L(0,1) AT 20 KHZ (EMBEDDED) ... 68
FIGURE 3.35 POWER FLOW OF L(0,3) AT 20 KHZ (EMBEDDED) ... 69
FIGURE 3.36 POWER FLOW OF F(1,1) AT 3 KHZ (EMBEDDED) ... 69
FIGURE 3.37 POWER FLOW OF F(1,1) AT 10 KHZ (EMBEDDED) ... 69
FIGURE 3.38 POWER FLOW OF F(1,1) AT 20 KHZ (EMBEDDED) ... 69
FIGURE 3.39 POWER FLOW OF F(1,2) AT 20 KHZ (EMBEDDED) ... 69
FIGURE 3.40 POWER FLOW OF F(1,3) AT 20 KHZ (EMBEDDED) ... 69
FIGURE 3.41 NORMALISED DISPLACEMENT OF L(0,1) AT 3 KHZ (EMBEDDED) 71
FIGURE 3.42 NORMALISED DISPLACEMENT OF L(0,1) AT 10 KHZ (EMBEDDED) 72
FIGURE 3.43 NORMALISED DISPLACEMENT OF L(0,1) AT 20 KHZ (EMBEDDED) 72
FIGURE 3.44 NORMALISED DISPLACEMENT OF L(0,2) AT 20 KHZ (EMBEDDED) 72
FIGURE 3.45 NORMALISED DISPLACEMENT OF L(0,3) AT 20 KHZ (EMBEDDED) 73
FIGURE 3.46 NORMALISED DISPLACEMENT OF F(1,1) AT 3 KHZ (EMBEDDED) 73
FIGURE 3.47 NORMALISED DISPLACEMENT OF F(1,1) AT 20 KHZ (EMBEDDED) 73
FIGURE 3.48 NORMALISED DISPLACEMENT OF F(1,2) AT 20 KHZ (EMBEDDED) 74
FIGURE 3.49 NORMALISED DISPLACEMENT OF F(1,3) AT 20 KHZ (EMBEDDED) 74
FIGURE 3.50 NORMALISED DISPLACEMENT OF F(1,4) AT 20 KHZ (EMBEDDED) 74
FIGURE 3.51 PHASE VELOCITY CURVE FOR ISOTROPIC TRACTION FREE CYLINDER77
FIGURE 3.52 PHASE VELOCITY CURVE FOR ORTHOTROPIC CYLINDER [129]77
FIGURE 3.53 COMPARISON BETWEEN SETS 1 AND 4 FOR TRANSVERSELY ISOTROPIC
CYLINDER ...78
FIGURE 3.54 COMPARISON BETWEEN SETS 2 AND 3 FOR TRANSVERSELY ISOTROPIC
CYLINDER ...79
FIGURE 3.55 COMPARISON BETWEEN SETS 1 AND 2 FOR TRANSVERSELY ISOTROPIC
CYLINDER ...79
FIGURE 3.56 COMPARISON BETWEEN SETS 3 AND 4 FOR TRANSVERSELY ISOTROPIC
CYLINDER ...80
FIGURE 3.57 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 1) MATERIAL..81
FIGURE 3.58 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 2) MATERIAL..81
FIGURE 3.59 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 3) MATERIAL..82
FIGURE 3.60 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 4) MATERIAL..82
FIGURE 3.61 WAVELENGTH CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 2)84
FIGURE 3.62 WAVELENGTH CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 3)84
FIGURE 3.63 ENERGY VELOCITY CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 2)
...86
FIGURE 3.64 ENERGY VELOCITY CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 3)
...86
FIGURE 3.65 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF L(0,1) AND
F(1,1) MODE AT 2 KHZ ..89
FIGURE 3.66 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF L(0,1) AND
L(0,2) MODE AT 8 KHZ ..89
FIGURE 3.67 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF L(0,3) AND
L(0,4) MODE AT 8 KHZ ..89
FIGURE 3.68 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF F(1,1) AND
F(1,2) MODE AT 8 KHZ ..90
FIGURE 3.69 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF F(1,3) AND F(1,4) MODE AT 8 KHZ .. 90
