

A Multi-tenant Database Framework for Software
and Cloud Computing Applications

A Thesis Submitted for the Degree of
Doctor of Philosophy in Computing Sciences

By

Haitham Yaish

Faculty of Engineering and Information Technology
UNIVERSITY OF TECHNOLOGY, SYDNEY

Australia
July 2014

© Copyright by Haitham Yaish, 2014

i

CERTIFICATE OF AUTHORSHIP/
ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor
has it been submitted as part of the requirements for a degree except as fully
acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in
my research work and the preparation of the thesis itself has been acknowledged. In
addition, I certify that all information sources and literature used are indicated in the
thesis.

Haitham Yaish

Date: 14/07/2014

ii

ACKNOWLEDGMENT

I wish to express my great thanks to all who gave me tremendous support and help
during my PhD study primarily to the following.

First and foremost, I would like to express my ultimate acknowledgment to God,

who has given me the inspiration and strength to accomplish this thesis beside the
time that I spent working in the IT industry during the years of this study. Being a
full-time PhD student and at the same time, full-time employee would be impossible
without the assistance and the help of God.

I would like to express the deepest gratitude to my principal supervisor Dr. Madhu

Goyal, and co-supervisor Dr. George Feuerlicht for their academic guidance, insight,
and encouragement throughout every milestone in this study.

I would like to acknowledge my highest appreciation to my parents, Hashim and

Sanaa, my brother Abdulatif, and my sisters Mona, Maha and May for their constant
support, prayers, inspiration, and best wishes during this study and through all my
life.

I would like to express my great appreciations to my wife, Heba. I could never

have accomplished this thesis without her love, encouragement, patience,
understanding, and prayers. She shared me all the good and difficult times during my
study. I also would like to express my thanks and love to my sons, Yazan and
Mohammad for doing their best to understand the situation of their father who had to
be busy between study and work for such a long time.

I would like to express my appreciations of the support and help that I got from the

Centre for Quantum Computation and Intelligent Systems (QCIS), School of
Software, Faculty of Engineering and Information Technology (FEIT) at the
University of Technology, Sydney.

Finally, I should not forget to thank all the teachers and lecturers who taught me

during the school years, Bachelor degree, Master degree, and PhD degree. The
knowledge that I gained from all of them was essential to complete this study.

iii

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ ORIGINALITY ... i
ACKNOWLEDGMENT .. ii
Table of Contents ... iii
LIST OF FIGURES ... viii
LIST OF TABLES .. xi
ABSTRACT .. xiii
CHAPTER 1 Introduction... 1

1.1 Background ... 1

1.2 Research Objectives .. 6

1.3 Research Contributions ... 8

1.4 Thesis Organisation .. 10

1.5 Publications Related to this Thesis ... 14

CHAPTER 2 Literature Review ... 16

2.1 Cloud Computing and Software as a Service ... 16

2.1.1 SaaS History... 18

2.1.2 SaaS Model .. 19

2.1.3 SaaS Characteristics ... 19

2.1.4 SaaS Maturity Model ... 20

2.2 Multi-tenancy .. 21

2.2.1 Multi-tenant Architecture ... 22

2.2.2 Multi-tenant Configuration .. 22

2.3 Multi-tenant Database Management ... 23

2.4 Multi-tenant Database Schema Designs ... 26

2.4.1 Private Tables... 26

2.4.2 Extension Tables .. 26

2.4.3 Universal Table .. 27

iv

2.4.4 Pivot Tables ... 27

2.4.5 Chunk Table ... 28

2.4.6 Chunk Folding ... 28

2.4.7 XML Table... 29

2.5 Multi-tenant Database Query Optimizer ... 30

2.5.1 Oracle Query Optimizer ... 31

2.5.2 SQL Server Query Optimizer .. 32

2.5.3 PostgreSQL Query Optimizer .. 33

2.5.4 SalesForce Query Optimizer .. 34

2.6 Multi-tenant Database Access Control ... 35

2.6.1 Siebel Systems Access Control .. 36

2.6.2 IBM DB2, Access Control ... 36

2.6.3 Salesforce Access Control ... 36

2.7 Big Data .. 37

2.7.1 RDBMS and SQL .. 38

2.7.2 NoSQL ... 40

2.7.3 Issues in RDBMS and NoSQL .. 41

2.8 Summary ... 43

CHAPTER 3 Multi-tenant Database Framework Architecture 45

3.1 EET Framework Overview Architecture .. 46

3.2 EET Framework Conceptual Architecture Design ... 48

3.2.1 Elastic Extension Tables .. 49

3.2.2 EET Schema Handler Service .. 50

3.2.3 EET Proxy Service ... 50

3.2.4 EET Query Optimizer Service ... 51

3.2.5 EET Access Control Service .. 52

3.2.6 Data Access Object .. 52

3.2.7 Object Relational Mapping .. 53

3.2.8 EET APIs ... 53

3.3 Summary ... 54

CHAPTER 4 Multi-tenant Database Schema Design ... 56

4.1 Elastic Extension Tables ... 57

v

4.1.1 Common Tenant Tables ... 57

4.1.2 Extension Tables .. 58

4.1.3 Virtual Extension Tables .. 63

4.2 Elastic Extension Tables Database Models .. 63

4.3 An Example to Compare Multi-tenant Database Schema Designs with Elastic
Extension Tables ... 67

4.4 Performance Evaluations .. 76

4.4.1 Experimental Data Set and Setup .. 77

4.4.2 Experimental Result ... 81

4.5 Summary ... 89

CHAPTER 5 Multi-tenant Schema Handler Method ... 91

5.1 Elastic Extension Tables Schema Handler Service .. 92

5.1.1 Table Management... 93

5.1.2 Column Management ... 94

5.1.3 Row Management .. 95

5.1.4 Relationship Management ... 95

5.1.5 Primary Key Management ... 96

5.1.6 Index Management... 97

5.2 Sample Algorithms of Elastic Extension Tables Schema Handler Service 99

5.2.1 Creating Physical and Virtual Rows Algorithm .. 99

5.2.2 Updating Physical and Virtual Rows Algorithm 101

5.2.3 Deleting Physical and Virtual Rows Algorithm 102

5.3 Performance Evaluations .. 104

5.3.1 Experimental Data Set and Setup .. 105

5.3.2 Experimental Result ... 108

5.4 Summary ... 113

CHAPTER 6 Multi-tenant Database Proxy Method ... 115

6.1 Elastic Extension Tables Proxy Service ... 116

6.2 Elastic Extension Tables Proxy Service Algorithms 118

6.2.1 Single Table Query Algorithm... 119

6.2.2 One-to-Many Query Algorithm ... 123

6.2.3 Union Query Algorithm ... 125

6.2.4 Join Query Algorithm .. 126

vi

6.2.5 Targeted Tables Query Algorithm ... 128

6.3 Performance Evaluation .. 131

6.3.1 Experimental Setup .. 131

6.3.2 Experimental Data Set and Results .. 131

6.4 Summary ... 154

CHAPTER 7 Multi-tenant Query Optimizer Method ... 156

7.1 Elastic Extension Tables Query Optimizer Service .. 158

7.1.1 Query Access Control .. 159

7.1.2 Index Selection... 161

7.1.3 Table Row Selection .. 162

7.1.4 Statistics ... 163

7.1.5 Multi-tenant Database .. 164

7.1.6 Generate Query .. 164

7.1.7 Execute Query .. 164

7.2 Performance Evaluation .. 165

7.2.1 Experimental Data Set and Setup .. 165

7.2.2 Experimental Results ... 167

7.3 Summary ... 170

CHAPTER 8 Multi-tenant Access Control Method ... 171

8.1 Elastic Extension Tables Access Control ... 172

8.1.1 Access Control Tables ... 172

8.1.2 Elastic Extension Tables Access Grants .. 175

8.2 Columns and Rows Access Grant Algorithms.. 177

8.2.1 Get User Roles Algorithm ... 177

8.2.2 Get User Columns Algorithm .. 179

8.2.3 Get User Insert Access Algorithm ... 180

8.2.4 Get User Update Access Algorithm ... 181

8.2.5 Get User Delete Access Algorithm .. 182

8.2.6 Get User Query Access Algorithm .. 183

8.3 Performance Evaluation .. 185

8.3.1 Experimental Data Set and Setup .. 185

8.3.2 Experimental Results ... 186

vii

8.4 Summary ... 189

CHAPTER 9 Conclusions and Future Research ... 190

9.1 Conclusions ... 190

9.2 Future Research .. 196

ABBREVIATIONS .. 199

BIBLIOGRAPHY .. 201

viii

LIST OF FIGURES

Figure 1-1: The overall structure of the thesis .. 13
Figure 2-1: SaaS Maturity Levels (Shao 2011) .. 21
Figure 2-2: Separate Database Approach (Chong, Carraro & Wolter 2006) 24
Figure 2-3: Shared Database - Separate Schema Approach (Chong, Carraro & Wolter
2006) ... 24
Figure 2-4: Shared Database - Shared Schema Approach (Chong, Carraro & Wolter
2006) ... 25
Figure 2-5: The architecture of Oracle query optimizer (Raza et al. 2010) 31
Figure 2-6: The architecture of SQL Server query optimizer (Raza et al. 2010) 32
Figure 2-7: The architecture of PostgreSQL Query Optimizer (Dash et al. 2010) 33
Figure 3-1: EET overview architecture ... 48
Figure 3-2: EET conceptual architecture design ... 49
Figure 4-1: Elastic Extension Tables .. 62
Figure 4-2: The Three EET Database Models .. 64
Figure 4-3: The EET Three Database Models Example. .. 66
Figure 4-4: Private Tables ... 68
Figure 4-5: Extension Tables .. 69
Figure 4-6: Universal Table .. 69
Figure 4-7: Pivot Tables.. 70
Figure 4-8: Chunk Table ... 71
Figure 4-9: Chunk Folding.. 72
Figure 4-10: XML Table ... 72
Figure 4-11: Virtual Extension Tables (VET) .. 74
Figure 4-12: The data stored in the ‘sales_person’ CTT .. 74
Figure 4-13: The data stored in the ‘db_table’ ET .. 74
Figure 4-14: The data stored in the ‘table_column’ ET .. 75
Figure 4-15: The data stored in the ‘table_row’ ET ... 75
Figure 4-16: The data stored in the ‘table_relationship’ ET 75
Figure 4-17: The data stored in the ‘table_index’ ET ... 75
Figure 4-18: The data stored in the ‘table_primary_key_column’ ET 76
Figure 4-19: Universal Table Schema Mapping (Liao et al. 2012) 77
Figure 4-20: The virtual ‘product’ table structure. ... 78
Figure 4-21: Retrieving small numbers of rows (Exp. 4-1.1) 82
Figure 4-22: Retrieving large numbers of rows (Exp. 4-1.1) 82
Figure 4-23: Retrieving rows using columns query filters (Exp.4-1.2) 83
Figure 4-24: Retrieving rows using PK indexes (Exp. 4-1.3) 84
Figure 4-25: Retrieving rows using a custom index (Exp. 4-1.4) 84

ix

Figure 4-26: Inserting rows (Exp.4-2) .. 85
Figure 4-27: Updating rows (Exp. 4-3)... 86
Figure 4-28: Deleting rows (Exp.4-4) ... 87
Figure 5-1: EET Schema Handler Service overview architecture 93
Figure 5-2: The product and the sales_fact tables’ structures. 106
Figure 5-3: Inserting rows experiment .. 109
Figure 5-4: Updating rows experiment ... 110
Figure 5-5: Deleting rows experiment .. 111
Figure 6-1: EETPS overview architecture .. 117
Figure 6-2: Targeted Tables example ... 129
Figure 6-3: Current Root Table and Current Targeted Table 130
Figure 6-4: The tables structures used in the experiments .. 133
Figure 6-5: The outputs of the Simple Query Experiment (Single Table) 133
Figure 6-6: The experimental results of retrieving 1 row from the Single Table
function ... 134
Figure 6-7: The experimental results of retrieving 100 rows from the Single Table
function ... 134
Figure 6-8: The outputs of the Simple-to-Medium Query Experiment (One-to-Many)
... 136
Figure 6-9: The experimental results of retrieving 1 row from the One-to-Many
function ... 136
Figure 6-10: The experimental results of retrieving 100 rows from the One-to-Many
function ... 137
Figure 6-11: The outputs of the Medium Query Experiment (Union) 139
Figure 6-12: The experimental results of retrieving 1 row from the Union function
... 139
Figure 6-13: The experimental results of retrieving 100 rows from the Union
function ... 140
Figure 6-14: The three left joins of The Left Join experiment 141
Figure 6-15: The output of the Medium-to-Complex Query Experiment (Left Join)
... 142
Figure 6-16: The experimental results of retrieving 1 row from the Left Join function
... 142
Figure 6-17: The experimental results of retrieving 100 rows from the Left Join 100
rows experimental results ... 143
Figure 6-18: The query filters of the Targeted Tables experiment 145
Figure 6-19: The outputs of the Complex Query Experiment (Targeted Tables) 146
Figure 6-20: The experimental results of retrieving 1 row from the Targeted Tables
function ... 146
Figure 6-21: The experimental results of retrieving 100 rows from the Targeted
Tables function.. 147
Figure 6-22: The structures of the queries used in the experiments 148
Figure 6-23: The average experimental results of retrieving 1 row 149
Figure 6-24: The average experimental results of retrieving 100 rows 150

x

Figure 7-1: The EETQOS architecture and how it is orchestrated with EETPS and
EET ... 159
Figure 7-2: The table structure of the ‘product’ table .. 167
Figure 7-3: The experimental results of retrieving data using filters and indexes... 168
Figure 8-1: EET Access Control Data Architecture .. 172
Figure 8-2: EET access control grants ... 175
Figure 8-3: Table columns access grant... 176
Figure 8-4: Table rows access grant .. 177
Figure 8-5: The table structure of the ‘product’ table .. 186
Figure 8-6: Accessing data from the table columns experiment (Exp.8-1) 187
Figure 8-7: Accessing data from the table rows experiment (Exp.8-2) 188

xi

LIST OF TABLES

Table 4-1: The query execution times of retrieving rows without using query columns
filters experiment (Exp. 4-1.1) .. 83
Table 4-2: The query execution times of retrieving rows using columns query filters
experiment (Exp. 4-1.2) .. 83
Table 4-3: The query execution times of retrieving rows using primary key indexes
experiment (Exp. 4-1.3) .. 84
Table 4-4: The query execution times of retrieving rows using custom index
experiment (Exp. 4-1.4) .. 85
Table 4-5: The query execution times of inserting rows experiment (Exp. 4-2) 85
Table 4-6: The query execution times of updating rows experiment (Exp. 4-3) 86
Table 4-7: The query execution times of deleting rows experiment (Exp. 4-4) 87
Table 4-8: The experiments queries .. 87
Table 5-1: The query execution times of inserting rows experiment (Exp. 5-1) 109
Table 5-2: The query execution times of updating rows experiment (Exp. 5-2) 110
Table 5-3: The query execution times of deleting rows experiment (Exp. 5-3) 111
Table 5-4: The experiments queries .. 111
Table 6-1: The query execution times of retrieving 1 row from the Single Table
experiment (Exp. 6-1) ... 134
Table 6-2: The query execution times of retrieving 100 rows from the Single Table
experiment... 135
Table 6-3: The query execution times of retrieving 1 row from the One-to-Many
experiment... 137
Table 6-4: The query execution times of retrieving 100 rows from the One-to-Many
experiment (Exp. 6-2) ... 137
Table 6-5: The query execution times of retrieving 1 row from the Union 140
Table 6-6: The query execution times of retrieving 100 rows from the Union
experiment (Exp. 6-3) ... 140
Table 6-7: The query execution times of retrieving 1 row from the Left Join
experiment (Exp. 6-4) ... 143
Table 6-8: The query execution times of retrieving 100 rows from the Left Join
experiment (Exp. 6-4) ... 143
Table 6-9: The query execution times of retrieving 1 row from the Targeted Tables
experiment (Exp. 6-5) ... 147
Table 6-10: The query execution times of retrieving 100 rows from the Targeted
Tables experiment (Exp. 6-5) ... 147
Table 6-11: The average experimental results of retrieving 1 row in milliseconds .. 149

xii

Table 6-12: The average experimental results of retrieving 100 rows in milliseconds
... 150
Table 6-13: The experiments queries .. 151
Table 6-14: The experiments queries details .. 151
Table 7-1: The query execution times of retrieving data using filters and indexes . 169
Table 7-2: The experiments queries .. 169
Table 8-1: The query execution times of Exp.8-1 and Exp.8-2 188
Table 8-2: The experiments queries .. 188

xiii

ABSTRACT

Cloud Computing is a new computing paradigm that transforms accessing computing

resources from internal data centres to external service providers. This approach is

rapidly becoming a standard for offering cost effective and elastic computing services

that are used over the internet. Software as a service (SaaS) is one of the Cloud

Computing service models that exploits economies of scale for SaaS service

providers by offering the same software and computing environment for multiple

tenants. This contemporary multi-tenant service requires a multi-tenant database

design that can accommodate data for multiple tenants in one single database schema.

Due to multi-tenant database resource sharing in this service, the multi-tenant schema

should be highly secured, optimized, configurable, and extendable during runtime

execution to fulfil the applications’ requirements of different tenants. However,

traditional Relational Database Management Systems (RDBMS) do not support such

multi-tenant database schema capabilities, and it is a significant challenge to enable

RDBMS to support these capabilities. Therefore, one solution is using an

intermediate software layer that mediates multi-tenant applications and RDBMS, to

convert multi-tenant queries into regular database queries, and to execute them in a

RDBMS. Developing such a multi-tenant software layer to manage and access

tenants’ data is a hard and complex problem to solve and has significant complexities

that involve longer development lifecycle.

There are two main contributions of this thesis. Firstly, a proposal for a novel

multi-tenant schema technique called Elastic Extension Tables (EET). Secondly, a

proposal for a multi-tenant database framework prototype to implement EET schema

xiv

in a RDBMS. This approach can be used to develop a software layer that mediates

software applications and a RDBMS. This software layer aims to facilitate the

development of software applications, and multi-tenant SaaS and Big Data

applications for both cloud service providers and their tenants.

Extensive experiments were conducted to evaluate the feasibility and

effectiveness of EET multi-tenant database schema by comparing it with Universal

Table Schema Mapping (UTSM), which is commercially used. Significant

performance improvements obtained using EET when compared to UTSM, makes the

EET schema a good candidate for implementing multi-tenant databases and multi-

tenant applications. Furthermore, the prototype of the EET framework was

developed, and several experiments were performed to verify the practicability and

the effectiveness of using this framework that based on EET multi-tenant database

schema. The results of the experiments indicate that the EET framework is suitable

for the development of software applications in general, and multi-tenant SaaS and

Big Data applications in particular.

Chapter 1: Introduction Haitham Yaish

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND
Cloud computing has recently emerged as a new computing paradigm that

transforms the IT industry, making the computing software and hardware more

appealing to use as a service over the internet (Brian et al. 2012). This new computing

paradigm began to flourish for two reasons. First, the internet has become affordable

and its speed has significantly increased (Wang et al. 2008). Second, the wide growth

in computer usage, in areas such as businesses, governments, health services,

educational purposes, social media networks, mobile applications, and other

computational aspects (Brian et al. 2012). Such evolution in internet speed and the

computer usage brought a demand to maximize the use of computational resources

and to minimize the cost. Cloud Computing is considered a solution to fulfil this

demand by moving applications and their data from desktop and portable Personal

Computers into large data centres (Dikaiakos et al. 2009). Cloud Computing is no

longer just hype, in contrast it is rapidly evolving, and the prospects that it will be one

day the fifth used utility after water, electricity, gasoline, and telephone. (Agrawal,

Das & Abbadi 2010; Buyya et al. 2009; Zhang et al. 2010) Cloud Computing has

introduced several technologies to the industry such as Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) (Chang,

Walters, & Wills 2013; Dikaiakos et al. 2009; Louridas 2010; Mohammed & Fiaidhi

2010). Multi-tenancy is the fundamental characteristic of Cloud Computing services,

such characteristic allows SaaS vendors to run a single application that support

Chapter 1: Introduction Haitham Yaish

2

multiple tenants on the same software and hardware infrastructure (Fiaidhi et al.

2012; Kwok, Thao & Linh 2008). The term “tenant” is widely used in Cloud

Computing to refer to organisation, customer, or user who is using a cloud service;

this term also used in this thesis.

It is a common practice in the data architecture of SaaS applications to use a multi-

tenant database where there is one database schema shared between all tenants

(Aulbach 2011; Martinez 2012). Cloud database service providers have considered

such a database as an effective resource sharing storage. That is because it reduces the

costs on them by co-locating multiple tenants’ databases into a single database

schema. It also allows to reduce the total cost of ownership on the tenants of the

service. Such data architecture consists of two data types: shared data and tenant’s

isolated data; in combining these two types of data together, tenants can have a

complete data view that fit their business requirements (Domingo et al. 2010; Liu

2010).

The majority of modern Relational Database Management Systems (RDBMS)

have designed to accommodate data for a single tenant. Nevertheless, single-tenant

databases are not suitable to be used by multiple tenants, because they do not consider

the unique characteristics of each tenant's data, which in return is leading to incorrect

assumptions and query plans about the tenants’ data (Aulbach 2011; Weissman &

Bobrowski 2009). Therefore, various multi-tenant database schema techniques have

been studied and implemented to overcome this challenge, including Private Tables,

Extension Tables, Universal Table, Pivot Tables, Chunk Table, Chunk Folding, and

XML Table (Aulbach et al. 2008; Aulbach et al.2009; Du, Wen & Yang 2010; Foping

et al. 2009; Heng et al. 2012; Liao et al. 2012). The design of such multi-tenant

schema techniques based on traditional RDBMS (Domingo et al. 2010; Martinez

2012). However, these multi-tenant schema techniques still have remaining

challenges that need to be addressed (Agrawal, Das & Abbadi 2010; Aulbach et al.

2009; Aulbach 2011; Gorti, Shiri & Radhakrishnan 2013).

Chapter 1: Introduction Haitham Yaish

3

Overcoming multi-tenant schema technique challenges is one of the topics that has

received much attention from academic and industrial fields to build multi-tenant

software applications in general, and multi-tenant SaaS and Big Data applications in

particular. Five of these challenges are listed below.

 Managing Multi-tenant Database: Configuration is the main characteristic in

multi-tenant applications that allows to run a single instance application, which

support multiple tenants with configurable metadata. Such application requires a

multi-tenant aware design with single codebase and metadata service. This design

allows to share resources across tenants, and to configure how multi-tenant

application appears and behaves with the ability of isolating and differentiating

data, information, configurations, and settings that belong to different tenants.

Multi-tenant aware applications allow each tenant to design and manage different

parts of the application, and automatically adjust and configure its behaviour

during runtime execution without redeploy the application (Chong 2006).

Consequently, managing and configuring multi-tenant aware application is a

tenant self-service that typically performs while application in operation to

minimize the system downtime, and allows the tenant to feel as if he is the only

one using the application (Mietzner et al. 2009b). Furthermore, multi-tenant

application requires a special multi-tenant schema technique, and a codebase

solution that has two capabilities: (1) transforming virtual (logical) multi-tenant

queries to physical database queries and execute them in a RDBMS; and (2)

managing multiple tenants’ data in a single instance application. Developing such

a data management solution is a hard and complex problem to solve and has

significant complexities that involve longer development lifecycle.

 Extending RDBMS to Support Multiple Tenants: Traditional RDBMSs have

limitations in supporting multi-tenant database extensibility. That is because each

individual tenant cannot modify the multi-tenant shared tables’, since the shared

tables commonly used between tenants, and changing their structure will affect all

the tenants (Aulbach 2011). Thus, as mentioned before a number of multi-tenants

Chapter 1: Introduction Haitham Yaish

4

database schemas have introduced to overcome this challenge. However, such a

multi-tenant database schemas have challenges include, but are not limited to:

firstly, the existing multi-tenant database schema techniques store the tenant’s

extension data in non-relational format. In this way, either tenants who have

structured data will refuse to adopt the multi-tenant database or they will adopt it

by sacrificing their data normalization and data integrity. Secondly, some of these

multi-tenant schema techniques introduce a number of issues by sharing tables

with too many spare columns that resulting in (1) having an extensive number of

null values, and (2) eliminating the usage of column indexes (Martinez 2012).

 Optimizing Multi-tenant Database Query: Multi-tenant database is designed to

deliver database functionalities for multiple database users to create, store, and

access their data over the internet. However, such approach raises an issue in

database performance, because the multi-tenant database is shared between

multiple tenants. The majority of modern RDBMSs have query optimizers to

optimize the query execution of a single-tenant database, for example, Oracle,

SQL Server (Raza et al. 2010), and PostgreSQL (Dash et al. 2010). Nevertheless,

such query optimizers are leading to incorrect assumptions and query plans if they

are used for the multi-tenant database. Therefore, the multi-tenant database

requires a special query method to optimize different queries for multiple tenants

who are using the same resources of a multi-tenant database.

 Multi-tenant Database Access Control: The growth of Cloud Computing multi-

tenant services draws attention to security challenges, which are emerging due to

the cloud vendor’s resource sharing (Takabi, Joshi & Ahn 2010). It is highly

unlikely that the tenants would risk their data by storing and accessing it over the

cloud in favour of reducing the total cost of ownership, or using a flexible cloud

service, unless the service providers offer reliable and secure services (Ren et al.

2012). Consequently, the multi-tenant database demands a special multi-tenant

access control model, which provides access control not only for multiple tenants,

but also for multiple users for each individual tenant. However, the existing

Chapter 1: Introduction Haitham Yaish

5

traditional RDBMSs do not differentiate between the data of different tenants’

users (Brodersen et al. 2004), which in return is leading to incorrect assumptions

and query plans about the tenants’ data and the data of tenants’ users.

 The challenges of RDBMS and NoSQL Challenges: Big Data is a new Cloud

Computing paradigm that is defined in a simplistic form by four dimensions

known as the 4Vs: Volume, Variety, Velocity, and Veracity (Demchenko et al.

2013; Kim, Trimi & Chung 2014). It emerged from the growth of data that

collected from different applications (e.g. Enterprise, web, e-mail, social media,

mobile, computational science), wireless sensor networks, surveillance and video

cameras, and other sources. It has been argued that RDBMS are not suitable to

store and manage Big Data for two reasons: (1) they are limited in offering good

performance and scalability properties; and (2) they do not allow to extend on the

existing database schema by adding, modifying, and deleting tables and tables’

columns during the application’s runtime execution (Leavitt 2010; Cattell 2011).

NoSQL (Not Only SQL) storage technology has emerged significantly and used

for Big Data applications, because NoSQL offers high scalability, elasticity, and

availability (Agrawal, Das & Abbadi 2010). Andlinger1 reports that the RDBMSs

are dominating the database management systems in the industry, but there is an

obvious trend and potential for the evolution and expansion of NoSQL in the

database industry. However, NoSQL has a number of issues and concerns such

as: (1) it does not support ACID (Atomicity, Consistency, Isolation, and

Durability) transactional properties that the traditional RDBMSs support; (2) it

requires manual query programming which adds extra overhead and complexity

in software development; (3) the vast majority of organisations are unfamiliar

with this technology, which leads to overwhelming them with difficulties in

evaluating the feasibility of applying it or using it (Leavitt 2010; Cattell 2011);

(4) it avoids joining operations, filtering on multiple properties, and filtering of

data based on subqueries results (Dimovski 2013; Sakr et al. 2011). Such

1 http://db-engines.com/en/blog_post/23; Accessed July, 2014

Chapter 1: Introduction Haitham Yaish

6

limitations in RDBMS and NoSQL lead to a point that the optimal multi-tenant

Big Data storage model does not exist yet.

1.2 RESEARCH OBJECTIVES
In view of the limitations described above about the existing multi-tenant schema

techniques that are used as storage for multi-tenant applications, this study aims to

achieve the following six research objectives. The primary objective is stated first and

is followed by five other specific objectives.

1. Propose a new multi-tenant schema technique to improve and overcome the

challenges of multi-tenant software applications. The aim of this objective is

to propose a novel way of designing and creating a multi-tenant schema

technique. This technique enables multiple tenants to share a single database

schema instance in RDBMS, and in this schema builds each individual

tenant’s schema to fulfil the tenant’s business requirements. Moreover, it

allows tenants to store different data types of Big Data including structured,

semi-structured, and unstructured in RDBMS.

2. Develop multi-tenant database management method to extend the RDBMS

during the application’s runtime execution. The aim of this objective is to

develop a method to extend the traditional RDBMS by adding the tenant’s

virtual relational tables (the tenant’s isolated tables) to the existing multi-

tenant physical relational tables (tenants shared tables), and creating virtual

database relationships between these tables such as one-to-one, one-to-many,

many-to-one, many-to-many, or self-referencing during the application’s

runtime execution.

3. Develop a multi-tenant query execution method to retrieve tenants’ data from

multi-tenant physical relational tables and virtual relational tables. The aim of

this objective is to develop a method to facilitate executing queries from one

table, two or more tables of multi-tenant physical relational tables, and multi-

Chapter 1: Introduction Haitham Yaish

7

tenant virtual relational tables using virtual database relationships between

them. This method allows tenants to use three database models: (1) multi-

tenant physical relational tables, (2) multi-tenant physical relational tables

integrated with virtual relational tables, and (3) multi-tenant virtual relational

tables. In these three database models, tenants can retrieve data by executing

simple and complex queries. In embracing this method, a traditional RDBMS

could become elastic and contemporary database storage that is suitable for

Cloud Computing services.

4. Develop a method to optimize retrieving data for multiple tenants who are

using the same resources of a single multi-tenant database. The aim of this

objective is to develop a method to optimize and speed up query retrievals,

and use the most efficient way to execute a query in multi-tenant database

using virtual primary keys, virtual relationships between multi-tenant physical

relational tables and multi-tenant virtual relational tables, virtual indexes,

efficient execution plans for virtual relational database queries, and efficient

logics. This method reduces the query execution time for each single tenant

who is using the same software and hardware resources that are used by

multiple tenants, and reduces the consumption of these resources in the multi-

tenant database.

5. Develop a method that allows each tenant to grant his users with access

control capabilities from the multi-tenant database level rather than from the

application level. The aim of this objective is to develop a multi-tenant access

control method that is suitable for multi-tenant database. This method should

allow each tenant in the multitenant database to have multiple users, and each

user to have different types of grants to access the tenant’s data. It also

improves multi-tenant applications, by granting the tenant’s user data accesses

from the database level instead of the application level.

6. Develop a multi-tenant database framework prototype that mediates software

applications and RDBMS. The aim of this objective is to achieve all the above

Chapter 1: Introduction Haitham Yaish

8

five objectives by proposing a multi-tenant database framework architecture to

be used as a database layer between software applications and RDBMS. Such

a framework is designed to implement the novel multi-tenant database schema

that stated in the first objective, and simplify the development of software

applications and multi-tenant SaaS and Big Data applications.

1.3 RESEARCH CONTRIBUTIONS
By tackling the six stated objectives, this thesis contributes to the theory and

practice of the software development in general and Cloud Computing, SaaS, and Big

Data development in particular as in the following aspects:

1. It proposes a novel multi-tenant schema technique called Elastic Extension

Tables (EET), which enables service providers to offer elastic relational

database schema that has three database models: (1) multi-tenant physical

relational tables; (2) multi-tenant physical relational tables integrated with

virtual relational tables; and (3) multi-tenant virtual relational tables. In the

presence of this multi-tenant relational database schema, service providers can

offer their tenants any business domain database such as customer relationship

management (CRM), human resources (HR), accounting, or any other business

domain database. Then tenants can store and access their data by using the

existing business domain database as offered by the service provider,

extending on it, or creating their own database schema from scratch. Moreover,

such schema mapping technique is capable to store traditional data types (e.g.

NUMBER, BOOLEAN, VARCHAR, DATE-AND-TIME, and others) and

non-traditional data types (e.g. Large text, image, audio, video, and others).

These data types typically are stored in Big Data application in structured,

semi-structured, or unstructured format. However, the proposed schema is

exhaustive in a way that it can store the entire data format of Big Data in

RDBMS.

Chapter 1: Introduction Haitham Yaish

9

2. It develops a multi-tenant schema handler method that is based on EET. This

method manages multi-tenant physical relational tables and virtual relational

tables. Such a method allows the tenants to extend on the business domain

database that the service providers offer by using a traditional RDBMS. In

using this method, tenants can create/update/delete virtual tables, columns,

columns constraints, primary keys, foreign keys, indexes, table rows (records),

while for the physical tables, tenants can create/update/delete only physical

table rows, and database relationships between physical tables and virtual

tables. The rest of the physical tables’ database operations such as creating

physical tables, columns, columns constraints, primary keys, foreign keys,

indexes, and database relationships between two physical tables are managed

from a traditional RDBMS. The advancement of this method is that it allows

tenants to manage their tables during the application’s runtime execution.

3. It develops a multi-tenant database proxy method that is based on EET. This

method integrates, generates, and executes tenants’ queries by using a

codebase solution that converts multi-tenant queries into regular database

queries and executes them in any of the available RDBMSs. Such a method

solves the problem of integrating multi-tenant physical relational tables and

virtual relational tables by making them work together and operate virtually as

a single database schema for each tenant. This integration capability allows

tenants to retrieve data from any of the three database models that mentioned

above. Such a method also retrieves simple and complex queries including

joining operations, filtering on multiple properties, and filtering of data based

on subqueries’ results.

4. It develops a multi-tenant query optimizer method that is based on EET. This

method estimates the cost of different query execution plans, to determine the

optimal plan for each tenant and each tenant’s user. Then, the proxy method

that mentioned in the previous point uses this plan to execute the tenants’

Chapter 1: Introduction Haitham Yaish

10

queries by converting them into traditional database queries, and finally

executes them using the query optimizer of a RDBMS.

5. It develops a multi-tenant access control method for the tenant’s users to grant

them access to the tenant’s data that is stored in EET. Such an access control

method permits the tenant’s users to access table’s columns and rows based on

a number of groups or roles, which are assigned to these users.

6. It proposes framework architecture for multi-tenant database, and it develops a

prototype for this architecture that is based on EET. This framework designed

to be used as a database layer between software applications (e.g. SaaS, Big

Data, mobile, web) and any of the available RDBMSs. In addition, it

overcomes the above mentioned challenges and offers the following

advancements: (1) allowing RDBMS vendors to improve their databases by

accommodating multiple tenants, and storing Big Data in a single database; (2)

allowing RDBMS vendors to offer three database models that stated above in

the first contribution, and allowing their tenants to choose from any of these

database models; (3) allowing cloud service providers to offer multi-tenant

database and multi-tenant application services; (4) simplifying the

development of software application in general, and the development of multi-

tenant SaaS and Big Data applications in particular for both cloud service

providers and their tenants; (5) permitting tenants to evaluate and adopt cloud

database services; and (6) reducing the cost on both the cloud service providers

and their tenants.

1.4 THESIS ORGANISATION
This thesis is structured in nine chapters as follows.

Chapter 1 introduces the topic of this thesis, opens with the topic background,

then states the research objectives, contributions, the organisation of this thesis, and

finally lists the publications related to this thesis.

Chapter 1: Introduction Haitham Yaish

11

Chapter 2 presents a literature review related to the research topic. Firstly, defines

Cloud Computing and Software as a Service. Secondly, defines multi-tenancy.

Thirdly, presents the multi-tenant database management. Fourthly, reviews the

existing multi-tenant database schema designs. Fifthly, presents a number of multi-

tenant database query optimizers. Sixthly, presents a number of multi-tenant database

access controls. Seventhly, defines the Big Data, RDBMS, and NoSQL, and

addresses the issues of RDBMS and NoSQL. Finally, summarises the literature

review.

Chapter 3 proposes the multi-tenant database framework architecture. Firstly,

presents the overview architecture of the EET framework. Secondly, presents the

conceptual architecture design of EET framework. This chapter addresses the sixth

objective of this thesis. Parts of this chapter have been published in CLOSER 2012

(Yaish, Goyal & Feuerlicht 2012), and CSE 2013 (Yaish & Goyal 2013a).

Chapter 4 proposes the novel multi-tenant schema technique. Firstly, proposes the

EET multi-tenant schema technique. Secondly, proposes the three database models of

EET. Thirdly, compares the existing multi-tenant schema techniques with EET.

Fourthly, gives an evaluation and discussion of EET by comparing it with UTSM.

Finally, summarises the chapter. This chapter addresses the first objective of this

thesis. Parts of this chapter have been published in DASC 2011 (Yaish, Goyal &

Feuerlicht 2011), Procedia Computer Science 2014 (Yaish, Goyal & Feuerlicht

2014a), and JoCCASA 2014 (Yaish, Goyal & Feuerlicht 2014d).

Chapter 5 proposes the multi-tenant schema handler method. Firstly, proposes the

architecture of the multi-tenant schema handler method. Secondly, develops the

schema handler concept and its algorithms. Thirdly, conducts experimental results

and discussions on the schema handler method that is based on the EET. Finally,

summarises the chapter. This chapter addresses the second objective of this thesis.

Parts of this chapter have been published in Procedia Computer Science 2014 (Yaish,

Goyal & Feuerlicht 2014b).

Chapter 1: Introduction Haitham Yaish

12

Chapter 6 proposes the multi-tenant database proxy method. Firstly, proposes the

architecture of the proxy method. Secondly, develops the proxy method algorithms.

Thirdly, conducts experimental results and discussions on the proxy method. Finally,

summarises the chapter. This chapter addresses the third objective of this thesis. Parts

of this chapter have been published in LNCS 2013 (Yaish, Goyal & Feuerlicht

2013a), and submitted to TLDKS (Yaish, Goyal & Feuerlicht 2014c).

Chapter 7 proposes the multi-tenant query optimizer method. Firstly, proposes the

architecture of the query optimizer method. Secondly, conducts experimental results

and discussions on the query optimizer method that is based on the EET and the

proxy method. Finally, summarises the chapter. This chapter addresses the fourth

objective of this thesis. Parts of this chapter have been published in LNCS 2013

(Yaish, Goyal & Feuerlicht 2013b).

Chapter 8 proposes the multi-tenant access control method. Firstly, proposes the

multi-tenant access control data architecture that is based on EET. Secondly, presents

the EET multi-tenant access grants. Thirdly, develops the multi-tenant access grants

algorithms. Fourthly, conducts experimental results and discussions on the access

grants of columns and rows related to the tenants’ users. Finally, summarises the

chapter. This chapter addresses the fifth objective of this thesis. Parts of this chapter

have published in CSE 2013 (Yaish & Goyal 2013b).

Chapter 9 summarizes the thesis and draws conclusions, and provides new

research directions that could be persuaded in the future.

The structure of the thesis is graphically described in Figure 1-1.

