

University of Technology Sydney Faculty of Engineering and Information Technology

A Study on the Behaviour of Guided Wave Propagation in Utility Timber Poles

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in the field of

Civil and Structural Engineering

by

Mahbube Subhani

March 2014

Abstract

Timber is a widely used engineering material because of its availability and good engineering properties. The round timber is suitable for electricity poles, wharfs, piles, bridge piers, etc. There are nearly 7 million utility poles in the current network in Australia, in which around 5 million timber poles are used for distribution of power and communications. The utility pole industry in Australia spends about \$40~\$50 million annually on maintenance and asset management to avoid failure of the utility lines. Each year about 30,000 electricity poles are replaced in the eastern states of Australia, despite the fact that up to 80% of these poles are still in a very good serviceable condition. In addition, with discovery of scour problems in bridge foundations in the past 30 years, a study on the USA's national bridge stock showed that out of approximately 580,000 highway timber bridges in the National bridge inventory, about 104,000 of these bridges had unknown foundations depth. Therefore, a reliable non-destructive evaluation technique is essential for the condition assessment of timber poles/piles to ensure public safety, operational efficiency and to reduce the maintenance cost.

Different types of non-destructive tests (NDT) were developed during the last decades to evaluate the embedment depth and the quality of materials of embedded structures. Some of these methods have also been utilised for timber piles or poles. However, the extent of knowledge developed on non-destructive tests for timber piles is far from adequate and the effectiveness and reliability of current NDTs are questionable due to uncertainty on materials, structures and environment. In addition, one dimensional assumption is usually considered while dealing with timber poles/piles which is insufficient to reflect the actual behaviour of stress wave propagation in the columnar structures. Also, the anisotropic behaviour of timber and the effects of environment are not taken into account in numerous conventional non-destructive evaluations (NDE) that leads to errors regarding the condition assessment of timber poles.

Waves propagating along a pile/pole include different clusters of waves, called guided waves (GWs). In GW, the velocities of a wave (such as phase velocity, group velocity, energy velocity) become a function of frequencies (i.e. wave dispersion behaviour) and displacement magnitude varies when waves propagate along the pole. Besides, GWs

that have the same frequencies possess shorter wavelengths than their counterpart of conventional surface wave. Hence, it is possible to detect smaller sized defects with a guided wave technique than a surface wave technique. Hence, it is essential to model the actual three dimensional behaviour of wave propagation inside the timber pole instead of one dimensional assumption, and the environmental factors in conjunction with the actual timber pole situation is necessary to be addressed before suggesting an experimental set up and verification.

This thesis investigates the GW propagation inside the timber pole using an analytical, one semi analytical and one numerical method. The actual GW equations are solved analytically considering the timber as both isotropic and transversely isotropic material to emphasize the importance of modelling timber as an anisotropic material. Some parametric studies are also carried out to show the effect of the diversity in material properties of timber on the stress wave propagation. Also, the dispersion curves, mode shapes, contribution of different branches of longitudinal and flexural waves in a signal are presented in order to propose a suitable input frequency and number of cycles, the distances among the sensors, the location and orientation of sensors, etc. Although the analytical GW solution can offer a number of suggestions for the experimental set up, the time domain results cannot represent the actual boundary conditions due to the complexity involved in solving the partial embedment of soil that reflects the actual field behaviour. Besides, the impact location and orientation cannot be implemented in the analytical GW solution. Accordingly, a semi analytical method, namely, Spectral finite element method (SFEM) is employed to model the timber pole with the actual boundary conditions together with the impact location and orientation to illustrate the propagation of different kind of waves and branches. Even though SFEM can explain both the dispersion curves and time domain reconstruction, the dispersion curves are only accurate up to a certain frequency. Further, the three dimensional behaviour is unavailable in SFEM as this method cannot present the wave propagation in the circumferential direction. To overcome this issue, a numerical technique is implemented using the Finite Element method, and based on the signal obtained from this method, the three dimensional behaviour is explained which is then utilized to separate different kind of waves. Beyond that, two popular advanced signal processing techniques are applied to the numerical signals to compare the efficiency of these two approaches leading to determining the wave velocity and the embedment length of the timber pole.

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Mahbube Subhani	
Date:	

To my loving	g younger sis	ster Ummu	l Afia Shan	nmi

A Study on the Behavior of Guided Wave Propagation in Utility Timber Poles | DEDICATION

Acknowledgements

I would like to express my deepest appreciation to my supervisors Prof. Bijan Samali and A/Prof Jianchun Li over the last four years as the completion of my research and the dissertation would have never been possible without their guidance. From the very beginning of the postgraduate study till now, I have been receiving advice from them not only on the planning for the research study and analysing the test results but also on my future career. As an international student, it was not so easy for me to adapt to a totally new environment initially, but Prof. Samali always helped me to make a right decision and to cope with challenge. I still recall most of the meetings I had with Prof. Bijan, where I always felt very comfortable to express my opinion regarding the research and discuss my personal issues. The kindness and co-operation of him would always be memorable throughout my life. I was very lucky that A/Prof Jianchun Li's office was on the same floor as mine, which allowed me to meet him any time I required to. Specially, in the case of any new observations related to my research, I could freely discuss them with him which certainly helped me in explaining the findings. Prof Li's door was always open for discussion about technical and even for any personal issues. His constant inspiration and critical reasoning about my work gave me the enthusiasm to pursue for the better.

I would also like to give special thanks to Dr Hamid Reza Valipour who was the panel member for my Master's assessment, for his inspirations which made it possible to upgrade my course of study from Masters by research to PhD. I am also very thankful to Dr. Ali Saleh, Dr. Emre Erkmen and Prof. Keith Crews because of the time they spent with me for strengthening some of my fundamental concepts on Structural Analysis, Numerical Modelling and properties of timber materials.

I am also grateful to all the members of the timber pole project. Mr. Amir Zad always helped me to learn about all the experimental work in the laboratory and in the field. And the other members, Mr. Roman Elsener, Mr. Bahram Jozi, Ms. Ning Yan, Dr. Ulrike Dackermann, and the capstone student Mr. Andrew Tang, who always helped me to develop a holistic view of the project, and I was always comfortable to work as a

team with them. I cannot thank enough the laboratory staff, especially Mr. Peter Brown

for his patient and cordial support and teaching me about the instrumentation and

different equipment. Also, Mr. Rami Haddad and Mr. David Dicker always came

forward to help me for conducting any kind of test under the best possible

circumstances.

My parents and siblings certainly have made an invaluable contribution to the

completion of my research as I would have never been able to come overseas for post-

graduate studies without their support and encouragement. Many times during my PhD,

I felt it was impossible to take it to the next stage; however, I was always motivated by

my family to complete my research study.