FIGURE 3.70 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF F(1,5) AND F(1,6) MODE AT 8 KHZ .. 90
FIGURE 3.71 EXCITATION AT 8.5 KHZ WITH 10 CYCLE SINE BURST .. 94
FIGURE 3.72 PROPAGATION OF LONGITUDINAL WAVES AT 8.5 KHZ SIGNAL WITH 10 CYCLE SINE BURST (PITCH CATCH) .. 94
FIGURE 3.73 PROPAGATION OF LONGITUDINAL WAVES AT 8.5 KHZ SIGNAL WITH 10 CYCLE SINE BURST (PULSE ECHO) .. 94
FIGURE 3.74 EXCITATION AT 8.5 KHZ WITH 30 CYCLE SINE BURST .. 96
FIGURE 3.75 PROPAGATION OF LONGITUDINAL WAVES AT 8.5 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH) .. 96
FIGURE 3.76 PROPAGATION OF LONGITUDINAL WAVES AT 8.5 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PULSE ECHO) .. 96
FIGURE 3.77 EXCITATION AT 10.7 KHZ WITH 10 CYCLE SINE BURST .. 97
FIGURE 3.78 PROPAGATION OF FLEXURAL WAVES AT 10.7 KHZ SIGNAL WITH 10 CYCLE SINE BURST (PITCH CATCH) .. 97
FIGURE 3.79 PROPAGATION OF FLEXURAL WAVES AT 10.7 KHZ SIGNAL WITH 10 CYCLE SINE BURST (PULSE ECHO) .. 97
FIGURE 3.80 EXCITATION AT 10.7 KHZ WITH 30 CYCLE SINE BURST .. 98
FIGURE 3.81 PROPAGATION OF FLEXURAL WAVES AT 10.7 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH) .. 98
FIGURE 3.82 PROPAGATION OF FLEXURAL WAVES AT 10.7 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PULSE ECHO) .. 98
FIGURE 3.83 EXCITATION AT 11 KHZ WITH 30 CYCLE SINE BURST .. 100
FIGURE 3.84 PROPAGATION OF LONGITUDINAL WAVES AT 11 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH) .. 100
FIGURE 3.85 PROPAGATION OF LONGITUDINAL WAVES AT 11 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PULSE ECHO) .. 100
FIGURE 3.86 EXCITATION AT 12.6 KHZ WITH 30 CYCLE SINE BURST .. 101
FIGURE 3.87 PROPAGATION OF FLEXURAL WAVES AT 12.6 KHZ SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH) .. 101
FIGURE 3.88 Propagation of flexural waves at 12.6 kHz signal with 30 cycle sine burst (pulse echo) ... 101
FIGURE 3.89 Excitation at 12.5 kHz with 10 cycle sine burst (time domain) 103
FIGURE 3.90 Excitation at 12.5 kHz with 10 cycle sine burst (frequency domain) ... 103
FIGURE 3.91 Excitation at 12.5 kHz with 30 cycle sine burst (time domain) 103
FIGURE 3.92 Excitation at 12.5 kHz with 30 cycle sine burst (frequency domain) ... 103
FIGURE 3.93 Propagation of longitudinal and flexural waves at 12.5 kHz signal with 10 cycle sine burst (pitch catch) .. 103
FIGURE 3.94 Propagation of longitudinal and flexural waves at 12.5 kHz signal with 30 cycle sine burst (pitch catch) .. 104
FIGURE 3.95 Propagation of longitudinal and flexural waves at 12.5 kHz signal with 10 cycle sine burst (pulse echo) ... 104
FIGURE 3.96 Propagation of longitudinal and flexural waves at 12.5 kHz signal with 30 cycle sine burst (pulse echo) ... 104
FIGURE 3.97 Contribution of individual modes on the propagation of a 12.5 kHz input signal with 10 cycle sine burst (pitch catch) 106