Chapter 1: Introduction Haitham Yaish

13

Figure 1-1: The overall structure of the thesis

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 6
Multi-tenant Database

Proxy Method

Chapter 7
Multi-tenant Query
Optimizer Method

Chapter 5
Multi-tenant Schema

Handler Method

Chapter 9
Conclusions and Further Research

Chapter 4
Multi-tenant Database

Schema Design

Chapter 3
Multi-tenant Database Framework

Architecture

Chapter 8
Multi-tenant Access

Control Method

Chapter 1: Introduction Haitham Yaish

14

1.5 PUBLICATIONS RELATED TO THIS THESIS
1. Yaish, H., Goyal, M. & Feuerlicht, G. 2011, 'An elastic multi-tenant database

schema for software as a service', Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth International Conference on, Sydney,

Australia, pp. 737-743.

2. Yaish, H., Goyal, M. & Feuerlicht, G. 2012, 'A novel multi-tenant architecture

design for Software as a Service applications', The 2nd International

Conference on Cloud Computing and Services Science (CLOSER), Porto,

Portugal, pp. 82-88.

3. Yaish, H., Goyal, M. & Feuerlicht, G. 2013a, 'Proxy service for multi-tenant

database access', Lecture Notes in Computer Science (LNCS), vol. 8127, pp.

100-117.

4. Yaish, H., Goyal, M. & Feuerlicht, G. 2013b, 'A method of optimizing multi-

tenant database query access', Lecture Notes in Computer Science (LNCS), vol.

8182, pp. 194-212.

5. Yaish, H. & Goyal, M. 2013a, 'A multi-tenant database architecture design for

software applications', Computational Science and Engineering (CSE), 2013

IEEE 16th International Conference on, Sydney, Australia, pp. 933-940.

6. Yaish, H. & Goyal, M. 2013b, 'Multi-tenant database access control',

Computational Science and Engineering (CSE), 2013 IEEE 16th International

Conference on, Sydney, Australia, pp. 870-877.

7. Yaish, H., Goyal, M. & Feuerlicht, G. 2014a, 'Evaluating the performance of

multi-tenant elastic extension tables', Procedia Computer Science, vol. 29, pp.

614-626.

8. Yaish, H., Goyal, M. & Feuerlicht, G. 2014b, 'Multi-tenant elastic extension

tables data management', Procedia Computer Science, vol. 29, pp. 2168-2181.

Chapter 1: Introduction Haitham Yaish

15

9. Yaish, H., Goyal, M. & Feuerlicht, G. 2014c, ‘A proxy service for multi-tenant

Elastic Extension Tables', submitted to Advanced Techniques for Cloud Data

Management (TLDKS), vol. 8420, p. 25.

10. Yaish, H., Goyal, M. & Feuerlicht, G. 2014d, ‘Elastic extension tables multi-

tenant database schema', submitted to Journal of Cloud Computing: Advances,

Systems and Applications (JoCCASA).

Chapter 2: Literature Review Haitham Yaish

16

CHAPTER 2

LITERATURE REVIEW

This literature review presents relevant works in connection with this research.

Section 2.1 defines Cloud Computing and SaaS. Section 2.2 presents the multi-tenant

architecture design for multi-tenant applications. Section 2.3 presents the multi-tenant

database management. Section 2.4 reviews the existing multi-tenant database schema

designs. Section 2.5 presents single-tenant and multi-tenants query optimizers.

Section 2.6 presents different multi-tenant role based access control methods. Section

2.7 defines the Big Data, RDBMS and NoSQL, and addresses the issues of RDBMS

and NoSQL. Finally, Section 2.8 summarises this literature review.

2.1 CLOUD COMPUTING AND SOFTWARE AS A

SERVICE
Cloud Computing is a recent technology paradigm that allows to deliver internet

applications and their infrastructure as services over the internet, by moving

applications and their data from desktop and portable PCs (Personal Computers) into

a large data centres (Brian et al. 2012; Dikaiakos et al. 2009). It enables tenants to

share various computing services in an efficient way and cost-effective manner (Xu

2010; Ratametha & Veeragandham 2008). Cloud Computing Services allow to reduce

the cost of adding more capacity at the peak demand of these services, and

minimizing this capacity when the demand decreases (Dikaiakos et al. 2009). This

service creates an elastic environment that expands and contracts depending on the

workload and performance, as per the agreement of pay-by-use that guarantees a

Chapter 2: Literature Review Haitham Yaish

17

minimum level of service that is offered by a cloud service provider (Carolan et al.

2009). Virtualization is the main characteristic of Cloud Computing that is applied in

a number of aspects such as hardware, software, operating system, and storage in the

Cloud Computing platform, instead of a physical platform. The Cloud Computing

operations such as resource expansion, migration, and backup operate through a

virtualization level (Shuai et al. 2010). IT organisations use virtualization to create

multiple instances of an existing environment on the same application server easily

and quickly. This technique uses pay-as-use model where a software environment can

exist to run a job or many jobs on the server for a few minutes, hours, or long-term

basis (Carolan et al. 2009). Cloud Computing introduced technologies such as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) (Chang, Walters, & Wills 2013; Dikaiakos et al. 2009; Louridas 2010;

Mohammed & Fiaidhi 2010). The details of these services are listed below:

 Infrastructure as a Service: IaaS provides the functionality of hosting virtual

machines and other abstract hardware, infrastructures and operating systems

(Dikaiakos et al. 2009; Ambrose, Dagland & Athley 2010) that is controlled

through Application Programming Interface (API) (Ambrose, Dagland & Athley

2010). This service is provided by data centres to allow their tenants to deploy and

run their operating systems on top of virtualized software. Such software is used

in IaaS for distribution, automation, deployment, and installation. Amazon EC2

and S3, IBM BlueCloud, and Windows Live Skydrive are examples of IaaS

(Ambrose, Dagland & Athley 2010; Mohammed & Fiaidhi 2010).

 Platform as a Service: PaaS is used to configure, deploy, and access software

through a web browser, without any need for the end user to install or download

the platform that is provided by the vendor (Ambrose, Dagland & Athley 2010). It

offers access functionality to the developers, without offering any physical

computing tools, in order to meet the application requirements, set the application

server, and use virtual computing resources of IaaS (Chengtong et al. 2010).

Further, it allows tenants to develop and deploy their websites and make them

Chapter 2: Literature Review Haitham Yaish

18

available through the internet. Furthermore, it allows tenants to access different

tools on the platform to configure their platforms during their websites’ runtime

execution (Ambrose, Dagland & Athley 2010). Such a platform makes the

software implementation much easier and reduces the cost on the tenants

(Chengtong et al. 2010). Microsoft Azure and Google App Engine are examples

of PaaS (Ambrose, Dagland & Athley 2010; Mohammed & Fiaidhi 2010).

 Software as a Service: SaaS is defined as an online software delivery service

that allows tenants to subscribe to a paid software service instead of paying

for software licenses, and to share the service with multiple tenants (Ju et al.

2010). It is an emerging software service and one of the hot topics in the

software industry (Burno 2006). Salesforce is the most common example of

SaaS in the market, and there are many other examples, such as Google Apps

(Carolan et al. 2009), NetSuite 2, and others.

The three Cloud Computing services, including IaaS, PaaS, and SaaS are described

above; however, SaaS is the major focus of the rest of this section.

2.1.1 SAAS HISTORY

SaaS is an old concept from the mainframe era in the 1960s and into the

minicomputer era in 1970s. Due to the high prices of acquiring computers at that

time, the remote computer model emerged especially after introducing PCs,

LANs, and client-server computing in 1980s and early 1990s (Landy 2008). SaaS

first came in 1990s and it was called Application Service Provider (ASP).

Nevertheless, it was almost lost because of the dotcom bubble bursting (Menken

& Blokdijk 2009). In February 2000, SaaS started to return back when Salesforce

launched its web-based service, and it became the early SaaS adopter. In February

2001, the term Software as a Service or SaaS published for the first time in a

white paper called "Software as a Service: Strategic Backgrounder" (Hoch, Kerr

& Griffith 2001, Nitu 2009). SaaS began to flourish in 2005-2006, because the

2 http://www.netsuite.com/portal/home.shtml; Accessed July, 2014

Chapter 2: Literature Review Haitham Yaish

19

internet speed had significantly increased, had become affordable, and the tenants

had started to be more comfortable to establish business over the internet (Wang

et al. 2008).

2.1.2 SAAS MODEL

The SaaS business model differs in many aspects from the ASP model, though it is

often mistaken to be the same. SaaS model is the successor of the ASP model, and it

is considered as an improvement in ASP model, because the SaaS model overcomes

ASP model issues and limitations (Lopes 2009). SaaS is delivered as web-based

software to allow tenants to subscribe in services offered over the internet. The

concept of SaaS saves software payers much money to acquire the software, and

overcome the desktop software issues such as system compatibilities, installation

difficulties, and manual updating. In fact, this model obviates tenants from buying

and maintaining their ICT (Information and communications technology)

infrastructure of their own. In contrast, they obtain tenant-focused and tenant-driven

service approach offered by a service provider (Bezemer et al. 2010; Hoogvliet 2008).

2.1.3 SAAS CHARACTERISTICS

SaaS has four main characteristics: Multi-tenancy, Shared Services, Built-in

Feedback Mechanism, and Pay-as-you-use only service (Hoogvliet 2008). Multi-

tenancy is an important concept of SaaS that enables different tenants to run same

program version, in the same software environment (Mathew & Spraetz 2009).

Shared Service allows the tenant to link up SaaS program with other services

available online. The Built-in Feedback Mechanism in SaaS program helps tenants to

report problems or difficulties encountered while using the program, and on the other

side helps the vendors to improve their program (Hoogvliet 2008). Pay-as-you-use

characteristic gives the tenant flexibility in changing the usage of software, by

increasing or decreasing the number of users at any time (Ju et al. 2010). In this

Chapter 2: Literature Review Haitham Yaish

20

thesis, the focus will be on two characteristics of SaaS, the Multi-tenancy and the

Shared Service.

2.1.4 SAAS MATURITY MODEL

Multi-tenancy is applied in four software layers: application, middleware, virtual

machine, and operating system (Kwok, Thao & Linh 2008). The application layer has

four levels of the SaaS maturity model. Firstly, Level 1 - Ad Hoc/Custom, in which

each tenant in this level has a separate custom instance of SaaS application that is

hosted on the vendor servers, the source code of this instance can be customized

according to the tenants’ needs. Secondly, Level 2 – Configurable, in which the

vendor hosts separate instances for each tenant, each of these instances is using the

same source of the code. However, each instance can be configured differently to

meet the tenants’ needs. Thirdly, Level 3 – Configurable and Multi-Tenant-Efficient,

which allows the vendor to run a single instance application that supports multiple

tenants, this application can be configured differently by each single tenant, and each

configuration belongs to the tenant who configured it. Finally, Level 4 – Scalable

Configurable, and Multi-Tenant-Efficient, which is similar to Level 3, but the only

difference in this level, is that the vendor hosts multiple tenants with a high level of

scalability (Chong & Carraro 2006; Chong 2006; Hudli et al. 2009; Kwok, Thao &

Linh 2008; Shao 2011).

Chapter 2: Literature Review Haitham Yaish

21

Figure 2-1: SaaS Maturity Levels (Shao 2011)

2.2 MULTI-TENANCY

Multi-tenancy is the fundamental design approach for SaaS service providers that

improves and facilitates the manageability of SaaS applications (Jansen, Houben &

Brinkkemper 2010), and allows each tenant who is using SaaS application to feel as if

he is the only tenant using this application, where in fact, many tenants using it

(Bezemer et al. 2010). It is an important characteristic of SaaS application that is used

by multiple tenants at the same time on a single instance of software code (Menken &

Blokdijk 2009; Lopes 2009; Shao 2011). Moreover, it can be applied in four software

Chapter 2: Literature Review Haitham Yaish

22

layers, including application, middleware, virtual machine, and operating system

(Kwok, Thao & Linh 2008).

2.2.1 MULTI-TENANT ARCHITECTURE

Shao (2011) states that SaaS tenants usually share the same software and in some

cases the same database. Accordingly, once multi-tenant vendors need to increase

multi-tenant architecture they should look after the Quality of Service (QoS) for each

tenant and ensure that he is not affected from the rest of the tenants. Shao’s study

describes multi-tenant architecture in four aspects including Resource isolation,

Configuration, Security, and Scalability. The resource isolation aspect is significant

for multi-tenant application, because tenants share the same infrastructure and

software code. The configuration aspect ensures that multi-tenant application is a

highly configurable application. The security aspect is considered as a significant

issue because of sharing software code and data between tenants. In terms of the

scalability aspect, as discussed in the SaaS maturity model in the previous section, in

order to make Level 1 and Level 2 scalable levels, a significant software design and

implementation need to be done. However, this is not the case for Level 3, since it

allows all SaaS tenants to use the same single instance.

2.2.2 MULTI-TENANT CONFIGURATION

In multi-tenant applications, the configuration capability allows SaaS vendors to

run a single instance application that supports multiple tenants with configurable

metadata, which provides a means of configuration for multi-tenant applications that

satisfy the tenants' business needs, and resolves the problem of different requirements

for several tenants who may use a particular business domain application. This

maturity level requires a multi-tenant aware design with a single code base and

metadata service, which allows to share resources across multiple tenants, and to

configure how multi-tenant application appears and behaves with the ability of

Chapter 2: Literature Review Haitham Yaish

23

isolating and differentiating data, information, configurations, and settings that belong

to different tenants. A multi-tenant aware application allows each tenant to design

different parts of the application, and automatically adjust and configure its behaviour

during the application’s runtime execution without redeploy the application (Chong

2006). Consequently, configuring multi-tenant aware applications is a tenant self-

service that typically performs while applications are in operation to minimize system

downtime, and allows the tenant to feel as if he is the only one using the application

(Mietzner et al. 2009b). The relational database of multi-tenant applications has

challenges in supporting well manageable database schema and providing

configurable database fields (Foping et al. 2009; Du, Wen & Yang 2010; Kwok, Thao

& Linh 2008; Mietzner et al. 2009a).

This section presents the architecture of multi-tenant applications that support

multiple tenants in one single application, which has configurable metadata that

provides a means of configuration to satisfy the tenants’ business requirements.

2.3 MULTI-TENANT DATABASE

MANAGEMENT
Managing multi-tenant database differs from traditional RDBMS in four aspects:

(1) isolating tenants’ data by ensuring that each tenant can access only his own data,

(2) ensuring that each tenant’s data is secured, (3) building robust multi-tenant

database structure, and (4) optimizing the performance of each tenant database

(Bezemer et al. 2010; Chong, Carraro & Wolter 2006; Lazarov 2007). Multi-tenant

data architecture has two types: shared data and tenant’s isolated data. Integrating

these data together, tenants could have a complete data that they need. The multi-

tenant database has three data isolation approaches. The first approach is called

Separate Database, which is the simplest data isolation approach, which stores each

tenant data in a separate database. Figure 2-2 shows the first approach. The second

approach is called Shared Database - Separate Schema, which hosts all the tenants in

Chapter 2: Literature Review Haitham Yaish

24

the same database instance, but each tenant has his own database schema. Figure 2-3

shows the second approach. The third approach is called Shared Database - Shared

Schema, which allows tenants to store their data in the same database and the same

schema, this means a given table can store different rows for different tenants, and a

tenant ID column differentiates and isolates tenants’ data (Domingo et al. 2010).

Figure 2-4 shows the third approach.

Figure 2-2: Separate Database Approach (Chong, Carraro & Wolter 2006)

Figure 2-3: Shared Database - Separate Schema Approach (Chong, Carraro & Wolter 2006)

Chapter 2: Literature Review Haitham Yaish

25

Figure 2-4: Shared Database - Shared Schema Approach (Chong, Carraro & Wolter 2006)

The multi-tenant shared data architecture needs large development efforts, time,

and money. In contrast, the development of the isolated data architecture requires less

effort, time, and money compared with the shared data architecture. Nevertheless, the

ongoing maintenance and operational cost for the shared data architecture is less than

the isolated data architecture. The decision on which data architecture implementation

should be chosen depends on, firstly, the number of tenants who are going to use the

data storage and, secondly, on the efficiency and the cost considerations of SaaS

implementation (Chong, Carraro & Wolter 2006).

Overall, it is a significant challenge to maintain a traditional software application,

change its requirements, and then deploy its new changes to the production server. In

accordance with the extra complexity that involved in the architecture of the multi-

tenant software, the maintenance process of such software will be more complex than

the maintenance process of the traditional software. Unless, the multi-tenant

application is highly configurable and can be managed and maintain during the

application’s runtime execution (Bezemer & Zaidman 2010). Such capability cannot

be achieved unless the database of multi-tenant application is highly configurable

database. The multi-tenant database schema that this thesis proposes is based on the

Shared Database - Shared Schema approach.

Chapter 2: Literature Review Haitham Yaish

26

2.4 MULTI-TENANT DATABASE SCHEMA

DESIGNS
A number of multi-tenant database schema designs and techniques have studied

and implemented to overcome multi-tenant database challenges. This section presents

seven multi-tenant database schema techniques, including Private Tables, Extension

Tables, Universal Table, Pivot Tables, Chunk Table, Chunk Folding, and XML Table

(Aulbach et al. 2008; Aulbach et al.2009; Du, Wen & Yang 2010; Foping et al. 2009;

Heng et al. 2012; Liao et al.2012). All of these seven multi-tenant database schema

techniques are based on traditional RDBMS (Domingo et al. 2010; Martinez 2012).

2.4.1 PRIVATE TABLES

The Private Tables technique allows each tenant to have his own private tables,

which can be extended and changed (Aulbach et al. 2008; Aulbach et al. 2009). The

query of this technique can be transformed from one tenant to another by renaming

tables, and metadata without using extra columns like ‘tenant_id’ to distinguish and

isolate the tenants’ data. In contrast, many tables are required to satisfy each tenant

needs. Therefore, this technique can be used if there are fewer tenants using it, to

produce sufficient database load and good performance (Aulbach et al. 2009).

2.4.2 EXTENSION TABLES

The Extension Tables are separated tables joined with the base tables by adding

tenants’ columns to construct logical source tables (Aulbach et al. 2008; Aulbach et

al. 2009). This technique brought from the Decomposed Storage Model that splitting

up n-columns table into n 2-column tables joined using surrogate values (Aulbach et

al. 2008). It is used by multiple tenants, who can use the base tables, as well as the

extension tables (Foping et al. 2009). Furthermore, it is considered better than the

Private Tables that stated before. Nevertheless, in this design, the number of tables is

Chapter 2: Literature Review Haitham Yaish

27

increased by increasing the number of tenants, and the variety of their different

business requirements (Aulbach et al. 2008).

2.4.3 UNIVERSAL TABLE

The Universal Table is a table that contains additional columns of the base

application schema columns, which enable tenants to store their required columns. It

is structured with two main columns 'tenant_id' and 'table_id', and other generic data

columns, which have a flexible VARCHAR data type in which different data types

with different data values can be stored in these columns (Aulbach et al. 2008; Liao et

al. 2012). It is a flexible technique that enables tenants to extend their tables in

different ways according to their business needs. However, the rows of the universal

table can be too wide with an overhead in the number of NULL values, which the

database has to handle (Aulbach et al. 2008).

2.4.4 PIVOT TABLES

In the Pivot Tables technique, the application maps the schema into generic

structure in the database, in which each column of each row in a logical source table

is given its own row in the Pivot Table. The rows in the Pivot Table comprise of four

columns, including tenant, table, column, and row that specifies which row in the

logical source table they represent. As well as a single data type column that stores

the values of the logical source table rows according to their data types in the

designated pivot Table (Aulbach et al. 2008; Foping et al. 2009). For example, the

Pivot Tables can have two pivot tables, the first table 'pivot_int' to store INTEGER

values, and the second table 'pivot_str' to store STRING values. The performance

benefits are achieved using this technique by avoiding NULL values and by

selectively reading from smaller numbers of columns. In comparison with Pivot

Tables (vertical tables) and horizontal tables, the first one performs better when it

Chapter 2: Literature Review Haitham Yaish

28

allows columns selectively read in columns to improve the performance (Aulbach et

al. 2008).

2.4.5 CHUNK TABLE

The Chunk Table is another generic structure technique that is similar to Pivot

Table. Except, it has a set of data columns with a mixture of data types that replacing

the column ‘col’ in the Pivot Table with ‘chunk’ column in the Chunk Table

(Aulbach et al. 2008). This technique partitions the logical source table into groups of

columns. Each group assigned to a chunk ID and mapped into an appropriate Chunk

Table. This technique has four advantages over Pivot Table, including (1) Reducing

metadata storage ratio, (2) reducing the overhead of reconstructing the logical source

tables, (3) reducing the number of columns, and (4) providing indexes. This technique

is flexible, but it adds complexity to the database queries (Aulbach et al. 2008).

2.4.6 CHUNK FOLDING

The Chunk Folding is a schema mapping technique that partition logical source

tables into chunks vertically (Aulbach et al. 2008; Foping et al. 2009). These chunks

are folded in different physical tables and joined together, where a chunk of columns

is partitioned into a group of columns and each group has a chunk id (Foping et al.

2009). Aulbach et al. (2008) perform experiments to measure the efficiency of Chunk

Table and Chunk Folding techniques, and they found that Chunk Folding technique

outperform the Chunk Table technique. In addition, they state that the performance of

this technique is enhanced by mapping the most used tenants’ columns of the logical

schema into conventional tables, and the remaining columns in the Chunk Tables are

not used by the majority of tenants. However, the main limitation and weakness of the

Chunk Folding technique is that the common schema that is used by multiple tenants

must be known in advance, which is not a practical solution for multi-tenant

databases. This issue also exists in Extension Tables, Pivot Tables, and Chunk Table.

Chapter 2: Literature Review Haitham Yaish

29

2.4.7 XML TABLE

The XML Table database extension technique is a combination of relational

database systems and Extensible Markup Language (XML) (Aulbach et al. 2009; Du,

Wen & Yang 2010; Foping et al. 2009). The extension of XML can be provided as

native XML data type, or storing the XML document in the database as a Character

Large Object (CLOB) or Binary Large Object (BLOB) (Aulbach et al. 2009). XML

data type facilitating the creation of database tables, columns, views, variables and

parameters, and isolating the application from the relational data model (Du, Wen &

Yang 2010). This technique satisfies tenants’ needs because their data can be handled

without changing original database relational schema, and XML data type can be

supported by several relational database products (Du, Wen & Yang 2010; Foping et

al. 2009). In contrast, this technique reduces the data access performance using XML

files (Aulbach et al. 2009), and Heng et al. (2012) state that this technique has the

highest response time, in other words, it was the slowest technique in comparison

with Private Tables, Universal Tables, Pivot Tables, Chunk Table and Chunk Folding

techniques.

Although Heng et al. (2012) use the Elastic Extension Tables (EET) name of the

multi-tenant database schema that proposed in (Yaish, Goyal & Feuerlicht 2011), and

call the storage model of Salesforce by this name, which is incorrect. However, this

paper (Heng et al. 2012) conducted a number of significant experiments to evaluate

retrieving data from five different multi-tenant schemas used in multi-tenant SasS

applications, including Private Tables, Universal Tables, Pivot Tables, Chunk Table,

Chunk Folding, and XML Table. The results of these experiments show that

retrieving data from Universal Table is faster than the other schemas except the

Private Tables schema. Aulbach et al. (2009) conducted experiments between Private

Tables schema and the Universal Table (Spare Columns) schema. The results of these

experiments show that the Universal Table schema has the same performance or even

better than the Private Tables schema when retrieving or inserting data, except when

Chapter 2: Literature Review Haitham Yaish

30

inserting a large number of data, the Universal Table schema is slower than the

Private Tables schema. Such experimental results lead to the fact that the

performance of retrieving data from Universal Table schema is considered the

optimal performance out of the five multi-tenant schemas, because as mentioned

before the Private Tables schema is only suitable for a small number of tenants, but

not for a large number. Overall, the experimental results make the Universal Table

schema the optimal schema to use for a multi-tenant database when it is compared to

Pivot Tables, Chunk Table, Chunk Folding, and XML Table. Nevertheless, as

mentioned before the Universal Table can be too large in a way that introducing

overhead with the number of NULL values, which the database has to handle.

Ultimately, this suggests that the current available multi-tenant database schemas still

have remaining challenges, and the optimal multi-tenant schema does not exist yet.

Chapter 4 presents an example that shows and clarifies how the data is populated in

the seven multi-tenant database schema designs that discussed in this section.

2.5 MULTI-TENANT DATABASE QUERY

OPTIMIZER
Monitoring the performance of executing queries in RDBMS by database

administrators is costly and difficult. Therefore, the Query Optimizer module

emerged to improve manual tuning of queries to automatic query optimization (Raza

et al. 2012). The Query optimizer is a query processing technique that uses statistical

properties to select an efficient execution query plan (Farahani, Sharifnejad & Sharifi

2006). There are a large number of related works, which have done on the query

optimizer for single-tenant database, however, such query optimizers are suitable for

single-tenant applications but not for multi-tenant applications. This section discusses

a number of related works that show how single tenant database query optimizers

work for Oracle, SQL Server, and PostgreSQL. In addition, it discusses how

Salesforce the pioneer of SaaS, optimizes its multi-tenant database.

Chapter 2: Literature Review Haitham Yaish

31

2.5.1 ORACLE QUERY OPTIMIZER

Oracle Query Optimizer’s major three components are Query Transformer,

Estimator, and Plan Generator. The Query Transformer Component consists of three

techniques including View Merging, Sub Query Unnesting, and Materialized Views.

Any of these techniques can be used by Query Transformer or a combination of them.

The Estimator component estimates the cost of the query by using statistics that are

created through dynamic sampling. The Plan Generator component generates the

best plan with the lowest cost of query execution (Raza et al. 2010). Figure 2-5 shows

the architecture of the Oracle query optimizer.

Figure 2-5: The architecture of Oracle query optimizer (Raza et al. 2010)

Chapter 2: Literature Review Haitham Yaish

32

2.5.2 SQL SERVER QUERY OPTIMIZER

The query optimizer of SQL Server has six steps. First, query analysis, in which

the search arguments and join clauses get identified. Second, index selection, in

which it assesses the search arguments and joins selectivity, and comparing each

index cost. Third, performing join selection, in which a different join processing

strategies are considered. So far, in these three steps, statistics are loaded and query is

simplified. Fourth, performing the optimizer in two phases: carrying out transaction

processing and generating plans. Fifth, evaluating the generated plans, and then the

Estimator will select the best query execution plan. Finally, the last step the optimizer

will execute the selected plan (Raza et al. 2010). Figure 2-6 shows the architecture of

SQL Server query optimizer.

Figure 2-6: The architecture of SQL Server query optimizer (Raza et al. 2010)

Chapter 2: Literature Review Haitham Yaish

33

2.5.3 POSTGRESQL QUERY OPTIMIZER

PostgreSQL Query Optimizer’s components are Query Preprocessor, Sub-query

Planner, Grouping Planner, Access Path Collector, Catalog, and Join Planner. The

Query Preprocessor component rewrites the query to optimize the identified

opportunities that produced from the analysed statistics. The Sub-query Planner

component optimizes each sub-query that cannot be merged into the top-level query.

The Grouping Planner component identifies a query ordering and grouping and

isolates its columns. The Access Path Collector component iterates tables that starting

from the FROM clause, and estimates the costs of accessing table’s statistics by using

table scans, index scans, or seeks. It looks up the statistics of the table as well as

indexes from the Catalog schema and then estimates the costs of accessing them.

Moreover, it attempts to eliminate the complexity of next components by avoiding

inefficient access paths. The Join Planner component identifies the join methods and

joins orders (Dash et al. 2010). Figure 2-7 shows the architecture of the PostgreSQL

query optimizer.

Figure 2-7: The architecture of PostgreSQL Query Optimizer (Dash et al. 2010)

Chapter 2: Literature Review Haitham Yaish

34

2.5.4 SALESFORCE QUERY OPTIMIZER

Weissman & Bobrowski (2009) state that modern databases query optimizers like

the ones described earlier designed for single-tenant applications. However, these

query optimizers are not suitable for the multi-tenant environment. The Salesforce

Query optimizer considers accessing data partitions that contain tenants’ data rather

than an entire table or index, accessing statistics of tenants, and group and user-level

for each virtual multi-tenant object. This query optimizer considers the user who is

executing a given application function by using related tenant-specific metadata with

system pivot tables to build and execute optimized database queries. Moreover,

Salesforce uses other types of statistics to help with any particular queries as custom

indexes to show the total number of not null and unique values in the corresponding

field, and histograms for pick list fields, which show the cardinality of each list value.

However, when statistics is not helpful to generate optimal query a FallbackIndex

pivot table efficiently used to find the requested results as a secondary search

mechanism, instead of returning a disappointing error message.

This section listed different single-tenant database query optimizers that are

suitable for a single-tenant database schema, but not for multi-tenant database

schema. They are presented in this section as background examples of RDBMSs’

query optimizers. Moreover, this section discussed how Salesforce optimizes its

multi-tenant database that based on a multi-tenant database schema that consists of a

set of metadata, universal data table, and pivot tables. Salesforce proposed a multi-

tenant optimization method that based on their multi-tenant data storage. While this

thesis proposes a multi-tenant optimization method that is based on EET multi-tenant

database schema that is also proposed in this thesis.

Chapter 2: Literature Review Haitham Yaish

35

2.6 MULTI-TENANT DATABASE ACCESS

CONTROL
Access control is a security topic which was started back in the 1960s (Ren et al.

2012), since then various access control models have proposed such as Discretionary

Access Control (DAC), Mandatory Access Control (MAC), and Role Based Access

Control (RBAC) (Du, Wen & Yang 2010; Lang et al. 2009). David Ferraiolo and

Richard Kuhn are the first who proposed the RBAC model in 1992, which introduces

the role as a new concept to associate users to one or more roles that are associated

with one or more permissions (Ferraiolo & Kuhn 1992; Du, Wen & Yang 2010). The

growth of multi-tenant Cloud Computing services draws attention to security

challenges that emerged due to the cloud vendor’s resource sharing (Takabi, Joshi &

Ahn 2010). It is unlikely that the cloud users would risk their data and their

computing applications over the cloud in favour of reducing the Total Cost of

Ownership (TCO), or using a flexible cloud service, unless the cloud service

providers provide reliable and secure services. Outsourcing data to the cloud is one of

the critical security challenges because this data is accessed among a large number of

users from different organisations (Brian et al. 2012; Ren et al. 2012). As stated in

section 2.3 multi-tenant database has three data isolation approaches, and this thesis

focuses on the Shared Database - Shared Schema approach. This multi-tenant data

isolation approach has challenges in supporting a secure database schema (Bezemer

et al. 2010; Foping et al. 2009; Kwok, Thao & Linh 2008). These challenges include

(1) isolating tenants data by ensuring that each tenant can access only his own data;

(2) ensuring that the tenants’ data is robust and secure; (3) optimizing database

performance; (4) fulfilling different tenants’ security business requirements by using

a tenant-aware data management based on Shared Database - Shared Schema

approach (Bezemer et al. 2010; Brian et al. 2012; Lazarov 2007; Schiller et al.

2011). In this section, three multi-tenant access control models are presented,

including Siebel Systems, IBM DB2, and Salesforce.

Chapter 2: Literature Review Haitham Yaish

36

2.6.1 SIEBEL SYSTEMS ACCESS CONTROL

Brodersen et al. (2004) state that the present single-organisation access control

model is not suitable for multi-tenant database. Accordingly, it has proposed a multi-

tenant role based access control method, which allows to have a plurality of tenants,

where each tenant is the owner of a separate virtual database. This method supports

an access control subsystem for multiple users who are seeking a data access, where

each of the users has at least one organizational access attribute, and the data are

stored in the underlying database. The database is divided into files; the files are

divided into records within the file, and the individual records are divided into fields.

This method is based on partitioning the individual database files in the database,

which are based upon an attribute of ownership and/or a granted access control.

2.6.2 IBM DB2, ACCESS CONTROL

Arnold et al (2012) state that IBM DB2 has provided several approaches of data

access in the database management systems level, including views, label-based access

(LBAC), and row and column access control (RCAC). The views approach adds more

management overhead because this approach uses views instead of tables. The LBAC

approach creates labels on tables and columns, and these labels are granted to users or

groups. IBM introduced in DB2 V10 the RCAC approach, which represents a second

layer of security that works with the current table security model. This approach

permits groups and users to access particular rows in a table and specifies the data

accessed from some or all the table’s columns. Furthermore, some of the column's

data are masked with nulls, a user defined mask, or a column mask that restricts a

user from accessing data within a column.

2.6.3 SALESFORCE ACCESS CONTROL

Salesforce has designed and developed a storage model to manage its virtual

database structure by using a set of metadata, universal data table, and pivot tables

Chapter 2: Literature Review Haitham Yaish

37

that are converted to objects, objects’ fields and relationships, and other object

definition characteristics that are tracked by Universal Data Dictionary (UDD)

(Weissman & Bobrowski 2009). Salesforce is using an access control method

wherein each tenant may have one or more users. Each user or group of users can

have different types of access grants, which permit them to access different rows,

including (1) the user rows, (2) rows for users below the user in a role hierarchy, (3)

rows that are shared by a group that the user belongs to, and (4) rows that are

manually shared by another user or group of users (Salesforce 2013; Weissman et al.

2012).

This section discussed different multi-tenant role based access control methods,

and different approaches to access data from table columns and rows. However, these

access control methods and approaches designed for multi-tenant database design

other than EET multi-tenant database schema. Therefore, this thesis introduces an

access control method that is suitable for the EET multi-tenant database schema.

2.7 BIG DATA
Big data is a popular term used to describe the growth, availability, and data

collected from different digital information sources (Dobosz 2013; Kim, Trimi &

Chung 2014). The tendency to Big Data increases and the amount of computational

resources that required for storing and processing this data grows rapidly. Big Data is

characterized on four dimensions of data growth known as the 4Vs: Volume,

Velocity, Variety, and Veracity. Volume implies the size of the data in terabytes,

petabytes, or even more. Velocity implies the speed of storing, retrieving, and

processing data. Variety implies storing, retrieving, and processing different types of

data, such as structured data (e.g. Data stored in a RDBMS), unstructured data (e.g.

Audio, video, images, and large text), and semi-structured data (e.g. XML) (Kim,

Trimi & Chung 2014). Veracity implies two aspects including consistency of the data,

and trustworthiness of accessing and storing the data (Demchenko et al. 2013). An

important challenge in the design of multi-tenant databases that support Big Data

Chapter 2: Literature Review Haitham Yaish

38

application is to provide data storage that manages large volumes of data. Such a

challenge is derived from the fact that traditional RDBMSs do not have the data

management capabilities that suit the requirements of the contemporary multi-tenant

cloud applications (Agrawal, Das & Abbadi 2010). Due to this fact, NoSQL data

management systems started to flourish and become the data storage method for such

applications, because it offers high scalability, elasticity, and availability (Agrawal,

Das & Abbadi 2010). Nevertheless, there is a school of thought says that the

RDBMSs have been leading IT (Information Technology) industry for decades and it

is reliable and robust database management systems. Consequently, if RDBMSs can

support the capabilities that fulfil the requirements of multi-tenant cloud applications,

which the NoSQL support, then why would organisations choose NoSQL rather than

RDBMS to store their Big Data? (Cattell 2011).

2.7.1 RDBMS AND SQL

In 1970, the IBM employee Edgar Codd was the first who presented the idea of the

relational database model, which was designed to resolve the data storage redundancy

and inconsistency (Codd 1970). In 1985, he identified twelve rules along with the

fundamental rule that called Rule Zero. These rules defined how the design of the

relational database model should look like. These rules published in (Codd 1985a,

Codd 1985b) and listed below:

 Rule 0 – The Information Rule: A relational database management system

must manage its stored data using only its relational capabilities. The

remaining 12 rules are based on this fundamental rule.

 Rule 1 - Information Representation: The table format is the standard

method of storing and presenting the relational data.

 Rule 2 - The Guaranteed Access Rule: Table name, column name, and the

table primary key of a table row must address the values that are stored in the

database.

Chapter 2: Literature Review Haitham Yaish

39

 Rule 3 - Systematic Treatment of Null Values: Null values represent the

missing information of a table column.

 Rule 4 - Dynamic Online Catalog Based on the Relational Model: The

relational database should allow to access the database metadata (Data

Catalog) using the same query language of the traditional database’s data.

 Rule 5 - The Comprehensive Data Sublanguage Rule: A unified relational

language should support the tasks in RDBMS.

 Rule 6 - The View Updating Rule: The database management system must be

able to update the database views that are virtual tables based on the results of

database queries.

 Rule 7- High-level insert, update, and delete: The insert, update, and delete

operations should support dealing with a set of data rather than just a single

row in a single table.

 Rule 8 - Physical Data Independence: Storing and retrieving operations

should be independent from the underlying physical data storage of the

database management system.

 Rule 9 - Logical Data Independence: The data structure of the database

tables is independent from the application level and its user interfaces.

 Rule 10 - Integrity Independence: The database entity constraints such as

entity integrity and relational integrity have to be specified in the database

level instead of the application level.

 Rule 11 - Distribution Independence: The RDBMS must enable an

application to work whenever the data is physically centralized or distributed.

 Rule 12 – Nonsubversion: If the RDBMS provides a low-level (record-at-a-

time) interface, then that interface should not be used to challenge the system,

by sacrificing the relational security or integrity constraint.

Since 1970s, the RDBMS has been the leading database management system in the

IT industry (Cattell 2011), that is because the RDBMS can ensure the reliability and

integrity of its data by sustaining its four data transaction properties, including

Chapter 2: Literature Review Haitham Yaish

40

atomicity, consistency, isolation, and durability. The acronym ACID refers to these

four properties, and they are defined as follows (Date 1990): Atomicity means either

all the database transaction operations are executed successfully or none of them is

executed. Consistency means that all the database transaction operations should be

fully executed and transformed from one state to another, and during this process the

new state should not be visible to the users or any other running transactional

operations until the process is completed. Isolation means that different database

transactions should work independently and without any interference from other

concurrent running transactions. Durability means that a database transaction, which

is completed successfully, should remain stored safely even if the database crashes or

any other error occurred.

After introducing the relational database model in 1970 by Edgar Codd, in 1974,

Chamberlin and Boyce from IBM introduced the Structured Query Language (SQL)

(Chamberlin & Boyce 1974). IBM implemented SQL for the first time in System R,

which is IBM's RDBMS. Since then, SQL has become the standard query language

for RDBMS (Wikipedia)3 SQL is used as a database query language for database

systems such as Oracle, Sybase, DB2, SQL Server, Access, PostgreSQL, MySQL and

others.