I cannot but mention about some of my colleagues and friends who have contributions

to the successful completion of my dissertation. Firstly, I would like to thank Mr. Aslan

Hokmabadi and Mr. Mohsen Askari with whom I discussed about many technical

details of my work and they helped me with their best as a friend to overcome my

difficulties. Secondly, I am very thankful to Mr Chij Shrestha, Mr. Ikramul Kabir, Dr.

Yancheng Li and Ms. Yukari Aoki who were not only my fellow researchers but also

very good friends.

Finally, I would like to acknowledge the financial supports provided by the ARC

linkage project in conjunction with Ausgrid for conducting my research. Also, the IRS

scholarship offered by UTS provided me extensive support to accomplish my PhD goal.

Mahbube Subhani

March 2014

List of Publications based on this research

Journal Publications

- 1. **Subhani, M.**, Li, J., Gravenkamp H. & Samali, B. (2013), 'Effect of Elastic Modulus and Poisson's Ratio on Guided Wave Dispersion Using Transversely Isotropic Material Modelling', *Advanced Material Research*, vol. 778, pp. 303-311.*
- 2. **Subhani, M.,** Li, J., Samali, B. & Yan N. (2013), 'Determination of the embedded lengths of electricity timber poles utilising flexural wave generated from impacts', *Australian Journal of Structural Engineering*, vol. 14, no. 1, pp. 85.*
- 3. **Subhani, M.**, Li, J. & Samali, B. (2013), 'A comparative study of guided wave propagation in timber poles with isotropic and transversely isotropic material models', *Journal of Civil Structural Health Monitoring*, vol. 3, no. 2, pp. 65-79.*
- 4. Li, J., **Subhani, M.** & Samali, B. (2012), 'Determination of Embedment Depth of Timber Poles and Piles Using Wavelet Transform', *Advances in Structural Engineering*, vol. 15, no. 5, pp. 759-770.*

Conference Publications

- 1. **Subhani, M.**, Li, J., Gravenkamp H. & Samali, B. (2013), 'Effect of Elastic Modulus and Poisson's Ratio on Guided Wave Dispersion Using Transversely Isotropic Material Modelling', *Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS 13), 4-6 September 2013, Trento, Italy.*
- 2. **Subhani, M.**, Samali, B. & Li, J. (2012), 'Behaviour of stress wave propagation in utility timber pole', *Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM 22)*, 11-14 December 2012, University of Technology, Sydney, Australia.*
- 3. Li, J., Dackermann, U. & **Subhani, M.** (2012), 'R&D of NDTs for Timber Utility Poles in Service Challenges and Applications (Extension for Bridge Sub-Structures and Wharf Structures)', *Proceedings of the Workshop on Civil Structural Health*

Monitoring (CSHM-4), 6-8 November 2012, Bundesanstaltfür Materialforschung und - prüfung (BAM), Berlin, Germany, Lecture 13, (published on CD).*

- 4. **Subhani, M.,** Li, J. & Samali, B. (2012), 'A comparative study of guided wave propagation in timber poles with isotropic and orthotropic material models', *Proceedings of the First International Conference on Performance-based and Life-cycle Structural Engineering (PLSE)*, 5-7 December 2012, The Hong Kong Polytechnic University, Hong Kong, (published on CD).*
- 5. **Subhani, M.**, Li, J., Samali, B. & Dackermann, U. (2011), 'Determinations of stress wave velocity in a timber pole using wavelet transform', Dynamics for Sustainable Engineering, *Proceeding of the 14th Asia Pacific Vibration Conference*, 5-8 December 2011, The Hong Kong Polytechnic University, Hong Kong, pp. 222-231.*
- 6. Li, J., Crews, K., Samali, B., **Subhani, M.** & Zad A. (2011), 'Determination of Embedment Depth of Timber Poles and Piles using wavelet transform', *Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS 11)*, 16-17 June 2011, Lisbon, Portugal, (published on CD).*

(* indicated peer-reviewed publications)

Table of contents

Abstract	i
Certificate of authorship/originality	iii
Acknowledgements	v
List of Publications based on this research	vii
Table of contents	ix
List of Tables	XV
List of Figures	xvi
List of Abbreviations and Notations	.xxviii
1. Introduction	1
1.1 Background	1
1.2 Statement of the problem and aim of the research	3
1.3 Objectives of the thesis	4
1.4 Organisation of the thesis	5
2 Background and Literature review	7
2.1 Introduction	7
2.2 Stress wave based Non Destructive Testing	8
2.2.1 The Sonic Echo and Impulse Response method	9
2.2.2 The bending wave method	11
2.2.3 Limitations of surface NDT methods	12
2.3 Importance of guided wave and consideration of guided wave theory for	
anisotropic materials	
2.4 Properties of timber	14
2.5 Literature review of GW theory for anisotropic media	17

	2.6 Metho	•	tral Finite Element Method (SFEM) and Conventional Finite E	
	2.7	` ,	I signal processing	
	2.7.		frequency analysis	
	2.7.		scale or multi resolution analysis	
	2.8		ons	
3		-	haviour of guided wave propagation in a cylindrical structure.	
	3.1	Introducti	on	33
	3.2	Wave the	ories for isotropic material	34
	3.2.	1 Theo	ry of one dimensional wave	34
	3.2.	2 Theo	ry of elasticity	36
	3.2.	3 Theo	ry of guided wave	37
	3	.2.3.1 Dis	spersion relation	39
	3	.2.3.2 Sp	ectrum relation	40
	3	.2.3.3 Dis	splacement field	41
	3	.2.3.4 Mo	ode shapes	42
	3.3	Wave the	ories for anisotropic material	43
	3.3.	1 The c	compliance matrix	44
	3.3.	2 Dispe	ersion relation of a transversely isotropic material	45
	3.3.	3 Displ	acement field	46
	3.4	Dispersion	n curves for isotropic material	46
	3.4.	1 Tract	ion free condition	46
	3	.4.1.1 Eff	fect of modulus and density	47
	3	.4.1.2 Eff	fect of Poisson's ratio	49
	3	.4.1.3 Co	mparison between solid and layered timber modelling	50
	3	.4.1.4 Eff	fect of temperature and moisture content	52
	3	.4.1.5 Eff	fect of radius	53

	3.4.1.6	Group velocity and wavelength	54
3	.4.2 I	Embedded condition	57
	3.4.2.1	Comparison of velocity curves between traction free and embedded	
	condition	on	57
	3.4.2.2	Attenuation curves	60
	3.4.2.3	Effect of soil properties	61
	3.4.2.4	Normalised power flow	64
	3.4.2.5	Normalised displacement	70
3.5	Effec	t of elastic modulus and Poisson's ratio on guided wave dispersion usi	ing
trar	sversely	isotropic material modelling	75
3.6	Dispe	ersion curves for transversely isotropic material	83
3	.6.1 V	Wavelength	83
3	.6.2 I	Energy velocity	85
3	.6.3	Normalised displacement and propagation shape	87
3.7	Simu	lated signal	91
3	.7.1	Fransversely isotropic material	92
	3.7.1.1	Effect of bandwidth	92
	3.7.1.2	Effect of input frequency	99
	3.7.1.3	Combination of longitudinal and flexural wave and contribution of	
	individu	nal modes	102
	3.7.1.4	Effect of propagation distance	114
3	.7.2 I	sotropic material	117
	3.7.2.1	Final signal or summation of all modes	119
	3.7.2.2	Contribution of individual modes	122
3.8	Limit	ations of guided wave theory	127
3.9	Conc	lusions	130
S	tudy of g	guided wave propagation using the Spectral Finite Element Method	133