FIGURE 3.98 Contribution of individual modes on the propagation of a 12.5 kHz input signal with 30 cycle sine burst (pitch catch) 109
FIGURE 3.99 Contribution of individual modes for the propagation of a 12.5 kHz input signal with 10 cycle sine burst (pulse echo) 111
FIGURE 3.100 Contribution of individual modes for the propagation of a 12.5 kHz input signal with 30 cycle sine burst (pulse echo) 113
FIGURE 3.101 Excitation at 7 kHz frequency with 10 (left) and 30 cycles (right) .. 115
FIGURE 3.102 Propagation of longitudinal and flexural modes at 7 kHz with 10 cycle sine burst with a propagation distance of 60 cm (top) and 20 cm (bottom) .. 115
FIGURE 3.103 Propagation of longitudinal and flexural modes at 7 kHz with 30 cycle sine burst with a propagation distance of 60 cm (top) and 20 cm (bottom) .. 116
FIGURE 3.104 Propagation of longitudinal and flexural modes at 12.5 kHz with
10 cycle (top) and 30 cycle (bottom) sine burst with a propagation
distance of 20 cm .. 117
FIGURE 3.105 Energy velocity curve of an isotropic cylinder embedded in soil
up to 65 kHz .. 118
FIGURE 3.106 Attenuation curve of an isotropic cylinder in soil up to 62 kHz 119
FIGURE 3.107 Excitation at 50 kHz frequency with 30 cycles 120
FIGURE 3.108 Propagation of longitudinal modes with a distance of 60 cm
(pitch catch) .. 120
FIGURE 3.109 Propagation of flexural modes with a distance of 60 cm (pitch
catch) ... 120
FIGURE 3.110 Propagation of longitudinal modes with a distance of 5 m (pulse
echo) in traction free isotropic cylinder ... 120
FIGURE 3.111 Propagation of flexural modes with a distance of 5 m (pulse echo)
in traction free isotropic cylinder ... 121
FIGURE 3.112 Propagation of longitudinal modes with a distance of 5 m (pulse
echo) in embedded isotropic cylinder .. 121
FIGURE 3.113 Propagation of flexural modes with a distance of 5 m (pulse echo)
in embedded isotropic cylinder .. 122
FIGURE 3.114 Contribution of individual longitudinal modes in traction free
isotropic material (TF= traction free) ... 123
FIGURE 3.115 Contribution of individual longitudinal modes in embedded
isotropic material (EMB = Embedded) ... 124
FIGURE 3.116 Contribution of individual flexural modes in traction free
isotropic material .. 125
FIGURE 3.117 Contribution of individual flexural modes in embedded isotropic
material ... 126
FIGURE 4.1 Excitation at 12 kHz signal ... 157
FIGURE 4.2 Excitation at 20 kHz signal ... 157
FIGURE 4.3 Dispersion relation of an anisotropic cylinder considering the
properties of timber pole .. 159
FIGURE 4.4 Dispersion relation of an isotropic Timoshenko beam considering
the properties of timber pole .. 159
FIGURE 4.5 COMPARISON OF PHASE VELOCITY AMONG DIFFERENT ISOTROPIC ROD THEORIES .. 161