2.7.2 NOSQL

NoSQL is a non-relational databases that quickly gaining popularity (Leavitt

2010), due to its high scalability, elasticity, and availability (Agrawal, Das & Abbadi

2010). It offers APIs to manage and access the data, instead of using SQL. Moreover,

its performance outperforms traditional RDBMS (Stonebraker 2010). In 1998, Carl

Strozzi was the first one who used the term NoSQL, when he proposed his non-

relational open source database that do not use SQL interface (Lith & Mattsson

2010). In 2007, Amazon published a paper describing their internal storage system

that called Dynamo, which is a NoSQL storage system that is used for Amazon’s

internal systems (DeCandia et al. 2007; Leavitt 2010). The NoSQL data management

3 http://en.wikipedia.org/wiki/IBM_System_R; Accessed July, 2014

Chapter 2: Literature Review Haitham Yaish

41

system is categorized into four types: (1) key-value stores (e.g. Redis, Memcached),

(2) column-family stores (e.g. BigTable, Cassandra), (3) document stores (e.g.

MongoDB, CouchDB, Riak), and (4) graph stores (e.g. Neo4j, DEX) (Sakr et al.

2011; Tweed & James 2010). As mentioned earlier RDBMSs sustain ACID

properties, in contrast NoSQL does not. The unstructured approach of NoSQL data

requires an alternative to the ACID model, this model known as BASE that is stands

for Basically Available, Soft state, and Eventually Consistent (Cattell 2011). NoSQL

focuses on achieving BASE through supporting partial failures instead of total system

failures. In other words, this means that the BASE model focuses on perceiving

higher availability of the system by having a high level of scalability that cannot be

obtained by ACID. However, such a high level of scalability in the BASE model,

sacrificing the data accuracy of a small percentage number of users who are using one

particular host server from a large number of servers that are used for one software

application (Pritchett 2008).

2.7.3 ISSUES IN RDBMS AND NOSQL

There are two possible reasons why it is being argued that RDBMSs are not

suitable to store and manage Big Data: (1) RDBMSs are limited in offering good

performance and scalability properties; and (2) it is uncommon to extend relational

database schemas by adding, modifying, and deleting tables and tables’ columns

during the application’s runtime execution (Leavitt 2010; Cattell 2011). Although,

NoSQL has significantly emerged and used for Big Data applications (Agrawal, Das

& Abbadi 2010), however, it has a number of issues and concerns that RDBMS does

not have such as (1) it does not support ACID transactional properties; (2) most of the

organisations are unfamiliar with this technology, which leads to adding difficulties to

them in evaluating the feasibility of applying it or using it; (3) it requires manual

query programming tasks that add extra overhead and complexity in software

development lifecycle; (Leavitt 2010; Cattell 2011); (4) it is uncommon to have

separation in the roles (e.g. System administrator, database administrator, and

Chapter 2: Literature Review Haitham Yaish

42

developer) of the personnel who work on NoSQL data management systems, in

contrast, such personnel should have a variety of skills and knowledge, including

distributed database systems, special programming languages, and special analytical

algorithms (Simmonds 2013); (5) the majority of NoSQL data management systems

do not support joining operations, filtering on multiple properties, and filtering of data

based on subqueries results (Dimovski 2013; Sakr et al. 2011); and (6) unless

configuring NoSQL consistency models in protective modes of operation, NoSQL

will not assure the data consistency and it might sacrifice query performance and

scalability (Bobrowski 2011).

To sum up, NoSQL databases do not replace RDBMSs, but they are

complimentary solutions to RDBMSs to provide enhanced data management

capabilities (Indrawan-Santiago 2012; Leavitt 2010; Simmonds 2013), which manage

unstructured and semi-structured data, while RDBMSs manage structured data (Kim,

Trimi & Chung 2014; Leavitt 2010). Both RDBMS and NoSQL have a number of

limitations in managing Big Data applications, and the optimal multi-tenant Big Data

storage model does not exist yet. Simmonds (2013) states that there are around 150

implementations of NoSQL data management systems available in the market

including open-source and commercial releases. Nevertheless, each of these data

management systems has different design patterns, query methods, and

implementations that make evaluating, adopting, and implementing these database

management systems is a significant challenge (Simmonds 2013). In contrast,

RDBMSs have a unified approach in dealing with the data using common SQL

langue, but with minor differences between different database products (Cattell

2011). This fact attracts the attention to find ways to improve the existing RDBMSs

by overcoming two of their issues. Firstly, the scalability issue, and secondly, the

issue of extending RDBMS during the application’s runtime execution. The first issue

can be resolved by using any of the available distributed software products in the

market that scale and optimize RDBMSs on the cloud, such as MySQL Cluster,

VoltDB, Clustrix, ScaleDB, NuoDB, ScaleBase (Cattell 2011), and others. The

Chapter 2: Literature Review Haitham Yaish

43

second RDBMS issue will be resolved in the rest of the chapters of this thesis, as well

as the issues of NoSQL that listed in this section.

2.8 SUMMARY
This chapter reviewed the research areas that are related to this study. First, it

reviewed SaaS that is an emerging Cloud Computing service and one of the

significant topics in the software industry. Second, it reviewed multi-tenancy, which

is the main characteristic of SaaS that allows SaaS service providers to run a single

instance application, which supports multiple tenants on the same software and

hardware infrastructure. Such an application should be highly configurable to

improve the manageability of SaaS multi-tenant applications. It is widely known that

many efforts are required to develop a highly configurable multi-tenant application.

Third, it reviewed the multi-tenant database management, and from this review, it can

be concluded that it is a common practice in SaaS applications to use the Shared

Database - Shared Schema approach, which means a single database schema is used

to accommodate all the tenants’ data. Fourth, it reviewed seven multi-tenant database

schema designs that were introduced to accommodate multiple tenants’ data using a

RDBMS. From this review, two conclusions can be drawn. (1) The main limitation

and weakness of the seven multi-tenant database schemas except the Private Tables is

that the common schema that is used by multiple tenants must be known in advance.

While the multi-tenant database schema that this thesis proposes, which called EET

offers three database models that overcome this issue; and (2) the Universal Table

multi-tenant schema is considered the optimal schema to be used for multi-tenant

applications. Based on this conclusion, in Chapter 4 of this thesis, the feasibility and

effectiveness of EET were measured by comparing EET with Universal Table

schema, which is commercially used by Salesforce. Fifth, it reviewed different single-

tenant database query optimizers that are suitable for a single-tenant database schema,

but not for multi-tenant database schema, including Oracle, SQL Server, and

PostgreSQL, on the other hand, it reviewed Salesforce multi-tenant query optimizer.

Chapter 2: Literature Review Haitham Yaish

44

Sixth, it reviewed different multi-tenant role based access control methods, including

Siebel Systems, IBM DB2, and Salesforce.

Finally, it reviewed Big Data, its 4Vs characteristics, including Volume, Velocity,

Variety and Veracity, and its three types of data including structured, unstructured,

and semi-structured. It is a significant challenge to develop a multi-tenant Big Data

application that is based on multi-tenant database, which provide a data storage that

manages large volumes of data. There are two types of database management systems

that are used for multi-tenant databases, first RDBMS, and second NoSQL. Both of

these data management systems have clear benefits and limitations. NoSQL is gaining

wide acceptance while relational databases have maintained a concrete place in the

market for decades. NoSQL emerged in the market because the RDBMSs have

limitations (discussed in Section 2.7.3) in meeting the demands of multi-tenant and

Cloud Computing applications. However, by overcoming these limitations, RDBMSs

could be suitable to store multi-tenant data as well as the three different data types of

Big Data including structured, unstructured, and semi-structured. Furthermore, they

could be scaled and performed well for modern online applications, such as SaaS, Big

Data, web, mobile, social media, computational science, and other applications.

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

45

CHAPTER 3

MULTI-TENANT DATABASE

FRAMEWORK ARCHITECTURE

SaaS model exploits economies of scale for SaaS service providers by offering the

same software and hardware infrastructure for multiple tenants. This multi-tenant

service requires a multi-tenant database design that delivers database functionalities

for multiple tenants to create, store, and access their databases over the internet. Due

to multi-tenant database resource sharing in this service, the multi-tenant schema

should be highly secured, optimized, configurable, and extendable during the

application’s runtime execution to fulfil different tenants’ business requirements.

Nevertheless, the capabilities of this contemporary multi-tenant database schema are

not supported by traditional RDBMSs. To overcome this issue, an intermediate

software layer that mediates multi-tenant applications and RDBMS need to be used,

to convert multi-tenant queries into regular database queries, and to execute them in a

RDBMS. Developing such a multi-tenant software layer to manage and access

tenants’ data is a significant problem to solve and has significant complexities that

involve longer development lifecycle. This chapter proposes an architecture design to

build a multi-tenant database framework prototype to implement a novel multi-tenant

database schema called Elastic Extension Tables (EET) in a RDBMS, and develop an

intermediate software layer to be used between software applications and RDBMSs to

store and access multiple tenants’ data from EET multi-tenant database schema. This

database layer integrates multi-tenant relational tables and virtual relational tables and

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

46

makes them operate virtually as a single database schema for each tenant. This multi-

tenant database framework prototype is called EET framework. It is suitable for

multi-tenant database environment that can run any business domain database.

Moreover, this framework can be used as a base to build software applications in

general and SaaS and Big Data applications in particular.

Cost effective scalability is very significant for multi-tenant applications. The

maximum number of tenants that can be supported by a multi-tenant application can

be increased as long as the resources increased while keeping the performance

metrics of each tenant at an acceptable level (Foping et al. 2009; Liu 2010). The same

case can be applied to the multi-tenant database. However, before start thinking to

scale-up or scale-out multi-tenant database to optimize its performance. The multi-

tenant database performance should be optimized in each single server instance by

applying a multi-tenant architecture design, which includes a proper multi-tenant

database schema design, and a proper multi-tenant query optimizer method, then any

of the scale-out or scale-up approaches can be applied afterwards. Accordingly, the

EET framework architecture design is focusing on how to optimize multi-tenant

query performance in a single server instance and scalability will be out of this thesis

scope. Nevertheless, it is one of the future research directions of this study.

The remainder of this chapter is structured as follows. Section 3.1 describes the

EET overview architecture. Section 3.2 describes the EET conceptual architecture

design. Section 3.3 concludes this chapter.

3.1 EET FRAMEWORK OVERVIEW

ARCHITECTURE
This section presents the overview architecture design of EET framework that

guides database vendors on how to design and develop a single database application,

which supports multiple tenants on the same software and hardware infrastructure.

This architecture is based on the EET multi-tenant database schema, and the Shared

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

47

Database - Shared Schema data isolation approach of multi-tenant database and

Level 3 of SaaS Maturity Model that reviewed in Chapter 2. The EET framework can

be used to implement any business domain database such as CRM, HR, Accounting,

or any other business domain. In addition, it can be used to store information that

collected from social media networks, e-mails, blogs, news, online texts and

documents, and other data sources. Moreover, it is exposed to be used by the tenant’s

developers by accessing its APIs to store and retrieve the tenants’ data over the

internet, and build multi-tenant applications without worrying about the infrastructure

database. Accordingly, the architectural design of this framework can be used as

multi-tenant database cloud service to offer database storage for multiple tenants who

can access this service by calling functions from the APIs of the EET framework.

The overview architecture of the EET frame is proposed in Figure 3-1 that shows

the main six layers of EET framework architecture, including the presentation layer,

the API layer, the service layer, the Data Access Object (DAO) layer, the Object

Relational Mapping (ORM) layer, and the domain layer. The presentation layer

represents the applications that can access EET database architecture such as SaaS,

Big Data, mobile, web, and stand-alone software applications. The API layer consists

of two APIs, including the EET Data Management APIs, and the EET Data Retrieval

APIs. The service layer consists of four services, including the EET Access Control

Service (EETACS), the EET Proxy Service (EETPS), the EET Query Optimizer

Service (EETQOS), and EET Schema Handler Service (EETSHS). The DAO layer

consists of two DAOs, including the Common Tenant Tables Data Access Object

(CTTDAO), and the EET Data Access Object (EETDAO). The ORM layer is a

virtual object database that can be used by the DAO layer to access the domain layer.

The architectural design of EET framework is based on a three-tier architecture

design. The presentation layer and the API layer represent the presentation tier. The

service layer represents the application tier. While, the DAO layer, the ORM layer,

and the domain layer represent the data tier.

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

48

ORM

DAO

EETPS

EETQOS
EETSHS

EETACS

Presentation Layer

Service Layer

DAO Layer

ORM Layer

Domain Layer

APIAPI Layer

Figure 3-1: EET overview architecture

3.2 EET FRAMEWORK CONCEPTUAL

ARCHITECTURE DESIGN

The architecture design of EET framework comprises of eight artefacts: EET,

EETPS, EETQOS, EETSHS, EETACS, DAO, ORM, and EET APIs. Figure 3-2

shows the essential elements of the EET conceptual architectural design.

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

49

CTT

EET Proxy
Service

EET Schema
Handler Service

Database

Tenants’ Developers

EET Database
Tables

EET Data Retrieval APIsEET Data Management APIs

EET Access
Control Service

EET Query
Optimizer
Service

ORMDAO

EET Services

ET

Figure 3-2: EET conceptual architecture design

3.2.1 ELASTIC EXTENSION TABLES

This section summarises the EET multi-tenant database schema that is the base of

the EET Framework, and Chapter 4 presents EET in details. The EET consists of

Common Tenant Tables (CTT), Extension Tables (ET), and Virtual Extension Tables

(VET). The data architecture details of the eight ETs of EET are shown in Figure 4-1

of chapter 4 and listed as follows: (1) the ‘db_table’ ET allows tenants to create

virtual tables and give them unique names. (2) The ‘table_column’ ET allows tenants

to create virtual columns for a virtual table stored in the ‘db_table’ ET. (3) The table

row ETs store records of virtual extension columns in three separate tables. These

tables are separated to store small data values in the ‘table_row’ ET such as

NUMBER, DATE-and-TIME, BOOLEAN, VARCHAR and other data types. On the

other hand, the large data values are stored in two other tables. First, the

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

50

‘table_row_blob’ ET, which stores a URI for virtual columns of BLOB data type.

Second, the ‘table_row_clob’ ET, which stores CLOB values for virtual columns with

TEXT data type. These three types of tables are capable to store all the data types of

Big Data, including traditional relational data, texts, audios, images, and videos in

structured, semi-structured, and unstructured format. (4) The ‘table_relationship’ ET

allows tenants to create virtual relationships for their virtual tables with any of CTTs

or VETs. (5) The ‘table_index’ ET is used to add indexes to virtual columns. These

indexes reduce the query execution time when tenants retrieve data from a VET. (6)

The ‘table_primary_key_column’ ET allows tenants to create single or composite

virtual primary key for virtual extension columns that are stored in the ‘table_column’

ET.

3.2.2 EET SCHEMA HANDLER SERVICE

The EET Schema Handler Service (EETSHS) proposes a method to manage

multiple tenants’ data in EET multi-tenant database schema. This service enables

tenants to do the followings: (1) creating the required number of tables and columns;

(2) creating virtual database relationships; (3) assigning suitable data types and

constraints for table columns; (4) managing CTT and VET rows during multi-tenant

application’s runtime execution. This service is exposed to be used by EET Data

Retrieval APIs via EETACS. It consumes the EETACS to grant different types of

access control to the tenants’ users. Moreover, it accesses the DAO layer to create or

delete VETs, and retrieve and/or modify CTTs and VETs data structures and fields’

details. The details of this service are presented in Chapter 5.

3.2.3 EET PROXY SERVICE

The EET Proxy Service (EETPS) integrates, generates, and executes tenants’

queries by using a codebase solution, which converts multi-tenant queries into

traditional database queries. This service has two objectives, firstly, allowing tenants'

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

51

applications to retrieve table rows from CTTs, retrieve integrated table rows from two

or more CTTs and VETs, or retrieve rows from VETs. Secondly, avoiding tenants

from spending money and efforts on writing SQL queries and backend data

management codes by calling functions from this service, which retrieves simple and

complex queries, including join operations, union operations, filtering on multiple

properties, and filtering of data based on subqueries results. Such functions convert

multi-tenant queries into traditional database queries and execute them in a RDBMS.

This service gives tenants the opportunity of satisfying their different business needs

and requirements by choosing from any of the EET database models that are stated in

chapter 4. This service consumes EETACS and EETQOS, and accesses the DAO

layer to retrieve data from CTTs and VETs. In addition, it is exposed to be used by

EETACS, EETQOS, EETSHS, and EET Data Retrieval APIs via EETACS. The

details of this service are presented in Chapter 6.

3.2.4 EET QUERY OPTIMIZER SERVICE

The EET Query Optimizer Service (EETQOS) optimizes the performance, speeds

up query retrievals, and uses the most efficient way to execute a multi-tenant queries

in multi-tenant database, by estimating the cost of different query execution plans to

determine the optimal plan, by using: (1) Virtual primary key indexes; (2) Virtual

foreign key indexes; (3) Custom indexes; (4) A tenant’s user access control methods;

(5) Separating the tenant’s data in three row ETs that store small data values in the

‘table_row’ ET and large data values in two other ETs, including the

‘table_row_blob’ and the ‘table_row_clob’ ETs. Then, this plan executes a tenant’s

query by consuming EETPS that converts multi-tenant queries into traditional

database queries, and then executes them by using a query optimizer of any RDBMS.

This service is exposed to be used by EETPS and consumes the EETPS. The details

of this service are presented in Chapter 7.

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

52

3.2.5 EET ACCESS CONTROL SERVICE

The EET Access Control Service (EETACS) proposes an access control method,

which permits each tenant in a multi-tenant database to have several users with

different types of grants to access the tenant’s data. The concept of retrieving data

from the multi-tenant database is slightly different from the single-tenant database.

The single-tenant database does not differentiate between the data of different tenants.

While, the data of the multi-tenant database is partitioned to differentiate between

data owned by multiple tenants, to access table rows that are granted to a tenants’

users based on a number of groups or roles assigned to them. This service is granting

access to users who are accessing the EET Data Retrieval APIS, to retrieve data from

CTTs and/or VETs by consuming the EETPS. In addition, it is granting access to

users who are accessing the EET Data Management APIs, to manage the data in

CTTs and VETs by consuming EETSHS and EETPS. In addition, this service is

exposed to be used by EETPS and EETSHS. The details of this service are presented

in Chapter 8.

3.2.6 DATA ACCESS OBJECT

The Data Access Object (DAO) (Wikipedia) 4 is a software layer that is used and

included in the EET architecture design, to decouple accessing data from its

underlying RDBMS storage. In the EET architectural design, this software layer is

composed of two DAOs. The first DAO is the CTTDAO, which is the interface that

accesses the CTTs, and the second DAO is the EETDAO, which is the interface that

accesses the EETs, and through accessing EETs, it accesses VETs. This DAO layer

consumes the ORM layer to access through it the EET, and it is exposed to be used by

EETACS, EETPS, and EETSHS. This software layer have included in the.

4 http://en.wikipedia.org/wiki/Data_access_object; Accessed July, 2014

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

53

3.2.7 OBJECT RELATIONAL MAPPING

Object Relational Mapping (ORM) mediates between object oriented architecture

system and relational database environment (Xia, Yu & Tang 2009). It is an

abstraction layer that is used over RDBMS such as PostgreSQL, MySQL, Oracle,

Microsoft SQL Server, and other RDBMS. The benefit of this database layer is the

notion of database portability that allows to migrate the database layer from one

database vendor to another. Hibernate is an ORM library that is used for Java

programming language. It is used in the architectural design of EET framework to

access data from EET, and is exposed to be used by CTTDAO and EETDAO. Such a

software layer has included in the EET architecture design, in order to make the

database layer that is proposed in this chapter a portable layer that can be orchestrated

with any RDBMS.

3.2.8 EET APIS

EET consists of two types of APIs. First, the EET Data Retrieval API that provides

EET database web service interface that retrieves tenants’ data over the internet

integrates them with other applications, and combines them with multiple internet or

cloud services to build mashups applications or services. This APIs consumes the

EETPS via the EETACS, and it is exposed to be used by tenants’ developers. Second,

the EET DATA MANAGEMENT API that provides EET database web service

interface that creates, updates, and deletes the tenants’ VET, and tenants’ data over

the internet. This APIs consumes the EETSHS via EETACS, and it is exposed to be

used by tenants’ developers. Building these APIs is out of this thesis scope. However,

it is one of the future work directions of this study. The APIs artefacts were

introduced in the EET framework architecture to show a complete scenario on how

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

54

EET framework works and how the EET APIs orchestrate with the other artefacts of

the framework.

3.3 SUMMARY
Designing and developing a configurable multi-tenant database that generates and

executes tenants’ queries by using a codebase solution, and converts multi-tenant

queries into regular database queries, then execute them in a RDBMS is hard,

complicated, and requires extra work and time to be achieved. This chapter has

presented a multi-tenant database architecture design of EET framework that based

on the EET multi-tenant database schema, and Shared Database - Shared Schema

data isolation approach of multitenant database and level 3 of SaaS Maturity Model

that reviewed in Chapter 2. This framework simplifies and speeds up the development

of multi-tenant database solutions. It allows database service providers to create a

single database application that supports multiple tenants on the same software and

hardware infrastructure. Moreover, it overcomes multi-tenant database challenges

from technical and business perspectives and reduces the TCO from the tenants’

perspective. That is because, it avoids the tenants from spending money and efforts

on writing SQL queries and backend data management code, by accessing APIs that

manages tenant’s data and retrieving simple and complex queries including join

operations, filtering on multiple properties, and filtering of data based on subqueries

results. Furthermore, it allows tenants to store different data types of Big Data

including structured, semi-structured, and unstructured data, which are collected from

various online sources of information. Whereas, from the database service provider

perspective, it reduces the ongoing operational costs, by providing a database self-

service to configure and manage the tenants’ data by the tenants themselves, rather

than the database service provider. This database solution is suitable to be used by

tenants’ developers, to store and access the tenants’ data from the cloud to build their

applications, or integrate this data with other applications or online data sources

without spending much time and efforts on managing their database. Consequently,

Chapter 3: Multi-tenant Database Framework Architecture Haitham Yaish

55

the database layer that the EET framework provides can be used as a base to build

software applications in general and SaaS and Big Data applications in particular. In

this framework prototype, all the artefacts have implemented except the APIs, which

is not part of the thesis objectives, and it is out of this thesis scope, but it is one of this

study future work directions. Nevertheless, the APIs artefact introduced in the

architecture of the EET framework to show a complete scenario on how EET

framework works.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

56

CHAPTER 4

MULTI-TENANT DATABASE

SCHEMA DESIGN

Nowadays, a large number of companies are offering their web-based business

application by adopting the SaaS model. Multi-tenancy is the primary characteristic

of SaaS, it allows SaaS vendors to run a single instance application which supports

multiple tenants on the same software and hardware infrastructure. This application

should be highly configurable to meet the tenants’ expectations and their business

requirements. Such an application requires a highly elastic and configurable multi-

tenant database that can be used to store different tenants’ data in a single database

schema. This chapter proposes a novel multi-tenant database schema called Elastic

Extension Tables (EET) that consists of Common Tenant Tables (CTT), Extension

Tables (ET), and Virtual Extension Tables (VET). This multi-tenant database schema

gives tenants the opportunity to address their individual business requirements by

choosing from three database models: Multi-tenant Relational Database, Integrated

Multi-tenant Relational Database and Virtual Relational Database, and Virtual

Relational Database. In addition, it allows tenants to store different data types of Big

Data in structured, semi-structured, and unstructured format

The remainder of this chapter is structured as follows. Section 4.1 proposes the

Elastic Extension Tables. Section 4.2 proposes the Elastic Extension Tables database

models. Section 4.3 presents an example to compare multi-tenant database schema

designs with the Elastic Extension Table design. Section 4.4 compares the

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

57

performance of accessing data from EET and Universal Table Schema Mapping

(UTSM) (Liao et al. 2012). Liao et al. (2012) state that the UTSM data architecture is

similar to Salesforce data architecture. In addition, a number of database queries

examples presented in (Liao et al. 2012; Liao et al. 2013) that are used to retrieve data

from this data architecture. Some of these queries are used in the experiments of this

chapter, in addition to other queries that are used to show the difference in accessing

data from EET and UTSM. The UTSM technique had to be chosen to compare it with

EET technique, because as reviewed and concluded in the Literature Review (Chapter

2), the Universal Table that is used in UTSM, is considered as the optimal schema

design for multi-tenant applications. Moreover, it is one of the multi-tenant database

schema techniques implemented commercially by Salesforce that the American

business magazine Forbes 5,6 selected it as the most innovative company in the world

in the year 2011, 2012, and 2013. Section 4.5 concludes this chapter.

4.1 ELASTIC EXTENSION TABLES
The EET multi-tenant database schema proposes a novel way of designing and

creating an elastic database that consists of three table types, the first type is CTT, the

second type is ET, and the third type is VET. Figure 4-1 shows the details of EET

multi-tenant schema. The design of this schema enables tenants to build their own

virtual database schema by creating the required number of tables, columns, rows,

virtual database relationships, and assigning suitable data types and constraints for

table columns during the runtime execution of a multi-tenant application.

4.1.1 COMMON TENANT TABLES

The Common Tenant Tables are the tables that can be shared between tenants who

are using a multi-tenant single database schema. These tables are traditional physical

tables that are based on RDBMS, and are used as a business domain database schema

that is shared between multiple tenants. For example, a multi-tenant application of a

sales business domain may have a database schema with sales tables, such as

5 http://www.forbes.com/innovative-companies/list; Accessed July, 2014
6 http://www.salesforce.com/company/awards/most-innovative-companies-salesforce-no1-forbes.jsp; Accessed July, 2014

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

58

salesperson, customer, product, sales-fact, and any other sales tables. These tables

have columns that are used by most of the tenants, and the column tenant ID is used

to differentiate between the tenants’ rows. For example, the ‘sales_person’ CTT in

Figure 4-11 shows some common columns, such as ‘first_name’, and ‘last_name’,

while the ‘tenant_id’ column is used to differentiate between the tenants’ rows.

4.1.2 EXTENSION TABLES

The Extension Tables are metadata tables that are used to create virtual tables for

multiple tenants who are using a single multi-tenant database schema during the

application’s runtime execution. The ET consists of the following eight physical

tables:

 Db_table Extension Table: The ‘db_table’ ET allows tenants to create virtual

(logical) tables and give them unique names. The structure of this table has a

composite primary key that consists of ‘db_table_id’ and ‘tenant_id’ columns.

The ‘db_table_id’ column is a unique primary key of the table, while the

‘tenant_id’ column is a foreign key refers to the ‘tenant’ CTT and at the same

time is a combined primary key with ‘db_table_id’ for this table. In addition, this

table has the ‘db_table_name’ column that stores the virtual tables’ names. In

using this table, each tenant can have unique table names. For example, tenant-A

can create a VET name ‘sales_person’, but cannot create the same VET name

again for his VETs. However, tenant-B can create the ‘sales_person’ name even if

tenant-A already created this VET’s name.

 Table_column Extension Table: The ‘table_column’ ET allows tenants to

create virtual columns for a VET that created in the ‘db_table’ ET. The structure

of this table has a composite primary key consists of ‘table_column_id’,

‘tenant_id’, and ‘db_table_id’. The ‘table_column_id’ is a unique primary key for

this ET, while the other two columns ‘tenant_id’ and ‘db_table_id’ are primary

keys in this table, and foreign keys that refer to primary key columns of the

‘tenant’ CTT, and the ‘db_table’ ET. Moreover, this table has other columns,

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

59

including ‘table_column_name’, ‘default_value’, ‘data_type’, ‘is_indexed’,

‘is_null’, ‘is_relationship’, ‘is_primary_key_column’, and ‘is_unique_column’.

The ‘table_column_name’ column has UNIQUE constraint, and VARCHAR data

type. The ‘default_value’ column stores already defined value to be used once the

database saves a table row, when there is no value specified to be stored in this

column. The ‘data_type’ column specifies the data type of a virtual column that is

stored into any of the three row ETs, which are presented in the following point.

The ‘is_indexed’ column specifies whether a column has an index or not. The

‘is_null’ column specifies whether a column accepts to store NULL values or not,

and if it does not, then this column is considered a mandatory column that must

have a value. The ‘is_relationship’ column specifies whether a column has at least

one relationship with any of the CTTs or the VETs. The

‘is_primary_key_column’ column specifies whether the column is a primary key

or not. The ‘is_unique_column’ column specifies whether a column has a

UNIQUE constraint or not.

 The Row Extension Tables: The row ETs store virtual table rows for virtual

extension columns in three separate ETs. Such ETs are separated in three tables in

order to store small data values in the ‘table_row’ ET, which stores values such as

NUMBER, DATE-and-TIME, BOOLEAN, VARCHAR and other data types.

While large data values are stored in other two ETs, the first ET is the

‘table_row_blob’ that stores BLOB values of virtual columns that stores BLOB

data type (e.g. Images, Audio, Video), and the second ET is the ‘table_row_clob’

that stores CLOB values for virtual columns that store TEXT data type (e.g. E-

mails, web pages). The EET design separates these three ETs to reduce the impact

of BLOB and CLOB values from slowing down virtual schema queries. These

three tables have the same columns, except the table row ID column, which is

called differently in the three tables. In the ‘table_row’ ET called ‘table_row_id’,

in the ‘table_row_blob’ ET called ‘table_row_blob_id’, and in the

‘table_row_clob’ called ‘table_row_clob_id’. A table row ID can be given for

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

60

several columns that map to one row in a VET. Figure 4-14 shows an example of

this mapping. The corresponding columns in these three tables include, first, the

‘serial_id’ column that is a composite primary key in these tables. This column

stores a serial number of a virtual column that maps to a row in the virtual table.

Second, the foreign key columns, including ‘tenant_id’, ‘db_table_id’, and

‘table_column_id’ that at the same time are composite primary keys with the

Table Row ID column and the ‘serial_id’ column. Third, the ‘value’ column that

stores the virtual column values, however, the data types of these columns vary in

each of the three row tables according to the data types that supposed to be stored

in each table. These three row ETs are capable to store all the Big Data types,

including traditional relational data, texts, audios, images, videos, and XML in

structured, unstructured, and semi-structured format. The structured data, such as

traditional relational data can be stored in CTTs and VETs as it is presented in the

EET design in Section 4.3. The unstructured data files such as images, audios,

videos can be stored in EET, by storing the Uniform Resource Identifier (URI) of

a file in the ‘table_row_blob’ ET. Then the actual physical file can be stored in a

folder of a file system, and then this file can be accessed using the URI that stored

in the ‘table_row_blob’ ET and mapped to the physical file that stored in a folder.

While the semi-structured data such as XML files can be used in two ways.

Firstly, using the same way of storing the unstructured data, then accessing the

XML file using the URI that stored in the ‘table_row_blob’ ET and mapped to the

physical XML file that stored in a folder. Secondly, an XML file can be stored as

text in the ‘table_row_clob’ ET as a CLOB file, and then this XML file is

accessed from the ‘table_row_clob’ ET.

 Primary Key Extension Table: The ‘table_primary_key_column’ ET allows

tenants to create virtual primary keys for the virtual extension columns which are

stored in the ‘table_column’ ET. The structure of this table has a composite

primary key consists of ‘table_primary_key_column_id’, ‘tenant_id’,

‘db_table_id’, and ‘table_column_id’. The ‘table_primary_key_column_id’

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

61

column is a unique primary key of the table, while the other three columns

‘tenant_id’, db_table_id’, and ‘table_column_id’ are primary keys and foreign

keys. The ‘is_auto_increment’ column specifies whether a primary key can be

auto-incremented or not. The ‘is_composite_key’ column is used to specify

whether a virtual primary key that is stored in a table is a single primary key or a

composite primary key.

 Relationship Extension Table: The ‘table_relationship’ ET allows tenants to

create virtual relationships between their VETs and CTTs. The table structure has

a composite primary key consists of ‘table_relationship_id’, ‘tenant_id’,

‘db_table_id’, and ‘table_column_id’. The ‘table_relationship_id’ column is a

unique primary key of the table, while the other three columns ‘tenant_id’,

‘db_table_id’, and ‘table_column_id’ are primary keys and foreign keys. The

‘table_type’ column specifies whether the relationship is with a CTT or a VET.

The ‘target_table_id’ column is used to create a master-detail relationship

between two VETs, by storing into it the table ID of the master VET that is stored

in the ‘db_table’ ET, while the ‘targeted_column_id’ column is used to store into

it the primary key ID of the master VET for the same relationship. The

‘shared_table_name’ column is used to create a master-detail relationship between

a CTT and a VET, by storing into it the name of the master CTT while the name

of the ‘shared_column_name’ column is used to store the primary key column

name of the CTT for the same relationship. Furthermore, this ET can create a

master-detail relationship between two VETs, or a CTT and a VET, even if the

master table has composite primary keys. Such a relationship can be achieved by

storing multiple table rows into the ‘table_relationship’ for the relationship that is

between the master table that has a composite primary key, and the details VET.

Each of these table rows denotes one of the primary key columns of the composite

primary key that relates to the master table. The following are the database

relationships that can be created using the ‘table_relationship’ ET between two

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

62

VETs, two CTTs, or one VET and one CTT, including One-to-One, One-to-

Many, Many-to-One, Many-to-Many, and Self-referencing.

Figure 4-1: Elastic Extension Tables

 Index Extension Table: The ‘table_index’ ET is used to add indexes for virtual

columns of a VET to improve and speed up the query execution time when

retrieve data from this VET. The structure of this table has a composite primary

key consists of ‘table_row_id’, ‘serial_id’, ‘tenant_id’, ‘db_table_id’, and

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

63

‘table_column_id’. The column ‘table_row_id’ and ‘serial_id’ are unique primary

keys that are referred to values stored into ‘table_row_id’ and ‘serial_id’ columns

in the ‘table_row’ ET. While the other three columns ‘tenant_id’, ‘db_table_id’

and ‘table_column_id’ are primary keys and foreign keys for this table. The

‘value’ column stores a value that is stored in the ‘table_row’ ET and this value

relates to an indexed virtual column, which is specified as an index in the

‘table_column’ ET by storing the necessary value in the ‘is_indexed’ column.

4.1.3 VIRTUAL EXTENSION TABLES

 The Virtual Extension Tables are the tables that tenants can create during the

application’s runtime execution to extend an existing business domain database

schema, or they can create their own virtual database schema from the scratch to fulfil

their business needs. In Section 4.3, a detailed example is presented to explain how

the tenants can create their VETs. In EET, VETs are created as a metadata into the

eight ETs. In using this approach, the service provider who is offering a business

domain database, can accommodate a huge number of virtual tables by allowing

tenants to populate their data in these eight ETs. Such an approach allows the multi-

tenant database service providers to manage their services in an efficient way and

cost-effective manner, and simultaneously allows each tenant to configure his

database schema and makes him feel as if he is the only tenant using the EET schema.

4.2 ELASTIC EXTENSION TABLES DATABASE

MODELS
The EET multi-tenant database schema allows service providers to offer three

database models, which give tenants the opportunity of satisfying their various

business requirements by choosing from any of these three database models (Figure

4-2):

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

64

 Multi-tenant relational database: This database model allows tenants to use

a ready relational database structure for a particular business domain database

without any need of extending on the existing database structure. This

business domain database, can be shared between multiple tenants and

differentiate between them by using a Tenant ID column in the CTTs

(physical tables). This model can be applied to any business domain database

such as CRM, Accounting, HR, or other business domains.

 Integrated multi-tenant relational database and virtual relational

database: This database model allows tenants to use a ready relational

database structure of a particular business domain with the ability of extending

on this relational database by adding more VETs, and to integrate these tables

with the CTTs (existing database structure) by creating virtual relationships

between them.

 Multi-tenant virtual relational database: This database model allows

tenants to create their virtual database structures from the scratch, by creating

VETs, virtual database relationships between the VETs, and other database

constraints to satisfy the tenants’ special business requirements of the tenants’

business domain applications.

Figure 4-2: The Three EET Database Models

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

65

For example, if a service provider offers a sales database schema to be used by

multiple tenants, and with this database schema the service provider uses the EET,

then this service provider can provide the three database models listed above that

fulfil various tenants' business requirements. This example assumes that the service

provider has three tenants. The first tenant evaluated the sales database, and he found

that this database suits his business requirements. Therefore, this tenant was

interested to use the sales database schema as originally provided by the service

provider as shown in Figure 4-3 (a). The second tenant evaluated the sales database

schema and found that he needs to add extra tables to fulfil his business requirements.

Thus, this tenant created VET 1, VET 2, and VET 3, and then, created virtual

database relationships between these VETs and the already existing physical tables

(CTTs) in the sales database schema. The database model that this tenant used is

shown in Figure 4-3 (b). The third tenant evaluated the same database schema and

found that it did not suit his business requirements. Therefore, he decided to not use

the sales database schema of the service provider, and instead he created virtual

relational tables from scratch and established database relationships between them as

shown in Figure 4-3 (c). This example summarises the three database models of EET

multi-tenant schema. Using these database models, tenants can design their databases

and automatically configure their behaviours during their application’s runtime

execution.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

66

Figure 4-3: The EET Three Database Models Example.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

67

4.3 AN EXAMPLE TO COMPARE MULTI-
TENANT DATABASE SCHEMA DESIGNS

WITH ELASTIC EXTENSION TABLES

This section presents an example that clarifies the seven multi-tenant database

schema designs that presented in the literature review in chapter 2, and clarifies the

differences between these designs and the EET multi-tenant schema design. This

example shows three different tenants, including Tenant-A, Tenant-B, and Tenant-C.

Each of these tenants uses a multi-tenant database, and in this database, they

configure their sales database structure according to their different business needs.

For simplicity, this example illustrates only one sales table that stores a sales person’s

information by using different multi-tenant database schema designs. Moreover, this

example presents how the EET enables tenants to create their own database schema

by extending an existing database schema based on RDBMS, including the required

number of tables and columns, rows, virtual database relationships with any of the

CTTs or VETs, primary keys for the columns, indexes for the columns, and assigning

suitable data types for columns during multi-tenant application run-time execution.

Furthermore, in this example, the data that is stored in the tables are the same across

all the designs, in order to show the difference between their tables’ structures and

how data is populated in these structures.

The Private Tables in Figure 4-4 show three tenants who each of them has a

different sales person table that fulfil their business requirements. Tenant-A has the

‘sales_person_tenant_a’ table, which consists of six columns, including

‘sales_person_id’, ‘first_name’, ‘last_name’, ‘phone’, ‘age’, and ‘gender’. Tenant-B

has the ‘sales_person_tenant_b’ table, which consists of four columns, including

‘sales_person_id’, ‘first_name’, ‘last_name’, and ‘business_id’. Tenant-C has the

‘sales_person_tenant_c’ table; the columns in this table are the same as

‘sales_person_tenant_a’ table. The same data that populated in the private table is

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

68

populated in the rest of the multi-tenant database schema designs and EET schema,

which are presented in the example of this section.