4.1	Introd	luction	133
4.2	Theor	ries of SFEM	134
4	.2.1 T	Theories related to isotropic rod like structures	135
	4.2.1.1	Spectral analysis	135
	4.2.1.2	Solution for displacement	138
4	.2.2 T	Theories related to isotropic beam like structures	141
	4.2.2.1	Spectral analysis	141
	4.2.2.2	Solution for displacement	143
4	.2.3 T	Theories for anisotropic material	145
	4.2.3.1	Spectral analysis	146
	4.2.3.2	Solution for displacement	148
4	.2.4 E	Boundary conditions for timber pole situation	150
4	.2.5 T	The forward and inverse FFT	154
4.3	Frequ	ency domain comparison	155
4	.3.1 In	nput signal and dispersion relation	156
4	.3.2 S	Spectrum relation	159
	4.3.2.1	Isotropic rod and beam	160
	4.3.2.2	Anisotropic cylinder	164
4.4	Time	domain reconstruction	168
4	.4.1 Is	sotropic rod element	169
4	.4.2 Is	sotropic beam element	173
4	.4.3 A	Anisotropic cylinder	177
	4.4.3.1	Impact at top (vertically)	177
	4.4.3.2	Impact at top (horizontally)	184
	4.4.3.3	Impact at top (inclined load)	190
	4.4.3.4	Impact at the middle of the pole	194
4.5	Concl	lusions	204

5	Stu	dy o	f guided wave propagation using Finite Element Method	207
	5.1	Intr	oduction	207
	5.2	The	eories of signal processing techniques	208
	5.2.	.1	Continuous Wavelet Transform (CWT)	208
	5.2.	.2	Short Kernel Method (SKM)	209
	5.3	Nu	merical modelling of timber pole	210
	5.4	Gu	ided wave behaviour in three dimensional analysis	211
	5.4.	.1	Displacement components	212
	5.4.	.2	Velocity calculation	220
	5.4.	.3	Calculation of embedment length	241
	5.5	Cal	culation of embedment length for the flexural wave propagation	245
	5.5.	.1	Numerical properties	245
	5.5.	.2	Velocity calculation	246
	5.5.	.3	Calculation of embedment length	248
	5.6	Coı	nclusions	251
6	Cor	nclus	sions	254
	6.1	Sur	nmary	254
	6.2	Ma	in findings	255
	6.3	Rec	commendations for future work	258
R	eferen	ces		259
A	ppend	ices.		269
A	ppend	ix A	: The dispersion relation of guided wave equation for cylindrical struct	ures
				271
			The mode shapes of analytical guided wave equation for cylindrical	
			The time domain results of analytical guided wave equation for cylind	
SΙ	a uctuf (JB		40.)

Appendix D: The time domain reconstruction of guided wave equ	nation for cylindrical
structures using SFEM	293
Appendix E: The CWT and SKM coefficient plots of a signal from	m timber pole obtained
using FEM	308

List of Tables

1 ABLE 3.1 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF MODU	JLUS
ON PHASE VELOCITY	47
TABLE 3.2 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF DENSI	ITY
ON PHASE VELOCITY	47
TABLE 3.3 DIFFERENT SETS OF MATERIAL PROPERTIES TO SHOW THE EFFECT OF POISS	ON'S
RATIO ON PHASE VELOCITY	49
TABLE 3.4 DIFFERENT RADIUS AND THICKNESS OF HEARTWOOD AND SAPWOOD	51
TABLE 3.5 DIFFERENT MATERIAL PROPERTIES OF HEARTWOOD AND SAPWOOD	51
TABLE 3.6 PROPERTIES OF TIMBER AND SOIL USED IN THE ANALYSIS OF DISPERSION	
CURVES FOR EMBEDDED CONDITION	57
TABLE 3.7 MATERIAL PROPERTIES USED IN THE ANALYSES OF ORTHOTROPIC MATERIA	AL 76
TABLE 3.8 DIFFERENT SETS OF MATERIAL PROPERTIES USED IN THE ANALYSES OF	
TRANSVERSELY ISOTROPIC MATERIAL	76
Table 4.1 Equations of typical boundary conditions for rods [56]	152
Table 4.2 Equations of typical boundary conditions for beams [56]	152
TABLE 4.3 MATERIAL PROPERTIES USED FOR THE ANISOTROPIC MATERIAL MODELLING	G156
Table 4.4 Material properties used for isotropic material model	158
Table 5.1 Common frequencies between sensors	231
Table 5.2 Wavelengths of flexural wave at various frequencies	232
Table 5.3 Common frequencies among sensors at 0° and 180° orientation	237
Table 5.4 Calculation of embedded length for case 1	242
TABLE 5.5 CALCULATION OF EMBEDDED LENGTH FOR CASE 2	243
Table 5.6 Calculation of embedded length for case 3 (longitudinal wave)	.244
TABLE 5.7 CALCULATION OF EMBEDDED LENGTH FOR CASE 3 (FLEXURAL WAVE)	245
TABLE 5.8 CALCULATION OF EMBEDDED LENGTH BY CWT	250
Tarle 5.9 Calculation of embedded length by SKM	250