FIGURE 4.6 COMPARISON OF GROUP VELOCITY AMONG DIFFERENT ISOTROPIC ROD THEORIES .. 161

FIGURE 4.7 COMPARISON OF PHASE VELOCITY BETWEEN 3 MODE THEORY AND ANALYTICAL RESULTS .. 162

FIGURE 4.8 COMPARISON OF PHASE VELOCITY BETWEEN DIFFERENT ISOTROPIC BEAM THEORIES .. 163

FIGURE 4.9 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO BEAM THEORY AND ANALYTICAL RESULT .. 163

FIGURE 4.10 GROUP VELOCITY CURVES OF TIMOSHENKO ISOTROPIC BEAM .. 164

FIGURE 4.11 COMPARISON OF PHASE VELOCITY BETWEEN DIFFERENT ANISOTROPIC WAVE THEORIES .. 165

FIGURE 4.12 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AND TRANSVERSELY ISOTROPIC MATERIAL MODELLING (SET 2) .. 166

FIGURE 4.13 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AND TRANSVERSELY ISOTROPIC MATERIAL MODELLING (SET 3) .. 166

FIGURE 4.14 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AND ORTHOTROPIC MATERIAL MODELLING .. 167

FIGURE 4.15 GROUP VELOCITY CURVE OF ANISOTROPIC CYLINDER .. 167

FIGURE 4.16 BOUNDARY CONDITIONS AND DIFFERENT IMPACT LOCATIONS AND ORIENATIONS .. 169

FIGURE 4.17 TIME DOMAIN RESULTS OF ISOTROPIC ROD ELEMENT BASED ON 3 MODE THEORY .. 171

FIGURE 4.18 TIME DOMAIN RESULTS OF ISOTROPIC ROD ELEMENT (PARTIALLY EMBEDDED) BASED ON 3 MODE THEORY .. 172

FIGURE 4.19 TIME DOMAIN RESULTS OF ISOTROPIC BEAM ELEMENT BASED ON TIMOSHENKO BEAM THEORY .. 174

FIGURE 4.20 TIME DOMAIN RESULTS OF ISOTROPIC BEAM ELEMENT (PARTIALLY EMBEDDED) BASED ON TIMOSHENKO BEAM THEORY .. 176

FIGURE 4.21 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING THE POLE STANDING ON SOIL .. 177
FIGURE 4.22 CONTRIBUTION OF DIFFERENT MODES IN AN ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING THE POLE STANDING ON SOIL 178
FIGURE 4.23 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING THE TIMBER POLE SITUATION... 180
FIGURE 4.24 CONTRIBUTION OF LONGITUDINAL MODES IN AN ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING TIMBER POLE SITUATION........... 181
FIGURE 4.25 CONTRIBUTION OF CONTRACTION MODES IN AN ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING TIMBER POLE SITUATION 182
FIGURE 4.26 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TOP (VERTICALLY) CONSIDERING THE TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ) .. 183
FIGURE 4.27 TIME DOMAIN RESULTS AND CONTRIBUTION OF DIFFERENT MODES OF ANISOTROPIC CYLINDER WITH HORIZONTAL IMPACT AT TOP CONSIDERING THE POLE ON THE SOIL .. 184
FIGURE 4.28 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH HORIZONTAL IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 12 KHZ) .. 186
FIGURE 4.29 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH HORIZONTAL IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ) .. 187
FIGURE 4.30 CONTRIBUTION OF FLEXURAL MODE IN AN ANISOTROPIC CYLINDER WITH IMPACT AT TOP (HORIZONTALLY) CONSIDERING TIMBER POLE SITUATION 188
FIGURE 4.31 CONTRIBUTION OF SHEAR MODE IN AN ANISOTROPIC CYLINDER WITH IMPACT AT TOP (HORIZONTALLY) CONSIDERING TIMBER POLE SITUATION 189
FIGURE 4.32 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ).. 191
FIGURE 4.33 CONTRIBUTION OF LONGITUDINAL MODE IN AN ANISOTROPIC CYLINDER WITH INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ).. 192
FIGURE 4.34 CONTRIBUTION OF FLEXURAL MODE IN AN ANISOTROPIC CYLINDER WITH INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ).. 193
FIGURE 4.35 Contribution of Contraction Mode in an Anisotropic Cylinder with Inclined Impact at Top Considering Timber Pole Situation (Input Frequency 20 KHz) .. 195