Figure 4-4: Private Tables

The Extension Tables in Figure 4-5 show how the columns of the sales person

tables for the three tenants split-up between the base table ‘sales_person’ and two

extension tables ‘sales_person_tenant_a_&_c’ and ‘sales_person_tenant_b’. All of

these three tables have two fixed common columns, including ‘tenant_id’ and ‘row’.

The ‘tenant_id’ column is used to map data rows in the base table and the extension

tables with the tenant who owns these rows. The ‘row’ column is used to give each

row in the base table a row number and map it with other rows in the extension tables.

The ‘sales_person’ base table has five columns, including ‘tenant_id’, ‘row’,

‘sales_person_id’, ‘first_name’, and ‘last_name’. All the tenants share the last three

columns. The extension table ‘sales_person_tenant_a_&_c’ has five columns,

including ‘tenant_id’, ‘row’, ‘phone’, ‘age’, and ‘gender’. This table is shared by two

tenants Tenant-A and Tenant-C, due to the similarity in the extension columns that

both tenants need. The ‘sales_person_tenant_b’ is used by Tenant-B, which has three

columns ‘tenant_id’, ‘row’, and ‘business_id’.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

69

Figure 4-5: Extension Tables

The Universal Table in Figure 4-6 shows how the tenants’ data are stored in the

universal table. This table has a number of columns, including ‘tenant_id’, ‘table_id’,

and ‘col_1’ until ‘col_n’. The ‘tenant_id’ column is used to map rows with their

tenants. The ‘table_id’ column is used to map rows to a particular table. The columns,

including ‘col_1’ until ‘col_n’ are the universal columns that store any data the

tenants wish to store to fulfil their business requirements.

Figure 4-6: Universal Table

The Pivot Tables in Figure 4-7 show how the tenants’ data with a specific data

type is stored in a specific pivot table. In this example, we have two pivot tables, the

first table is ‘pivot_int’ that stores INTGER data values, and the second table is

‘pivot_str’ that stores STRING data values. Each pivot table has standard columns,

including ‘tenant_id’, ‘table’, ‘col’, and ‘row’. In addition to a column that can vary

in each pivot table according to the data type that is specified for that table. For

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

70

instance, the pivot table that stores STRING values will have a column that stores

STRING values, and the column name could be called ‘str’. The ‘tenant_id’ column

is used to map each row in a pivot table with a tenant. The ‘table’ column is used to

map a data type value to a particular table. The ‘col’ column is used to map a data

type value to a particular column in a particular table. The ‘row’ column is used to

map a data type value to a particular row in a particular table.

Figure 4-7: Pivot Tables

The Chunk Table in Figure 4-8 shows how a set of data columns with a mixture of

data types is structured. The ‘chunk_int_str’ table has six columns, including

‘tenant_id’, ‘table’, ‘chunk’, ‘row’, ‘int1’, and ‘str1’. The ‘tenant_id’ column is used

to map each table row in a chunk table with a tenant. The ‘table’ column is used to

map a table row to a particular table. The ‘chunk’ column is used to compound data

for more than one logical column for a particular table. The ‘row’ column is used to

map a data value to a particular row in a particular table. The ‘int1’ column is used to

store all the INTEGER data values for different columns of different tables. The ‘str1’

column is used to store all the STRING data values for different columns of different

tables.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

71

Figure 4-8: Chunk Table

The Chunk Folding tables in Figure 4-9 show how the most commonly used

tenants’ columns are structured in the ‘account_row’ table, while the remaining

columns are structured into Chunk Folding table called ‘chunk_row’. The remaining

columns that are used by tenants have extra business requirements, which are not

applied in the common columns in the ‘account_row’ table. The ‘tenant_id’ column

in both tables is used to map each table row with a tenant. The ‘row’ column in both

tables is used to map a data value in a particular row of a particular table. The table

‘account_row’ consists of five columns, including ‘tenant_id’, ‘row’,

‘sales_person_id’, ‘first_name’, and ‘last_name’. The last three columns in this table

are the common columns that are shared by the three tenants (Tenant-A, Tenant-B,

and Tenant-C). The ‘chunk_row’ table consists of six columns, including ‘tenant_id’,

‘table’, ‘chunk’, ‘row’, ‘int1’, and ‘str1’. The ‘table’ column is used to map a row to a

particular table. The ‘chunk’ column is used to compound data for more than one

column for a particular table. The ‘int1’ column is used to store all the INTEGER

data values for different columns of different tables. The ‘str1’ column is used to

store all the STRING data values for different columns of different tables.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

72

Figure 4-9: Chunk Folding

The XML Table in Figure 4-10 shows how this technique combines RDBMS and

XML, by having fixed columns shared by all tenants, including ‘tenant_id’,

‘sales_person_id’, ‘first_name’, ‘last_name’. The ‘tenant_id’ column is used to map

each table row in the ‘account_row’ table with a tenant. The rest of the columns are

sales person columns that are shared by all tenants. The fifth column is ‘ext_xml’, this

column is used to store an XML structure includes the rest of the logical columns that

tenants may need to fulfil their extra business needs. For instance, as shown in the

first table row in the ‘account_row’ table, there are three values stored using XML

structure in the ‘ext_xml’ column, including phone, age, and gender.

Figure 4-10: XML Table

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

73

Figure 4-11 is showing an example of the EET, which have three VETs that

created using the ETs. These three VETs are the tenants’ tables that presented in the

Private Tables in Figure 4-4. In this example, the ‘sales_person’ table is a CTT shared

by all the three tenants and has predefined columns that are commonly used by these

tenants. The Tenant-A has a business requirement to have a sales person table that

includes the columns that predefined in the ‘sales_person’ CTT, in addition to three

extra columns, including ‘phone’, ‘age’, and ‘gender’. This business requirement can

be fulfilled by creating the ‘sales_person_tenant_a’ VET, and adding to this table

these extra three columns. In addition to, adding the ‘sales_person_id’ column that is

a virtual foreign key, which builds the virtual relationship between

‘sales_person_tenant_a’ VET and the ‘sales_person’ CTT. The Tenant-B has a

business requirement to have a sales person table that includes the columns that are

predefined in the ‘sales_person’ CTT, in addition to the ‘business_id’ column as an

extra column to the CTT. This business requirement can be fulfilled for this tenant by

creating the ‘sales_person_tenant_b’ VET, in addition, adding the ‘sales_person_id’

column that is a virtual foreign key, which builds the virtual relationship between

‘sales_person_tenant_b’ VET and the ‘sales_person’ CTT. The Tenant-C has a

business requirement the same as the business requirement of Tenant-A. Therefore,

the ‘sales_person_tenant_c’ VET of the Tennant-C has a similar structure and

relationship of the ‘sales_person_tenant_a’ VET. The shared columns of the

‘sales_person’ CTT store the three tenants’ data, while the rest of the tenants’ data is

stored in VETs by using the ETs, including ‘db_table’, ‘table_column’, ‘table_row’,

‘table_relationship’, table_index’, and ‘table_primary_key _column’. The details of

this data are shown in Figure 4-12 – 4-18.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

74

Figure 4-11: Virtual Extension Tables (VET)

Figure 4-12: The data stored in the ‘sales_person’ CTT

Figure 4-13: The data stored in the ‘db_table’ ET

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

75

Figure 4-14: The data stored in the ‘table_column’ ET

Figure 4-15: The data stored in the ‘table_row’ ET

Figure 4-16: The data stored in the ‘table_relationship’ ET

Figure 4-17: The data stored in the ‘table_index’ ET

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

76

Figure 4-18: The data stored in the ‘table_primary_key_column’ ET

4.4 PERFORMANCE EVALUATIONS
Liao et al. (2012) have used in their work the Universal Table Schema Mapping

(UTSM). The design of this schema is similar to the schema Salesforce is using (Liao

et al. 2012), and originated from the Universal Relations (Maier & Ullman 1983). The

data architecture of UTSM is shown in Figure 4-19. The ‘Data’ table is the universal

table that stores all tenants’ data, and it has fixed number of data columns. The

number of columns of this table should be a large number to fit a different number of

columns required by different tenants (e.g. Salesforce uses 500 columns for this

table). These columns store data that maps to objects and fields created in the

‘Objects’ and ‘Fields’ tables. The data type of these columns is VARCHAR, which

allows to store different data types (STRING, NUMBER, DATE, etc.). The ‘Objects’,

‘Fields’, and ‘Relationships’ tables are used to construct virtual tables and their

virtual columns, and build relationships between these virtual tables. Whereas the

‘Index’ and ‘Uniquefields’ tables are used to optimize the query execution time of

retrieving data from the ‘Data’ universal table (Liao et al. 2012; Weissman &

Bobrowski 2009).

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

77

Figure 4-19: Universal Table Schema Mapping (Liao et al. 2012)

In this performance evaluation, the focus is on comparing the performance of

accessing data from EET and UTSM directly from the database level, irrespective of

the software solution which built on top of these two multi-tenant database schemas

for two reasons: (1) The most significant challenge in multi-tenant applications is

designing the multi-tenant database schema that improves multi-tenant query

processing. This schema design influences the software design, which built on top of

it and its performance. (2) Comparing the performance of two multi-tenant software

solutions under the same conditions, and on the same hardware resources is hard to be

achieved, especially when the other software is not available to be installed on the

same application server.

4.4.1 EXPERIMENTAL DATA SET AND SETUP

Typically, multi-tenant databases store massive data volumes across multiple

servers to optimize the performance of data retrieval. However, before considering

scale-up or scale-out of multi-tenant databases to optimize its performance, we

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

78

believe that we should perform a comparison between EET and UTSM using a single

server instance. In order to test the effectiveness of accessing data from these two

multi-tenant database architecture designs without affecting their performance by

using any scalability. In our experiments, we focus on benchmarking the performance

of the main tables of both data architectures where most of the tenants’ data is stored,

and we discard the lookup queries. For example, in EET, we discard the queries

which check whether a virtual column is indexed or not from the ‘table_column’ ET.

On the other hand, we discard the queries which check whether a column is indexed

or not from the ‘fields’ table of UTSM. In this case, our focus in EET is on

‘table_row’, and ‘table_index’ ETs, and in UTSM is on ‘Data’, ‘Index’, and

‘Uniquefields’ tables. Furthermore, in order to run comparative experiments, exactly

the same data was populated in the ‘table_row’, and ‘table_index’ ETs of EET in a

separate database, and the ‘Data’, ‘Index’, and ‘Uniquefields’ tables of UTSM in

another database. No indexes were used other than the default indexes of each

schema, which are the primary keys and the foreign keys indexes that are

automatically generated in the RDBMS once the primary key and foreign key

constraints are specified. The number of virtual rows that were already populated in

‘table_row’ ET is 200,000 rows and the same number of rows in the ‘Data’ universal

table. These rows belong to the ‘product’ virtual table, and the structure of this table

in EET and UTSM is shown in Figure 4-20. There was no data populated in these two

databases other than the populated 200,000 rows.

Figure 4-20: The virtual ‘product’ table structure.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

79

In the multi-tenant database, each tenant’s data is isolated in a table partition.

Therefore, the experiments are performed for one tenant to evaluate the effectiveness

of retrieving data for each single tenant from the multi-tenant database. These

experiments are divided into four types that are sharing the details of this data set.

Each query of these experiments is performed ten times, and the average execution

time of these queries is shown in Figure 4-21 – 4-28 and Table 4-1 – 4-7. The queries

that are related to EET and UTSM are shown in Table 4-8. The input and the output

of EET and UTSM queries are the same. However, the structures of these queries are

different because the data architectures of the two schemas are different. The four

experiments details are listed below:

1) Retrieving Rows Experiment (Exp.4-1): The aim of this experiment is to

benchmark the query execution time of retrieving rows from EET and UTSM.

This experiment is divided into four experiments including:

Retrieving Rows without Using Query Columns Filters Experiment (Exp.4-

1.1): In this experiment, Query 4-1 (Q4-1) and Query 4-2 (Q4-2) are executed.

The Q4-1 retrieves rows from the ‘table_row’ ET of EET without specifying any

query filters other than the tenant ID, and the ‘project’ table ID. Whereas the Q4-2

retrieves rows from the ‘Data’ universal table without specifying any query filters

other than the tenant ID and the ‘project’ object ID. In this study, eight tests using

these two queries are performed to retrieve 1, 10, 50, 100, 500, 1000, 1500, and

2000 rows.

Retrieving Rows Using Columns Query Filters Experiment (Exp.4-1.2): In

this experiment, Query 4-3 (Q4-3) is executed on the ‘table_row’ ET of EET and

Query 4-4 (Q4-4) is executed on the ‘Data’ universal table. Both queries are

filtered by specifying particular numbers of product IDs stored in the ‘product’

virtual table. In this study, three tests using these two queries are performed to

retrieve rows by specifying 1 product ID for the first test, 10 product IDs for the

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

80

second test, and 50 product IDs for the third test. The structure of Q4-4 has

presented in (Liao et al. 2013) but with different value settings.

Retrieving Rows Using Primary Key Indexes Experiment (Exp.4-1.3): In this

experiment, Query 4-5 (Q4-5) is executed on the ‘table_row’ and ‘table_index’

ETs of EET and Query 4-6 (Q4-6) is executed on the ‘Data’ and ‘Uniquefields’

tables of UTSM. In this experiment, a primary key index is used to retrieve rows

from the ‘product’ virtual table from the ‘table_row’ ET and from the ‘Data’

table. In this study, three tests using these two queries are performed to retrieve 1,

10, and 50 rows. The structure of Q4-6 has presented in (Liao et al. 2012), but

with different value settings.

Retrieving Rows Using Custom Index Experiment (Exp.4-1.4): In this

experiment, Query 4-7 (Q4-7) is executed on the ‘table_row’ and ‘table_index’

ETs of EET and Query 4-8 (Q4-8) is executed on the ‘Data’ and ‘Index’ tables of

UTSM. In this experiment, a custom index is used, which is a selective filter in

the tenant’s query. This index should be other than the primary key and foreign

key indexes. This custom index retrieves rows from the ‘product’ virtual table for

both ‘table_row’ and ‘Data’ tables. The ‘standard_cost’ virtual column is chosen

to filter the queries by looking up for all the products, which have a standard cost

greater or equal ‘$ 9000’ from the ‘product’ virtual table. In this study, four tests

using these two queries are performed to retrieve 1, 10, 50, and 100 rows.

2) Inserting Rows Experiment (Exp.4-2): The aim of this experiment is to

benchmark the query execution time of inserting rows into EET and UTSM.

Query 4-9 (Q4-9) is executed on the ‘table_row’ and ‘table_index’ ETs of EET

and Query 4-10 (Q4-10) is executed on the ‘Data’, ‘Index’, and ‘Uniquefields’

tables of UTSM. In this study, four tests using these two queries are performed to

insert 1, 10, 50, and 100 rows.

3) Updating Rows Experiment (Exp.4-3): The aim of this experiment is to

benchmark the query execution time of updating rows into EET and UTSM.

Query 4-11 (Q4-11) is executed on the ‘table_row’ and ‘table_index’ ETs of EET

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

81

and Query 4-12 (Q4-12) is executed on the ‘Data’, and ‘Index’ tables of UTSM.

In this study, four tests using these two queries are performed to update 1, 10, 50,

and 100 rows.

4) Deleting Rows Experiment (Exp.4-4): The aim of this experiment is to

benchmark the query execution time of deleting rows from EET and UTSM.

Query 4-13 (Q4-13) is executed on the ‘table_row’ and ‘table_index’ ETs of

EET, and Query 4-14 (Q4-14) is executed on the ‘Data’, ‘Index’, and

‘Uniquefields’ tables of UTSM. In this study, four tests using these two queries

are performed to delete 1, 10, 50, and 100 rows.

The experiments were performed on PostgreSQL 8.4 database, using the default

configuration setup. This database installed on a PC with 64-bit Windows 7 Home

Premium operating system, Intel Core i5 2.40GHz CPU, 8 GB RAM memory, and

500 GB hard disk storage.

4.4.2 EXPERIMENTAL RESULT

This section gives four experimental results as follows:

1) Retrieving Rows Experimental Results: This experimental result was divided

into four results as follows. The experimental study of Exp.4-1.1 shows that the

execution time of Q4-1 that perform on the ‘table_row’ ET of EET is

approximately 76% faster on average than the execution time of Q4-2 that

perform on the ‘Data’ universal table when 1, 10, 50, 100, 500, 1000, 1500, and

2000 rows were retrieved. The details results of this experiment are shown in

Figure 4-21 – 4-22 and Table 4-1. The experimental study of Exp.4-1.2 shows

that the execution time of Q4-3 that perform on the ‘table_row’ ET of EET is

approximately 94% faster on average than the execution time of Q4-4 that

perform on the ‘Data’ universal table when 1, 10, and 50 rows were retrieved. The

details results of this experiment are shown in Figure 4-23 and Table 4-2. The

experimental study of Exp.4-1.3 shows that the execution time of Q4-5 that

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

82

perform on the ‘table_row’ and ‘table_index’ ETs of EET is approximately 88%

faster on average than the execution time of Q4-6 that perform on the ‘Data’ and

‘Uniquefields’ tables of UTSM when 1, 10, and 50 rows were retrieved. The

details results of this experiment are shown in Figure 4-24 and Table 4-3. The

experimental study of Exp.4-1.4 shows that the execution time of Q4-7 that

perform on the ‘table_row’ and ‘table_index’ ETs of EET is approximately 60%

faster on average than the execution time of Q4-8 that perform on the ‘Data’ and

‘Index’ tables of UTSM when 1, 10, 50, and 100 rows were retrieved. The details

results of this experiment are shown in Figure 4-25 and Table 4-4.

 T
im

e
(S

ec
)

Number of retrieved rows

Figure 4-21: Retrieving small numbers of rows (Exp. 4-1.1)

T
im

e
(S

ec
)

Number of retrieved rows

Figure 4-22: Retrieving large numbers of rows (Exp. 4-1.1)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

1 10 50 100

EET (Q4-1)

UTSM (Q4-2)

0

0.5

1

1.5

2

100 500 1000 1500 2000

EET (Q4-1)

UTSM (Q4-2)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

83

Table 4-1: The query execution times of retrieving rows without using query columns filters
experiment (Exp. 4-1.1)

Number of
retrieved rows

EET (Q4-1)
Time in seconds

UTSM (Q4-2)
Time in seconds

1 0.010 0.016
10 0.014 0.023
50 0.014 0.052
100 0.025 0.122
500 0.107 0.527
1000 0.230 0.998
1500 0.352 1.510
2000 0.468 1.814

T
im

e
(S

ec
)

Number of retrieved rows

Figure 4-23: Retrieving rows using columns query filters (Exp.4-1.2)

Table 4-2: The query execution times of retrieving rows using columns query filters

experiment (Exp. 4-1.2)

Number of
retrieved rows

EET (Q4-3)
Time in seconds

UTSM (Q4-4)
Time in seconds

1 0.020 0.143
10 0.025 0.273
50 0.029 0.831

0

0.2

0.4

0.6

0.8

1

1 10 50

EET (Q4-3)

UTSM (Q4-4)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

84

T
im

e
(S

ec
)

Number of retrieved rows

Figure 4-24: Retrieving rows using PK indexes (Exp. 4-1.3)

Table 4-3: The query execution times of retrieving rows using primary key indexes

experiment (Exp. 4-1.3)

Number of
retrieved rows

EET (Q4-5)
Time in seconds

UTSM (Q4-6)
Time in seconds

1 0.019 0.115
10 0.020 0.135
50 0.025 0.264

T
im

e
(S

ec
)

Number of retrieved rows

Figure 4-25: Retrieving rows using a custom index (Exp. 4-1.4)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 10 50

EET (Q4-5)

UTSM (Q4-6)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

1 10 50 100

EET (Q4-7)

UTSM (Q4-8)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

85

Table 4-4: The query execution times of retrieving rows using custom index experiment

(Exp. 4-1.4)

Number of
retrieved rows

EET (Q4-7)
Time in seconds

UTSM (Q4-8)
Time in seconds

1 0.015 0.031
10 0.023 0.042
50 0.023 0.062
100 0.039 0.118

2) Inserting Rows Experimental Results: The experimental study of Exp.4-2

shows that the execution time of Q4-9 that perform on the ‘table_row’ and

‘table_index’ ETs of EET is approximately 19% slower on average than the

execution time of Q4-10 that perform on the ‘Data’, ‘Index’, and ‘Uniquefields’

tables of UTSM when 1, 10, 50, and 100 rows were inserted. The details results of

this experiment are shown in Figure 4-26 and Table 4-5.

T
im

e
(S

ec
)

Number of inserted rows

Figure 4-26: Inserting rows (Exp.4-2)

Table 4-5: The query execution times of inserting rows experiment (Exp. 4-2)

Number of
inserted rows

EET (Q4-9)
Time in seconds

UTSM (Q4-10)
Time in seconds

1 0.012 0.011
10 0.036 0.024
50 0.085 0.076
100 0.157 0.125

0

0.05

0.1

0.15

0.2

1 10 50 100

EET (Q4-9)

UTSM (Q4-10)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

86

3) Updating Rows Experimental Results: The experimental study of Exp.4-3 shows

that the execution time of Q4-11 that perform on the ‘table_row’ and ‘table_index’

ETs of EET is approximately 51% faster on average than the execution time of Q4-

12 that perform on the ‘Data’, and ‘Index’ tables of UTSM when 1, 10, 50, and

100 rows were updated. The details results of this experiment are shown in Figure

4-27 and Table 4-6.

T
im

e
(S

ec
)

Number of updated rows

Figure 4-27: Updating rows (Exp. 4-3)

Table 4-6: The query execution times of updating rows experiment (Exp. 4-3)

Number of
updated rows

EET (Q4-11)
Time in seconds

UTSM (Q4-12)
Time in seconds

1 0.018 0.026
10 0.026 0.046
50 0.032 0.091
100 0.070 0.138

4) Deleting Rows Experimental Results: The experimental study of Exp.4-4 shows

that the execution time of Q4-13 that perform on the ‘table_row’ and ‘table_index’

ETs of EET is approximately 32% faster on average than the execution time of Q4-

14 that perform on the ‘Data’, ‘Index’, and ‘Uniquefields’ tables of UTSM when 1,

0

0.05

0.1

0.15

1 10 50 100

EET (Q4-11)

UTSM (Q4-12)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

87

10, 50, and 100 rows were deleted. The details results of this experiment are shown

in Figure 4-28 and Table 4-7.

T
im

e
(S

ec
)

Number of deleted rows

Figure 4-28: Deleting rows (Exp.4-4)

Table 4-7: The query execution times of deleting rows experiment (Exp. 4-4)

Number of
deleted rows

EET (Q4-13)
Time in seconds

UTSM (Q4-14)
Time in seconds

1 0.019 0.024
10 0.020 0.033
50 0.035 0.048
100 0.054 0.084

Table 4-8: The experiments queries

Query No. Query Details
Q4-1 SELECT * FROM table_row tr WHERE tr.table_row_id in (SELECT

distinct(tr2.table_row_id) FROM table_row tr2 where tr2.db_table_id = 16 and
tr2.tenant_id = 1000 LIMIT 1) ;

Q4-2 SELECT * FROM data WHERE tenantid = 1000 and objectId = 1 LIMIT 1;
Q4-3 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id = 16

and tr.table_column_id IN (50,52,54) and tr.table_row_id IN (SELECT
table_row_id FROM table_row tr2 WHERE tr2.tenant_id =1000 and tr2.db_table_id
= 16 and (tr2.table_column_id =47 and tr2.value = '163336'));

Q4-4
(Liao et al. 2013)

SELECT price, cost, weight FROM (SELECT value0 AS id, value4 AS price , value2
AS cost, value6 AS weight FROM data WHERE objectid = 1 and tenantid = 1000)
AS product WHERE id = '163336';

Q4-5 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id = 16
and tr.table_row_id IN (SELECT ti.table_row_id FROM table_index ti WHERE
ti.tenant_id =1000 and ti.db_table_id = 16 and ti.table_column_id =47 and ti.value
= '163337');

Q4-6 SELECT * FROM data WHERE objectid =1 and tenantId = 1000 and dataguid in

0

0.02

0.04

0.06

0.08

0.1

1 10 50 100

EET (Q4-13)

UTSM (Q4-14)

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

88

(Liao et al. 2012) (SELECT dataguid FROM uniquefields WHERE objectid = 1 and tenantId = 1000
and numvalue IN (163337));

Q4-7 SELECT * FROM table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id = 16
and tr.table_row_id IN (SELECT ti.table_row_id FROM table_index ti WHERE
ti.tenant_id = 1000 and ti.db_table_id = 16 and ti.table_column_id = 50 and (cast
(ti.value as numeric) >= '9000') LIMIT 1);

Q4-8 SELECT * FROM data WHERE objectid =1 and tenantId = 1000 and dataguid in
(SELECT dataguid FROM index WHERE objectid = 1 and tenantId = 1000 and
fieldNum =3 and numvalue > = 9000 LIMIT 1);

Q4-9 INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,1,1000, '50000000',16,47);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,2,1000, '1000',16,48);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,3,1000, '50000',16,49);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,4,1000, '222.50',16,50);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,5,1000, 'Red',16,51);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,6,1000, '242.50',16,52);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,7,1000, '40',16,53);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,
table_column_id) values (50000061,8,1000, '300',16,54);
INSERT into table_index (tenant_id, value, table_row_id, serial_id, db_table_id,
table_column_id) values (1000, '50000000',50000061,1,16,47);
INSERT into table_index (tenant_id, value, table_row_id, serial_id, db_table_id,
table_column_id) values (1000, '222.50',50000061,4,16,50);

Q4-10 INSERT into data (dataguid, tenantid, objectid ,name, value0, value1, value2,
value3,value4, value5 ,value6) values(50000061,1000,1,'name', '50000000', '50000',
'222.50','Red', '242.50', '40', '300');
INSERT into uniquefields values (50000061, 1000, 1, 1,'',50000000,'2013-12-12');
INSERT into index values (50000061, 1000, 1, 3,'', '222.50','2013-12-12');

Q4-11 UPDATE table_row set value = '230.50' WHERE tenant_id = 1000 and db_table_id
= 16 and table_column_id = 52 and table_row_id =50000061;
UPDATE table_index set value = '230.50' WHERE tenant_id = 1000 and
db_table_id = 16 and table_column_id = 52 and table_row_id =50000061;

Q4-12 UPDATE data set value2 = '230.50' WHERE tenantid = 1000 and objectid = 1 and
dataguid =50000061;
UPDATE index set numvalue = 230.50 WHERE tenantid = 1000 and objectid = 1
and fieldnum =3 and dataguid =50000061;

Q4-13 DELETE from table_index WHERE tenant_id = 1000 and db_table_id = 16 and
table_row_id =50000061;
DELETE from table_row WHERE tenant_id = 1000 and db_table_id = 16 and
table_row_id = 50000061;

Q4-14 DELETE from index WHERE tenantid = 1000 and objectid = 1 and fieldnum =3 and
dataguid =50000061;
DELETE from uniquefields WHERE tenantid = 1000 and objectid = 1 and fieldnum
=1 and dataguid =50000061;
DELETE from data WHERE tenantid = 1000 and objectid = 1 and dataguid
=50000061;

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

89

4.5 SUMMARY

In this chapter, a novel configurable multi-tenant database schema design called

EET that consists of CTT, ET, and VET is proposed. EET allows tenants to create

their own virtual database schema, including the required number of tables and

columns, rows, virtual database relationships with any of CTTs or VETs, and to

assign suitable data types and constraints for columns during multi-tenant application

run-time execution. EET is a single multi-tenant database schema that has a flexible

way of creating database schemas for multiple tenants, by extending a business

domain database that is based on RDBMS, or by creating a tenant’s business domain

database from the scratch. It improves the multi-tenant database performance by

avoiding NULL values, assigning primary keys to unique columns, providing indexes

to table columns, and storing BLOB and CLOB data types in separate designated

tables. In addition, it allows to store different data types of Big Data including

structured, semi-structured, and unstructured data. However, in this chapter and this

thesis the empirical tests are conducted on the structured data, but empirical tests of

semi-structured, and unstructured data are out of the scope of this thesis. For two

reasons, first, as reviewed in chapter 2, storing and retrieving data in XML files

(semi-structured data) has the highest response time between the reviewed seven

multi-tenant database schema designs (Aulbach et al. 2009; Heng et al. 2012). Thus,

the semi-structured data can be stored in EET, but it is not recommended to be used

as storage for multiple tenants. Second, there are many techniques for storing and

retrieving different data types of Big Data. Accordingly, to compare all of these

techniques with EET is hard, complex, and time consuming task, which it is hard to

be achieved during the time frame and size of a PhD thesis. Thus, comparing EET

with other data types and other techniques is one of the future research directions of

this study.

Chapter 4: Multi-tenant Database Schema Design Haitham Yaish

90

 Moreover, the EET allows to create virtual relationships between the tenants’

shared physical tables (CTT) and the tenants’ virtual tables (VET), and allows tenants

to choose from three database models: Multi-tenant Relational Database, Integrated

Multi-tenant Relational Database and Virtual Relational Database, and Virtual

Relational Database. Nevertheless, this capability not applied in UTSM or any other

multi-tenant database schema design yet. Furthermore, this chapter compared and

evaluated the performance of EET and UTSM. The EET avoids storing rows with

NULL values. In contrast, the Universal Table of UTSM can be large with overheads

cause a large number of NULL values. The experimental study that conducted shows

an improvement gained when retrieving, updating, and deleting data from EET over

the UTSM. Especially when retrieving data from EET, it is much faster than UTSM.

However, the execution time of inserting rows in EET is slightly slower than UTSM.

Overall, this experimental study makes the EET schema a good candidate for

implementing multi-tenant databases and multi-tenant SaaS and Big Data

applications.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

91

CHAPTER 5

MULTI-TENANT SCHEMA HANDLER

METHOD

Multi-tenant database is a new database solution that is significant for SaaS and

Big Data applications in the context of cloud computing paradigm. This multi-tenant

database has significant design challenges to develop a solution that insures a high

level of data quality, configurability, accessibility, and manageability. Configuration

is one of the significant characteristics of multi-tenant applications that allows SaaS

vendors to run a single instance application that can be configured by multiple

tenants. This characteristic requires a multi-tenant aware design with a single

codebase and metadata capability. Multi-tenant aware application allows each tenant

to design different parts of the application, and automatically adjust and configure its

behaviour during the application’s runtime execution without redeploying the

application (Bezemer & Zaidman 2010). Multi-tenant data has two types, shared data

and tenant’s isolated data. Integrating these two types of data together, gives a

complete data view for the tenants to fit their business requirements (Domingo 2010;

Liu 2010). Developing such a data management solution is a complex problem to

solve that involves huge efforts and longer development lifecycle. This chapter

proposes a multi-tenant data management service called Elastic Extension Tables

Schema Handler Service (EETSHS), which is based on the EET multi-tenant database

schema. This data management service creates, manages, organises, and administrates

multiple tenants’ data in a single database schema. Moreover, it integrates traditional

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

92

relational data with virtual relational data in a single database schema, and allows

tenants to manage this data by calling functions from this service.

The remainder of this chapter is structured as follows. Section 5.1 proposes the

EET schema handler service. Section 5.2 presents algorithms for the frequently used

functions of EETSHS. Section 5.3 presents a set of experiments to compare the

performance of managing CTTs (traditional physical RDBMS tables) and VETs.

These experiments verify that EET schema is a good candidate for the management

of multi-tenant data for SaaS and Big Data applications. Section 5.4 concludes this

chapter.

5.1 ELASTIC EXTENSION TABLES SCHEMA

HANDLER SERVICE
There are several commercial cloud data management systems (e.g. BigTable7,

SimpleDB8, HyperTable9, CouchDB10) that allow end users to manage their data

storage using APIs (Sakr et al. 2011). A similar approach is applied in designing the

EETSHS. This service provides functions that allow tenants to manage their data

without having to write SQL queries and backend data management code, by calling

data management functions from EET data management APIs. Figure 5-1 shows the

overview architecture of the EETSHS, and shows how this service is interacting with

the rest of the EET framework artefacts. The details of these interactions are stated in

Chapter 3, while this section will present the main functions of EETSHS in the

following subsections, and these functions are also shown in the same figure.

7 http://en.wikipedia.org/wiki/BigTable; Accessed July, 2014
8 https://aws.amazon.com/simpledb; Accessed July, 2014
9 http://hypertable.org/; Accessed July, 2014
10 http://couchdb.apache.org; Accessed July, 2014

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

93

EET Schema Handler Service
Table Management

API

Tenants’ Developers

EETACS

Row Management

Primary Key Management

Column Management

Relationship Management

Index Management

DAO

ORM

Figure 5-1: EET Schema Handler Service overview architecture

5.1.1 TABLE MANAGEMENT

The EETSHS has three data management functions to manage VETs, whereas

CTTs are managed by the RDBMS.

 Create Virtual Tables Function: This function creates a VET’s name for a

tenant, and this name is a unique name only for this tenant. For example, tenant-A

can create a VET name called ‘product', but cannot create the same VET name

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

94

again. However, tenant-B can create the ‘product’ name even if tenant-A already

created this VET’s name. This function avoids the redundancy of individual

tenant tables, because the ‘db_table_name’ column of the ‘db_table’ ET has

UNIQUE constraint.

 Update Virtual Tables Function: After creating the table name of the tenant’s

VET, this name can be updated by calling this function. The updated VET name

remains unique for every individual tenant, because of the UNIQUE constraint of

the ‘db_table_name’ column.

 Delete Virtual Tables Function: After creating the tenant’s VET, the tenant can

delete this table by calling this function. Deleting a VET means that the table

name and its virtual columns that are stored in the ‘table_column’ ET and related

to this VET have to be deleted. In addition to the rows, the indexes, and the

constraints that are linked to these columns and stored in other ETs have to be

deleted. However, the only case the tenant cannot delete a VET, is when it has a

master-detail relationship with other VET, and the primary key of the master VET

that need to be deleted is a foreign key in other details VET.

5.1.2 COLUMN MANAGEMENT

The EETSHS has three data management functions to manage VETs’ columns,

whereas CTTs’ columns are managed by the RDBMS.

 Create Virtual Columns Function: This function creates a virtual column for a

VET and specifies its properties by storing the necessary column properties

values in the columns of the ‘table_column’ ET. The column properties include

(1) the default value of a column that need to be inserted when no data specified

for it while creating or updating a virtual row, (2) the data type of the column, (3)

index column flag, (4) null column flag, (5) foreign key column flag, (6) primary

key column flag, and (7) unique key column flag.

 Update Virtual Columns Function: After creating virtual columns for a tenant’s

VET, the tenant can update any column properties by calling this function.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

95

 Delete Virtual Columns Function: After creating virtual columns for a tenant’s

VET, the tenant can delete any column even if it is a primary key, as long as this

column is not a primary key that has foreign keys in any other table pointing to it.

This function deletes a column from a VET, and simultaneously deletes the entire

rows associate to this column that may be stored in the other ETs that store rows,

relationships, indexes, and primary keys.

5.1.3 ROW MANAGEMENT

The EETSHS has three data management functions to manage the rows of CTTs

and VETs.

 Create Physical and Virtual Rows Function: This function creates a tenant

table row for a CTT or a VET. The physical rows of CTTs are created in the

physical tables of the RDBMS, whereas the virtual rows of VETs are created in

the ‘table_row’, ‘table_row_blob’, ‘table_row_clob’, and ‘table_index’ ETs.

Algorithm 5-1 and Section 5.3 present the details of this function.

 Update Physical and Virtual Rows Function: After creating a tenant’s table

row in a CTT or a VET, the tenant may update this row by calling this function.

Algorithm 5-2 and Section 5.3 present the details of this function.

 Delete Physical and Virtual Rows Function: After creating a tenant’s table row

in a CTT or a VET, the tenant may delete this row by calling this function.

Algorithm 5-3 and Section 5.3 present the details of this function.

5.1.4 RELATIONSHIP MANAGEMENT

The EETSHS has two data management functions to manage virtual relationships

between CTTs and VETs.

 Create Virtual Relationships Function: This function creates a virtual

relationship between CTT and VET, or two VETs. The virtual relationships that

are created using this function allows a tenant to choose from any of the three

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

96

EET database models that stated in Chapter 4. This function stores for a tenant, a

master-detail relationship between two tables into the ‘table_relationship’ ET.

Simultaneously, it creates in the details VET foreign key columns that refer to the

primary key columns of the master CTT or VET.

 Delete Virtual Relationships Function: After the tenant creates a virtual master-

details relationship between two tables, he can delete this relationship by calling

this function. This function deletes the relationship from the ‘table_relationship’

ET, deletes from the details VET all the foreign key columns that refer to the

primary key columns of the master CTT or VET, and deletes any VET’s rows

stored in the ‘table_row’ and ‘table_index’ ETs.

In traditional RDBMS, the database administrator cannot update a relationship

between two physicals tables. The same case applies for EETSHS; it does not have a

function to update virtual relationships. Nevertheless, the tenant can update a

relationship by deleting an existing relationship and then creating a new relationship

by calling the two functions described in this section.

5.1.5 PRIMARY KEY MANAGEMENT

The EETSHS has two data management functions to manage virtual primary keys

of VETs, whereas the primary keys of CTTs are managed by the RDBMS.

 Create Virtual Primary Keys Function: This function creates a virtual

PRIMARY KEY constraint for a VET column by changing the value of the

‘is_primary_key_column’ column in the ‘table_column’ ET to ‘true’, and storing

the detail settings of the primary key column in the ‘table_primary_key_column’

ET. If the column has already data stored in the ‘table_row’ ET, then this function

copies all of the column’s data of the primary key to the ‘table_index’ ET. As

long as the column is a primary key column, then it should be indexed. Otherwise,

if the column does not have data, then no any data need to be copied to the

‘table_index’ ET. This function allows to create single and composite primary

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

97

keys. In the case when a tenant wants to create a new primary key and the VET

has at least one primary key, then this function will store the value ‘true’ into the

‘is_composite_key’ column of the ‘table_primary_key_column’ ET for the new

primary key and the already existing primary keys. Moreover, this function

specifies if a primary key is auto incremented, which means that a unique number

is generated when a new row is inserted into a VET. However, this function

avoids adding a PRIMARY KEY constraint to any column has redundant data.

 Update Virtual Primary Keys Function: This function is used for two cases, if a

column already has a primary key constraint, or if it has not. In the first case, this

function deletes the primary key constraint by changing the value of

‘is_primary_key_column’ in the ‘table_column’ ET to ‘false’, and deletes the

details of the primary key column from the ‘table_primary_key_column’ ET. If

the column has data stored into the ‘table_row’ ET, then this function deletes all

of the column’s data of the primary key from the ‘table_index’ ET as long as the

column is not anymore primary key column then it should not be indexed.