List of Figures

FIGURE 2.1 PHOTOGRAPHS OF EARLYWOOD AND LATEWOOD [29]	17
FIGURE 2.2 PHOTOGRAPHS OF HEARTWOOD AND SAPWOOD [29]	17
FIGURE 3.1 COMPARISON OF PHASE VELOCITIES AMONG SETS 1 TO 4 TO SHOW THE	IE EFFECT
OF MODULUS (L= LONGITUDINAL, F=FLEXURAL, S=SET)	48
FIGURE 3.2 COMPARISON OF PHASE VELOCITIES AMONG SETS 5 TO 9 TO SHOW THE	IE EFFECT
OF DENSITY (L=LONGITUDINAL, F=FLEXURAL, S=SET)	48
Figure 3.3 Comparison of phase velocities among sets 10 to 13 to show	THE
EFFECT OF POISSON'S RATIO	50
FIGURE 3.4 COMPARISON OF PHASE VELOCITIES AMONG SETS 14 TO 16 AND 11 T	O SHOW
THE EFFECT OF THICKNESS OF SAPWOOD	52
Figure 3.5 Comparison of phase velocities among sets 17 to 19 and 11 t	O SHOW
THE EFFECT OF DIFFERENCE OF MATERIAL PROPERTIES BETWEEN HEARTWOO	DD AND
SAPWOOD	52
FIGURE 3.6 EFFECT OF TEMPERATURE AND MOISTURE CONTENT ON PHASE VELOCITY	CITY53
FIGURE 3.7 EFFECT OF DIAMETER OF THE TIMBER POLE ON PHASE VELOCITY	54
FIGURE 3.8 GROUP VELOCITY CURVE OF SET 11	56
FIGURE 3.9 WAVELENGTH OF SET 11 VERSUS FREQUENCY	56
FIGURE 3.10 COMPARISON OF PHASE VELOCITY CURVES BETWEEN TRACTION FRI	EE AND
EMBEDDED CONDITION	58
FIGURE 3.11 COMPARISON OF GROUP VELOCITY CURVES BETWEEN TRACTION FR	EE AND
EMBEDDED CONDITION	59
FIGURE 3.12 COMPARISON OF ENERGY VELOCITY CURVES BETWEEN TRACTION F	REE AND
EMBEDDED CONDITION	59
FIGURE 3.13 ATTENUATION CURVE OF SOIL 1	60
FIGURE 3.14 EFFECT OF SOIL PARAMETER ON PHASE VELOCITY (T.F = TRACTION	Free,
S.S = SOFT SOIL, D.S = DENSE SOIL)	62
FIGURE 3.15 UP TO 3 KHZ OF FIGURE 3.14	62
FIGURE 3.16 EFFECT OF SOIL PARAMETER ON ENERGY VELOCITY (T.F = TRACTIC	ON FREE,
S.S = SOFT SOIL, D.S = DENSE SOIL)	63
FIGURE 3.17 ATTENHATION CURVES OF SOFT SOIL	63

FIGURE 3.18 ATTENUATION CURVES OF DENSE SOIL	64
Figure 3.19 Power flow of $L(0,1)$ at 3 kHz (traction free)	65
Figure 3.20 Power flow of L(0,1) at 10 kHz (traction free)	65
Figure 3.21 Power flow of L(0,1) at 20 kHz (traction free)	66
Figure 3.22 Power flow of L(0,2) at 20 kHz (traction free)	66
Figure 3.23 Power flow of L(0,3) at 20 kHz (traction free)	66
FIGURE 3.24 POWER FLOW OF F(1,1) AT 3 KHZ (TRACTION FREE)	66
FIGURE 3.25 POWER FLOW OF F(1,1) AT 10 KHZ (TRACTION FREE)	66
Figure 3.26 Power flow of $F(1,1)$ at 20 kHz (traction free)	66
Figure 3.27 Power flow of F(1,2) at 10 kHz (traction free)	67
Figure 3.28 Power flow of F(1,2) at 20 kHz (traction free)	67
Figure 3.29 Power flow of F(1,3) at 10 kHz (traction free)	67
FIGURE 3.30 POWER FLOW OF F(1,3) AT 20 KHZ (TRACTION FREE)	67
Figure 3.31 Power flow of F(1,4) at 20 kHz (traction free)	68
Figure 3.32 Power flow of $L(0,1)$ at 3 kHz (embedded)	68
Figure 3.33 Power flow of $L(0,1)$ at 10 kHz (embedded)	68
Figure 3.34 Power flow of $L(0,1)$ at 20 kHz (embedded)	68
Figure 3.35 Power flow of L(0,3) at 20 kHz (embedded)	69
Figure 3.36 Power flow of F(1,1) at 3 kHz (embedded)	69
Figure 3.37 Power flow of F(1,1) at 10 kHz (embedded)	69
Figure 3.38 Power flow of F(1,1) at 20 kHz (embedded)	69
Figure 3.39 Power flow of F(1,2) at 20 kHz (embedded)	69
Figure 3.40 Power flow of F(1,3) at 20 kHz (embedded)	69
Figure 3.41 Normalised displacement of L(0,1) at 3 kHz (embedded)	71
Figure 3.42 Normalised displacement of L(0,1) at 10 kHz (embedded)	72
Figure 3.43 Normalised displacement of L(0,1) at 20 kHz (embedded)	72
Figure 3.44 Normalised displacement of L(0,2) at 20 kHz (embedded)	72
Figure 3.45 Normalised displacement of L(0,3) at 20 kHz (embedded)	73
Figure 3.46 Normalised displacement of $F(1,1)$ at 3 kHz (embedded)	73
Figure 3.47 Normalised displacement of $F(1,1)$ at 20 kHz (embedded)	73
Figure 3.48 Normalised displacement of $F(1,2)$ at 20 kHz (embedded)	74
Figure 3.49 Normalised displacement of $F(1,3)$ at 20 kHz (embedded)	74
FIGURE 3.50 NORMALISED DISPLACEMENT OF F(1.4) AT 20 KHZ (EMBEDDED)	74

FIGURE 3.51 PHASE VELOCITY CURVE FOR ISOTROPIC TRACTION FREE CYLINDER77
Figure 3.52 Phase velocity curve for orthotropic cylinder [129]
FIGURE 3.53 COMPARISON BETWEEN SETS 1 AND 4 FOR TRANSVERSELY ISOTROPIC
CYLINDER
FIGURE 3.54 COMPARISON BETWEEN SETS 2 AND 3 FOR TRANSVERSELY ISOTROPIC
CYLINDER
FIGURE 3.55 COMPARISON BETWEEN SETS 1 AND 2 FOR TRANSVERSELY ISOTROPIC
CYLINDER
FIGURE 3.56 COMPARISON BETWEEN SETS 3 AND 4 FOR TRANSVERSELY ISOTROPIC
CYLINDER80
FIGURE 3.57 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 1) MATERIAL81
FIGURE 3.58 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 2) MATERIAL81
FIGURE 3.59 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 3) MATERIAL 82
FIGURE 3.60 COMPARISON OF VPH BETWEEN ORTHOTROPIC AND TRANSVERSELY
ISOTROPIC (SET 4) MATERIAL 82
Figure 3.61 Wavelength curve of transversely isotropic material (set 2) \dots 84
Figure 3.62 Wavelength curve of transversely isotropic material (set 3) \dots 84
FIGURE 3.63 ENERGY VELOCITY CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 2)
86
FIGURE 3.64 ENERGY VELOCITY CURVE OF TRANSVERSELY ISOTROPIC MATERIAL (SET 3)
86
Figure 3.65 Normalised displacement and propagation shape of $L(0,1)$ and
F(1,1) MODE AT 2 KHZ
Figure 3.66 Normalised displacement and propagation shape of $L(0,1)$ and
L(0,2) mode at 8 kHz
Figure 3.67 Normalised displacement and propagation shape of $L(0,3)$ and
L(0,4) mode at 8 kHz
Figure 3.68 Normalised displacement and propagation shape of $F(1,1)$ and
F(1,2) MODE AT 8 KHZ90