FIGURE 4.36 Contribution of Shear Mode in an Anisotropic Cylinder with Inclined Impact at Top Considering Timber Pole Situation (Input Frequency 20 KHz) .. 196

FIGURE 4.37 Time Domain Results of Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation (Down Going Wave) 198

FIGURE 4.38 Time Domain Results of Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation (Up Going Wave) 199

FIGURE 4.39 Contribution of Longitudinal Mode in an Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation 200

FIGURE 4.40 Contribution of Flexural Mode in an Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation 201

FIGURE 4.41 Contribution of Contraction Mode in an Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation 202

FIGURE 4.42 Contribution of Shear Mode in an Anisotropic Cylinder with Inclined Impact at the Middle Considering Timber Pole Situation 203

FIGURE 5.1 Three Different Cases of Numerical Modelling of Timber Pole 213

FIGURE 5.2 Comparison of Time Acceleration Data in Three Orthogonal Directions at Sensor at 3M (Impact at Top) .. 214

FIGURE 5.3 Comparison of Time Acceleration Data in Longitudinal and Radial Directions at Sensor at 3M in Different Positions (Impact at Top) 215

FIGURE 5.4 Comparison of Time Acceleration Data in Three Orthogonal Directions at Sensor at 2.5M (Impact from Side Transverse) 216

FIGURE 5.5 Comparison of Time Acceleration Data in Longitudinal and Radial Directions at Sensor at 2.5M in Different Positions (Impact from Side Transverse) .. 217

FIGURE 5.6 Comparison of Time Acceleration Data in Three Orthogonal Directions at Sensor at 2.5M (Impact: Side 45°) .. 219

FIGURE 5.7 Comparison of Time Acceleration Data in Longitudinal, Radial and Angular Directions at Sensor at 2.5M in Different Positions (Impact: Side 45°) .. 220
FIGURE 5.8 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 1 AT THE SENSOR 3M FROM THE BOTTOM POLE WITH 0° ORIENTATION221
FIGURE 5.9 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 1 AT THE SENSOR 2M FROM THE BOTTOM POLE WITH 0° ORIENTATION221
FIGURE 5.10 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR CASE 1 AT THE SENSOR 3M FROM THE BOTTOM POLE WITH 0° ORIENTATION222
FIGURE 5.11 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 1 AT THE SENSOR 3M FROM THE BOTTOM POLE WITH 90° ORIENTATION223
FIGURE 5.12 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 1 AT THE SENSOR 2M FROM THE BOTTOM POLE WITH 90° ORIENTATION223
FIGURE 5.13 CWT COEFFICIENT PLOT OF DIFFERENT COMPONENTS AT DIFFERENT FREQUENCIES FOR CASE 1 .. 224
FIGURE 5.14 PHASE VELOCITY COMPARISON FOR CASE 1 ... 225
FIGURE 5.15 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 2.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION225
FIGURE 5.16 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 1.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION226
FIGURE 5.17 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 2.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION227
FIGURE 5.18 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 1.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION227
FIGURE 5.19 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 2.5M FROM THE BOTTOM POLE WITH 90° ORIENTATION ... 228
FIGURE 5.20 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT COMPONENT FOR CASE 2 AT SENSOR 1.5M FROM THE BOTTOM POLE WITH 90° ORIENTATION ... 228
FIGURE 5.21 CWT COEFFICIENT PLOT OF DIFFERENT COMPONENTS AT DIFFERENT FREQUENCIES FOR CASE 2 .. 229
FIGURE 5.22 PHASE VELOCITY COMPARISON FOR CASE 2 ... 231
FIGURE 5.23 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR CASE 3 AT SENSOR 2.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION232
FIGURE 5.24 Time frequency contour of the axial displacement component for case 3 at sensor 1.5m from the bottom pole with 0° orientation 232

FIGURE 5.25 Time frequency contour of the radial displacement component for case 3 at sensor 2.5m from the bottom pole with 0° orientation 234