Otherwise, if the column does not have data, then no any data need to be deleted

from the ‘table_index’ ET. Nevertheless, when a tenant deletes a primary key

constraint of a column that is part of a composite primary key, then this function

changes the value of the ‘is_composite_key’ to ‘false’ for the primary key that

will not be deleted from the ‘table_primary_key_column’ ET. In the second case,

when the column is not already a primary key, then this function calls the Create

Virtual Primary Key Function. Moreover, this function can update the auto

increment property of the primary key by either activating or deactivating it in the

‘table_primary_key_column’ ET.

5.1.6 INDEX MANAGEMENT

The EETSHS has no specific functions to manage VETs’ indexes, including

primary key, foreign key and custom indexes. However, these indexes are managed in

the other functions that discussed in this section. The details are listed below:

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

98

 Create Virtual Indexes: There are four cases to create rows in the ‘table_index’

ET, including (1) when a tenant creates a virtual master-detail relationship

between CTT and VET, or two VETs. In this case, if the master table has table

rows, then the primary key of these rows get inserted into the ‘table_index’ ET as

foreign keys for the details table. This situation occurs in the Create Virtual

Relationships Function. (2) When a tenant adds a PRIMARY KEY constraint to a

column that already exist in a VET and this column has data, then this data is

inserted into ‘table_index’ ET. This situation occurs in the Create Virtual Primary

Keys Function. (3) When a tenant makes a column a custom index column that is

a selective filter in the tenant’s query and has data, then this data is inserted into

the ‘table_index’ ET. This case occurs in the Update Virtual Columns Function.

(4) Once a VET row inserted in the ‘table_row’ ET and this VET has indexed

columns, including primary key, foreign key and custom indexes. Then the values

of these indexed columns are inserted into the ‘table_index’ ET. This situation

occurs in the Create Physical and Virtual Rows Function.

 Update Virtual Indexes: There is only one case to update virtual indexes in the

‘table_index’ ET when the value of a virtual custom index column of a virtual

row is updated in the ‘table_row’ ET. Then the same value is updated in the

‘table_index’ ET. This situation occurs in the Update Physical and Virtual Rows

Function.

 Delete Virtual Indexes: There are three cases to delete rows from the

‘table_index’ ET, including (1) when a tenant deletes a virtual relationship

between CTT and VET, or two VETs. In this case, if the master and the details

tables have data, then the data value in the ‘table_index’ ET that corresponds to

the foreign key of the details VET get deleted. This situation occurs in the Delete

Virtual Relationships Function. (2) When a tenant updates a custom index column

and makes it not indexed column, and this column has data, then this data is

deleted from the ‘table_index’ ET. This case occurs in the Update Virtual

Columns Function. (3) Once a VET row is deleted from the ‘table_row’ ET and

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

99

this row has indexed columns, including any of the primary keys, foreign keys, or

custom indexes. Then the corresponding index values that related to the deleted

row and stored into the ‘table_index’ ET get deleted. This situation occurs in the

Delete Physical and Virtual Rows Function.

5.2 SAMPLE ALGORITHMS OF ELASTIC

EXTENSION TABLES SCHEMA HANDLER

SERVICE
In this section, we present three EET data management sample algorithms that are

used to allow tenants to insert, update, and delete rows within CTTs and VETs.

5.2.1 CREATING PHYSICAL AND VIRTUAL ROWS
ALGORITHM

This data management algorithm inserts rows in CTTs and VETs by passing six

parameters to it, including the tenant ID, table name, table type (CTT or VET), table

row matrix, table BLOB matrix, and table CLOB matrix. More details of this

algorithm are presented in Definition 5-1 and Algorithm 5-1.

Definition 5-1 (Creating Physical and Virtual Rows): T denotes a tenant ID. B

denotes a table name. denotes the table type whether it is a CTT or a VET.

denotes a row matrix with 2 rows and n columns. The first row stores

a that denotes a column name of a CTT or a VET, and the second row

stores a that denotes a column value of a CTT or a VET.

denotes the size of . denotes a BLOB row matrix

with 2 rows and n columns. The first row stores a that denotes a BLOB

column name of a CTT or a VET, and the second row stores a that

denotes a BLOB column value of a CTT or a VET. denotes the size of

. denotes a CLOB row matrix with 2 rows and n columns. The

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

100

first row stores a that denotes a CLOB column name of a CTT or a

VET, and the second row stores a that denotes a CLOB column value of

a CTT or a VET. denotes the size of . denotes the

‘table_row_id’ primary key of ‘table_row’, ‘table_row_blob’, and ‘table_row_clob’

ETs. denotes the ‘serial_id’ column in the ‘table_row’,

‘table_row_blob’, and ‘table_row_clob’ ETs.

Algorithm 5-1: Creating Physical and Virtual Rows (CPVR)
 Input: T, B, , , , and

1. if = ‘CTT’ then
2. Insert the table row into B in RDBMS for T
3. else if = ‘VET’ then
4. if B then /* When the row is not already exist in B */
5. ← get max(table_row_id) from table_row ET + 1
6. for to do
7. ←
8. Insert , , T, B, ,

into table_row ET
9. if is indexed column then
10. Insert , , T, B, ,

into table_index ET
11. end if
12.
13. end for
14. for to do
15. ←
16. Insert , , T, B, ,

into table_row_blob ET
17. Store the BLOB file in its designated URI
18.
19. end for
20. for to do
21. ←
22. Insert , , T, B,

into table_row_clob ET
23.
24. end for
25. end if
26. end if

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

101

5.2.2 UPDATING PHYSICAL AND VIRTUAL ROWS
ALGORITHM

This data management algorithm updates rows in CTTs and VETs by passing

seven parameters to it, including the tenant ID, table name, table type, table row

matrix, table BLOB matrix, table CLOB matrix, and the table row ID of a VET in the

case when a tenant updates a VET row. More details of this algorithm are presented

in Definition 5-2 and Algorithm 5-2.

Definition 5-2 (Updating Physical and Virtual Rows): T denotes a tenant ID. B

denotes a table name. denotes the table type whether it is a CTT or a VET.

denotes a row matrix with 2 rows and n columns. The first row stores

a that denotes a column name of a CTT or a VET, and the second row

stores a that denotes a column value of a CTT or a VET.

denotes the size of denotes a row BLOB matrix with 2 rows and

n columns. The first row stores a that denotes a BLOB column name of

a CTT or a VET, and the second row stores a that denotes a BLOB

column value of a CTT or a VET. denotes the size of

. denotes a row CLOB matrix with 2 rows and n columns. The

first row stores a that denotes a CLOB column name of a CTT or a

VET, and the second row stores a that denotes a CLOB column value

of a CTT or a VET. denotes the size of . denotes

the ‘table_row_id’ primary key of ‘table_row’, ‘table_row_blob’, and

‘table_row_clob’ ETs. In each virtual table row, this ID is the same row ID for these

three ETs.

Algorithm 5-2: Updating Physical and Virtual Rows (UPVR)
Input: T, B, , , , , and

1. if = ‘CTT’ then
2. Update the table row in the CTT in RDBMS using T and B query filters
3. else if = ‘VET’ then

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

102

4. if B then /* When the row is not already exist in B */
5. for to do
6. update in table_row ET using T, B, , and

 query filters
7. if is custom index column then
8. Update in table_index ET using T, B, ,

and query filters
9. end if
10.
11. end for
12. for to do
13. Update in table_row_blob ET using T, B, ,

and query filters
14. Delete the existing BLOB file in its designated URI
15. Insert the new BLOB file in its designated URI
16.
17. end for
18. for to do
19. Update in table_row_clob ET using T, B,

, and query filters
20.
21. end for
22. end if
23. end if

5.2.3 DELETING PHYSICAL AND VIRTUAL ROWS
ALGORITHM

This data management algorithm deletes rows from CTTs and VETs by passing

five parameters to it including the tenant ID, table name, table type, table row matrix,

and the table row ID of a VET in the case when a tenant deletes a VET row. More

details of this algorithm are presented in Definition 5-3 and Algorithm 5-3.

Definition 5-3 (Deleting Physical and Virtual Rows): T denotes a tenant ID. B

denotes a table name. denotes the table type whether it is a CTT or a VET.

 denotes a row matrix with 2 rows and n columns. The first row stores

a that denotes a column name of a CTT or a VET, and the second row

stores a that denotes a column value of a CTT or a VET.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

103

denotes the ‘table_row_id’ primary key of ‘table_row’, ‘table_row_blob’,

and ‘table_row_clob’ ETs. denotes a master-detail relationship.

 denotes a details VET of the master table that this algorithm deletes its

row. denotes a row in the details table refers to the row that this

algorithm aims to delete from the master table. denotes a list of

database relationships that a master CTT may have with details VETs, or a list of

relationships that a master VET may have with details CTTs or VETs.

 denotes the size of . denotes a list

of CTT relationships that a master CTT may have with other details CTTs.

 denotes the size of denotes a

row matrix with 1 row and n columns, each element of this matrix may contains

‘BLOB’ or ‘CLOB’ string. denotes a list of primary keys of CTTs or VETs.

Algorithm 5-3: Deleting Physical and Virtual Rows (DPVR)
Input: T, B, , , and

1. if = ‘CTT’ then
2. get the primary keys of B from

INFORMATION_SCHEMA.TABLE_CONSTRAINTS and
INFORMATION_SCHEMA.KEY_COLUMN_USAGE views using T and
B query filters

3. else if = ‘VET’
4. get the primary keys of B from table_column ET using T and B

query filters
5. end if
6. if ≠ Nil then /* checking if any of the tables that have

relationship with B have any row with references to the row that need to
be deleted */

7. if = ‘CTT’ then
8. get the relationships of B from the

INFORMATION_SCHEMA.KEY_COLUMN_USAGE view using T
and B query filters

9. for to do
10. if

 then
11. return /* Exit Algorithm */
12. end if
13.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

104

14. end for
15. end if
16. get the relationships of B from the table_relationship ET

using T and B query filters
17. for to do
18. if

then
19. return /* Exit Algorithm */
20. end if
21.
22. end for
23. end if
24. if = ‘CTT’ then
25. Delete the row from the RDBMS using T, B, and query filters
26. else if = ‘VET’ then
27. get from the table_column ET the BLOB and CLOB

objects using T and B query filters
28. for all do
29. if ‘BLOB’ then
30. Delete all BLOB rows from the table_row_blob ET using T, B, and

 query filters
31. Delete the BLOB file from its designated URI
32. end if
33. if ‘CLOB’ then
34. Delete all CLOB rows from the table_row_clob ET using T, B, and

 query filters
35. end if
36. end for
37. Delete rows from table_row ET using T, B, and query filters
38. end if

5.3 PERFORMANCE EVALUATIONS
In this thesis, the EET multi-tenant database schema and EET framework

architecture are designed to serve multiple tenants in one application instance.

However, the aim of the experiments of this chapter is evaluating the performance of

EETSHS for one tenant. As long as in the multi-tenant database the data of each

tenant’s user is isolated in a table partition, these experiments can evaluate the

effectiveness of managing data for each single tenant from the multi-tenant database.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

105

The multi-tenant database performance needs to be tested in one single server

instance before considering scale-up or scale-out multi-tenant databases. This

approach is applied to test the effectiveness of running database operations for CTTs

and VETs using EETSHS. These experiments compare the performance of the query

execution time from a CTT (traditional physical table), and VET that is stored in the

ETs.

5.3.1 EXPERIMENTAL DATA SET AND SETUP

In this experiment, three of the EETSHS functions are invoked to insert, update,

and delete 1, 10, 50, and 100 rows from the ‘product’ table. This table structure is

used for both the ‘product’ CTT and VET. There are 200,000 rows stored in these

tables that belong to a tenant whose ‘tenant_id’ equals 1000, and the ‘db_table_id’ of

the ‘product’ VET in the ‘db_table’ ET equals 16. The ‘product’ CTT has a master-

detail relationship with the ‘sales_fact’ CTT, whereas the ‘product’ VET has a

master-detail relationship with the ‘sales_fact’ VET. The ‘db_table_id’ of the

‘sales_fact’ VET in the ‘db_table’ ET equals 17. The ‘product_id’ for both the

‘product’ CTT and VET equal ‘300000’. The ‘table_row_id’ of the ‘product’ VET

equals ‘50000001’. Figure 5-2 shows the ‘product’ and ‘sales_fact’ tables. In both the

‘product’ CTT and VET, the values, including 300000, 1000, 123123, 11.5, Red, 100,

10 cm, 140 g are inserted respectively in the following columns ‘product_id’,

‘tenant_id’, ‘product_bus_id’, ‘standard_cost’, ‘color’, ‘price’, ‘size’, and ‘weight’. In

addition, the values, including 444333, 12.5, Blue, 105, 105 cm, 155 g are updated

respectively in the following columns ‘product_bus_id’, ‘standard_cost’, ‘color’,

‘price’, ‘size’, and ‘weight’. This data set presents the values that used in the

experiments to test inserting, updating, and deleting one row from the ‘product’ table.

However, other values were used to manage the rest of the rows. This section presents

the three experiments and the queries of these experiments are shown in Table 5-4.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

106

Figure 5-2: The product and the sales_fact tables’ structures.

1) Inserting Physical and Virtual Rows Experiment (Exp. 5-1): The aim of this

experiment is benchmarking the query execution time of inserting rows into the

‘product’ CTT and VET. The Create Physical and Virtual Rows Function is invoked

from EETSHS that executes Query 5-1 (Q5-1) on the ‘product’ VET. This query

comprises of four subsidiary queries, the first query retrieves the maximum number

of ‘table_row_id’ from the ‘table_row’ ET. The second query retrieves records from

‘table_index’ ET to check if the virtual column name value of the ‘product_id’

primary key that equals 47 and its value that equals ‘300000’ has already existed or

not before inserting the row. The third query inserts eight column values of the

‘product’ VET in the ‘table_row’ ET. The fourth query inserts the values of three

column indexes, including primary key, foreign key, and custom index into the

‘table_index’ ET. Whereas, the same function executes Query 5-2 (Q5-2) on the

‘product’ CTT to insert the same row values that are inserted in Q5-1.

2) Updating Physical and Virtual Rows Experiment (Exp. 5-2): The aim of this

experiment is benchmarking the query execution time of updating rows in the

‘product’ CTT and VET. The Update Physical and Virtual Rows Function is invoked

from EETSHS that executes Query 5-3 (Q5-3) on the ‘product’ VET. This query

comprises of three subsidiary queries, the first query retrieves records from

‘table_index’ ET to check if the column name ID of the virtual ‘product_id’ primary

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

107

key equals 47 and the value of this column equals ‘300000’ is already exist or not

before updating the row. The second query updates six column values of the

‘product’ VET in the ‘table_row’ ET, excluding the primary key and foreign key

values. The third query updates the custom index value in the ‘table_index’ ET.

Whereas the same function executes Query 5-4 (Q5-4) on the ‘product’ CTT to

update the same row values that are updated in Q5-3.

3) Deleting Physical and Virtual Rows Experiment (Exp. 5-3): The aim of this

experiment is benchmarking the query execution time of deleting rows from the

‘product’ CTT and VET. The Delete Physical and Virtual Rows Function is invoked

from EETSHS that executes Query 5-5 (Q5-5) on the ‘product’ VET. This query

comprises of five subsidiary queries, the first query retrieves the database

relationships that the ‘product’ VET has with the other VETs and CTTs from the

‘table_relationship’ ET. The second query retrieves only the column of BLOB and

CLOB data type from a VET, and in this experiment the structure of the ‘product’

VET does not have any of them. The results of the first query indicated that the

‘sales_fact’ VET has a master-detail relationship with the ‘product’ VET. Therefore,

the third query checks if the 'sales_fact' VET that is a details table of the master

'product' VET has a row refers to the row that this function aims to delete or not. The

fourth query deletes all the rows of the indexed columns’ rows that related to the

‘product’ VET from the ‘table_index’ ET. The fifth query, deletes all the rows of the

columns that related to the ‘product’ VET from the ‘table_row’ ET, and as long as

this table does not have BLOB or CLOB columns, then no rows are deleted from the

‘table_row_blob’ and ‘table_row_clob’ ETs. Whereas the same function executes

Query 5-6 (Q5-6) on the ‘product’ CTT. This query comprises of five subsidiary

queries, the first query retrieves the physical primary keys of the ‘product’ CTT

using a query that joins the INFORMATION_SCHEMA. TABLE_CONSTRAINTS

and INFORMATION_SCHEMA.KEY_COLUMN_USAGE views. The second

query retrieves the details CTTs’ names that have a master-detail relationship with

the ‘product’ master CTT from the INFORMATION_-

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

108

SCHEMA.KEY_COLUMN_USAGE view. The third query checks if the

‘sales_fact’ CTT that is a details table of the master ‘product’ CTT has a row refers

to the row that the function aims to delete or not. The fourth query retrieves the

details VETs’ names that have a master-detail relationship with the ‘product’ CTT.

However, since the ‘product’ CTT does not have any relationship with any VET,

therefore no any further queries executed to check if a details table has a row refer to

the primary key of the ‘product’ CTT such as what is done in the third query of Q5-

5. The fifth subsidiary query deletes the row from the ‘product’ CTT.

The EETSHS service was implemented in Java 1.6.0, Hibernate 4.0, and Spring

3.1.0. The database is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2.

Both, the database and the application server are deployed on the same PC. The

operating system is Windows 7 Home Premium, with Intel Core i5 2.40GHz CPU, 8

GB of RAM memory, and 500 GB of hard disk storage.

5.3.2 EXPERIMENTAL RESULT

This section shows the three experimental results of inserting, updating, and

deleting rows from the ‘product’ CTT or VET as follows:

1) Inserting Physical and Virtual Rows Experimental Result: The experimental

study of Exp.5-1 is showing that the execution time of Q5-1 that performed on the

‘Product’ VET is approximately 16% slower on average than the execution time

of Q5-2 that performed on the ‘product’ CTT when 1, 10, 50, and 100 rows are

inserted. The results of this experiment are shown in Figure 5-3 and Table 5-1.

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

109

Ti
m

e
(S

ec
)

Number of inserted rows

Figure 5-3: Inserting rows experiment

Table 5-1: The query execution times of inserting rows experiment (Exp. 5-1)

Number of
inserted rows

VET (Q5-1)
Time in seconds

CTT (Q5-2)
Time in seconds

1 0.242 0.162
10 2.427 1.624
50 7.065 6.330
100 13.434 11.356

2) Updating Physical and Virtual Rows Experimental Result: The experimental

study of Exp.5-2 is showing that the execution time of Q5-3 that performed on the

‘Product’ VET is approximately 12% slower on average than the execution time

of Q5-4 that performed on the ‘product’ CTT when 1, 10, 50, and 100 rows are

updated. The results of this experiment are shown in Figure 5-4.

0

5

10

15

1 10 50 100

Ins VET (Q5-1)

Ins CTT (Q5-2)

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

110

Ti
m

e
(S

ec
)

Number of updated rows

Figure 5-4: Updating rows experiment

Table 5-2: The query execution times of updating rows experiment (Exp. 5-2)

Number of
updated rows

VET (Q5-3)
Time in seconds

CTT (Q5-4)
Time in seconds

1 0.140 0.111
10 1.400 1.116
50 5.971 5.633
100 13.186 11.25

3) Deleting Physical and Virtual Rows Experimental Result: The experimental

study of Exp.5-3 is showing that the execution time of Q5-5 that performed on the

‘Product’ VET is approximately 73% faster on average than the execution time of

Q5-6 that performed on the ‘product’ CTT when 1, 10, 50, and 100 rows are

deleted. The results of this experiment are shown in Figure 5-5.

0
2
4
6
8

10
12
14

1 10 50 100

Upd VET (Q5-3)

Upd CTT (Q5-4)

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

111

Ti
m

e
(S

ec
)

Number of deleted rows

Figure 5-5: Deleting rows experiment

Table 5-3: The query execution times of deleting rows experiment (Exp. 5-3)

Number of
deleted rows

VET (Q5-5)
Time in seconds

CTT (Q5-6)
Time in seconds

1 0.143 0.503
10 1.430 5.037
50 6.374 25.633
100 14.498 52.506

Table 5-4: The experiments queries

Query No. Query Details
Q1 1

2

3

SELECT max(table_row_id) From table_row;
SELECT * FROM table_index WHERE tenant_id=1000 and db_table_id=16 and

table_column_id=47 and row_value='300000' order by table_row_id ASC;
INSERT into table_row(table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,1,1000, '300000',16,47);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,2,1000, '1000',16,48);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,3,1000, '123123',16,49);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,4,1000, '11.5',16,50);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,5,1000, 'Red',16,51);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,6,1000, '100',16,52);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,7,1000, '10 cm',16,53);
INSERT into table_row (table_row_id, serial_id, tenant_id, value, db_table_id,

table_column_id) values (50000001,8,1000, '140 g',16,54);

0
10
20
30
40
50
60

1 10 50 100

Ins VET (Q5-5)

Ins CTT (Q5-6)

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

112

4

INSERT into table_index (tenant_id, value, table_row_id, serial_id, db_table_id,
table_column_id) values (1000, '300000',50000001,1,16,47);

INSERT into table_index (tenant_id, value, table_row_id, serial_id, db_table_id,
table_column_id) values (1000, ‘1000’,50000001,2,16,48);

INSERT into table_index (tenant_id, value, table_row_id, serial_id, db_table_id,
table_column_id) values (1000, '11.5',50000001,4,16,50);

Q2 1 INSERT into product (product_id, tenant_id, product_bus_id, standard_cost, color,
price, size, weight) values (300000,1000,'123123',11.5,'Red',100,'10 cm','140 g');

Q3 1

2

3

SELECT * FROM table_index WHERE tenant_id=1000 and db_table_id=16 and
table_column_id=47 and row_value='300000' order by table_row_id ASC;

UPDATE table_row set value = ‘444333' WHERE tenant_id = 1000 AND
db_table_id = 16 AND table_column_id = 49 AND table_row_id =50000001;

UPDATE table_row set value = '12.5' WHERE tenant_id = 1000 AND db_table_id
= 16 AND table_column_id = 50 AND table_row_id =50000001;

UPDATE table_row set value = 'Blue' WHERE tenant_id = 1000 AND db_table_id
= 16 AND table_column_id = 51 AND table_row_id =50000001;

UPDATE table_row set value = '105' WHERE tenant_id = 1000 AND db_table_id
= 16 AND table_column_id = 52 AND table_row_id =50000001;

UPDATE table_row set value = '105 cm' WHERE tenant_id = 1000 AND
db_table_id = 16 AND table_column_id = 53 AND table_row_id =50000001;

UPDATE table_row set value = '155 g' WHERE tenant_id = 1000 AND db_table_id
= 16 AND table_column_id = 54 AND table_row_id =50000001;

UPDATE table_index set value = '12.5' WHERE tenant_id = 1000 AND
db_table_id = 16 AND table_column_id = 50 AND table_row_id =50000001;

Q4 1 UPDATE product SET product_bus_id = '444333', standard_cost = 12.5, color =
'Blue', price = 105, size = '105 cm', weight = '155 g' WHERE tenant_id = 1000 and
product_id = 300000;

Q5 1

2

3

4

5

SELECT * FROM table_relationship WHERE tenant_id=1000 and
(db_table_id=16 or target_table_id=16) order by table_relationship_id;

SELECT * FROM table_column WHERE data_type= 2 or data_type = 3 and
db_table_id=16 order by table_column_id;

SELECT * FROM table_index WHERE tenant_id=1000 and db_table_id=17 and
table_column_id=58 and row_value='300000' order by table_row_id ASC;

DELETE from table_index WHERE tenant_id = 1000 AND db_table_id = 16
AND table_row_id =50000001;

DELETE from table_row WHERE tenant_id = 1000 AND db_table_id = 16 AND
table_row_id =50000001;

Q6 1

2

3
4

5

SELECT c.COLUMN_NAME FROM
INFORMATION_SCHEMA.TABLE_CONSTRAINTS pk ,

INFORMATION_SCHEMA.KEY_COLUMN_USAGE c where
pk.TABLE_NAME = 'product' and CONSTRAINT_TYPE = 'PRIMARY KEY'
and c.TABLE_NAME = pk.TABLE_NAME and c.CONSTRAINT_NAME =
pk.CONSTRAINT_NAME;

SELECT distinct table_name from
INFORMATION_SCHEMA.KEY_COLUMN_USAGE where column_name in
('product_id');

SELECT sales_fact_id FROM sales_fact WHERE product_id=300000 limit 1;
SELECT * FROM table_relationship WHERE tenant_id=1000 and

shared_table_name = 'product' order by table_relationship_id;
DELETE FROM product WHERE tenant_id = 1000 and shr_product_id = 300000;

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

113

5.4 SUMMARY

This chapter proposes a multi-tenant data management service based on EET,

which called EETSHS. This service provides functions that allow tenants to manage

their data by calling the service functions, without the need of writing SQL queries

and backend data management code. In using this service, tenants can create VETs

and create VETs’ columns, rows, relationships, primary keys, indexes, and other

columns constraints. In addition, tenants can create CTTs’ rows, and database

relationships between CTTs and VETs, while the rest of the CTT database operations,

including creating CTTs, CTTs’ columns, database relationships between two CTTs,

primary keys, indexes, and other columns constraints can be managed from a

traditional RDBMS instead of EETSHS. That is because CTTs are shared between

multiple tenants, and changing any of these operations affect all the tenants.

Moreover, this service ensures a high level of multi-tenant data quality,

configurability, consistency, accessibility, and manageability. In this chapter, three

algorithms were developed to manage CTTs and VETs rows, and several experiments

were performed using these algorithms to measure the feasibility and effectiveness of

managing data using this service that based on EET. The experimental results show

that the query execution time of inserting and updating rows in the tenants’ CTTs is

slightly faster than in the tenants’ VETs. This increase in the query execution time of

VET is not significant compared to the benefits that this service brings to SaaS and

Big Data applications. The experimental results of deleting rows from the tenants’

CTTs are approximately four times slower than deleting them from the tenants’

VETs. This increase in the query execution time occurs in CTTs that are the

traditional physical tables of EET, due to the process of deleting a CTT row is more

complicated than VET. As long as EETSHS checks before deleting a CTT row, if the

CTT has a master-detail relationship with other CTTs or VETs, and it checks if any of

these tables have any row with references to the row that need to be deleted. In

general, these experimental results make this service and EET schema a suitable

Chapter 5: Multi-tenant Schema Handler Method Haitham Yaish

114

candidate for the management of multi-tenant data for software applications in

general, and SaaS and Big Data applications in particular.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

115

CHAPTER 6

MULTI-TENANT DATABASE PROXY

METHOD

An important challenge in the design of multi-tenant databases that support SaaS

or Big Data application is to provide a solution that manages large volumes of data

collected from different data sources. It is a difficult and complex task to integrate

and utilize such data and to find ways to use it in businesses and operational

strategies. These various collections of data require a multi-tenant data service to

accommodate these collections of data together and make them operate as one

database. This chapter proposes a multi-tenant database proxy service, called Elastic

Extension Tables Proxy Service (EETPS). This service is based on EET, and it

integrates, generates, and executes tenants’ queries by using a codebase solution that

converts multi-tenant queries into traditional database queries and execute them in a

RDBMS.

The remainder of this chapter is structured as follows. Section 6.1 proposes the

EET proxy service. Section 6.2 presents sample algorithms for five functions of

EETPS. Section 6.3 presents a set of experiments to compare the performance of

retrieving data from CTTs, integrated CTTs and VETs, and VETs. Section 6.4

concludes this chapter.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

116

6.1 ELASTIC EXTENSION TABLES PROXY

SERVICE

The Elastic Extension Tables Proxy Service combines, generates, and executes

tenants’ queries by using a codebase solution which converts multi-tenant queries into

traditional database queries, then executes them in a RDBMS. This service has three

objectives: (1) allowing the tenants' applications to retrieve table rows from CTTs,

VETs, or both CTTs and VETs; (2) allowing tenants to extend a business domain

database that based on traditional RDBMS during their applications’ runtime

execution; (3) avoiding tenants from spending money and efforts on writing SQL

queries, learning special programming languages, and writing backend data

management code by calling functions from this service, which retrieves simple and

complex queries including join operations, union operations, filtering on multiple

properties, and filtering of data based on subqueries results. These functions return a

two dimensional array (Object [] []), where is the number of array rows that

represents a number of retrieved rows, and is the number of array columns that

represent a number of retrieved columns for a particular CTT or VET. These

functions are designed to retrieve tenants’ data from the following tables:

 One table, either a CTT or a VET.

 Two tables have One-to-One, One-to-Many, Many-to-One, Many-to-Many, or

Self-referencing relationships. These relationships can be between two VETs, two

CTTs, or one VET and one CTT.

 Two tables based on a common field between them, by using different types of

joins including Left Join, Right Join, Inner Join, Outer Join, Left Excluding Join,

Right Excluding Join, and Outer Excluding Join. The Join operations can be used

between two VETs, two CTTs, or a VET and a CTT.

 Two tables or more may have or may not have relationships between them, by

using the union operator that combines the result-set of these tables whether they

are CTTs or VETs.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

117

 Two or more tables that have relationships between them, by using filters on

multiple tables, or filtering data based on the results of subqueries.

EET Proxy Service
Generating Query

Executing Query

Storing
Retrieved
Rows in

Two
Dimensional

Array

Single Table
Function

Master-details
Relationship Function

Left Join
Function

Targeted Tables
Function

Union
Function

Query Options

Select Clause

Where
Clause

Query
LIMIT

Single & Composite
PK

Logical Operations Arithmetic Operations
Aggregate
Functions

Mathematical
Functions

API

EETACS

EETQOS

DAO
ORM

Figure 6-1: EETPS overview architecture

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

118

Moreover, the EETPS functions have the capabilities of retrieving data from CTTs

or VETs by using query options, including Logical Operators, Arithmetic operators,

Aggregate Functions, Mathematical functions, Using Single or Composite Primary

Keys, Specifying Query SELECT clauses, Specifying Query WHERE Clause,

Specifying Query Limit, and Retrieving BLOB and CLOB Values. The overview

architecture of the EETPS is shown in Figure 6-1. This architecture shows the main

six layers of EETPS, including the presentation layer, the API layer, the service layer,

DAO layer, ORM layer, and the domain layer. The presentation layer represents the

applications that may access EET schema through the EETPS such as Big Data, SaaS,

mobile, web, and stand-alone applications. The API layer consists of EET Data

Retrieval API. The service layer presents the details of EETPS and the other two

services that interact with it including, EETACS and EETQOS. The details of these

interactions are stated in Chapter 3. The DAO layer consists of the CTTDAO and

EETDAO. The ORM layer consists of the ORM objects of EET schema. Finally, the

Domain layer consists of the multi-tenant EET schema. The presentation layer allows

the tenants of the service, to retrieve data by calling functions from the EETPS

through the API layer, and passing parameters to these functions. The invoked

EETPS function generates a tenant query from CTTs and/or VETs by using the ET

and a number of query options, and then executes the generated query in a RDBMS.

The RDBMS returns the retrieved table rows from EET and passes these rows back to

the EETPS to store them in an array. Finally, the EETPS returns the tenant’s

requested data in an array to the tenant through the API layer.

6.2 ELASTIC EXTENSION TABLES PROXY

SERVICE ALGORITHMS
In this section, we present the main algorithms of EETPS functions and some

subsidiary algorithms of these main algorithms.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

119

6.2.1 SINGLE TABLE QUERY ALGORITHM

This section presents the main algorithm and some subsidiary algorithms of the

Single Table function that retrieves table rows from a CTT or a VET. This algorithm

has three different cases to retrieve table rows from a VET. Firstly, retrieving rows

from a VET by specifying a set of primary keys. Secondly, retrieving rows from a

VET by specifying a set of table row IDs that are stored in ‘table_row’ ET. Thirdly,

retrieving all rows of a CTT or a VET without specifying any primary key or row ID.

1) Single Table Main Algorithm: This algorithm is used to retrieve table rows from

one single table either a CTT or a VET, and it is outlined in Definition 6-1 and

Algorithm 6-1.

Definition 6-1 (Single Table Query Main Algorithm): T denotes a tenant ID. B

denotes a table name. denotes a set of table row IDs. denotes a set

of primary keys. S denotes a string of the SELECT clause parameters. W denotes a

string of the WHERE clause. F denotes the first result number of a query limit. M

denotes the maximum amount number of a query limit. denotes the table

type (CTT or VET). denotes a set of VET indexes. denotes a

primary key indexes of a VET. denotes a set of retrieved rows from a CTT.

 denotes a set of retrieved rows from a VET. denotes a two

dimensional array that stores the retrieved rows.

Algorithm 6-1: SingleTableQuery (STQ)

Input: T, B, , , S, W, F, M, and
Output:
1. if = ‘CTT’ then
2. W ← Concatenate (W,
3. ← CovertCTTtoVETStructure(T, B, S, W, F, M) /* Algorithm 6-4

*/
4. else if = ‘VET’ then
5. if ≠ null then
6. ← GetTableRowQuery(T, B, Nil, , S, W, F, M)

/*Algorithm 6-2 */
7. else if ≠ null then

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

120

8. ← GetTableRowQuery(T, B, , Nil, S, W, F, M)
/*Algorithm 6-2 */

9. else
10. ← retrieve the primary key index column from table_column

ET using T, and B query filters
11. ← retrieve indexes from table_index ET using T, B, and

query filters
12. if B then /* If B has indexes */
13. GetTableRowQuery(T, B, , Nil, S, W, F, M)
14. /* Algorithm 6-2 */
15. else
16. ← GetTableRowQuery(T, B, Nil, Nil, S, W, F, M)
17. /* Algorithm 6-2 */
18. end if
19. end if
20. end if
21. if = ‘CTT’ then
22. StoreRowsInArray(T, B,) /* Algorithm 6-3 */
23. else if = ‘VET’ then
24. StoreRowsInArray(T, B,) /* Algorithm 6-3 */
25. end if
26. Return

2) Get Table Row Query Algorithm: This subsidiary query algorithm is used to

retrieve tenant’s table rows from a VET. The database query of this algorithm uses

UNION operator keyword to combine the result-set of three SELECT statements for

three tables, including ‘table_row', ‘table_row_blob', and ‘table_row_clob' ETs when

the VET contains BLOB and/or CLOB. However, if the VET does not contain BLOB

and CLOB then this algorithm do not use the UNION operator in the query and

instead it retrieve data from only the ‘table_row’ ET. The details of this algorithm are

outlined in Definition 6-2 and Algorithm 6-2.

Definition 6-2 (Get Table Row Query Algorithm): T denotes a tenant ID. B

denotes a table name. denotes a set of table row IDs. denotes a

primary key row matrix with 2 rows and n columns. The first row stores

a that denotes a value of virtual primary key column ID stored in the

‘table_column_id’ column of any of the three ETs, including the ‘table_row’, the

‘table_row_blob’, and the ‘table_row_clob’. The second row stores a that

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

121

denotes the value of the . S denotes a string of the SELECT clause. W

denotes a string of the WHERE clause. F denotes the first result number of a query

limit. M denotes the maximum amount number of a query limit that is retrieved from

the ‘table_row’ ET. denotes a string contains the structure of a select

statement that is executed in this algorithm. denotes the retrieved rows

from RDBMS after executing the .

Algorithm 6-2: GetTableRowQuery (GTRQ)

Input: T, B, , , S, W, F, and M
Output:
1. W ← Concatenate(W,)
/* Store the select statement string into */
2. ← Retrieve rows from table_row ET using T, B , , S,

and W
Retrieve rows from table_row_blob ET using T, B, , S, and W
Retrieve rows from table_row_clob ET using T, B, , S, and W using
a limit of the rows result between F and M

3. ← execute in RDBMS
4. Return

3) Store Rows in Array Algorithm: This subsidiary algorithm is used to store the

retrieved data from a CTT or a VET into a two dimensional array. The number of

array rows represents a number of retrieved rows, and the number of array columns

represents a number of retrieved columns. The column names are stored in the first

element of this two dimensional array, and the column values are stored in the rest of

the array elements. The details of this algorithm are outlined in Definition 6-3 and

Algorithm 6-3.

Definition 6-3 (Store Rows in Array Algorithm): T denotes a tenant ID. B

denotes a table name. denotes a set of retrieved rows from a CTT or a

VET where each of these rows is denoted by . Each is a set of

columns and each column is denoted by . () denotes a

value stored in the of the . denotes the size of the

. denotes the size of the . denotes a set

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

122

of column names of a CTT or a VET. denotes the size of the

. denotes a two dimensional array to store the retrieved rows.

Algorithm 6-3: StoreRowsInArray (SRA)

Input: T, B, and
Output:
1. ← retrieve the column names from table_column ET using T and B

query filters
2. Initialize [] []
3. for to do /* This loop stores the row columns names */
4. [0] []
5.
6. end for
7. for to do /* This loop stores the rows columns values */
8. for to do
9. [+1] [] ()
10.
11. end for
12.
13. end for
14. Return

4) Convert CTT Structure to VET Structure Algorithm: This subsidiary

algorithm is used to convert the retrieved data from a CTT into VET structure that

consists of two-dimensional array, the number of array rows represents a number of

retrieved rows, and the number of array columns represents a number of retrieved

columns of a CTT. The column names are stored in the first element of this two

dimensional array, and the data in these columns are stored in the rest of the array

elements. The details of this algorithm are outlined in Definition 6-4 and Algorithm

6-4.

Definition 6-4 (Convert CTT to VET Structure Algorithm): T denotes a tenant

ID. B denotes a table name. S denotes a string of the SELECT clause parameter. W

denotes a string of the WHERE clause. F denotes the first result number of a query

limit. M denotes the maximum amount number of a query limit. denotes

a set of retrieved rows from a CTT where each row is denoted as . Each

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

123

is a set of columns and each column is denoted by .

() denotes a value stored in the of the .

 denotes the size of , and the size of each in the

 is denoted by . denotes a set of a CTT

columns names. denotes the size of the .

denotes a two dimensional array that stores the retrieved rows from a CTT.

Algorithm 6-4: CovertCTTtoVETStructure (CCVS)

Input: T, B, S, W, F, and M
Output:
1. ← retrieve the column names of a CTT from

INFORMATION_SCHEMA.COLUMNS view using B query filter
2. ← retrieve rows from B using T, S, W, F, and M query filters
3. for to do
4. [] []
5.
6. end for
7. for to do
8. for to do
9. [+1] [] ()
10.
11. end for
12.
13. end for
14. Return

6.2.2 ONE-TO-MANY QUERY ALGORITHM

This algorithm retrieves table rows from two CTTs, two VETs, or one VET and

one CTT. These two tables may have any of the following database relationships

between them, including One-to-One, One-to-Many, Many-to-One, Many-to-Many,

or Self-referencing. In this section, a sample algorithm of the One-to-Many

relationship is presented as outlined in Definition 6-5 and Algorithm 6-5.