FIGURE 3.69 NORMALISED DISPLACEMENT AND PROPAGATION SHAPE OF $F(1,3)$ AND	
F(1,4) mode at 8 kHz	90
Figure 3.70 Normalised displacement and propagation shape of $F(1,5)$ and	
F(1,6) MODE AT 8 KHZ	90
FIGURE 3.71 EXCITATION AT 8.5 KHZ WITH 10 CYCLE SINE BURST	94
Figure 3.72 Propagation of Longitudinal waves at $8.5\mathrm{khz}$ signal with $10\mathrm{cy}$	'CLE
SINE BURST (PITCH CATCH)	94
Figure 3.73 Propagation of Longitudinal waves at $8.5\mathrm{khz}$ signal with $10\mathrm{cy}$	'CLE
SINE BURST (PULSE ECHO)	94
FIGURE 3.74 EXCITATION AT 8.5 KHZ WITH 30 CYCLE SINE BURST	96
Figure 3.75 Propagation of Longitudinal waves at $8.5\mathrm{khz}$ signal with $30\mathrm{Cy}$	CLE
SINE BURST (PITCH CATCH)	96
Figure 3.76 Propagation of Longitudinal waves at $8.5\mathrm{khz}$ signal with $30\mathrm{Cy}$	CLE
SINE BURST (PULSE ECHO)	96
FIGURE 3.77 EXCITATION AT 10.7 KHZ WITH 10 CYCLE SINE BURST	97
Figure 3.78 Propagation of flexural waves at $10.7\mathrm{khz}$ signal with $10\mathrm{cycl}$	E
SINE BURST (PITCH CATCH)	97
Figure 3.79 Propagation of Flexural waves at $10.7\mathrm{khz}$ signal with $10\mathrm{cycl}$	E
SINE BURST (PULSE ECHO)	97
FIGURE 3.80 EXCITATION AT 10.7 KHZ WITH 30 CYCLE SINE BURST	98
Figure 3.81 Propagation of Flexural waves at $10.7\mathrm{kHz}$ signal with $30\mathrm{cycli}$	E
SINE BURST (PITCH CATCH)	98
Figure 3.82 Propagation of Flexural waves at $10.7\mathrm{khz}$ signal with $30\mathrm{cycl}$	E
SINE BURST (PULSE ECHO)	98
FIGURE 3.83 EXCITATION AT 11 KHZ WITH 30 CYCLE SINE BURST	100
Figure 3.84 Propagation of Longitudinal waves at $11\mathrm{kHz}$ signal with $30\mathrm{CY}$	CLE
SINE BURST (PITCH CATCH)	100
Figure 3.85 Propagation of Longitudinal waves at $11\mathrm{kHz}$ signal with $30\mathrm{CY}$	CLE
SINE BURST (PULSE ECHO)	100
FIGURE 3.86 EXCITATION AT 12.6 KHZ WITH 30 CYCLE SINE BURST	101
FIGURE 3.87 PROPAGATION OF FLEXURAL WAVES AT 12.6 KHZ SIGNAL WITH 30 CYCLI	E
SINE BURST (PITCH CATCH)	101

FIGURE 3.88 PROPAGATION OF FLEXURAL WAVES AT 12.6 KHZ SIGNAL WITH	30 CYCLE
SINE BURST (PULSE ECHO)	101
Figure 3.89 Excitation at 12.5 kHz with 10 cycle sine burst (time do	main) 103
Figure 3.90 Excitation at 12.5 kHz with 10 cycle sine burst (frequence)	NCY DOMAIN)
	103
Figure 3.91 Excitation at 12.5 kHz with 30 cycle sine burst (time do	MAIN) 103
FIGURE 3.92 EXCITATION AT 12.5 KHZ WITH 30 CYCLE SINE BURST (FREQUEN	NCY DOMAIN)
	103
FIGURE 3.93 PROPAGATION OF LONGITUDINAL AND FLEXURAL WAVES AT 12	.5 KHZ
SIGNAL WITH 10 CYCLE SINE BURST (PITCH CATCH)	103
FIGURE 3.94 PROPAGATION OF LONGITUDINAL AND FLEXURAL WAVES AT 12	.5 KHZ
SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH)	104
FIGURE 3.95 PROPAGATION OF LONGITUDINAL AND FLEXURAL WAVES AT 12	.5 KHZ
SIGNAL WITH 10 CYCLE SINE BURST (PULSE ECHO)	104
FIGURE 3.96 PROPAGATION OF LONGITUDINAL AND FLEXURAL WAVES AT 12	.5 кнг
SIGNAL WITH 30 CYCLE SINE BURST (PULSE ECHO)	104
FIGURE 3.97 CONTRIBUTION OF INDIVIDUAL MODES ON THE PROPAGATION O	f a 12.5 kHz
INPUT SIGNAL WITH 10 CYCLE SINE BURST (PITCH CATCH)	106
FIGURE 3.98 CONTRIBUTION OF INDIVIDUAL MODES ON THE PROPAGATION O	f a 12.5 kHz
INPUT SIGNAL WITH 30 CYCLE SINE BURST (PITCH CATCH)	109
FIGURE 3.99 CONTRIBUTION OF INDIVIDUAL MODES FOR THE PROPAGATION OF	of a 12.5 kHz
INPUT SIGNAL WITH 10 CYCLE SINE BURST (PULSE ECHO)	111
FIGURE 3.100 CONTRIBUTION OF INDIVIDUAL MODES FOR THE PROPAGATION	OF A 12.5
KHZ INPUT SIGNAL WITH 30 CYCLE SINE BURST (PULSE ECHO)	113
Figure 3.101 Excitation at 7 kHz frequency with 10 (left) and 30 cy	CLES (RIGHT)
	115
Figure 3.102 Propagation of Longitudinal and Flexural modes at 7	KHZ WITH 10
CYCLE SINE BURST WITH A PROPAGATION DISTANCE OF $60\mathrm{CM}$ (TOP) ANI	20 СМ
(BOTTOM)	115
FIGURE 3.103 PROPAGATION OF LONGITUDINAL AND FLEXURAL MODES AT 7	KHZ WITH 30
CYCLE SINE BURST WITH A PROPAGATION DISTANCE OF $60\mathrm{CM}$ (TOP) ANI	20 СМ
(BOTTOM)	116