FIGURE 5.26 Time frequency contour of the radial displacement component for case 3 at sensor 1.5m from the bottom pole with 0° orientation 234

FIGURE 5.27 Time frequency contour of the axial displacement component for case 3 at sensor 2.5m from the bottom pole with 90° orientation 235

FIGURE 5.28 Time frequency contour of the axial displacement component for case 3 at sensor 1.5m from the bottom pole with 90° orientation 236

FIGURE 5.29 Time frequency contour of the tangential displacement component for case 3 at sensor 2.5m from the bottom pole with 90° orientation .. 236

FIGURE 5.30 Time frequency contour of the tangential displacement component for case 3 at sensor 1.5m from the bottom pole with 90° orientation .. 237

FIGURE 5.31 Phase velocity comparison for case 3 for the 0° and 90° orientations .. 238

FIGURE 5.32 Time frequency contour of the axial displacement component for case 3 at sensor 2.5m from the bottom pole with 180° orientation 239

FIGURE 5.33 Time frequency contour of the axial displacement component for case 3 at sensor 1.5m from the bottom pole with 180° orientation 239

FIGURE 5.34 Time frequency contour of the radial displacement component for case 3 at sensor 2.5m from the bottom pole with 180° orientation 240

FIGURE 5.35 Time frequency contour of the radial displacement component for case 3 at sensor 1.5m from the bottom pole with 180° orientation 240

FIGURE 5.36 Phase velocity comparison for case 3 for the summation of 0° and 180° orientations .. 241

FIGURE 5.37 The selection of first arrival and reflection peaks from two sensors (case 1) .. 242

FIGURE 5.38 The selection of first arrival and reflection peak from two sensors (case 2) .. 243

FIGURE 5.39 Frequency content of the applied signal at the sensors 246
FIGURE 5.40 TIME-COEFFICIENT PLOTS AT 944 Hz (CWT: TOP PLOT, SKM: BOTTOM PLOT) ... 247