Definition 6-5 (One-to-Many Query Algorithm): T denotes a tenant ID.

 denotes the master table of the One-to-Many relationship.

denotes the details table of the One-to-Many relationship. denotes a

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

124

row matrix with 2 rows and n columns. The first row stores that

denotes a primary key column name of a table. The second row stores

that denotes a table primary key value of the . S

denotes a string of the SELECT clause. W denotes a string of the WHERE clause. F

denotes the first result number of a query limit. M denotes the maximum amount

number of a query limit. denotes the type (CTT or

VET). denotes a set stores foreign keys columns names of the details

table. denotes a row matrix with 2 rows and n columns to store . The

first row stores a that denotes the column name of a foreign key.

This foreign key belongs to the details table and refers to a primary key in the master

table. The second row stores that denotes a value of the

. denotes a set of retrieved rows from a VET.

 denotes a two dimensional array to store the retrieved rows.

Algorithm 6-5: OneToManyQuery (OTMQ)

Input: T, , , S, W, F, M, and
Output:
1. if = ‘CTT’ then
2. W ← Concatenate (W,)
3. ← CovertCTTtoVETStructure(T, B, S, W, F, M)

 /* Algorithm 6-4 */
4. else if = ‘VET’ then
5. ← retrieve the foreign keys of which has a

master details relationship with from the table_relationship ET
using T, B query filters

6. for to do
7. for to do
8. if then
9. ←
10. ←
11. end if
12.
13. end for
14.
15. end for
16. GetTableRowQuery(T, B, Nil, ,S, W, F, M)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

125

 /* Algorithm 6-2 */
17. StoreRowsInArray(T, B,) /* Algorithm 6-3 */
18. end if
19. Return

6.2.3 UNION QUERY ALGORITHM

This algorithm retrieves a combined result-set of two or more tables, whether they

are CTTs, VETs or a combination of CTTs and VETs, and then stores the result-set in

an array. These tables may or may not have relationships between them. The details

of this algorithm are outlined in Definition 6-6 and Algorithm 6-6.

Definition 6-6 (Union Query Algorithm): T denotes a tenant ID.

denotes a set of CTTs and/or VETs tables names. denotes a matrix with

1 row and n columns. Each column in this matrix contains of a set of arbitrary table

columns which are related to a table in . W denotes a set of WHERE clauses

which are related to the and the columns are ordered according to the table

orders of . F denotes the first result number of a query limit. M denotes the

maximum amount number of a query limit. denotes a set of retrieved rows

from a CTT or a VET where each row is denoted as . Each is a set of

columns and each column is denoted by . () denotes a value

stored in of . denotes the size of .

denotes the size of . denotes the size of .

denotes a two dimensional array that stores the retrieved rows.

Algorithm 6-6: UnionQuery (UQ)

Input: T, , ,W, F, and M
Output:
1. for to do
2. if CTTs then
3. ← retrieve rows from by using , , F, and M

query filters
4. else if VETs then
5. ← GetTableRowQuery(T, , Nil, Nil, , , F,

M x) /* Algorithm 6-2 */

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

126

6. end if
7. for to do
8. for to do
9. [] [] ()
10.
11. end for
12.
13. end for
14.
15. end for
16. Return

6.2.4 JOIN QUERY ALGORITHM

This algorithm retrieves a combined table rows from two CTTs, two VETs, or a

VET and a CTT based on a common field between them using different types of joins

including Left Join, Right Join, Inner Join, Outer Join, Left Excluding Join, Right

Excluding Join, and Outer Excluding Join. In this section, a sample algorithm of the

Left Join is outlined in Definition 6-7 and Algorithm 6-7.

Definition 6-7 (Left Join Query Algorithm): T denotes a tenant ID.

denotes a left table of the left join operation. denotes a

right table of the left join operation. denotes a string of the SELECT clause

for the left table. denotes a string of the SELECT clause for the right table.

 denotes a string of the WHERE clause for the left table.

denotes a string of the WHERE clause for the right table. F denotes a first result

number of the query limit. M denotes the maximum amount number of the query

limit. denotes a set of primary keys of the left table. denotes a

set of primary keys of the right table. denotes a set of foreign keys of the

right table refrencing the primary keys of the left table. denotes a row

matrix with n rows and 2 columns. The first column stores a that

denotes a ‘table_row_id’ of the The second column stores a

that denotes a ‘table_row_id’ of the

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

127

denotes a row matrix with n rows and 2 columns. The

first column stores a that denotes the primary key of the

which is a CTT. The second column stores a that

denotes a ‘table_row_id’ of the which is a VET. denotes a

set of rows of the left table. denotes a set of rows of the right table.

denotes a set which consist of two elements. The first element is the

, and the second element is the . denotes a set of

rows for a left CTT and right CTT. denotes a two dimensional array that

stores the retrieved rows.

Algorithm 6-7: LeftJoinQuery (LJQ)

Input: T, , , , , , ,
F, and M
Output:
/* Left join for two CTTs */
1. if is CTT is CTT then
2. get the primary keys of the CTT from the

INFORMATION_SCHEMAviews
3. get the primary keys of the CTT from the

INFORMATION_SCHEMA views
4. retrieve rows from and from RDBMS

using the left join operator and using , ,
, , , , F, and M query filters

5. in two dimensional array
/* Left join for two VETs */
6. else if is VET is VET then
7. get the primary keys of the from table_column ET
8. get the foreign keys of the from table_relationship

ET
9. retrieve rows from the table_index ET using a join operator,

and using and query filters
10. GetTableRowQuery(T, ,

, Nil, , , F, M)
/* Algorithm 6-2*/

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

128

11. GetTableRowQuery(T, ,
, Nil, , , F, M)

/* Algorithm 6-2*/
12. Concatenate(,)
13. in two dimensional array
/* Left join for a CTT and a VET */
14. else if (is CTT is VET) then
15. get the primary keys of the from the

INFORMATION_SCHEMAviews
16. get the foreign keys of the from

table_relationship ET
17. retrieve rows for and from the

CTT and the table_index ET using a join operator and using
, query filters

18. retrieve rows from the CTT using ,
, F, and M query filters

19. GetTableRowQuery(T, ,
, Nil, , , F, M)

/* Algorithm 6-2*/
20. Concatenate(,)
21. in two dimensional array
/* Left join for a VET and a CTT */
22. else if (is VET is CTT) then
23. […] /* Symmetric to lines 15 to 21, but the difference is that the left table

is a VET and the right table is a CTT */
24. end if
25. Return

6.2.5 TARGETED TABLES QUERY ALGORITHM

This algorithm combines the result-set of two or more tables, whether they are

CTTs, VETs or a combination of both types of tables. It uses query filters on multiple

tables or filtering data based on the results of subqueries. This complex queries can be

executed by calling this function that executes this algorithm. Figure 6-2 shows an

example of a set of tables that have relationships between them. Table A (Root Table)

and table C have a Many-to-Many database relationship, while table B is a join table

that construct this relationship. Table C and table D have a One-to-Many relationship.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

129

Finally, Table D and table E (Targeted Table) have a One-to-Many relationship. This

algorithm filters the data in the Targeted Table E based on a number of query results

that obtained from table A to table D. The details of this algorithm are outlined in

Definition 6-8 and Algorithm 6-8.

Targeted Table
E

Root Table
A

T

B

C

D

Figure 6-2: Targeted Tables example

Definition 6-8 (Targeted Tables Query Algorithm): T denotes a tenant ID.

 denotes a set of CTTs and/or VETs names. denotes the size

of . denotes a set of row matrix with 2 rows and n columns. The

first row stores the column name of a table primary key. The second row stores the

value of a table primary key. denotes a set of SELECT clauses, where each

table in may have a SELECT clause. denotes a set of WHERE

clauses, where each table in may have a SELECT clause. F denotes the

first result number of a query limit. M denotes the maximum amount number of a

query limit. denotes a table type of a table in .

denotes a current root table. denotes a current targeted table. Figure 6-3

shows an example of Current Root Table and Current Targeted Table that this

algorithm may reaches during iterating the targeted table sequence list.

denotes a relationship between two tables. denotes a primary key set for a

current root table in the . This set has only primary key IDs without values

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

130

that can be obtained while iterating the loop of the algorithm for the current root

table. denotes a two dimensional array that stores the retrieved rows.

Algorithm 6-8: TargetedTablesQuery (TTQ)

Input: T, , , , , F, and M
Output:
1. for to do
2. if = () then /* has 2 table */
3. get the relationship between and
4. if is One-to-Many then
5. OneToManyQuery(T, , ,

, , , F, M ,) /* Algorithm 6-5
*/

6. else if is Many-to-One then
7. OneToManyQuery(T, , ,

, , , F, M ,) /* Algorithm 6-5 */
8. end if
9. else if >= () then /* has 3 or more tables */
10. OneToManyPKQuery(…) /* This algorithm is similar to

Algorithm 6-5, but this algorithm returns only primary key IDs and does
not store results in an array */

11. end if
12.
13. end for
14. Return

Figure 6-3: Current Root Table and Current Targeted Table

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

131

6.3 PERFORMANCE EVALUATION
The potentials of using EET multi-tenant database schema have discussed in

Chapter 4, and several experiments were performed in the same chapter to measure

the feasibility and effectiveness of EET by comparing it with UTSM, which is one of

the multi-tenant database schema techniques that implemented commercially by

Salesforce. Significant performance improvements obtained using EET when

compared to UTSM, making the EET schema a good candidate for the management

of multi-tenant data in SaaS and Big Data applications. Whereas in this chapter, five

types of experiments are carried out to verify the practicability of EETPS. These

experiments classified according to the complexity of the queries used in these

experiments, including simple, simple-to-medium, medium, medium-to-complex, and

complex. These five experiments show comparisons between the response time of

retrieving data from CTTs, VETs, or both CTTs and VETs. The response time of

retrieving data from EET is evaluated by accessing the EETPS functions.

6.3.1 EXPERIMENTAL SETUP

The EETPS was implemented in Java 1.6.0, Hibernate 4.0, and Spring 3.1.0. The

database is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2. Both, the

database and the application server are deployed on the same PC. The operating

system is Windows 7 Home Premium, with Intel Core i5 2.40GHz CPU, 8 GB of

RAM memory, and 500 GB of hard disk storage.

6.3.2 EXPERIMENTAL DATA SET AND RESULTS

The EETPS designed and developed to serve multiple tenants in one instance

application. However, in this chapter the aim of the experiments is to evaluate the

performance and show the differences between retrieving data of CTTs, VETs, or both

CTTs and VETs together for one tenant. As long as in the multi-tenant database, the

data of each tenant is isolated in a table partition, these experiments can evaluate the

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

132

effectiveness of retrieving each single tenant’s data from the EET multi-tenant

database. Moreover, the experiments are performed in one single server instance,

because before anyone starts thinking to scale-up or scale-out multi-tenant database to

optimize its performance, the performance of the EETPS should be tested in a single

instance application. In the five experiments, the test is performed on fourteen queries

twice, the first test to retrieve only 1 row, and the second test to retrieve 100 rows by

using the same queries. In order to have accurate comparisons, the same data input is

used for CTTs, VETs and CTT-and-VET to retrieve the same data output. The

execution times of these query experiments are recorded based on six data sets for all

the five types of experiments. These six data sets contain, (1) 500 rows, (2) 5,000

rows, (3) 10,000 rows, (4) 50,000 rows, (5) 100,000 rows, and (6) 200,000 rows. In

this section, the average execution time is recorded by executing ten tests on each of

the six data sets to show accurate results. All of these data sets were for one tenant. In

all the experimental diagrams, the vertical axis shows the execution time in

milliseconds, and the horizontal axis shows the total number of rows that stored in a

tenant’s table. In the five experiments, the 'tenant_id' equals 1000. The CTTs that are

used in the experiments, including ‘product’, ‘sales_fact’ and ‘sales_details’, and the

corresponding ‘db_table_id’ of VETs for these tables are 16, 17, and 18 respectively.

The data structure of the queries that is used in the experiments are shown in Figure 6-

22, and listed below:

1) Simple Query Experiment (Exp. 6-1): In this experiment, the function of the

Single Table Query Algorithm that retrieves data from a CTT is invoked by executing

Query 6-1 (Q 6-1) that comprises of the Individual Query (IQ) 1, and retrieve the

same data from a VET by executing Query 6-2 (Q 6-2) that comprises of IQ2 – IQ4.

These experimental tests show how the Single Table Algorithm retrieves physical

rows from a CTT and virtual rows from a VET. The three cases that this algorithm is

handling are described in Section 6.2. This experiment studies the third case that

retrieves all rows of the ‘product’ CTT and the ‘product’ VET from the Single Table

function without specifying any primary keys or row IDs. The structure of the

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

133

‘product’ table is shown in Figure 6-4 (a). The ‘db_table_id’ of the ‘product’ VET

equals 16. The experimental results of Exp. 6-1 shows that the performance of the

query execution time of a VET is faster than a CTT when 1 or 100 of table rows are

retrieved. The details of the queries are used in this experiment and shown in Table 6-

13 – 6-14, the output of these queries is shown in Figure 6-5, and the throughputs of

this experiment are depicted in Figure 6-6 – 6-7 and Table 6-1 – 6-2.

Figure 6-4: The tables structures used in the experiments

Figure 6-5: The outputs of the Simple Query Experiment (Single Table)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

134

Ti
m

e
(S

ec
)

Number of rows

Figure 6-6: The experimental results of retrieving 1 row from the Single Table function

Table 6-1: The query execution times of retrieving 1 row from the Single Table experiment (Exp. 6-

1)

Number of
populated rows

CTT (Q 6-1)
Time in seconds

VET (Q 6-2)
Time in seconds

500 0.309 0.223
5000 0.309 0.229
10000 0.329 0.235
50000 0.332 0.245

100000 0.396 0.282
200000 0.442 0.283

Ti
m

e
(S

ec
)

Number of rows

Figure 6-7: The experimental results of retrieving 100 rows from the Single Table function

0

0.1

0.2

0.3

0.4

0.5

500 5000 10000 50000 100000 200000

CTT (Q6-1)

VET (Q6-2)

0

0.1

0.2

0.3

0.4

0.5

0.6

500 5000 10000 50000 100000 200000

CTT (Q6-1)

VET (Q6-2)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

135

Table 6-2: The query execution times of retrieving 100 rows from the Single Table experiment

(Exp. 6-1)

Number of
populated rows

CTT (Q 6-1)
Time in seconds

VET (Q 6-2)
Time in seconds

500 0.492 0.293
5000 0.495 0.309
10000 0.499 0.343
50000 0.515 0.366

100000 0.556 0.379
200000 0.564 0.388

2) Simple-to-Medium Query Experiment (Exp. 6-2): In this experiment, the

function of One-to-Many Query Algorithm is invoked to retrieve data from two CTTs

by executing Query 6-3 (Q 6-3) that comprises of IQ5, two VETs by executing Query

6-4 (Q 6-4) that comprises of IQ6 and IQ7, and CTT-and-VET by executing Query 6-

5 (Q 6-5) that comprises of IQ8 and IQ7 respectively. The focus of this experiment is

to study each of the two table combinations that have a One-to-Many relationship

between them. The master table of this relation is the 'product' table, and the details

table is the ‘sales_fact’ table. The structure of these two tables is shown in Figure 6-4

(a) and Figure 6-4 (b). The value of the ‘product_id’ column that is used in this

experiment equals 100 for both the ‘product’ CTT and VET. The ‘product_id’ of the

VET is represented as the number 58. The experimental results of Exp. 6-2 show that

there is an approximate symmetry in the performance of the query execution time of

VET and CTT-and-VET and they are one time faster than CTT when 1 row is

retrieved. On the other hand, when 100 rows are retrieved, the query execution time

of CTT is faster than VET, and CTT-and-VET is the fastest of the three queries.

Moreover, the experimental results show that the execution time of CTT is

approximately the same when 1 row and 100 rows are retrieved, whereas it increases

for VET and CTT-and-VET when 100 rows are retrieved. The details of the queries

used in this experiment are shown in Table 6-13 – 6-14, the output of these queries is

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

136

shown in Figure 6-8, and the throughputs of this experiment are depicted in Figure 6-

9 – 6-10 and Table 6-3 – 6-4.

Figure 6-8: The outputs of the Simple-to-Medium Query Experiment (One-to-Many)

Ti
m

e
(S

ec
)

Number of rows

Figure 6-9: The experimental results of retrieving 1 row from the One-to-Many function

0

0.1

0.2

0.3

0.4

0.5

0.6

500 5000 10000 50000 100000 200000

CTT (Q6-3)

VET (Q6-4)

CTT & VET (Q6-5)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

137

Table 6-3: The query execution times of retrieving 1 row from the One-to-Many experiment

(Exp. 6-2)

Number of
populated rows

CTT (Q 6-3)
Time in seconds

VET (Q 6-4)
Time in seconds

CTT & VET (Q 6-5)
Time in seconds

500 0.432 0.235 0.207
5000 0.444 0.235 0.226
10000 0.462 0.236 0.234
50000 0.467 0.241 0.245
100000 0.483 0.241 0.253
200000 0.505 0.280 0.267

Ti
m

e
(S

ec
)

Number of rows

Figure 6-10: The experimental results of retrieving 100 rows from the One-to-Many function

Table 6-4: The query execution times of retrieving 100 rows from the One-to-Many
experiment (Exp. 6-2)

Number of
populated rows

CTT (Q 6-3)
Time in seconds

VET (Q 6-4)
Time in seconds

CTT & VET (Q 6-5)
Time in seconds

500 0.444 0.486 0.274
5000 0.464 0.491 0.296
10000 0.477 0.508 0.337
50000 0.495 0.534 0.338
100000 0.494 0.562 0.342
200000 0.537 0.568 0.365

3) Medium Query Experiment (Exp. 6-3): In this experiment, the function of the

Union Query Algorithm that retrieves data from two tables is invoked by using a

0

0.1

0.2

0.3

0.4

0.5

0.6

500 5000 10000 50000 100000 200000

CTT (Q6-3)

VET (Q6-4)

CTT & VET (Q6-5)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

138

union operator for two CTTs by executing Query 6-6 (Q 6-6) that comprises of IQ9

and IQ10, for two VETs by executing Query 6-7 (Q 6-7) that comprises of IQ2, IQ3,

IQ11, IQ12, IQ13, and IQ14, and for CTT-and-VET by executing Query 6-8 (Q 6-8)

that comprises of IQ9, IQ12, IQ13, and IQ14 respectively. The aim of using this

algorithm is to study, retrieving data from two tables. The first table is the ‘product’

table, and the second table is the ‘sales_fact’ table. The structures of these two tables

are shown in Figure 6-4 (a) and 6-4 (b). On Q 6-6, in the SELECT clause two

physical columns ‘product_id’ and ‘price’ are specified for the ‘product’ CTT, and

two physical columns ‘sales_fact_id’ and ‘unit_price’ are specified for the

‘sales_fact’ CTT. On Q 6-7, in the SELECT clause two virtual columns are specified.

The first column ID is 47, and the second column ID is 52 for the ‘product’ VET that

equals 16. The column ID 47 corresponds to the ‘product_id’ column, and the column

ID 52 corresponds to the ‘price’ column of the ‘product’ VET. In addition, in the

SELECT clause two virtual columns are specified for the ‘sales_fact’ VET that equals

17. The first column is 55, and the second column is 61. The column ID 55

corresponds to the ‘sales_fact_id’ and the column ID 61 corresponds to the

‘unit_price’ of the ‘sales_fact’ VET. Finally, in Q 6-8, in the SELECT clause two

physical columns ‘product_id’ and ‘price’ are specified for the ‘product’ CTT, and

two virtual columns for the ‘sales_fact’ VET. The first column is 55, and the second

column is 61. The experimental results of Exp. 6-3 shows that the query execution

time of VET is faster than CTT, and CTT-and-VET is the fastest of the three queries

when 1 and 100 rows are retrieved. Moreover, this experiment shows that the query

execution times of the three types CTT, VET, and CTT-and-VET are approximately

the same when 1 row and 100 rows are retrieved. The details of the queries used in

this experiment are shown in Table 6-13 – 6-14, the output of these queries is shown

in Figure 6-11, and the throughputs of this experiment are depicted in Figure 6-12 –

6-13 and Table 6-5 – 6-6.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

139

Figure 6-11: The outputs of the Medium Query Experiment (Union)

Ti
m

e
(S

ec
)

Number of rows

Figure 6-12: The experimental results of retrieving 1 row from the Union function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

500 5000 10000 50000 100000 200000

CTT (Q6-6)

VET (Q6-7)

CTT & VET (Q6-8)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

140

Table 6-5: The query execution times of retrieving 1 row from the Union

Experiment (Exp. 6-3)

Number of
populated rows

CTT (Q 6-6)
Time in seconds

VET (Q 6-7)
Time in seconds

CTT & VET (Q 6-8)
Time in seconds

500 0.550 0.407 0.279
5000 0.559 0.427 0.294
10000 0.565 0.435 0.294
50000 0.609 0.438 0.332
100000 0.651 0.442 0.334
200000 0.653 0.461 0.347

Ti
m

e
(S

ec
)

Number of rows

Figure 6-13: The experimental results of retrieving 100 rows from the Union function

Table 6-6: The query execution times of retrieving 100 rows from the Union experiment

(Exp. 6-3)

Number of
populated rows

CTT (Q 6-6)
Time in seconds

VET (Q 6-7)
Time in seconds

CTT & VET (Q 6-8)
Time in seconds

500 0.552 0.350 0.292
5000 0.568 0.365 0.306
10000 0.575 0.386 0.312
50000 0.586 0.389 0.322
100000 0.600 0.425 0.330
200000 0.604 0.434 0.334

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

500 5000 10000 50000 100000 200000

CTT (Q6)

VET (Q7)

CTT & VET (Q8)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

141

4) Medium-to-Complex Query Experiment (Exp. 6-4): In this experiment, the

function of the Left Join Query Algorithm is invoked using a left join between three

types of table combinations. First, two CTTs by executing Query 6-9 (Q 6-9) that

comprises of IQ15 – IQ17. The two CTTs are the ‘product’ CTT and the ‘sales_fact’

CTT. Second, two VETs by executing Query 6-10 (Q 6-10) that comprises of IQ2,

IQ18, IQ19, IQ4, and IQ21. The two VETs are the ‘product VET that equals 16, and

the ‘sales_fact’ VET that equals 17. Third, a CTT and a VET by executing Query 6-

11 (Q 6-11) that comprises of IQ15, IQ8, IQ20, IQ1, and IQ21 respectively. These

two tables are the ‘product’ CTT, and the ‘sales_fact’ VET that equals 17. Figure 6-

14 shows the three Left Join operations that are used in this experiment. The

experimental results of Exp. 6-4 shows that the query execution time of CTT-and-

VET is faster than CTT, and the VET is the fastest of the three queries when 1 row

and 100 rows are retrieved. The details of the queries used in this experiment are

shown in Table 6-13 – 6-14, the output of these queries is shown in Figure 6-15, and

the throughputs of this experiment are depicted in Figure 6-16 – 6-17 and Table 6-7 –

6-8.

Figure 6-14: The three left joins of The Left Join experiment

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

142

Figure 6-15: The output of the Medium-to-Complex Query Experiment (Left Join)

Ti
m

e
(S

ec
)

Number of rows

Figure 6-16: The experimental results of retrieving 1 row from the Left Join function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

500 5000 10000 50000 100000 200000

CTT (Q9)

VET (Q10)

CTT & VET (Q11)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

143

Table 6-7: The query execution times of retrieving 1 row from the Left Join experiment

(Exp. 6-4)

Number of
populated rows

CTT (Q 6-9)
Time in seconds

VET (Q 6-10)
Time in seconds

CTT & VET (Q 6-11)
Time in seconds

500 0.601 0.439 0.437
5000 0.603 0.455 0.503
10000 0.604 0.456 0.538
50000 0.615 0.472 0.549
100000 0.646 0.482 0.549
200000 0.662 0.507 0.582

Ti
m

e
(S

ec
)

Number of rows

Figure 6-17: The experimental results of retrieving 100 rows from the Left Join 100 rows
experimental results

Table 6-8: The query execution times of retrieving 100 rows from the Left Join experiment

(Exp. 6-4)

Number of
populated rows

CTT (Q 6-9)
Time in seconds

VET (Q 6-10)
Time in seconds

CTT & VET (Q 6-11)
Time in seconds

500 0.827 0.653 0.734
5000 0.834 0.675 0.806
10000 0.887 0.720 0.821
50000 0.925 0.725 0.836
100000 0.973 0.736 0.887
200000 1.079 0.747 0.894

0

0.2

0.4

0.6

0.8

1

1.2

500 5000 10000 50000 100000 200000

CTT (Q6-9)

VET (Q6-10)

CTT & VET (Q6-11)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

144

5) Complex Query Experiment (Exp. 6-5): In this experiment, the function of the

Targeted Table Query Algorithm is invoked to join two CTTs by executing Query 6-

12 (Q 6-12) that comprises of IQ22 and IQ23, two VETs by executing Query 6-13 (Q

6-13) that comprises of IQ24 – IQ27, and CTT-and-VET by Query 6-14 (Q 6-14) that

comprises of IQ28, IQ22, IQ29, and IQ27 respectively. This experiment is used to

study, retrieving data from three targeted tables. The first table is the ‘product’ table,

the second table is the ‘sales_fact’ table, and the third table is ‘sales_fact_details’.

The structure of these three tables is shown in Figure 6-4 (a), 6-4 (b), and 6-4 (c).

These tables have database relationships between them, and multiple query filters are

used in each of these tables to filter data based on the results of subqueries, starting

from the ‘product’ table (Root Table) until the ‘sales_fact_details’ table (Targeted

Table). The ‘product’ table is filtered by retrieving only products with product IDs

equal to 100. Then the ‘sales_fact’ table is filtered by retrieving the sales transactions

that their product IDs match the sales IDs that are retrieved from the ‘product’ table,

and the quantity values that are greater or equal than 9000. Finally, the

‘sales_fact_details’ table is filtered by retrieving the sales details that their sales IDs

matches sales IDs retrieved from the ‘sales_fact’ table, and the sales discounts that

are greater or equal 30%. Figure 6-18 shows how the queries are filtered from the

three tables. On Q 6-12, the three CTTs are used as stated above. The Q 6-13 uses

three VETs, including the ‘product VET that equals 16, the ‘sales_fact’ VET that

equals 17, and the ‘sales_fact_details’ VET that equals 18. The Q 6-14 uses two

CTTs and one VET. The two CTTs are the ‘product’ CTT and the ‘sales_fact’ CTT,

and the VET is the ‘sales_fact_details’ that equals 18. The experimental results of

Exp. 6-5 shows that the query execution time of CTT is faster than VET, and CTT-

and-VET is the fastest of the three queries that retrieve 1 row. On the other hand, 100

rows are retrieved, the query execution time of VET is faster than CTT, and CTT-

and-VET is the fastest of the three queries. Most importantly, the query execution

times when retrieve 1 row or 100 rows from a VET or a CTT-and-VET are

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

145

approximately the same, whereas the increase in retrieving 100 rows from CTT is

approximately 70% on average higher than when 1 row is retrieved. The details of the

queries used in this experiment are shown in Table 6-13 – 6-14, the output of these

queries is shown in Figure 6-19, and the throughputs of this experiment are depicted

in Figure 6-20 – 6-21 and Table 6-9 – 6-10.

Figure 6-18: The query filters of the Targeted Tables experiment

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

146

Figure 6-19: The outputs of the Complex Query Experiment (Targeted Tables)

Ti
m

e
(S

ec
)

Number of rows

Figure 6-20: The experimental results of retrieving 1 row from the Targeted Tables function

0

0.2

0.4

0.6

0.8

1

500 5000 10000 50000 100000 200000

CTT (Q12)

VET (Q13)

CTT & VET (Q14)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

147

Table 6-9: The query execution times of retrieving 1 row from the Targeted Tables

experiment (Exp. 6-5)

Number of
populated rows

CTT (Q 6-12)
Time in seconds

VET (Q 6-13)
Time in seconds

CTT & VET (Q 6-14)
Time in seconds

500 0.589 0.841 0.418
5000 0.611 0.841 0.531
10000 0.636 0.875 0.541
50000 0.650 0.891 0.549
100000 0.663 0.910 0.582
200000 0.692 0.989 0.596

Ti
m

e
(S

ec
)

Number of rows

Figure 6-21: The experimental results of retrieving 100 rows from the Targeted Tables
function

Table 6-10: The query execution times of retrieving 100 rows from the Targeted Tables
experiment (Exp. 6-5)

Number of
populated rows

CTT (Q 6-12)
Time in seconds

VET (Q 6-13)
Time in seconds

CTT & VET (Q 6-14)
Time in seconds

500 1.006 0.833 0.406
5000 1.083 0.863 0.578
10000 1.059 0.875 0.596
50000 1.068 0.884 0.599
100000 1.072 0.897 0.601
200000 1.167 0.986 0.618

0
0.2
0.4
0.6
0.8

1
1.2
1.4

500 5000 10000 50000 100000 200000

CTT (Q12)

VET (Q13)

CTT & VET (Q14)

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

148

Figure 6-22: The structures of the queries used in the experiments

The five experiments that presented above are summarized in Figure 6-23 and

Table 6-11, which show the average query execution time of the six data sets for each

experiment when 1 row is retrieved, and Figure 6-24 and Table 6-12 that show the

same when 100 rows are retrieved. The result of these experiments indicates that most

of the experiments that are performed on the EETPS functions show that the query

execution of retrieving data from VET and CTT-and-VET is faster than CTT

(traditional physical tables). Except in two cases, first, when 100 rows are retrieved

from the One-to-Many function, VET is slightly slower than CTT. Second, when 1

row is retrieved from the Targeted Tables function VET is slower than CTT and the

average difference between them is 236 milliseconds.

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

149

TI
M

E
(S

EC
)

Figure 6-23: The average experimental results of retrieving 1 row

Table 6-11: The average experimental results of retrieving 1 row in milliseconds

Retrieving
1 Row

CTT VET CTT-and-VET

Single Table (Exp. 6-1) Q 6-1 Q 6-2
352 249

One-to-Many (Exp. 6-2) Q 6-3 Q 6-4 Q 6-5
465 244 238

Union (Exp. 6-3) Q 6-6 Q 6-7 Q 6-8
579 435 313

Left Join (Exp. 6-4) Q 6-9 Q 6-10 Q 6-11
621 468 526

Targeted Tables (Exp. 6-5) Q 6-12 Q 6-13 Q 6-14
640 876 536

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Single Table
(EXP. 6-1)

1-to-M
(EXP. 6-2)

Union
(Exp. 6-3)

Left Join
(Exp. 6-4)

Targeted
Tables

(Exp. 6-5)

CTT

VET

CTT & VET

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

150

TI
M

E
(S

EC
)

Figure 6-24: The average experimental results of retrieving 100 rows

Table 6-12: The average experimental results of retrieving 100 rows in milliseconds

Retrieving
100 Row

CTT VET CTT-and-VET

Single Table (Exp. 6-1) Q 6-1 Q 6-2
520 346

One-to-Many (Exp. 6-2) Q 6-3 Q 6-4 Q 6-5
485 524 325

Union (Exp. 6-3) Q 6-6 Q 6-7 Q 6-8
580 391 316

 Left Join (Exp. 6-4) Q 6-9 Q 6-10 Q 6-11
920 709 829

Targeted Tables (Exp. 6-5) Q 6-12 Q 6-13 Q 6-14
1075 889 566

0

0.2

0.4

0.6

0.8

1

1.2

Single Table
(Exp. 6-1)

1-to-M
(Exp. 6-2)

Union
(Exp. 6-3)

Left Join
(Exp. 6-4)

Targeted
Tables
(Exp.5)

CTT

VET

CTT & VET

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

151

Table 6-13: The experiments queries

Query No.

Query Name A set of Individual
Query (IQ) Executed

in an Algorithm
Sequentially (The

Details are in
APPENDIX II)

Q 6-1 Single Table Query for a
CTT.

IQ1.

Q 6-2 Single Table Query for a
VET.

IQ2, IQ3, and IQ4.

Q 6-3 One-to-Many Query for two
CTTs.

IQ5.

Q 6-4 One-to-Many Query for two
VETs.

IQ6, and IQ7.

Q 6-5 One-to-Many Query for a
CTT and a VET.

IQ8, and IQ7.

Q 6-6 Union Query for Two CTTs. IQ9, and IQ10.
Q 6-7 Union Query for Two VETs. IQ2, IQ3, IQ11, IQ12,

IQ13, and IQ14.
Q 6-8 Union Query for a CTT and a

VET.
IQ9, IQ12, IQ13, and
IQ14.

Q 6-9 Left Join Query for two
CTTs.

IQ15, IQ16, and IQ17.

Q 6-10 Left Join Query for two
VETs.

IQ2, IQ18, IQ19, IQ4,
and IQ21.

Q 6-11 Left Join Query for a CTT
and a VET.

IQ15, IQ8, IQ20, IQ1,
and IQ21.

Q 6-12 Targeted Tables Query for
two CTTs.

IQ22, and IQ23.

Q 6-13 Targeted Tables Query for
two VETs.

IQ24, IQ25, IQ26, and
IQ27.

Q 6-14 Targeted Tables Query for a
CTT and a VET.

IQ28, IQ22, IQ29, and
IQ27.

Table 6-14: The experiments queries details

Individual
Query
(IQ)

Query Details

IQ1 SELECT * FROM product p WHERE p.tenant_id=1000 ORDER BY
p.product_id LIMIT 1;

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

152

IQ2 SELECT tc.table_column_id FROM table_column tc WHERE
tc.tenant_id=1000 and tc.db_table_id=16 and tc.is_primary_key_column
= true ORDER BY tc.table_column_id;

IQ3 SELECT distinct ti.table_row_id FROM table_index ti WHERE
ti.tenant_id=1000 and ti.db_table_id=16 and ti.table_column_id=47
LIMIT 1;

IQ4 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id = 16 and
tr.table_row_id IN (1100) ORDER BY 3,4 LIMIT 8 OFFSET 0;

IQ5 SELECT * FROM sales_fact sf WHERE sf.tenant_id=1000
andsf.product_id = 100 ORDER BY sf.sales_fact_id LIMIT 1;

IQ6 SELECT trs.table_column_id FROM table_relationship trs WHERE
trs.tenant_id=1000 and trs.db_table_id=17 and trs.table_type=2 and
trs.target_table_id='16' and (trs.table_column_id=58 or
trs.target_column_id=58) ORDER BY 1 ASC;

IQ7 SELECT tr.table_column_id, tr.value, tr.table_row_id , tr.serial_id
FROM table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id =17
and tr.table_row_id IN (SELECT distinct tr.table_row_id From
table_index tr WHERE tr.tenant_id =1000 and tr.db_table_id =17 and
((tr.table_column_id = '58' and tr.value ='100')) LIMIT 1 OFFSET 0)
ORDER BY 3,4 ASC LIMIT 11 OFFSET 0;

IQ8 SELECT trs.table_column_id FROM table_relationship trs WHERE
trs.tenant_id=1000 and trs.db_table_id=17 and trs.table_type=1 and
trs.shared_table_name='product' and
trs.shared_column_name='product_id' ORDER BY 1 ASC;

IQ9 SELECT p.product_id, p.price FROM product p WHERE
p.tenant_id=1000 ORDER BY p.product_id LIMIT 1;

IQ10 SELECT sf.sales_fact_id , sf.unit_price FROM sales_fact sf WHERE
sf.tenant_id=1000 ORDER BY sf.sales_fact_id LIMIT 1;

IQ11 SELECT tr.table_column_id, tr.value FROM table_row tr WHERE
tr.tenant_id =1000 and tr.db_table_id = 16 and tr.table_row_id IN
(1100) and table_column_id in (47,52) ORDER BY tr.table_row_id,
tr.serial_id LIMIT 2 OFFSET 0;

IQ12 SELECT tc.table_column_id FROM table_column tc WHERE
tc.tenant_id=1000 and tc.db_table_id=17 and
tc.is_primary_key_column=true ORDER BY tc.table_column_id;

IQ13

SELECT distinct ti.table_row_id FROM table_index ti WHERE
ti.tenant_id=1000 and ti.db_table_id=17 and ti.table_column_id=55
LIMIT 1;

IQ14 SELECT tr.table_column_id, tr.value FROM table_row tr WHERE
tr.tenant_id =1000 and tr.db_table_id = 17 and tr.table_row_id IN
(200001) and table_column_id in (55,61) ORDER BY tr.table_row_id,
tr.serial_id LIMIT 2 OFFSET 0;

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

153

IQ15 SELECT c.COLUMN_NAME FROM
INFORMATION_SCHEMA.TABLE_CONSTRAINTS
pk ,INFORMATION_SCHEMA.KEY_COLUMN_USAGE c WHERE
pk.TABLE_NAME = 'product' and CONSTRAINT_TYPE = 'PRIMARY
KEY' and c.TABLE_NAME = pk.TABLE_NAME and
c.CONSTRAINT_NAME = pk.CONSTRAINT_NAME;

IQ16 SELECT c.COLUMN_NAME FROM
INFORMATION_SCHEMA.TABLE_CONSTRAINTS
pk ,INFORMATION_SCHEMA.KEY_COLUMN_USAGE c WHERE
pk.TABLE_NAME = 'sales_fact' and CONSTRAINT_TYPE =
'PRIMARY KEY' and c.TABLE_NAME = pk.TABLE_NAME and
c.CONSTRAINT_NAME = pk.CONSTRAINT_NAME;

IQ17 SELECT * FROM product lt LEFT JOIN sales_fact rt ON lt.product_id =
rt.product_id LIMIT 1 OFFSET 0;

IQ18 SELECT trs.table_column_id FROM table_relationship trs WHERE
trs.tenant_id=1000 and trs.db_table_id=17 and trs.table_type=2 and
trs.target_table_id='16' and (trs.table_column_id=47 or
trs.target_column_id=47) ORDER BY 1 ASC;

IQ19 SELECT trl.table_row_id , trr.table_row_id FROM table_index trl,
table_index trr WHERE trl.tenant_id = 1000 and trr.tenant_id = 1000
and(((trl.db_table_id = 16 and trl.table_column_id = 47)
and(trr.db_table_id = 17 and trr.table_column_id = 58) and trl.value =
trr.value)) LIMIT 1 OFFSET 0;

IQ20 SELECT cttl.product_id , trr.table_row_id as right_row_id FROM
product cttl, table_index trr WHERE cttl.tenant_id = 1000 and
trr.tenant_id = 1000 and((trr.db_table_id = 17 and trr.table_column_id =
58 and trr.value = CAST(cttl.product_id AS TEXT))) LIMIT 1 OFFSET
0;

IQ21 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id = 17 and
tr.table_row_id IN (200001) ORDER BY 3,4 LIMIT 11 OFFSET 0;

IQ22 SELECT sf.sales_fact_id FROM sales_fact sf WHERE sf.tenant_id=1000
and sf.quantity >= 9000 and product_id=100 ORDER BY
sf.sales_fact_id;

IQ23 SELECT * FROM sales_details sd WHERE sd.tenant_id=1000 and
sd.discount >= 30 and (sales_fact_id in (9 , 12 , 16 , … and other IDs))
ORDER BY sd.sales_details_id LIMIT 1;

IQ24 SELECT * FROM table_relationship trs WHERE trs.tenant_id=1000 and
trs.db_table_id=16 or trs.target_table_id=16 ORDER BY
trs.table_relationship_id;

IQ25 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr JOIN table_column tc ON tr.table_column_id =
tc.table_column_id and tr.tenant_id = tc.tenant_id and tr.db_table_id =

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

154

tc.db_table_id WHERE tc.is_primary_key_column= 't' and tr.tenant_id
=1000 and tr.db_table_id =17 and tr.table_row_id IN (SELECT distinct
tr.table_row_id FROM table_row tr WHERE tr.tenant_id = 1000 and
tr.db_table_id = 17 and tr.table_column_id = 60 and(cast(value as
numeric) >= '9000') and tr.table_row_id IN (SELECT tr.table_row_id
FROM table_index tr WHERE tr.tenant_id =1000 and tr.db_table_id =17
and((tr.table_column_id = '58' and tr.value ='100')))) ORDER BY
3,4 ASC;

IQ26 SELECT * FROM table_relationship trs WHERE trs.tenant_id=1000 and
trs.db_table_id=17 or trs.target_table_id=17 ORDER BY
trs.table_relationship_id;

IQ27 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id =1000 and tr.db_table_id =18 and
tr.table_row_id IN (SELECT distinct tr.table_row_id FROM table_row tr
WHERE tr.tenant_id = 1000 and tr.db_table_id = 18 and
tr.table_column_id = 81 and(cast(value as numeric) >= '30') and
tr.table_row_id IN (SELECT distinct tr.table_row_id From table_index
tr WHERE tr.tenant_id =1000 and tr.db_table_id =18
and((tr.table_column_id = '80' and tr.value ='9') OR
(tr.table_column_id = '80' and tr.value ='12') OR (... and other symetric
query filters, but with different values)) LIMIT 1 OFFSET 0)) ORDER
BY 3,4 ASC;

IQ28 SELECT * FROM table_relationship trs WHERE trs.tenant_id=1000 and
trs.shared_table_name='product' ORDER BY trs.table_relationship_id;

IQ29 SELECT * FROM table_relationship trs WHERE trs.tenant_id=1000 and
trs.shared_table_name='sales_fact' ORDER BY trs.table_relationship_id;

6.4 SUMMARY
In this chapter, a multi-tenant proxy service called EETPS is proposed. This

service integrates, generates, and executes tenants’ queries by using a codebase

solution that converts multi-tenant queries into traditional database queries and

execute them in a RDBMS. This service has three objectives. Firstly, it allows tenants

to choose from the three database models of EET, including multi-tenant relational

database, integrated multi-tenant relational database and virtual relational database,

and virtual relational database. Secondly, it allows each single tenant to extend his

database schema, by extending the existing business domain database schema that

based on a traditional RDBMS during the application’s runtime execution. Thirdly, it

Chapter 6: Multi-tenant Database Proxy Method Haitham Yaish

155

avoids tenants from spending efforts on writing SQL queries and backend data

management code by utilizing the service functions that execute simple and complex

queries including join operations, filtering on multiple properties, and filtering of data

based on subqueries results. These three objectives, overcome the RDBMS and

NoSQL issues that discussed in the literature review in Chapter 2, except the

scalability issue of RDBMS, which is one of the future research directions of this

study. Moreover, in this chapter, five sample algorithms for five functions of EETPS

were developed, and five experiments for these functions were carried out to verify

the effectiveness of EETPS. These experiments were classified according to the

complexity of the queries that were used in the experiments. The five experiments

show comparisons between the response time of retrieving data from CTTs, VETs,

and both CTTs and VETs. The result of these experiments shows that most of the

experiments that performed by calling functions from the EETPS to retrieve data

from VET and CTT-and-VET improves the performance when compared to CTT

(traditional physical tables). These results verify the practicability and the

effectiveness of using EETPS and EET multi-tenant database and their three types of

database models. Moreover, these findings make the EET multi-tenant schema and

EETPS suitable for the software applications in general and SaaS and Big Data

applications in particular.