Figure 3.104 Propagation of Longitudinal and Flexural modes at 12.5 kHz with	Ή
$10\mathrm{CYCLE}$ (TOP) and $30\mathrm{CYCLE}$ (Bottom) sine burst with a propagation	
DISTANCE OF 20 CM	17
FIGURE 3.105 ENERGY VELOCITY CURVE OF AN ISOTROPIC CYLINDER EMBEDDED IN SOIL	,
UP TO 65 KHZ	18
Figure 3.106 Attenuation curve of an isotropic cylinder in soil up to 62 kHz $\!1$	19
FIGURE 3.107 EXCITATION AT 50 KHZ FREQUENCY WITH 30 CYCLES	20
FIGURE 3.108 PROPAGATION OF LONGITUDINAL MODES WITH A DISTANCE OF 60 CM	
(PITCH CATCH)	20
FIGURE 3.109 PROPAGATION OF FLEXURAL MODES WITH A DISTANCE OF 60 CM (PITCH	
CATCH)	20
Figure 3.110 Propagation of Longitudinal modes with a distance of $5\mathrm{m}$ (pulse	,
ECHO) IN TRACTION FREE ISOTROPIC CYLINDER	20
Figure 3.111 Propagation of Flexural modes with a distance of 5 m (pulse ech	o)
IN TRACTION FREE ISOTROPIC CYLINDER	21
Figure 3.112 Propagation of Longitudinal modes with a distance of 5 m (pulse	,
ECHO) IN EMBEDDED ISOTROPIC CYLINDER	21
Figure 3.113 Propagation of Flexural modes with a distance of 5 m (pulse ech	o)
IN EMBEDDED ISOTROPIC CYLINDER	22
FIGURE 3.114 CONTRIBUTION OF INDIVIDUAL LONGITUDINAL MODES IN TRACTION FREE	
ISOTROPIC MATERIAL (TF= TRACTION FREE)	23
FIGURE 3.115 CONTRIBUTION OF INDIVIDUAL LONGITUDINAL MODES IN EMBEDDED	
ISOTROPIC MATERIAL (EMB = EMBEDDED)	24
FIGURE 3.116 CONTRIBUTION OF INDIVIDUAL FLEXURAL MODES IN TRACTION FREE	
ISOTROPIC MATERIAL 1	25
FIGURE 3.117 CONTRIBUTION OF INDIVIDUAL FLEXURAL MODES IN EMBEDDED ISOTROPI	C
MATERIAL 1	26
Figure 4.1 Excitation at 12 kHz signal 1	57
FIGURE 4.2 EXCITATION AT 20 KHZ SIGNAL 1	57
FIGURE 4.3 DISPERSION RELATION OF AN ANISOTROPIC CYLINDER CONSIDERING THE	
PROPERTIES OF TIMBER POLE	59
FIGURE 4.4 DISPERSION RELATION OF AN ISOTROPIC TIMOSHENKO BEAM CONSIDERING	
THE PROPERTIES OF TIMBER POLE	59

FIGURE 4.5 COMPARISON OF PHASE VELOCITY AMONG DIFFERENT ISOTROPIC ROD	
THEORIES	161
FIGURE 4.6 COMPARISON OF GROUP VELOCITY AMONG DIFFERENT ISOTROPIC ROD	
THEORIES	161
FIGURE 4.7 COMPARISON OF PHASE VELOCITY BETWEEN 3 MODE THEORY AND	
ANALYTICAL RESULTS	162
FIGURE 4.8 COMPARISON OF PHASE VELOCITY BETWEEN DIFFERENT ISOTROPIC BEAR	M
THEORIES	163
Figure 4.9 Comparison of phase velocity between Timoshenko beam theor	Y AND
ANALYTICAL RESULT	163
FIGURE 4.10 GROUP VELOCITY CURVES OF TIMOSHENKO ISOTROPIC BEAM	164
FIGURE 4.11 COMPARISON OF PHASE VELOCITY BETWEEN DIFFERENT ANISOTROPIC	WAVE
THEORIES	165
FIGURE 4.12 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AN	D
TRANSVERSELY ISOTROPIC MATERIAL MODELLING (SET 2)	166
FIGURE 4.13 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AN	D
TRANSVERSELY ISOTROPIC MATERIAL MODELLING (SET 3)	166
FIGURE 4.14 COMPARISON OF PHASE VELOCITY BETWEEN TIMOSHENKO THEORY AN	D
ORTHOTROPIC MATERIAL MODELLING	167
FIGURE 4.15 GROUP VELOCITY CURVE OF ANISOTROPIC CYLINDER	167
FIGURE 4.16 BOUNDARY CONDITIONS AND DIFFERENT IMPACT LOCATIONS AND	
ORIENTATIONS	169
FIGURE 4.17 TIME DOMAIN RESULTS OF ISOTROPIC ROD ELEMENT BASED ON 3 MODE	E
THEORY	171
FIGURE 4.18 TIME DOMAIN RESULTS OF ISOTROPIC ROD ELEMENT (PARTIALLY EMBE	DDED)
BASED ON 3 MODE THEORY	172
FIGURE 4.19 TIME DOMAIN RESULTS OF ISOTROPIC BEAM ELEMENT BASED ON	
TIMOSHENKO BEAM THEORY	174
FIGURE 4.20 TIME DOMAIN RESULTS OF ISOTROPIC BEAM ELEMENT (PARTIALLY	
EMBEDDED) BASED ON TIMOSHENKO BEAM THEORY	176
FIGURE 4.21 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TO)P
(VERTICALLY) CONSIDERING THE POLE STANDING ON SOIL	177

FIGURE 4.22 CONTRIBUTION OF DIFFERENT MODES IN AN ANISOTROPIC CYLINDER WITH
IMPACT AT TOP (VERTICALLY) CONSIDERING THE POLE STANDING ON SOIL
FIGURE 4.23 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TOP
(VERTICALLY) CONSIDERING THE TIMBER POLE SITUATION
FIGURE 4.24 CONTRIBUTION OF LONGITUDINAL MODES IN AN ANISOTROPIC CYLINDER
WITH IMPACT AT TOP (VERTICALLY) CONSIDERING TIMBER POLE SITUATION18
FIGURE 4.25 CONTRIBUTION OF CONTRACTION MODES IN AN ANISOTROPIC CYLINDER
WITH IMPACT AT TOP (VERTICALLY) CONSIDERING TIMBER POLE SITUATION182
FIGURE 4.26 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH IMPACT AT TOP
(VERTICALLY) CONSIDERING THE TIMBER POLE SITUATION (INPUT FREQUENCY 20
KHZ)
FIGURE 4.27 TIME DOMAIN RESULTS AND CONTRIBUTION OF DIFFERENT MODES OF
ANISOTROPIC CYLINDER WITH HORIZONTAL IMPACT AT TOP CONSIDERING THE POLE
ON THE SOIL
FIGURE 4.28 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH HORIZONTAL
IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 12 KHZ)
FIGURE 4.29 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH HORIZONTAL
IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY $20\ \mathrm{KHz}$)
FIGURE 4.30 CONTRIBUTION OF FLEXURAL MODE IN AN ANISOTROPIC CYLINDER WITH
IMPACT AT TOP (HORIZONTALLY) CONSIDERING TIMBER POLE SITUATION183
FIGURE 4.31 CONTRIBUTION OF SHEAR MODE IN AN ANISOTROPIC CYLINDER WITH IMPACT
AT TOP (HORIZONTALLY) CONSIDERING TIMBER POLE SITUATION
FIGURE 4.32 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH INCLINED IMPACT
AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY 20 KHZ)19
FIGURE 4.33 CONTRIBUTION OF LONGITUDINAL MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY
20 KHZ)
FIGURE 4.34 CONTRIBUTION OF FLEXURAL MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY
20 KHZ)