FIGURE 5.41 PHASE VELOCITY COMPARISON AMONG GW, 1D THEORY AND NUMERICAL RESULTS .. 248

FIGURE 5.42 TIME-COEFFICIENT PLOT AT 692 Hz (CWT) ... 249

FIGURE 5.43 TIME-COEFFICIENT PLOT BY SKM AT 944 Hz (TOP PLOT: SENSOR 2, BOTTOM PLOT: SENSOR 1) .. 249
List of Abbreviations and Notations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>One dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>BEM</td>
<td>Boundary element method</td>
</tr>
<tr>
<td>CRF</td>
<td>Converted flexural mode reflection</td>
</tr>
<tr>
<td>CRS</td>
<td>Converted shear mode reflection</td>
</tr>
<tr>
<td>CWT</td>
<td>Continuous wavelet transform</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transforms</td>
</tr>
<tr>
<td>EBT</td>
<td>Euler-Bernoulli beam theory</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite difference method</td>
</tr>
<tr>
<td>FE</td>
<td>Finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transforms</td>
</tr>
<tr>
<td>FRF</td>
<td>Frequency response function</td>
</tr>
<tr>
<td>FSDT</td>
<td>First order shear deformation theory</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transforms</td>
</tr>
<tr>
<td>GW</td>
<td>Guided wave</td>
</tr>
<tr>
<td>HSDT</td>
<td>Higher order shear deformation theory</td>
</tr>
<tr>
<td>IF</td>
<td>Incoming flexural mode</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse fast Fourier transforms</td>
</tr>
<tr>
<td>IR</td>
<td>Impulse response</td>
</tr>
<tr>
<td>IS</td>
<td>Incoming shear mode</td>
</tr>
<tr>
<td>KED</td>
<td>Kinetic energy density</td>
</tr>
<tr>
<td>LISA</td>
<td>Local interaction simulation approach</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
</tr>
<tr>
<td>MRA</td>
<td>Multi resolution analysis</td>
</tr>
<tr>
<td>MSLM</td>
<td>Mass spring lattice model</td>
</tr>
<tr>
<td>NA</td>
<td>Neutral axis</td>
</tr>
<tr>
<td>NDE</td>
<td>Non-destructive evaluation</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-destructive testing</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary differential equation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial differential equation</td>
</tr>
<tr>
<td>PEP</td>
<td>Polynomial eigenvalue problem</td>
</tr>
<tr>
<td>PWR</td>
<td>Power flow density</td>
</tr>
<tr>
<td>PWVD</td>
<td>Pseudo Wigner – Ville Distribution</td>
</tr>
<tr>
<td>RF</td>
<td>Reflected flexural mode</td>
</tr>
<tr>
<td>RS</td>
<td>Reflected shear mode</td>
</tr>
<tr>
<td>SAFE</td>
<td>Semi analytical finite element method</td>
</tr>
<tr>
<td>SBFEM</td>
<td>Scaled boundary finite element method</td>
</tr>
<tr>
<td>SE</td>
<td>Sonic echo</td>
</tr>
<tr>
<td>SED</td>
<td>Strain energy density</td>
</tr>
<tr>
<td>SFEM</td>
<td>Spectral finite element method</td>
</tr>
<tr>
<td>SHPB</td>
<td>Split Hopkinson pressure bar</td>
</tr>
<tr>
<td>SKM</td>
<td>Short kernel method</td>
</tr>
<tr>
<td>STFT</td>
<td>Short time Fourier transforms</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular value decomposition</td>
</tr>
<tr>
<td>WT</td>
<td>Wavelet transforms</td>
</tr>
<tr>
<td>WVD</td>
<td>Wigner – Ville Distribution</td>
</tr>
</tbody>
</table>

\[E_r \] Modulus of elasticity in the radial direction
\[E_z \] Modulus of elasticity in the longitudinal direction
\[E_\theta \] Modulus of elasticity in the tangential direction
\[G_{rz} \] Shear modulus on the radial – longitudinal plane
\[G_{r\theta} \] Shear modulus on the radial – tangential plane
\[G_{\theta z} \] Shear modulus on the tangential – longitudinal plane
\[L_{emb} \] Embedment length of the timber pole
\[\tilde{M} \] Moment in the frequency domain
\[\tilde{N} \] Axial force in the frequency domain
\[\tilde{V} \] Shear force in the frequency domain
\[f_{Nyquist} \] Nyquist frequency
\[\tilde{u}(x,t) \] Axial displacement in the frequency domain
\[\tilde{v}(x,t) \] Transverse displacement in the frequency domain
\[\nu_{rz} \] Poisson’s ratio corresponding to a contraction in longitudinal direction when an extension is applied in radial direction
Poisson’s ratio corresponding to a contraction in tangential direction when an extension is applied in radial direction

Poisson’s ratio corresponding to a contraction in radial direction when an extension is applied in longitudinal direction

Poisson’s ratio corresponding to a contraction in tangential direction when an extension is applied in longitudinal direction

Poisson’s ratio corresponding to a contraction in radial direction when an extension is applied in tangential direction

Poisson’s ratio corresponding to a contraction in longitudinal direction when an extension is applied in tangential direction

Shear contraction

Lateral contraction in the frequency domain

Mother wavelet in the frequency domain

Stiffness matrix

Compliance matrix

Divergence operator

Cross sectional area

Radius of cylinder

Unknown coefficients

Wave velocity

Unknown coefficients

Flexural wave velocity

Bulk longitudinal wave velocity

Bulk shear wave velocity

Diameter

Dynamic stiffness matrix

Modulus of elasticity or Young’s modulus

Longitudinal modulus of elasticity \((E_L)\) at zero \(MC\)

\(E_L\) at temperature \(T\)