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

156

CHAPTER 7

MULTI-TENANT QUERY OPTIMIZER

METHOD

Organisations often spend large amounts of their time, resources and money

managing and supporting information stored in their on-premises databases, to ensure

that the right information is available when it is needed. According to statistics, data

management cost is 5 to 10 times more than the data gain cost (Alzain & Pardede

2011; Hacigümüş et al. 2002). Therefore, it is widely agreed that this is a significant

issue for organisations in general and for small and medium size organisations in

particular. Subsequently, the multi-tenant database is considered a solution for this

issue because it provides database features such as data definition, storage, and

retrieval that can be accessed from the service providers’ premises on a subscription

basis over the internet (Mateljan, Cisic & Ogrizovic 2010). However, such an

approach raises an issue in database performance, because the multi-tenant database

is shared between multiple tenants. Therefore, this contemporary database requires a

special query method to optimize different query retrievals for multiple tenants who

are using the same resources of a single multi-tenant database. The majority of

modern RDBMS such as Oracle, SQL Server (Raza et al. 2010), and PostgreSQL

(Dash et al. 2010) have a query optimizer to optimize the query execution of a single-

tenant (single-user) database. Nevertheless, the multi-tenant database requires a

special query optimizer method that plays a vital role in improving the multi-tenant

query processing and solves the issues of multi-tenant database, including isolating

tenant’s data statistics, retrieving tenant’s queries in a timely and cost efficient

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

157

manner, and making the best use of multi-tenant database resources. Salesforce states

that modern database query optimizers are designed for single-tenant databases and

they are not suitable for multi-tenant databases. That is because they are not taking in

consideration the unique characteristics of each tenant's data, such as indexes and the

gathered statistics for all tenants instead of specific statistics for a tenant or a tenant’s

user, which in return is leading to incorrect assumptions and query plans of tenants’

data (Weissman & Bobrowski 2009; Weissman et al. 2012). Therefore, to implement

a multi-tenant database on a single-tenant RDBMS, a multi-tenant query optimizer is

required by special query execution plans, which assign indexes for the tenants’ data

and gather special statistics for each single tenant and each single tenant’s user.

The main contribution of this chapter is proposing a multi-tenant optimizer service,

called Elastic Extension Tables Query Optimizer Service (EETQOS). This service

optimizes the tenant’s data retrieval using EETPS that presented in the previous

chapter (Chapter 6), through estimating the cost of different query execution plans,

and then determining the optimal query execution plan based on the estimated cost

and the structure of a given query. The query optimizer of this service does not

replace the traditional RDBMS query optimizers. In contrast, it is used to optimize

how to collect each single tenant and each single tenant’s user statistics and choose

the optimal query execution plan. Then this plan is used in EETPS to generate and

execute the tenant query in a RDBMS using its traditional query optimizer and its

powerful and advanced data management capabilities. Scalability is very significant

for multi-tenant applications, however, before anyone starts thinking to scale-out or

scale-up multi-tenant database to optimize its performance, the multi-tenant database

performance should be optimized in each single server instance by applying a proper

multi-tenant query optimizer, then any of the scale-out or the scale-up approaches can

be applied afterwards. Accordingly, the focus of this chapter will be on how to

optimize multi-tenant query performance in a single server instance and scalability

will be out of this thesis scope. Nevertheless, it is one of the future research directions

of this study. Moreover, the practicability and effectiveness of applying the EETQOS

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

158

on EETPS is verified by executing a number of different types of queries to retrieve a

tenant’s data from EET multi-tenant schema via using these two services of the EET

framework.

The remainder of this chapter is structured as follows. Section 7.1 proposes the

EET query optimizer service. Section 7.2 presents a set of experiments to evaluate the

performance of retrieving data from a VET using different multi-tenant query

optimization methods. Section 7.3 concludes this chapter.

7.1 ELASTIC EXTENSION TABLES QUERY

OPTIMIZER SERVICE

The EETQOS Architecture is shown in Figure 7-1. This query optimizer has four

aims, including gathering statistics of virtual rows that a query can potentially access,

finding the fastest path to execute a query, estimating the cost of different query

execution plans, and determining the optimal plan for execution. Then the determined

optimal execution plans are used in the EETPS that constructs and generates multi-

tenant queries, and executes them in a RDBMS by using its traditional query

optimizer. The following seven points show the components of EETQOS architecture

and the way that they are orchestrating with EETPS and EET.

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

159

Statistics

Query Input Parameters:

Index Selection

Table Row
Selection

Query Access
Control

Generate Query
in EETPS

EETPS Executes
Query in

RDBMS Query
Optimizer

Query Plan

Query Output Results

Figure 7-1: The EETQOS architecture and how it is orchestrated with EETPS and EET

7.1.1 QUERY ACCESS CONTROL

The Query Access Control component is the first component that is executed in the

EETQOS, which controls the access of multi-tenant data in CTTs and VETs. As long

as CTTs and VETs are using a ‘tenant_id’ to isolate the tenant’s data in EET multi-

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

160

tenant schema and divide it into partitions, then each tenant can have his own

partitions to store his own data and his tenant’s data. These access control

permissions are stored in the database, and before executing the users’ queries these

permissions are checked to optimize the query execution by generating the optimal

query structure, which in return reduces the query execution time. In this component,

two methods are applied to control the tenants’ users in the EET multi-tenant schema,

which in return allows EETQOS to determine the optimal query execution plan that

reduces the query execution cost. These two methods are briefly presented below, and

will be presented in details and evaluated in the following chapter (Chapter 8).

 Accessing table columns: This method allows tenants to grant their users

permissions to access some or all columns of a CTT or a VET. These permissions

can restrict the tenants’ users from accessing some or all the table columns. In

addition, these permissions can help EETQOS to determine the optimal query

execution plans by knowing if a user can access all, some, or none of the table

columns. In this method, the query optimization occurs in two cases. Firstly, when

a user cannot access any of the table columns, in this case the query is not

executed. Secondly, when a user can access some of the table columns, in this

case, the data is retrieved from some of the table columns by generating a query

structure that is different from the query structure that needs extra execution time

to retrieve data from all the table columns.

 Accessing table Rows: This method allows tenants to grant their users

permissions to access some or all rows of a CTT or a VET. These permissions can

restrict tenants’ users from accessing some or all rows of a table. These

permissions help the EETQOS to choose the optimal query execution plan based

on the number of rows that can be accessed by a user, and to generate a query

structure to retrieve data from some of the table rows, which is different from the

query structure that needs extra execution time to retrieve all the table rows.

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

161

In summary, the EETQOS allows to choose the optimal execution plan between

different query execution paths based on the tenants’ users and their different

columns and rows that they can access. This plan reduces the overhead on the EET

multi-tenant schema and accelerates the query execution time of its queries.

7.1.2 INDEX SELECTION

The Index Selection component is the second component that is executed in the

EETQOS, which checks whether a VET has virtual indexes, then accordingly

estimates the cost and chooses the optimal execution plan between different query

execution paths. These virtual indexes are related to virtual columns of a VET, and

they are typically stored in the ‘table_index’ ET. This ET stores, three types of

indexes:

 Primary Key Index: This index is typically created for a single primary key

column by having a single primary key index, or composite primary key columns

by having multiple primary key indexes for a VET.

 Foreign Key Index: This index is typically created for a single foreign key

column, or for composite foreign key columns in a VET.

 Custom Index: This index can be created for any virtual column of a VET that is

used often as a selective filter in a tenant query. The virtual column should be any

column other than the primary key and the foreign key columns.

When tenants create a VET and assign to it any of the three indexes listed above,

then this VET can have three cases to retrieve table rows. The first case is retrieving

rows from a VET by specifying primary keys. The second case is retrieving rows

from a VET by specifying table row IDs that are stored in the ‘table_row’ ET. The

third case is retrieving VET rows without specifying any primary keys or row IDs.

These three cases can construct a SELECT clause and a WHERE clause in the query

to retrieve data from a VET based on the following six execution plans:

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

162

 Primary Key: This execution plan does not use indexes; instead, it uses the

following filters to execute a query, including tenant ID, user ID, VET ID, and

specific Primary Keys.

 Row ID: This execution plan does not use indexes; instead, it uses the following

filters to execute the query, including tenant ID, user ID, VET ID, and specific

Row IDs.

 Full Table: This execution plan does not use indexes or any other filters except

the standard filters, including tenant ID, user ID, and VET ID.

 A Percentage of Custom Index: This execution plan uses a percentage of custom

index, tenant ID, user ID, VET ID, and a value belongs to the custom index IDs

that filters the query.

 All of Custom Index: This execution plan uses all the indexes IDs of a custom

index column, tenant ID, user ID, VET ID, and a value belongs to the custom

index that filters the query.

 None of Custom Index: This execution plan uses none of the indexes IDs of

Custom Index column, tenant ID, user ID, VET ID, and a particular value that

relates to the custom index column.

The EET multi-tenant schema allows each tenant to have a unique data structure,

tables, columns, and column constraints. These characteristics work side by side with

the above listed index execution plans to support multi-tenant query execution

strategies of the EETQOS.

7.1.3 TABLE ROW SELECTION

The Table Row Selection is the third component that is executed in the EETQOS.

In EET multi-tenant schema, there are three row ETs that store virtual rows of virtual

extension columns. These ETs store three different data types; therefore, they are

separated in order to store small data values in the ‘table_row’ ET, and large data

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

163

values in the other two tables. First, the ‘table_row_blob’ ET that stores all BLOB,

and second, the ‘table_row_clob’ ET that store CLOB values. More details of these

row tables are presented in Chapter 4. The reason behind separating these three tables

is to reduce the impact of BLOB and CLOB values from slowing down virtual

schema queries. It is not always the case that all VETs have BLOB and/or CLOB data

types. Therefore, this method eliminates the search in ‘table_row_blob’, and

‘table_row_clob’ ETs, if a VET has not got any of the BLOB or CLOB columns, or if

a VET has got BLOB or CLOB columns, but these columns are not part of the query

SELECT clause or WHERE clause. The Table Row Selection method helps the

EETQOS in two aspects. Firstly, checking whether a table has a CLOB or BLOB data

types, if any of these data types exists, then the query retrieves table rows from the

‘table_row’ ET, and both or either ‘table_row_blob’ or ‘table_row_clob’ ETs.

Otherwise, the query retrieves rows from only the ‘table_row’ ET. The UNION

operator keyword is used to combine the result-set of the three SELECT statements of

the three row tables if the VET only contains BLOB and/or CLOB. However, if the

VET does not contain BLOB and CLOB then the UNION operator does not use in the

query. This approach minimizes the runtime optimization overhead on the EETQOS

by avoiding using the UNION operator keyword unless it is necessary. More details

about this approach are presented in Chapter 6 in Algorithm 6-2. Secondly, separating

the data that's stored in the three row ETs, by storing small data values in the

‘table_row’ ET and large data values in two others ETs the ‘table_row_blob’ and the

‘table_row_clob’. This approach minimizes the runtime optimization overhead on the

EETQOS, by minimizing the size of the stored content in the ‘table_row’ ET that

stores most of the tenants’ data, and by accessing the BLOB and the CLOB data only

on demand.

7.1.4 STATISTICS

The concept of statistics in modern RDBMS is gathering the amount and the data

that is stored in the database. These statistics estimate the cost of different query

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

164

execution plans that determine the optimal plan. In multi-tenant databases, the

statistical concept is slightly different from the single-tenant database. In the multi-

tenant database, there are two ways of gathering statistics. Firstly, gathering statistics

of each tenant, by differentiating between the tenants’ rows. Secondly, gathering

statistics of columns and rows that can be accessed by the tenant’s user who is

allowed to access and view a query result based on groups and/or roles assigned to

this user. More details about the statistics gathering will be presented in the following

chapter (Chapter 8).

7.1.5 MULTI-TENANT DATABASE

The EETQOS is based on retrieving data stored in EET multi-tenant schema that

consists of three types of tables CTT, ET, and VET, which presented in details in

Chapter 4. The tenant’s and the tenant’s users statistics are granted from this multi-

tenant schema.

7.1.6 GENERATE QUERY

After executing the EETQOS and finding the best execution plans, the EETPS is

invoked to generate a virtual multi-tenant query based on the selected query plans that

decided from the EETQOS components.

7.1.7 EXECUTE QUERY

The EETPS executes multi-tenant database query according to the best and lowest

cost execution plan that was selected from the query optimizer components. Then this

multi-tenant query is converted into a traditional database query and is executed in

RDBMS by using its traditional query optimizer and its powerful and advanced data

management capabilities.

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

165

7.2 PERFORMANCE EVALUATION
After the EETPS of the EET framework prototype has developed, the EETQOS is

implemented on the EETPS, and six types of experiments are carried out to verify the

practicability of implementing the EETQOS on the EETPS. The aim of these

experiments is to examine the response times when EETPS consumes the EETQOS to

select the optimal tenant’s query execution plan, then uses this plan to convert the

tenant’s queries into traditional database queries, and finally executes these queries

using a traditional query optimizer of a RDBMS.

7.2.1 EXPERIMENTAL DATA SET AND SETUP

The EETPS has designed and developed to serve multiple tenants on one instance

application. Nevertheless, in this chapter the aim of the experiments is evaluating the

performance after applying the EETQOS on the EETPS for one tenant. Typically,

multi-tenant databases store massive data volumes across multiple servers to optimize

the performance of data retrieval. However, before anyone starts thinking to scale-up

or scale-out multi-tenant database to optimize its performance, the multi-tenant

database performance should be optimized in each single server instance by

implementing a proper multi-tenant query optimizer, then either of the scale-up or the

scale-out approaches can be applied afterwards. In this experiment, one machine is

used, and the Single Table function of the EETPS (presented in Chapter 6 in Section

6.2.1) is invoked to retrieve a 100 of rows from the ‘product’ VET, which is shown in

Figure 7-2. There are 200,000 rows stored in this table that belongs to a tenant whose

‘tenant_id’ equals 1000, and the ‘db_table_id’ of this table equals 16. The ‘tenant_id’,

the ‘db_table_id’, and all the filters that are specified in the experiments filter all the

queries that are implemented in these experiments. These experiments are executed

for one tenant, because, in a multi-tenant database, each tenant’s data is isolated in a

table partition. Thus, the purpose of these experiments is to evaluate the effectiveness

of retrieving data for a single tenant from the multi-tenant database by using

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

166

EETQOS. These experiments are divided into six types sharing the details of this data

set. The queries of these experiments are shown in Table 7-2, and they are structured

based on the Single Table algorithm that presented in the previous chapter (Chapter

6). The six experiments are listed below:

1) None of Custom Index Experiment (Exp.7-1): In this experiment, the aim is to

filter a query by using a query filter, which is the ‘standard_cost’ column of the

table. This filter retrieves all the rows that have a standard cost value greater than

9000 (‘standard_cost’ > 9000). In addition, it is assumed that the tenant did not

create a custom index to tune the query execution, and no any other index of the

table is used to execute Query 7-1 (Q7-1).

2) A Percentage of Custom Index Experiment (Exp.7-2): In this experiment, the

aim is to have the same assumption of using the standard cost filter that stated in

Exp.7-1. However, in this experiment, a custom index is created to tune the query

execution. Accordingly, in this experiment, the custom indexes on ‘standard_cost’

column is used to execute Query 7-2 (Q7-2), and only a particular percentage of

the table rows that match the filter criteria will be retrieved.

3) All of Custom Index Experiment (Exp.7-3): The aim of this experiment is to

benchmark the effectiveness of using all the table indexes IDs in Query 7-3 (Q7-

3), by using the same standard cost filter that is assumed in Exp.7-1.

4) Full Table Experiment (Exp.7-4): In this experiment, the aim is to benchmark

the effectiveness of not using any query filters or indexes filters in Query 7-4 (Q7-

4).

5) Primary Key Index Experiment (Exp.7-5): In this experiment, the aim is to

benchmark the effectiveness of filtering Query 7-5 (Q7-5) by using three values

of the primary key ‘product_id’, including 101, 102 and 103, and without using

any indexes or query filters.

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

167

6) Row ID Experiment (Exp.7-6): The aim of this experiment is to benchmark the

effectiveness of filtering Query 7-6 (Q7-6) by using three values of the

‘table_row_id’, including 22, 23 and 24, and without using other indexes or query

filters.

We have included Exp.7-4, Exp.7-5, and Exp.7-6 to compare the query execution

time of these experiments with the other experiments (Exp.7-1, Exp.7-2, and Exp.7-3)

of the Custom Index.

Figure 7-2: The table structure of the ‘product’ table

The EETQOS was implemented in Java 1.6.0, Hibernate 4.0, and Spring 3.1.0. The

database is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2. Both, the

database and the application server are deployed on the same PC. The operating

system is Windows 7 Home Premium, with Intel Core i5 2.40GHz CPU, 8 GB of

RAM memory, and 500 GB of hard disk storage.

7.2.2 EXPERIMENTAL RESULTS

The experimental study is showing that the average execution time for Q7-4,

Q7-5, and Q7-6 equals approximately 240 milliseconds. In addition, the average

execution time of Q7-2 is approximately 50% slower than the average execution

time of Q7-4, Q7-5, and Q7-6. Whereas, the average execution time of Q7-1 is

approximately 83% slower than the average execution time of Q7-4, Q7-5, and

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

168

Q7-6. Finally, the average execution time of Q7-3 is the slowest one, which is on

average approximately 88% slower than the average execution time of Q7-4, Q7-

5, and Q7-6. The practicability and the advancements of EET multi-tenant schema

is verified by executing the queries of Exp.7-4, Exp.7-5, and Exp.7-6 in a short

time. Whereas Exp.7-1, Exp.7-2, and Exp.7-3 compared the difference between

three Custom Index cases, including None of Custom Index (Q7-1), A Percentage

of Custom Index (Q7-2), and All of Custom Index (Q7-3). The interpretation of

these three experiments leads to the following conclusions. Firstly, if a tenant

filters a query by using a column value not indexed, and it is neither a primary key

nor a foreign key, then the EETQOS chooses the execution plan of a None of

Custom Index (Q7-1). Secondly, if a tenant uses the same column that stated in

the first point, and this column is a Custom Index, then the EETQOS chooses the

execution plan of the Percentage of Custom Index (Q7-2). Thirdly, the EETQOS

does not choose the execution plan of the All of Custom Index (Q7-3), because the

query execution cost of this query is high in comparison with the execution plan

of a None of Custom Index (Q7-1) or the Percentage of Custom Index (Q7-2). The

details results of this experiment are shown in Figure 7-3 and Table 7-1.

Ti
m

e
(S

ec
)

Showing Exp7-1 - 7-6 from left to right

Figure 7-3: The experimental results of retrieving data using filters and indexes

0

0.5

1

1.5

2

2.5

Exp. 7-1 Exp. 7-2 Exp.7-3 Exp. 7-4 Exp.7-5 Exp.7-6

Q7-1

Q7-3

Q7-4

Q7-5

Q7-6

Q7-7

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

169

Table 7-1: The query execution times of retrieving data using filters and indexes

Experiment Query executed Time in
seconds

Exp. 7-1 Q7-1 1.45
Exp. 7-2 Q7-2 0.48
Exp. 7-3 Q7-3 1.99
Exp. 7-4 Q7-4 0.25
Exp. 7-5 Q7-5 0.29
Exp. 7-6 Q7-6 0.18

Table 7-2: The experiments queries

Query No. Query Details
Q7-1 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row

tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_row tr WHERE tr.tenant_id = 1000
AND tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast (value as
numeric) > ‘9000’)) ORDER BY 3, 4 LIMIT 800 OFFSET 0;

Q7-2 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_index tr WHERE tr.tenant_id =
1000 AND tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast (row_value
as numeric) > ‘9000’)) ORDER BY 3, 4 LIMIT 800 OFFSET 0;

Q7-3 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_row tr WHERE tr.tenant_id = 1000
AND tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast (value as
numeric) > ‘9000’)) AND tr.table_row_id IN (SELECT distinct tr.table_row_id
FROM table_index tr WHERE tr.tenant_id = 1000 AND tr.db_table_id = 16)
ORDER BY 3, 4 LIMIT 800 OFFSET 0;

Q7-4 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 ORDER BY 3, 4 LIMIT 800
OFFSET 0;

Q7-5 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT DISTINCT tr.table_row_id FROM table_row tr WHERE tr.tenant_id =
1000 AND tr.db_table_id = 16 AND ((tr.table_column_id =47 AND tr.value
='101') OR (tr.table_column_id =47 AND tr.value ='102') OR
(tr.table_column_id =47 AND tr.value ='103')) ORDER BY 3,4 ;

Q7-6 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(22, 23, 24) ORDER BY 3, 4;

Chapter 7: Multi-tenant Query Optimizer Method Haitham Yaish

170

7.3 SUMMARY

A multi-tenant query optimizer service called EETQOS is proposed in this chapter.

This service estimates the cost of different query execution plans to determine the

optimal query execution plan. This query optimizer service reduces the query

execution time of EETPS that access data from EET multi-tenant schema. Moreover,

six types of experiments were carried out to verify the practicability of implementing

the EETQOS on the EETPS that is based on EET multi-tenant schema. These

experiments conclude that the cost of executing a query from a VET when using all

the indexes of that VET is high in comparison with the cost of executing the same

query without using any index. Nevertheless, the least query execution cost was

recorded when a custom index with a percentage of a VET indexes is used to retrieve

table rows from the same VET. Furthermore, these experiments confirmed the

effectiveness of using the data structure of EET multi-tenant schema that is the base

storage of EETQOS and EETPS, and the benefits of EETQOS query execution plans

for EETPS and EET multi-tenant schema.

Chapter8: Multi-tenant Access Control Method Haitham Yaish

171

CHAPTER 8

MULTI-TENANT ACCESS CONTROL

METHOD

This chapter focuses on the Shared Database - Shared Schema isolation approach

that stated in chapter 2, which requires a high degree of data isolation to ensure the

security and privacy of the tenants’ shared data. This multi-tenant data approach

consists of two data types, shared tenants’ data and tenants’ isolated data, by

integrating these two types of data together, tenants can have the complete data they

need (Domingo et al. 2010; Liu 2010). An access control service is proposed in this

chapter, called Elastic Extension Tables Access Control Service (EETACS). This

service is based on EET multi-tenant schema that designed to be used by multiple

tenants and each tenant may have multiple users. Therefore, such a database demands

a special multi-tenant access control model that provides an access control not only

for multiple tenants, but also for multiple users per tenant. This method permits each

tenant in the multi-tenant database to have several users with different types of grants

to access the tenant’s data.

The remainder of this chapter is structured as follows. Section 8.1 proposes the

EET access control service. Section 8.2 presents the columns and rows access grant

algorithms. Section 8.3 presents two experiments to verify the practicability of

granting a tenant’s user accessibility on a tenant’s table columns and rows, by using

the EETPS and EETACS that grant the tenants’ users permissions to access their data.

Section 8.4 concludes this chapter.

Chapter8: Multi-tenant Access Control Method Haitham Yaish

172

8.1 ELASTIC EXTENSION TABLES ACCESS

CONTROL
An access control data architecture that is based on EET multi-tenant schema is

defined in this section. In addition to EET access grants that are granted to tenants’

users to access table columns and rows that are stored in the EET multi-tenant

schema.

GROUP

ROLEROLE_COLUMN

GROUP_ROLE

USER_ROLE

USER_GROUP

PERMISSION

CAPABILITY

ROLE_INFORMATION_
SCHEMA_COLUMN

INFORMATION_SCHEMA.
COLUMN

TENANT

USER

Relationships of Access Control tables

Relationships of ET tables
Virtual Relationships

Access control tables
Access control join tables

Extension Tables (ET)
Information_schema column view

TABLE_
RELATIONSHIP

TABLE_
INDEX

TABLE_
PRIMARY_KEY_

COLUMN

TABLE_
ROW

TABLE_
ROW_BLOB

TABLE_
ROW_CLOB

TABLE_
COLUMN

DB_TABLE

Extension Tables Access Control Tables

Self-referencing relationship

Figure 8-1: EET Access Control Data Architecture

8.1.1 ACCESS CONTROL TABLES

There are three types of EETACS tables that store the tenants’ access control

configurations. The first type is the main entity tables of the access control data

Chapter8: Multi-tenant Access Control Method Haitham Yaish

173

architecture. The second type is the join tables, and the third type is the

Information_Schema view. These three types of tables are listed below:

1) Access Control Main Entity Tables: These tables are listed below and illustrated

in a blue colour in Figure 8-1.

 Tenant Table: This table stores the tenants’ information details. The Tenant ID

column of this table is used to isolate the tenants’ data that is stored in a CTT or a

VET. Such isolation is applied by having a master-detail relationship between this

table and a CTT or a VET. Where the Tenant ID column is used as a reference

column to a CTT or a VET, to refer the data in any of these tables to an existing

tenant who has a unique Tenant ID in the Tenant table.

 User Table: Each tenant in the multi-tenant database can have multiple users

accessing the tenant’s data. This table can store three types of these users. The

first type is an admin or a super user. The second type is a single user. The third

type is a parent-child user who allows a tenant to have an admin or a super user

and assign to this user one or more users by using the self-referencing relationship

that this table has. Each user type can have different levels of database accesses

that based on groups and/or roles, which are associated with a user.

 Group Table: This table is used to define different levels of tenants’ groups. Any

of these groups is logically associating users with similar data access needs. Once

a tenant group is defined, some roles that have granted permissions are assigned

to that group. Then, any tenant user who is associated with this group inherits all

of the permissions granted to that group.

 Role Table: The tenants’ users and the tenants’ groups can have roles that are

granted permissions to perform database activities on a tenant’s data among

multiple tenants’ data, which is stored in a multi-tenant database. In addition, this

role table grants permissions for both types of tables CTTs and VETs.

Chapter8: Multi-tenant Access Control Method Haitham Yaish

174

 Capability Table: This table allows tenants to authorise their users privileges to

any operation performed upon data. These operations have different access levels,

including full access, read/write access, read access, and other access types.

2) Access Control Join Tables: These tables are used to establish Many-to-Many

relationships between the access control main entities, and are listed below and

illustrated in a yellow colour in Figure 8-1.

 User_Group Table: This join table is used to allocate an access classification

level between groups and the tenants’ users. Typically, this allocation is used to

group users together, such as administrator users, super users, or public users.

 Group_Role Table: This join table is used to authorise a group of users to access

one or more database access roles, and any user who is allocated to this group

inherits all the permissions that are granted to the group.

 User_Role Table: This join table is used to authorise a user to access one or more

database access roles.

 Role_Column Table: This join table is used to allocate a role to access some or

all the tenant’s columns of a VET. Once the tenant has this allocation, he can add

business rules to access some or all rows from these VET columns. The details of

these business rules are presented in Section 8.2.2.

 Permission Table: This join table is used to allocate roles to different kinds of

database access capabilities such as full access, read/write access, read access,

and other access types.

 Role_Information_Schema_Column Table: The purpose of this join table is

similar to the purpose of the Role_Column Table. However, this join table

allocates a role to access some or all the tenant’s columns of a CTT, once the

tenant has this allocation, he can add business rules to access some or all rows

from these CTT columns.

Chapter8: Multi-tenant Access Control Method Haitham Yaish

175

3) Information_Schema.column View: This view allows to get information about

columns for tables and views within the PostgreSQL RDBMS. This

Information_Schema view is also used by databases, such as Oracle11, Mysql12,

and others. This view is used in the EETACS data architecture to give access

grants for tenants’ users to access CTTs columns. This view is illustrated in a red

colour in Figure 8-1.

8.1.2 ELASTIC EXTENSION TABLES ACCESS GRANTS

EETACS has two main types of grants. The first type is Group Access Grant, in

which a user is assigned to a group, and this user inherits all of the roles granted to

that group. The second type is Role Access Grant, in which a user is assigned to a

role that assigned to a user directly or inherited via a group. To allow the user to

access CTTs or VETs in the EET database schema. The two types of grants are

shown in Figure 8-2. The group access grant is illustrated in the blue arrows, and the

role access grant is illustrated in the grey arrow.

Figure 8-2: EET access control grants

These two main types of grants have two subtypes of grants. First, Table Columns

Access Grant, and second, Table Rows Access Grant. These access grants control the

access of multi-tenant data in CTTs and VETs. Since CTTs and VETs are using the

Tenant ID to isolate the tenants’ data in EET multi-tenant database and divide it into

partitions, then each single tenant can have his own partitions to store their own data.

11 http://docs.oracle.com/cd/E17952_01/refman-5.1-en/information-schema.html; Accessed July, 2014
12 http://dev.mysql.com/doc/refman/5.0/en/columns-table.html; Accessed July, 2014

Chapter8: Multi-tenant Access Control Method Haitham Yaish

176

Moreover, these partitions are divided by the tenants’ users according to these two

grants, which are discussed in details, in the following two points:

 Table Columns Access Grant: In this grant, tenants are allowed to give user

permissions access some or all columns of a CTT or a VET. These permissions

can restrict tenants’ users from accessing some or all columns of a table. For

example, Figure 8-3 is showing two types of users, the first user is a super user

called Adam, who has roles that can access all the table’s columns of a table. The

second user is Abraham, who has roles that can access only three columns of the

same table that Adam can access. In addition, this grant helps in deciding the

optimal query execution plans, by knowing whether a user can access all, or

some of a table columns. In the case when a user can access some of the table’s

columns that can be retrieved from a table, this grant, generates a query structure

different from the structure of retrieving all the columns.

Figure 8-3: Table columns access grant

 Table Rows Access Grant: In this grant, tenants are allowed to offer user

permissions to access some or all rows of a CTT or a VET. These permissions

can restrict tenants’ users from accessing some or all rows of a table. For

example, Figure 8-4 is showing the same users who were shown in Figure 8-3,

Chapter8: Multi-tenant Access Control Method Haitham Yaish

177

but this time Adam has roles that can access all the table’s columns and rows,

while Abraham has roles grant him to access all columns, but only some rows

of the same table that Adam can access. Moreover, this grant optimizes the

query execution by considering the number of rows that are accessed by a

user, and generating a query structure different from the query structure of

retrieving all the table rows.

Figure 8-4: Table rows access grant

8.2 COLUMNS AND ROWS ACCESS GRANT

ALGORITHMS

In this section, six access control algorithms are presented to allow the tenants’

users to access data that are granted to them, when they assigned roles that are

permitted to access columns and rows of a CTT or a VET. The first two algorithms

(Algorithm 8-1 and 8-2) are used as subsidiary algorithms in Algorithm 8-3 - 8-6.

These algorithms verify the table columns and rows that a tenant’s user can insert,

update, delete, or retrieve. The details of these algorithms are listed below.

8.2.1 GET USER ROLES ALGORITHM

Chapter8: Multi-tenant Access Control Method Haitham Yaish

178

The Get User Roles Algorithm retrieves the tenant’s user roles that assigned to

CTT or VET columns. The details of this algorithm are presented in Definition 8-1

and Algorithm 8-1.

Definition 8-1 (Get User Roles): T denotes a tenant ID. U denotes a tenant’s user.

B denotes a table name. S denotes a string of the SELECT clause parameter. Q

denotes the table type, whether it is a CTT or a VET. denotes a set of role ID

values assigned for a CTT or a VET. denotes the size of .

denotes a set of role ID values assigned to the tenant’s user groups. denotes a

set of role ID values assigned to the tenant’s user. denotes the size of

. denotes a role ID. denotes a set of role ID values that the tenant’s

user can access. denotes an empty set.

Algorithm 8-1: GetUserRoles (T, U, B, Q)

Input: T, U, B, and Q
Output:
1. if Q = ‘CTT’ then
2. ← retrieve roles assigned to a CTT from

role_information_schema_column table using T and B query filters
3. else
4. ← retrieve roles assigned to a VET from the role_column table using T

and B query filters
5. end if
6. ← retrieve roles assigned to U from the group_role table using T, and U

query filters
7. ← retrieve roles assigned to U from user_role table using T, and U query

filters
8. ←
9. for to do
10. ←
11. if then
12. return /* Exit the algorithm */
13. end if
14.
15. end for
16. ←
17. for to do
18. ←

Chapter8: Multi-tenant Access Control Method Haitham Yaish

179

19. if then
20. ←
21. end if
22.
23. end for
24. Return

8.2.2 GET USER COLUMNS ALGORITHM

The Get User Columns Algorithm retrieves columns and columns rules that are

granted to a tenant’s user. The details of this algorithm are presented in Definition 8-2

and Algorithm 8-2.

Definition 8-2 (Get User Columns): T denotes a tenant ID. U denotes a tenant’s

user. B denotes a table name. Q denotes the table type whether it is a CTT or a VET.

 denotes the tenant's user columns and columns rules retrieved from the

‘role_column’ access control table, and stored in a matrix with n rows and 2 columns.

Where is the first column of the matrix that represents the tenant’s user

columns, and is the second column of the matrix that represents the tenant’s

user columns rules. denotes a set that is storing a table columns values that

constructs the tenant’s user query SELECT clause, where ,

, ... }. Each element in this set represents a column name in B.

denotes a string that is storing the access control part of the query WHERE

clause, which typically is used to grant rows access to tenant’s users. denotes

a set of roles the tenant’s user can access. denotes a row matrix with 1 row

and 2 columns that has two elements, the first element is that stores the

value of , and the second element is that stores the value of .

Algorithm 8-2: GetUserColumns(T, U, B,)

Input: T, U, B, Q, and
Output:
1. if Q = ‘CTT’ then
2. ← retrieve columns and columns rules for U who has from

role_information_schema_column table using T, U, B, and query filters

Chapter8: Multi-tenant Access Control Method Haitham Yaish

180

3. else
4. ← retrieve columns and columns rules for U who has from

role_column table using T, U, B, and query filters
5. end if
6.
7. for all do
8. ←
9. ←
10.
11. end for
12. ←
13. ←
14. Return

8.2.3 GET USER INSERT ACCESS ALGORITHM

The Get User Insert Access Algorithm defines the columns that a tenant’s user is

permitted to insert in a CTT or a VET. These columns are determined based on the

intersection between the columns that are passed to this algorithm and the columns

that are granted to be inserted by the user whose user ID is passed to this algorithm.

This algorithm is invoked from Algorithm 5-1 of Chapter 5. Nevertheless, for

simplicity, this access control algorithm was not included in Algorithm 5-1. The

details of this algorithm are presented in Definition 8-3 and Algorithm 8-3.