FIGURE 4.35 CONTRIBUTION OF CONTRACTION MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY
20 KHZ)
FIGURE 4.36 CONTRIBUTION OF SHEAR MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT TOP CONSIDERING TIMBER POLE SITUATION (INPUT FREQUENCY
20 KHZ)196
FIGURE 4.37 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH INCLINED IMPACT
AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION (DOWN GOING WAVE) 198
FIGURE 4.38 TIME DOMAIN RESULTS OF ANISOTROPIC CYLINDER WITH INCLINED IMPACT
AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION (UP GOING WAVE)199
FIGURE 4.39 CONTRIBUTION OF LONGITUDINAL MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION 200
FIGURE 4.40 CONTRIBUTION OF FLEXURAL MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION 20
FIGURE 4.41 CONTRIBUTION OF CONTRACTION MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION 202
FIGURE 4.42 CONTRIBUTION OF SHEAR MODE IN AN ANISOTROPIC CYLINDER WITH
INCLINED IMPACT AT THE MIDDLE CONSIDERING TIMBER POLE SITUATION 203
FIGURE 5.1 THREE DIFFERENT CASES OF NUMERICAL MODELLING OF TIMBER POLE213
FIGURE 5.2 COMPARISON OF TIME ACCELERATION DATA IN THREE ORTHOGONAL
DIRECTIONS AT SENSOR AT 3M (IMPACT AT TOP)
FIGURE 5.3 COMPARISON OF TIME ACCELERATION DATA IN LONGITUDINAL AND RADIAL
DIRECTIONS AT SENSOR AT 3M IN DIFFERENT POSITIONS (IMPACT AT TOP)215
FIGURE 5.4 COMPARISON OF TIME ACCELERATION DATA IN THREE ORTHOGONAL
DIRECTIONS AT SENSOR AT 2.5M (IMPACT FROM SIDE TRANSVERSE)216
FIGURE 5.5 COMPARISON OF TIME ACCELERATION DATA IN LONGITUDINAL AND RADIAL
DIRECTIONS AT SENSOR AT 2.5 M IN DIFFERENT POSITIONS (IMPACT FROM SIDE
TRANSVERSE)
FIGURE 5.6 COMPARISON OF TIME ACCELERATION DATA IN THREE ORTHOGONAL
DIRECTIONS AT SENSOR AT 2.5M (IMPACT: SIDE 45°)
FIGURE 5.7 COMPARISON OF TIME ACCELERATION DATA IN LONGITUDINAL, RADIAL AND
ANGULAR DIRECTIONS AT SENSOR AT 2.5M IN DIFFERENT POSITIONS (IMPACT: SIDE
45°)

FIGURE 5.8 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FO	R
case 1 at the sensor 3m from the bottom pole with 0° orientation	221
FIGURE 5.9 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FO	R
Case 1 at the sensor 2m from the bottom pole with 0° orientation	.221
FIGURE 5.10 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT	FOR
case 1 at the sensor 3m from the bottom pole with 0° orientation	.222
FIGURE 5.11 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT F	OR
case 1 at the sensor 3m from the bottom pole with 90° orientation	.223
FIGURE 5.12 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT F	OR
case 1 at the sensor 2m from the bottom pole with 90° orientation	.223
FIGURE 5.13 CWT COEFFICIENT PLOT OF DIFFERENT COMPONENTS AT DIFFERENT	
FREQUENCIES FOR CASE 1	.224
FIGURE 5.14 PHASE VELOCITY COMPARISON FOR CASE 1	.225
FIGURE 5.15 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT F	OR
Case 2 at sensor 2.5 m from the bottom pole with 0° orientation	.225
FIGURE 5.16 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT F	OR
CASE 2 AT SENSOR 1.5 M FROM THE BOTTOM POLE WITH 0° ORIENTATION	226
FIGURE 5.17 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT	FOR
CASE 2 AT SENSOR 2.5 M FROM THE BOTTOM POLE WITH 0° ORIENTATION	227
FIGURE 5.18 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT	FOR
CASE 2 AT SENSOR 1.5 M FROM THE BOTTOM POLE WITH 0° ORIENTATION	227
FIGURE 5.19 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT	
component for case 2 at sensor 2.5m from the bottom pole with 90°	
ORIENTATION	.228
FIGURE 5.20 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT	
component for case 2 at sensor 1.5m from the bottom pole with 90°	
ORIENTATION	228
FIGURE 5.21 CWT COEFFICIENT PLOT OF DIFFERENT COMPONENTS AT DIFFERENT	
FREQUENCIES FOR CASE 2	229
FIGURE 5.22 PHASE VELOCITY COMPARISON FOR CASE 2	231
FIGURE 5.23 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT F	OR
CASE 3 AT SENSOR 2.5M FROM THE BOTTOM POLE WITH 0° ORIENTATION	232

FIGURE 5.24 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 1.5m from the bottom pole with 0° orientation232
FIGURE 5.25 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 2.5m from the bottom pole with 0° orientation234
FIGURE 5.26 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 1.5m from the bottom pole with 0° orientation234
FIGURE 5.27 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 2.5m from the bottom pole with 90° orientation235
FIGURE 5.28 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 1.5m from the bottom pole with 90° orientation236
FIGURE 5.29 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT
component for case 3 at sensor 2.5m from the bottom pole with 90°
ORIENTATION236
FIGURE 5.30 TIME FREQUENCY CONTOUR OF THE TANGENTIAL DISPLACEMENT
component for case 3 at sensor 1.5m from the bottom pole with 90°
ORIENTATION
Figure 5.31 Phase velocity comparison for case 3 for the 0° and 90°
ORIENTATIONS
FIGURE 5.32 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 2.5m from the bottom pole with 180° orientation239
FIGURE 5.33 TIME FREQUENCY CONTOUR OF THE AXIAL DISPLACEMENT COMPONENT FOR
Case 3 at sensor 1.5m from the bottom pole with 180° orientation239
FIGURE 5.34 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR
CASE 3 AT SENSOR 2.5 M FROM THE BOTTOM POLE WITH 180° ORIENTATION 240
FIGURE 5.35 TIME FREQUENCY CONTOUR OF THE RADIAL DISPLACEMENT COMPONENT FOR
CASE 3 AT SENSOR 1.5M FROM THE BOTTOM POLE WITH 180° ORIENTATION240
Figure 5.36 Phase velocity comparison for case 3 for the summation of 0° and
180° ORIENTATIONS241
FIGURE 5.37 THE SELECTION OF FIRST ARRIVAL AND REFLECTION PEAKS FROM TWO
SENSORS (CASE 1)
FIGURE 5.38 THE SELECTION OF FIRST ARRIVAL AND REFLECTION PEAK FROM TWO
SENSORS (CASE 2)
FIGURE 5.39 FREQUENCY CONTENT OF THE APPLIED SIGNAL AT THE SENSORS