Longitudinal modulus of elasticity

Frequency

Shear modulus

Translation of a window of a given length

Moment of inertia

Bessel’s function of first kind

Hankel function
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>Imaginary number</td>
</tr>
<tr>
<td>K</td>
<td>Spring constant</td>
</tr>
<tr>
<td>K_1, K_2, \ldots, K_4</td>
<td>Adjustable parameters</td>
</tr>
<tr>
<td>L</td>
<td>Length/reflection depth</td>
</tr>
<tr>
<td>l_1</td>
<td>Distance between the sensor and ground level</td>
</tr>
<tr>
<td>L_s</td>
<td>The distance between sensors</td>
</tr>
<tr>
<td>L_T</td>
<td>The distance between sensor and the bottom of the pole</td>
</tr>
<tr>
<td>N</td>
<td>Number of sampling points</td>
</tr>
<tr>
<td>NRG</td>
<td>Total energy</td>
</tr>
<tr>
<td>p</td>
<td>Circumferential order of cylinder</td>
</tr>
<tr>
<td>P_m</td>
<td>Power flow of a mode</td>
</tr>
<tr>
<td>PWR_z</td>
<td>Component of poynting vector in the direction of propagation</td>
</tr>
<tr>
<td>$q(x,t)$</td>
<td>Externally applied load</td>
</tr>
<tr>
<td>r</td>
<td>Any distance from the centre of the circular cross section along the radius</td>
</tr>
<tr>
<td>R_i</td>
<td>Amplitude ratio</td>
</tr>
<tr>
<td>S</td>
<td>Cross section of the cylinder</td>
</tr>
<tr>
<td>s</td>
<td>Scaling parameter</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>Displacement</td>
</tr>
<tr>
<td>u_r</td>
<td>Displacement component along radial direction</td>
</tr>
<tr>
<td>u_z</td>
<td>Displacement component axial/longitudinal direction</td>
</tr>
<tr>
<td>u_θ</td>
<td>Displacement component along tangential/angular direction</td>
</tr>
<tr>
<td>V_{gr}</td>
<td>Group velocity</td>
</tr>
<tr>
<td>V_{ph}</td>
<td>Phase velocity</td>
</tr>
<tr>
<td>V_{soil}</td>
<td>Bulk wave velocity of soil</td>
</tr>
<tr>
<td>V_z</td>
<td>Energy velocity</td>
</tr>
<tr>
<td>w</td>
<td>Rotation vector</td>
</tr>
<tr>
<td>$x(t)$</td>
<td>Any arbitrary signal</td>
</tr>
<tr>
<td>Z</td>
<td>Ordinary and modified Bessel function of first kind</td>
</tr>
<tr>
<td>α_{leak}</td>
<td>Leakage angle</td>
</tr>
<tr>
<td>Δf</td>
<td>Distance between the two peaks in velocity versus frequency function</td>
</tr>
<tr>
<td>Δt</td>
<td>Time difference between the arrival and reflected peaks</td>
</tr>
<tr>
<td>Ω</td>
<td>Rotation vector</td>
</tr>
</tbody>
</table>
\(u(x, t) \) | Axial displacement in the time domain
\(v(x, t) \) | Transverse displacement in the time domain
\(\alpha \) | Wavenumber for longitudinal waves
\(\beta \) | Wavenumber for shear waves
\(\gamma \) | Shearing strain
\(\varepsilon \) | Normal strain
\(\eta \) | Viscous damping
\(\lambda \) | Lam\text{\textae} constant
\(\mu \) | Lam\text{\textae} constant or shear modulus
\(\nu \) | Poisson’s ratio
\(\xi \) | Wavenumber
\(\rho \) | Mass density
\(\sigma \) | Normal stress
\(\tau \) | Shearing stress
\(\varphi(x, t) \) | Shear contraction in the time domain
\(\psi(t) \) | Mother wavelet in the time domain
\(\psi(x, t) \) | Lateral contraction in the time domain
\(\omega \) | Angular frequency
\(\phi \) | Slope