FIGURE 5.40 TIME-COEFFICIENT PLOTS AT 944 HZ (CWT: TOP PLOT, SKM: BOTTOM PLOT)	LOT)
	. 247
FIGURE 5.41 PHASE VELOCITY COMPARISON AMONG GW, 1D THEORY AND NUMERICA	L
RESULTS	.248
FIGURE 5.42 TIME-COEFFICIENT PLOT AT 692 Hz (CWT)	.249
FIGURE 5.43 TIME-COEFFICIENT PLOT BY SKM AT 944 Hz (TOP PLOT: SENSOR 2, BOTT	ЮM
PLOT: SENSOR 1)	.249

List of Abbreviations and Notations

1D One dimensional

3D Three dimensional

BEM Boundary element method

CRF Converted flexural mode reflection

CRS Converted shear mode reflection

CWT Continuous wavelet transform

DFT Discrete Fourier transforms

EBT Euler-Bernoulli beam theory

FDM Finite difference method

FE Finite element

FEM Finite element method
FFT Fast Fourier transforms

FRF Frequency response function

FSDT First order shear deformation theory

FT Fourier transforms

GW Guided wave

HSDT Higher order shear deformation theory

IF Incoming flexural mode

IFFT Inverse fast Fourier transforms

IR Impulse response

IS Incoming shear mode
KED Kinetic energy density

LISA Local interaction simulation approach

MC Moisture content

MRA Multi resolution analysis

MSLM Mass spring lattice model

NA Neutral axis

NDE Non-destructive evaluation
NDT Non-destructive testing

ODE Ordinary differential equation

PDE Partial differential equation

PEP Polynomial eigenvalue problem

PWR Power flow density

PWVD Pseudo Wigner – Ville Distribution

RF Reflected flexural mode RS Reflected shear mode

SAFE Semi analytical finite element method SBFEM Scaled boundary finite element method

SE Sonic echo

SED Strain energy density

SFEM Spectral finite element method SHPB Split Hopkinson pressure bar

SKM Short kernel method

STFT Short time Fourier transforms SVD Singular value decomposition

WT Wavelet transforms

WVD Wigner – Ville Distribution

 E_r Modulus of elasticity in the radial direction

 E_z Modulus of elasticity in the longitudinal direction E_{θ} Modulus of elasticity in the tangential direction G_{rz} Shear modulus on the radial – longitudinal plane $G_{r\theta}$ Shear modulus on the radial – tangential plane

 $G_{\theta z}$ Shear modulus on the tangential – longitudinal plane

 L_{emb} Embedment length of the timber pole

 \widehat{M} Moment in the frequency domain

 \widehat{N} Axial force in the frequency domain

 \hat{V} Shear force in the frequency domain

 $f_{Nyquist}$ Nyquist frequency

 $\hat{u}(x,t)$ Axial displacement in the frequency domain

 $\hat{v}(x,t)$ Transverse displacement in the frequency domain

 v_{rz} Poisson's ratio corresponding to a contraction in longitudinal direction

when an extension is applied in radial direction

Poisson's ratio corresponding to a contraction in tangential direction $\nu_{r\theta}$ when an extension is applied in radial direction Poisson's ratio corresponding to a contraction in radial direction when an v_{zr} extension is applied in longitudinal direction Poisson's ratio corresponding to a contraction in tangential direction $\nu_{z\theta}$ when an extension is applied in longitudinal direction Poisson's ratio corresponding to a contraction in radial direction when $\nu_{\theta r}$ an extension is applied in tangential direction Poisson's ratio corresponding to a contraction in longitudinal direction $\nu_{\theta z}$ when an extension is applied in tangential direction Shear contraction $\hat{\varphi}(x,t)$ $\hat{\psi}(x,t)$ Lateral contraction in the frequency domain $\dot{\psi}(\omega)$ Mother wavelet in the frequency domain [C]Stiffness matrix [S]Compliance matrix ∇ Divergence operator Cross sectional area ARadius of cylinder A. B....FUnknown coefficients \overline{C} Wave velocity C_1 , C_2 ... C_4 Unknown coefficients C_f Flexural wave velocity C_{I} Bulk longitudinal wave velocity CsBulk shear wave velocity DDiameter D_{SFEM} Dynamic stiffness matrix EModulus of elasticity or Young's modulus E_0 Longitudinal modulus of elasticity (E_L) at zero MC E_L at temperature T E_{g} Longitudinal modulus of elasticity E_L f Frequency GShear modulus Translation of a window of a given length h(t)Moment of inertia JBessel's function of first kind Н Hankel function

j Imaginary number

K Spring constant

 $K_1, K_2... K_4$ Adjustable parameters L Length/reflection depth

 l_1 Distance between the sensor and ground level

 L_s The distance between sensors

 L_T The distance between sensor and the bottom of the pole

Number of sampling points

NRG Total energy

p circumferential order of cylinder

 P_m Power flow of a mode

 PWR_z Component of poynting vector in the direction of propagation

q(x,t) Externally applied load

r Any distance from the centre of the circular cross section along the

radius

 R_i Amplitude ratio

S Cross section of the cylinder

s Scaling parameter

T Temperature

t Time

u Displacement

 u_r Displacement component along radial direction

 u_z Displacement component axial/longitudinal direction

 u_{θ} Displacement component along tangential/angular direction

 V_{gr} Group velocity V_{ph} Phase velocity

 V_{soil} Bulk wave velocity of soil

 V_z Energy velocity

w Rotation vector

x(t) Any arbitrary signal

Z Ordinary and modified Bessel function of first kind

 α_{leak} Leakage angle

 Δf Distance between the two peaks in velocity versus frequency function

 Δt Time difference between the arrival and reflected peaks

I Rotation vector

u(x,t)	Axial displacement in the time domain
v(x,t)	Transverse displacement in the time domain
α	Wavenumber for longitudinal waves
β	Wavenumber for shear waves
γ	Shearing strain
ε	Normal strain
η	Viscous damping
λ	Lamě constant
μ	Lamě constant or shear modulus
ν	Poisson's ratio
ξ	Wavenumber
ρ	Mass density
σ	Normal stress
τ	Shearing stress
$\varphi(x,t)$	Shear contraction in the time domain
$\psi(t)$	Mother wavelet in the time domain
$\psi(x,t)$	Lateral contraction in the time domain
ω	Angular frequency
ϕ	Slope