Definition 8-3 (Get User Insert Access): T denotes a tenant ID. U denotes a

tenant’s user. B denotes a table name. denotes a set of table columns that

need to be inserted in a table. Q denotes the table type whether it is a CTT or a VET.

 denotes a CTT or a VET columns. denotes a set of user roles

returned by calling GetUserRoles algorithm (Algorithm 8-1). denotes a row

matrix with 1 row and 2 columns that has two elements, the first element is

that denotes the tenant’s user SELECT clause attributes, and the second

element is that denotes the access control part of the tenant’s user Where

clause. denotes a set of table columns that a user is granted to insert in a

table, which this algorithm returns.

Chapter8: Multi-tenant Access Control Method Haitham Yaish

181

Algorithm 8-3: GetUserInsertAccess (T, U, B, , Q)

Input: T, U, B, , and Q
Output:
1. if Q = ‘CTT’ then
2. ← retrieve the number of columns for a CTT from

role_information_schema_column table using T, U, and B query filters
3. else
4. ← retrieve number of columns for a VET from table_column ET using

T, U, and B query filters
5. end if
6. ← getUserRoles(T, U, B, Q) /* Algorithm 8-1 */
7. ← getUserColumns (T, U, B, Q,) /* Algorithm 8-2 */
8. ← ∩
9. Return

8.2.4 GET USER UPDATE ACCESS ALGORITHM

The Get User Update Access Algorithm defines the columns that a tenant’s user is

permitted to update in a CTT or a VET. These columns are determined based on the

intersection between the columns that are passed to this algorithm and the columns

that are granted to be updated by the user whose user ID is passed to this algorithm.

This algorithm is invoked from Algorithm 5-2 of Chapter 5. Nevertheless, for

simplicity, this access control algorithm was not included in Algorithm 5-2. The

details of this algorithm are presented in Definition 8-4 and Algorithm 8-4.

Definition 8-4 (Get User Update Access): T denotes a tenant ID. U denotes a

tenant’s user. B denotes a table name. denotes a set of table columns that

need to be updated in a table. Q denotes the table type whether it is a CTT or a VET.

 denotes a CTT or a VET columns. denotes a set of user roles

returned by calling GetUserRoles algorithm. denotes a row matrix with 1 row

and 2 columns which has two elements, the first one is that denotes the

tenant’s user SELECT clause attributes, and the second one is that denotes

the access control part of the tenant’s user Where clause. denotes a set of

table columns that derived from an intersection of two sets of table columns. The first

Chapter8: Multi-tenant Access Control Method Haitham Yaish

182

set is the table columns that passed to the algorithm to be update. The second set is

the table columns that can be accessed by the user ID that passed to the algorithm.

 denotes a row matrix with 1 row and 2 columns that has two elements.

The first element is that stores into it the value of . The

second element is that stores into it the value of .

Algorithm 8-4: GetUserUpdateAccess (T, U, B, , Q)

Input: T, U, B, , and Q
Output:
1. if Q = ‘CTT’ then
2. ← retrieve the number of columns for a CTT from

role_information_schema_column table using T, U, and B query filters
3. else
4. ← retrieve number of columns for a VET from table_column ET using

T, U, and B query filters
5. end if
6. ← getUserRoles(T, U, B, Q) /* Algorithm 8-1 */
7. ← getUserColumns (T, U, B, Q,) /* Algorithm 8-2 */
8. ← ∩
9. ←
10. ←
11. Return

8.2.5 GET USER DELETE ACCESS ALGORITHM

This access control algorithm defines the WHERE clause for a delete statement

and returns its value, which determines the table rows that a tenant’s user can delete

from a CTT or a VET. This algorithm is invoked from Algorithm 5-3 of Chapter 5.

Nevertheless, for simplicity, this access control algorithm was not included in

Algorithm 5-3. The details of this algorithm are presented in Definition 8-5 and

Algorithm 8-5.

Definition 8-5 (Get User Delete Access): T denotes a tenant ID. U denotes a

tenant’s user. B denotes a table name. Q denotes the table type, whether it is a CTT or

a VET. denotes a CTT or a VET columns. denotes a set of user roles

Chapter8: Multi-tenant Access Control Method Haitham Yaish

183

returned by calling GetUserRoles algorithm. denotes a row matrix with 1 row

and 2 columns that has two elements, the first element is that denotes the

tenant’s user SELECT clause attributes, and the second element is that

denotes the access control part of the tenant’s user Where clause. denotes

a string of WHERE clause that this algorithm returns, which is used to filter table

rows that a user is granted to delete.

Algorithm 8-5: GetUserDeleteAccess (T, U, B, Q)

Input: T, U, B, and Q
Output:
1. if Q = ‘CTT’ then
2. ← retrieve the number of columns for a CTT from

role_information_schema_column table using T, U and B query filters
3. else
4. ← retrieve number of columns for a VET from table_column ET using

T, U and B query filters
5. end if
6. ← getUserRoles(T, U, B, Q) /* Algorithm 8-1 */
7. ← getUserColumns (T, U, B, Q,) /* Algorithm 8-2 */
8. ←
9. Return

8.2.6 GET USER QUERY ACCESS ALGORITHM

This access control algorithm defines the SELECT and the WHERE clauses and

returns their values, by determining which columns and rows a user can access. These

SELECT and WHERE clauses are used to construct the user’s query statement that

retrieves data from a CTT or a VET based on access grants assigned to the user. This

algorithm is invoked from inside the algorithms (functions) of EETPS. However, for

simplicity, this access control algorithm was not included in the algorithms of EETPS

in Chapter 6. The details of this algorithm are presented in Definition 8-6 and

Algorithm 8-6.

Definition 8-6 (Get User Query Access): T denotes a tenant ID. U denotes a

tenant’s user. B denotes a table name. S denotes a string of the SELECT clause

Chapter8: Multi-tenant Access Control Method Haitham Yaish

184

parameter. Q denotes the table type whether it is a CTT or a VET. denotes a

CTT or a VET columns. denotes an empty set. denotes a set of user roles

returned by calling GetUserRoles algorithm. denotes a row matrix with 1 row

and 2 columns that has two elements, the first element is that denotes the

tenant’s user SELECT clause attributes, and the second element is that

denotes the access control part of the tenant’s user Where clause. The values of

 returned by calling GetUserColumns algorithm. denotes a string of

query SELECT clause. denotes a row matrix with 1 row and 2 columns

which has two elements, the first element is that stores into it the value

of , and the second element is .

Algorithm 8-6: GetUserQueryAccess (T, U, B, S, Q)

Input: T, U, B, S, and Q
Output:
1. if Q = ‘CTT’ then
2. ← retrieve the number of columns for a CTT from

role_information_schema_column table using T, U, and B query filters
3. else
4. ← retrieve number of columns for a VET from table_column ET using

T, U, and B query filters
5. end if
6. ← getUserRoles(T, U, B, Q)
7. ← getUserColumns (T, U, B, Q,)
8. if size of = size of then
9. if S = then
10. ←
11. else
12. ← S
13. end if
14. else
15. if S = then
16. ←
17. else
18. ← S ∩
19. end if
20. end if
21. ←

Chapter8: Multi-tenant Access Control Method Haitham Yaish

185

22. ←
23. Return

8.3 PERFORMANCE EVALUATION
After the EETACS was developed, it was used by the EETPS. Two types of

experiments are carried out to verify the practicability of applying the EETACS on

the EETPS. In these experiments, the response times of retrieving the tenant’s

columns and rows are evaluated by invoking the Single Table function (Algorithm 6-

1) of EETPS, which gets the tenant’s user access grants from EETACS.

8.3.1 EXPERIMENTAL DATA SET AND SETUP

The EETPS has designed and developed to serve multiple tenants on one instance

application. However, in this chapter the aim of the experiments is evaluating the

performance after applying the EETACS method on the EETPS for one tenant. A

number of experiments are executed for one tenant, because, in the multi-tenant

database the data of each tenant’s user is isolated in a table partition. Thus, these

experiments can evaluate the effectiveness of retrieving data for each single tenant’s

user from the multi-tenant database. In these experiments, one machine is used and

the Single Table function of the EETPS (presented in Chapter 6 in Section 6.2.1) is

invoked to retrieve 100 of rows from the ‘product’ VET that is shown in Figure 8-5.

There are 200,000 rows stored in this table that belongs to a tenant whose ‘tenant_id’

equals 1000, and the ‘db_table_id’ of this table equals 16. All the queries

implemented in these experiments are filtered by ‘tenant_id’, ‘db_table_id’, and other

filters specified in the below experiments. These experiments are divided in two types

sharing the details of this data set, which are listed below, and the queries of these

experiments are shown in Table 8-2.

1) Accessing Data from Table Columns Experiment (Exp.8-1): In this experiment,

Query 8-1 (Q8-1) and Query 8-2 (Q8-2) are executed to benchmark the query

execution time difference between a tenant’s user who can access data from all

Chapter8: Multi-tenant Access Control Method Haitham Yaish

186

columns of a table by executing Q8-1, and another tenant’s user who can access data

from only three out of eight columns of the same table by executing Q8-2.

2) Accessing Data from Table Rows Experiment (Exp. 8-2): In this experiment Query

8-1 (Q8-1) and Query 8-3 (Q8-3) are executed to benchmark the query execution time

difference between a tenant’s user who can access data from all the table rows by

executing Q8-1, and another tenant’s user who can access 10% of the table data that

equals approximately 20,000 rows by executing Q8-3.

Figure 8-5: The table structure of the ‘product’ table

The EETACS was implemented in Java 1.6.0, Hibernate 4.0, and Spring 3.1.0. The

database is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2. Both, the

database and the application server are deployed on the same PC. The operating

system is Windows 7 Home Premium, with Intel Core i5 2.40GHz CPU, 8 GB of

RAM memory, and 500 GB of hard disk storage.

8.3.2 EXPERIMENTAL RESULTS

1) Accessing Data from Table Columns Experimental Results: Typically, users

are granted access to table columns from the application level, because, in a single-

tenant database, the tenants’ users are not granted database access on the column

level. While, the EETACS grants the tenants’ users database accesses on the column

Chapter8: Multi-tenant Access Control Method Haitham Yaish

187

level. This capability reduces the query execution time in the multi-tenant database.

The experimental study of Exp.8-1shows that the execution time of Q8-2 for a user

who can access fewer numbers of columns of a table is less than the execution time of

Q8-1 for a user who can access all of the table columns. The details results of this

experiment are shown in Figure 8-6 and Table 8-1.

Ti
m

e
(S

ec
)

Columns

Figure 8-6: Accessing data from the table columns experiment (Exp.8-1)

2) Accessing Data from Table Rows Experimental Results: Normally, the tenants’

users cannot be granted a database access to table rows from the database. While, the

EETACS grants the tenants’ users database accesses on the row level. This capability

reduces the query execution time in the multi-tenant database. The experimental study

of Exp.8-2 shows that the execution time of Q8-3 for a user who can access a

percentage of a table rows is less than the execution time of Q8-1 for a user who can

access all the table rows. The details results of this experiment are shown in Figure 8-

7 and Table 8-1.

0

0.5

1

1.5

2

Q8-1 - All Columns

Q8-2 - 3 Columns

Chapter8: Multi-tenant Access Control Method Haitham Yaish

188

Ti
m

e
(S

ec
)

Rows

Figure 8-7: Accessing data from the table rows experiment (Exp.8-2)

TABLE 8-1: The query execution times of Exp.8-1 and Exp.8-2

Experiment Query executed Time in seconds
Exp. 8-1 Q8-1 1.35
Exp. 8-1 Q8-2 1.10
Exp. 8-2 Q8-1 1.35
Exp. 8-2 Q8-3 0.48

Table 8-2: The experiments queries

Query No. Query Details
Q8-1 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row

tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_row tr WHERE tr.tenant_id = 1000
AND tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast(value as numeric)
> '9000')) ORDER BY 3,4 LIMIT 800 OFFSET 0;

Q8-2 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_column_id in
(47,48,49) AND tr.table_row_id IN (SELECT distinct tr.table_row_id FROM
table_row tr WHERE tr.tenant_id = 1000 AND tr.db_table_id = 16 AND
tr.table_column_id = 50 AND (cast(value as numeric) > '9000')) ORDER BY 3,4
LIMIT 800 OFFSET 0 ;

Q8-3 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM table_row
tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_index tr WHERE tr.tenant_id =
1000 AND tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast(row_value
as numeric) > '9000')) ORDER BY 3,4 LIMIT 800 OFFSET 0;

0

0.5

1

1.5

2

Q8-1 - All Tuples

Q8-3 - 10 % of Rows

Chapter8: Multi-tenant Access Control Method Haitham Yaish

189

8.4 SUMMARY

A multi-tenant access control service called EETACS is proposed in this chapter.

This service allows each tenant in a multi-tenant database to have several users with

different types of access grants to access the tenant’s data. The concept of retrieving

data from the multi-tenant database is slightly different from the single-tenant

database that does not differentiate between the data of different tenants’ users.

While, the data of the multi-tenant database should be partitioned to differentiate

between the data that is owned by each single tenant, and by accessing columns and

rows granted to the tenants’ users based on a number of groups or roles assigned to

them. In this chapter, the data architecture of the EET access control tables and the

EET access grants were proposed. Two types of experiments were carried out to

verify the practicability of applying the proposed access table columns and rows

grants on the EETPS. The first experiment verified that the cost of executing a query

for a user who can access some numbers of columns of a VET is less than the cost of

executing the same query for a user who can access all the VET columns. The second

experiment verified that the cost of executing a query for a user who can access a

percentage of a VET rows is less than the cost of executing the same query for a user

who can access all of the VET rows. This chapter overcomes the multi-tenant access

control issues, including (1) isolating the tenants’ data and the tenants’ user data in

EET multi-tenant database by dividing it into partitions; (2) optimizing the query

execution by considering the number of rows or columns that are accessed by a

tenant’s user, and generating a query structure different from the structure of

retrieving all the table rows, or all the tables column; (3) fulfilling different access

controls requirements for multiple tenants who are using a single database schema.

Chapter9: Conclusions and Future Research Haitham Yaish

190

CHAPTER 9

CONCLUSIONS AND FUTURE

RESEARCH

This chapter summarizes the achievements of this thesis and presents possible

future research and work directions.

9.1 CONCLUSIONS

This study aims to address the challenges and issues of multi-tenant database that

accommodates data for multiple tenants in one single database schema. As identified

in Chapter 1, such a multi-tenant schema should be highly secured, optimized,

configurable, and extendable during the runtime execution to fulfil the applications’

requirements of different tenants. These multi-tenant database schema capabilities are

not supported by traditional RDBMS, and to enable RDBMS to support such

capabilities is a significant challenge. This study proposed a novel configurable multi-

tenant database schema design called Elastic Extension Tables (EET), and developed

a prototype framework to implement EET schema in a RDBMS and simplify the data

access of software applications in general and multi-tenant SaaS and Big Data

applications in particular. This study has made significant contributions from both

theoretical and practical aspects in the area of multi-tenant database, as detailed

below:

Chapter9: Conclusions and Future Research Haitham Yaish

191

 Proposing EET single multi-tenant database schema that consists of CTT, ET,

and VET. Multiple tenants use this schema, which allows each tenant to create

his own virtual database schema that includes the required number of tables and

columns, rows, virtual database relationships with any of CTTs or VETs, and to

assign suitable data types and constraints for columns during multi-tenant

application run-time execution. It has a flexible way of creating database schemas

for multiple tenants, by extending a business domain database that is based on a

RDBMS, or by creating a tenant’s business domain database from the scratch. It

improves the multi-tenant database performance by avoiding NULL values,

assigning primary keys to unique virtual columns, providing indexes to virtual

table columns, and storing BLOB and CLOB data types in separate designated

tables. Moreover, it allows allows tenants to choose from three database models:

Multi-tenant Relational Database, Integrated Multi-tenant Relational Database

and Virtual Relational Database, and Virtual Relational Database. This capability

is not implemented in any of the existing multi-tenant database schema designs

yet. In using this capability, the service provider can accommodate a huge

number of virtual tables beside the physical tables of the business domain data

that he offers, by allowing a large number of tenants to create virtual tables and

populate these tables with their data in the eight ETs of EET. Furthermore, it

allows to store different data types of Big Data including structured, semi-

structured, and unstructured data that are collected from various online sources of

information. The Big Data 4Vs that stated in Chapter 2 are fulfilled in EET multi-

tenant schema as follows. Firstly, EET can accommodate a large volume of data

for multiple tenants in a single schema, and the volume of the data is reduced by

avoiding storing any tenants’ redundant data in EET. Secondly, the velocity and

the effectiveness of accessing data from EET verified in the experiments that

carried out in this thesis. Thirdly, EET multi-tenant schema allows to store

various data types as stated above. Fourthly, the EET stores consistence data;

because the structure of its physical (CTTs) and virtual (VETs) are relational

Chapter9: Conclusions and Future Research Haitham Yaish

192

structures. Further, this multi-tenant schema is secure because it has an access

control data architecture that permits each tenant in a multi-tenant database to

have a number of users with different types of grants to access the tenant’s table

columns and rows. To evaluate the performance of EET, this study compared the

performance of inserting, updating, retrieving, and deleting data from EET and

UTSM by using a generated test dataset, which is similarly populated in both

schemas. The experimental study result shows an improvement when retrieving,

updating and deleting data from EET over the UTSM. Especially when retrieving

data from EET, it is much faster than UTSM. However, the execution time of

inserting rows in EET is slightly slower than UTSM. As reviewed and concluded

in the Literature Review (Chapter 2), the Universal Table that is used in UTSM,

is considered the optimal schema design for multi-tenant applications. Thus, the

UTSM was chosen to compare its performance with EET performance.

Accordingly, this experimental study makes EET the optimal schema for

implementing multi-tenant databases and multi-tenant SaaS and Big Data

applications.

 Proposing conceptual framework architecture and developing it based on the EET

multi-tenant schema. This framework simplifies and speeds up the development

of multi-tenant database applications. It allows database service providers to

create a single database application that supports multiple tenants on the same

software and hardware infrastructure. Moreover, it overcomes multi-tenant

database challenges from technical and business perspectives and reduces the

TCO from the tenants’ perspective, by avoiding them from writing SQL queries

and backend data management code. Alternatively, they access the APIs of this

framework that manage the tenant’s data and retrieve simple and complex

queries. While, from the database service provider perspective, the EET reduces

the ongoing operational costs, through providing a database self-service that

configures and manages the tenants’ data by the tenants themselves, rather than

the database service provider. This database solution is suitable to be used by the

Chapter9: Conclusions and Future Research Haitham Yaish

193

tenants’ developers, to store and access the tenants’ data from the cloud to build

their applications, or integrate this data with other applications or online data

sources without spending much time and efforts on managing their database.

Consequently, the database layer that the EET framework provides can be used

as a base to build software applications in general and SaaS and Big Data

applications in particular. In the service layer of this framework prototype, four

types of services were developed, which provide functions that allow tenants to

access, manage, and retrieve their data by calling the functions of the services

that are listed below:

1) A multi-tenant data management service called EETSHS, which allows

tenants to create VETs and create VETs’ columns, rows, relationships,

primary keys, indexes, and other columns constraints. In addition, tenants can

create CTTs’ rows, and database relationships between CTTs and VETs,

whereas the rest of the CTT database operations, including creating CTTs,

CTTs’ columns, database relationships between two CTTs, primary keys,

indexes, and other columns constraints are managed from a traditional

RDBMS instead of EETSHS. This service ensures a high level of multi-

tenant data quality, configurability, consistency, accessibility, and

manageability. In this study, three algorithms that manage CTTs and VETs

rows were developed, and several experiments were performed using these

algorithms to measure the feasibility and the effectiveness of managing data

using this service that based on EET. The experimental results show that the

query execution time of inserting and updating rows in the tenants’ CTTs is

slightly faster than in the tenants’ VETs. The increase in the query execution

time of VET is not significant compared to the benefits that this service

brings to SaaS and Big Data applications, in addition, these data operations

are not equally significant as when retrieving data from EETPS. The

experimental results of deleting rows from the tenants’ CTTs are

approximately four times slower than from the tenants’ VETs. This increase

Chapter9: Conclusions and Future Research Haitham Yaish

194

in the query execution time occurs in CTTs that are the traditional physical

tables of EET, due to the process of deleting a CTT row is more complicated

than VET. In general, these experimental results make this service and EET

schema a suitable candidate for the management of multi-tenant data.

2) A multi-tenant proxy service called EETPS, which integrates, generates, and

executes the tenants’ queries by using a codebase solution that converts

multi-tenant queries into traditional database queries and execute them in a

RDBMS. EETPS has three objectives. Firstly, it allows tenants to choose

from the three database models of EET. Secondly, it allows each single tenant

to extend his database schema, by extending a business domain database

schema that based on a traditional RDBMS during the application’s runtime

execution. Thirdly, it avoids efforts of writing SQL queries and backend data

management code by utilizing the service functions that execute simple and

complex queries including join operations, filtering on multiple properties,

and filtering of data based on subqueries results. In this study, five algorithms

for five functions of EETPS were developed, and five experiments were

carried out to verify the effectiveness of EETPS algorithms. These

experiments were classified according to the complexity of the queries that

are used in the experiments, which compare the response time of retrieving

data from CTTs, VETs, and both CTTs and VETs. The result of these

experiments shows that most of the experiments that performed by calling

functions from the EETPS to retrieve data from VET and CTT-and-VET

outperform the performance of CTT (traditional physical tables). These

results verify the practicability and the effectiveness of using EETPS and

EET multi-tenant database schema and its three database models.

3) A multi-tenant query optimizer service called EETQOS, which estimates the

cost of different query execution plans to determine the optimal query

execution plan. Three types of methods are used in this service to optimize

the data retrieval from EET multi-tenant schema, including the query access

Chapter9: Conclusions and Future Research Haitham Yaish

195

control, index selection, and table row selection. Such a query optimizer

service reduces the query execution time of EETPS that is accessing data

from EET multi-tenant schema. In this study, six types of experiments were

carried out to verify the practicability of implementing the EETQOS on the

EETPS. These experiments conclude that the cost of executing a query from a

VET when using all the indexes of that VET is high in comparison with the

cost of executing the same query without using any index. However, the least

query execution cost was recorded when a custom index with a percentage of

a VET indexes is used to retrieve table rows from the same VET. Moreover,

these experiments confirm the effectiveness of using the data structure of

EET multi-tenant schema that is the base storage of EETPS and EETQOS,

and the benefits of EETQOS query execution plans for EETPS and EET

multi-tenant schema.

4) A multi-tenant access control service called EETACS, which allows each

tenant in a multi-tenant database to have several users with different types of

access grants to access the tenant’s data. The concept of retrieving data from

the multi-tenant database is different from the single-tenant database that does

not differentiate between the data of different tenants’ users. While, the data

of the multi-tenant database is partitioned by differentiating between the data

that is owned by each single tenant, and by accessing columns and rows

granted to the tenants’ users based on a number of groups or roles assigned to

them. In this study, the data architecture of the EET access control, and the

EET access grants were proposed. Moreover, six access control algorithms

were developed, and two types of experiments were carried out to verify the

practicability of applying the proposed access table columns and rows grants

on the EETPS. The first experiment verifies that the cost of executing a query

for a user who can access some numbers of columns of a VET is less than the

cost of executing the same query for a user who can access all the VET

columns. The second experiment verifies that the cost of executing a query

Chapter9: Conclusions and Future Research Haitham Yaish

196

for a user who can access a percentage of a VET rows is less than the cost of

executing the same query for a user who can access all of the VET rows.

In conclusion, this study has achieved its objectives that stated in Chapter 1. The

theoretical development and practical advancements of EET multi-tenant schema and

EET framework architecture create a great opportunity to develop a multi-tenant

framework that can be used as an intermediate database layer between RDBMS and

software applications in general, and multi-tenant applications in particular. This

database layer avoids tenants from writing SQL queries and backend data

management code, alternatively, they call functions from EET framework to manage

and access their data.

9.2 FUTURE RESEARCH
Given the time constraints of this study, the scope of the system development was

limited to how to store, access, manage, retrieve, and optimize each single tenant’s

data using EET multi-tenant schema and EET framework prototype. The EET

framework prototype can be extended by adding other artefacts to its architecture. In

future research, a large number of future research directions and work directions can

be considered for this study. Five of these future research directions and two of the

future work directions are listed below:

Future research directions:

(i) In this thesis, the EET multi-tenant schema and EET framework prototype

developed to serve multiple tenants in one instance application. Such an

application should be scalable and highly available to accommodate a huge

number of data for a large number of tenants. However, the focus of this

thesis was on developing and evaluating the main data operations of EET

multi-tenant schema using EET framework on one server because before

considering scale-up or scale-out this solution to optimize or evaluate its

performance, the performance should be examined in one server.

Chapter9: Conclusions and Future Research Haitham Yaish

197

Therefore, the scalability of EET multi-tenant schema using EET

framework is one of the future research directions of this study.

(ii) The EETPS functions of the EET framework prototype have the

capabilities of retrieving data from CTTs or VETs by using a number of

query options that stated in Chapter 6, one of the future research directions

of this study is to add GROUP BY and ORDER BY query options to

EETPS. Another future research direction of EETPS is to improve the join

operation functions to handle more than two tables, instead of only

handling two tables.

(iii) Optimizing the EETQOS by adding more methods to determine the optimal

query execution plans, and caching the frequently used queries effectively

to speed up the EETQOS processing time, and reduce the consumption of

the EET database resources. Subsequently, these two enhancements of

EETQOS will optimize the query execution time of EETPS, as long as it

consumes EETQOS to optimize its query execution time.

(iv) In this study, the empirical tests are conducted on the structured data, but

the empirical tests of semi-structured, and unstructured data are out of the

scope of this thesis. For two reasons, first, as reviewed in chapter 2, storing

and retrieving data in XML files (semi-structured data) has the highest

response time between the reviewed seven multi-tenant database schema

designs. therefore, the semi-structured data can be stored in EET, but it is

not recommended to be used as a storage for multiple tenants. Second,

there are many techniques for storing and retrieving different data types of

Big Data. Comparing all of these techniques with EET is hard, complex,

and time-consuming task that is hard to be achieved during the time frame

and size of one PhD thesis. Thus, comparing EET with other data types and

other techniques is one of the future research directions of this study.

Chapter9: Conclusions and Future Research Haitham Yaish

198

(v) As concluded in the Literature Review chapter, the Universal Table that is

used in UTSM, is considered the optimal schema for multi-tenant

applications. Therefore, this study measured the feasibility and

effectiveness of EET by comparing it with UTSM. However, comparing

EET with other existing multi-tenant database schema designs that are

based on RDBMS can be considered as a future research direction of this

study.

Future work directions (practical implementation work):

(i) The APIs artefacts were introduced in the EET framework architecture to

show a complete scenario on how EET framework works. The

implementation of these artefacts is not part of the objective of this study,

and it is out of this thesis scope. Nevertheless, it is one of the future work

directions of this study.

(ii) Introducing two new artefacts to the EET framework architecture,

including (1) database management user interface, which allows each

single tenant to create, manage, organize, and administrate his data. This

user interface can consume the functions of the EETSHS through using the

EET Data Management API to perform the data management tasks. (2)

access control user interface, which allows each tenant to manage his users

and grant them permissions to access the tenant’s data. This user interface

can consume the functions of EETACS through using the EET Data

Retrieval API to perform the access control tasks. These two artefacts can

be considered as future work directions for this study.

199

ABBREVIATIONS

Abbreviations Descriptions

ASP Application Service Provider
BLOB Binary Large Object
CCVS Covert CTT to VET Structure
CLOB Character Large Object
CPVR Creating Physical and Virtual Rows
CRM Customer Relationship Management
CTT Common Tenant Tables
CTTDAO Common Tenant Tables Data Access Object
DAC Discretionary Access Control
DAO Data Access Object
DPVR Deleting Physical and Virtual Rows
EET Elastic Extension Tables
EETACS Elastic Extension Tables Access Control Service
EETDAO Elastic Extension Tables Data Access Object
EETPS Elastic Extension Tables Proxy Service
EETQOS Elastic Extension Tables Query Optimizer Service
EETSHS Elastic Extension Tables Schema Handler Service
ET Extension Tables
GTRQ Get Table Row Query
HR Human Resources
IaaS Infrastructure as a Service
ICT Information and Communications Technology
IT Information Technology
LBAC Label-Based Access
LJQ Left Join Query
MAC Mandatory Access Control
NoSQL Not Only SQL
ORM Object Relational Mapping
OTMQ One To Many Query
PaaS Platform as a Service

200

QoS Quality of Service
RBAC Role Based Access Control
RCAC Row and Column Access Control
RDBMS Relational Database Management Systems
SaaS Software as a Service
SQL Structured Query Language
SRA Store Rows in Array
STQ Single Table Query
TCO Total Cost of Ownership
TTQ Targeted Tables Query
IQ Individual Query
UDD Universal Data Dictionary
UPVR Updating Physical and Virtual Rows
UQ Union Query
URI Uniform Resource Identifier
UTSM Universal Table Schema Mapping
VET Virtual Extension Tables
XML Extensible Markup Language

201

BIBLIOGRAPHY

Agrawal, D., Das, S. & Abbadi, A.E. 2010, 'Big data and cloud computing: new wine

or just new bottles?',Proceedings of the VLDB Endowment, vol. 3, no.2, pp.

1647-1648

Agrawal, D., Das, S. & Abbadi, A.E. 2012, 'Data management in the cloud:

challenges and opportunities', Synthesis Lectures on Data Management, vol.

4, no. 6, pp. 1-138.

ALzain, M.A. & Pardede, E. 2011, 'Using multi shares for ensuring privacy in

Database-as-a-Service', The 44th Hawaii International Conference on System

Sciences, IEEE, pp. 1-9.

Ambrose, W., Dagland, N. & Athley, S. 2010, 'Cloud computing: Security risks,

SLA, and trust', Bachelor thesis, Jönköping University, Sweden.

Arnold, D., Diniro, S., Lee, V., Musker, S., & Woods, J. A. 2012, 'Row and column

access control', Unleashing DB2 10 for Linux, UNIX, and Windows, vol. 10,

no. 1, pp.65-86.

Aulbach, S. 2011, 'Schema flexibility and data sharing in multi-Tenant databases'.

PhD thesis, Technical University of Munich, Germany.

Aulbach, S., Grust, T., Jacobs, D., Kemper, A. & Rittinger, J. 2008, 'Multi-tenant

databases for software as a service: Schema-mapping techniques',

Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, ACM, Vancouver, Canada, pp. 1195-1206.

Aulbach, S., Jacobs, D., Kemper, A. & Seibold, M. 2009, 'A comparison of flexible

schemas for software as a service', Proceedings of the 2009 ACM SIGMOD

international conference on Management of data, ACM, Rhode Island, USA,

pp. 881-888.

202

Bezemer, C.P., Zaidman, A., Platzbeecker, B., Hurkmans, T. & t Hart, A. 2010,

'Enabling multi-tenancy: An industrial experience report', Software

Maintenance (ICSM), 2010 IEEE International Conference on, IEEE,

Timisoara, Romania, pp. 1-8.

Bobrowski, S. 2011, 'Optimal multitenant designs for cloud apps',2011 IEEE 4th

International Conference on Cloud Computing, IEEE, Washington, USA, pp.

654-659.

Brian, O. Brunschwiler, T., Christ, H., Falsafi, B., Fischer, M., Grivas, S. G.,

Giovanoli, C., Gisi, R. E., Gutmann, R., Kaiserswerth, M., Kundig, M.,

Leinen, S., Muller, W., Oesch, D., Redli, M., Rey, D., Riedl, R., Schar, A.,

Spichiger, A., Widmer, U., Wiggins, A., Zollinger, M. & Kaiserswerth,

M.2012,'Cloud Computing', White Paper SATW.

Brodersen, K., Thomas M.R., Matthew S.M., Mingte J.C., & Anil A. 2004, Database

access method and system for user role defined access, US Patent 6732100.

Burno, F. 2006, 'Exeuting an IP Protection Strategy in a SaaS Environment', Contract

Management,EBSCO, vol. 46, no. 7, pp. 14-16.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. & Brandic, I. 2009, 'Cloud

computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility', Future Generation computer systems, vol. 25,

no. 6, pp. 599-616.

Carolan, J., Gaede, S., Baty, J., Brunette, G., Licht, A., Remmell, J., Tucker, L. &

Weise, J. 2009, 'Introduction to cloud computing architecture', White Paper,

1st edn, Sun Micro Systems Inc.

Cattell, R. 2011, 'Scalable SQL and NoSQL Data Stores', ACM SIGMOD Record,

vol. 39, no. 4, pp. 12-27.

Chamberlin, D.D. & Boyce, R.F. 1974, 'SEQUEL: a structured English query

language', Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)

workshop on Data description, access and control, ACM, Ann Arbor, USA,

pp. 249-264.

203

Chang, V., Walters, R.J. & Wills, G. 2013, 'The development that leads to the Cloud

Computing Business Framework', International Journal of Information

Management, vol. 33, no. 3, pp. 524-538.

Chengtong, L., Qing, L., Zhou, L., Junjie, P., Wu, Z. & Tingting, W. 2010, 'PaaS: A

revolution for information technology platforms', Educational and Network

Technology (ICENT 2010), IEEE, Qinhuangdao, China, pp. 346-349.

Chong, F. & Carraro, G. 2006, 'Architecture strategies for catching the long tail',

White Paper, MSDN Library, Microsoft Corporation.

Chong, F. 2006, 'Multi-tenancy and virtualization', MSDN Blogs, viewed 27 June

2014,<http://blogs.msdn.com/b/fred_chong/archive/2006/10/23/multi-

tenancy-and-virtualization.aspx>.

Chong, F., Carraro, G. & Wolter, R. 2006, 'Multi-tenant data architecture', White

Paper, MSDN Library, Microsoft Corporation.

Codd, E.F. 1970, 'A relational model of data for large shared data banks',

Communications of the ACM, vol. 13, no. 6, pp. 377-387.

Codd, E.F. 1985a, 'Does your DBMS run by the rules?', Computer World, vol. 21, p.

11.

Codd, E.F. 1985b, 'Is your DBMS really relational', Computer World, vol. 14.

Dash, D., Alagiannis, I., Maier, C. & Ailamaki, A. 2010, 'Caching all plans with just

one optimizer call', Data Engineering Workshops (ICDEW), 2010 IEEE 26th

International Conference on, IEEE, Long Beach, USA, pp. 105-110.

Date, C.J. 1990, 'An introduction to database systems', Reading, MA: Addison-wesley,

vol. 7.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P. & Vogels, W. 2007, 'Dynamo: amazon's

highly available key-value store', ACM SIGOPS Operating Systems Review,

vol. 41, pp. 205-220.

Demchenko, Y., Grosso, P., de Laat, C. & Membrey, P. 2013, 'Addressing big data

issues in scientific data infrastructure', Collaboration Technologies and

204

Systems (CTS), 2013 International Conference on, San Diego, USA, pp. 48-

55.

Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G. & Vakali, A. 2009, 'Cloud

computing: distributed internet computing for IT and scientific research',

Internet Computing, IEEE, vol. 13, no. 5, pp. 10-13.

Dimovski, D. 2013, 'Database management as a cloud-based service for small and

medium organizations', Master thesis, Masaryk University Brno, Czech

Republic.

Dobosz, R. 2014, 'An investigation of the impact of big data on bioinformatics

software', Master thesis, Trent University, Ontario, Canada.

Domingo, E.J., Nino, J.T., Lemos, A.L., Lemos, M.L., Palacios, R.C. & Berbi, J.M.G.

2010, 'CLOUDIO: A cloud computing-oriented multi-tenant architecture for

business information systems', Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on, IEEE, Miami, USA, pp. 532-533.

Du, J., Wen, H. & Yang, Z. 2010, 'Research on data layer structure of multi-tenant e-

commerce system', Industrial Engineering and Engineering Management

(IE&EM), 2010 IEEE 17Th International Conference on, IEEE, Xiamen,

China, pp. 362-365.

Farahani, M., Sharifnejad, M. & Sharifi, M. 2006, 'An enhanced tuple routing strategy

for adaptive processing of continuous queries', Information and

Communication Technologies, 2006. ICTTA'06. 2nd, vol. 2, pp. 3146-3150.

Ferraiolo, D. F. & Kuhn, D. R. 1992, 'Role-based access controls', 15th National

Computer Security Conference, Baltimore, USA, pp. 554-563.

Fiaidhi, J., Bojanova, I., Zhang, J. & Zhang, L.-J. 2012, 'Enforcing multitenancy for

cloud computing environments', IT professional, vol. 14, no. 1, pp. 16-18.

Foping, F.S., Dokas, I.M., Feehan, J. & Imran, S. 2009, 'A new hybrid schema-

sharing technique for multitenant applications', Digital Information

Management, 2009. ICDIM 2009. Fourth International Conference on, IEEE,

pp. 210-215.

205

Gorti, I., Shiri, N. & Radhakrishnan, T. 2013, 'A flexible data model for multi-tenant

databases for Software as a Service', Computational Science and Engineering

(CSE), 2013 IEEE 16th International Conference on, IEEE, pp. 1059-1066.

Hacigümüş, H., Iyer, B., Li, C. & Mehrotra, S. 2002, 'Executing SQL over encrypted

data in the database-service-provider model', Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, ACM, Madison,

USA, pp. 216-227.

Heng, L., Dan, Y. & Xiaohong, Z. 2012, 'Survey on multi-tenant data architecture for

SaaS', International Journal of Computer Science Issues (IJCSI), vol. 9, no. 6.

Hoch, F., Kerr, M. & Griffith, A. 2001, 'Software as a service: Strategic

backgrounder', White Paper, Software & Information Industry Association

(SIIA).

Hoogvliet, M. T. 2008, 'SaaS interface design', Bachelor Thesis, Rotterdam

University, Holland.

Hudli, A.V., ShiHudli, A.V., Shivaradhya, B. & Hudli, R.V. 2009, 'Level-4 SaaS

applications for healthcare industry', Proceedings of the 2nd Bangalore

annual compute conference, ACM, Bangalore, India.

Indrawan-Santiago, M. 2012, 'Database research: Are we at a crossroad? Reflection

on NoSQL', Network-Based Information Systems (NBiS), 2012 15th

International Conference on, Melbourne, Australia, pp. 45-51.

Jansen, S., Houben, G.-J. & Brinkkemper, S. 2010, 'Customization realization in

multi-tenant web applications: Case studies from the library sector', The 10th

International Conference on Web Engineering (ICWE), Springer, Vienna,

Austria, pp. 445-459.

Ju, J., Wang, Y., Fu, J., Wu, J. & Lin, Z. 2008, 'Research on key technology in SaaS',

Intelligent Computing and Cognitive Informatics (ICICCI), 2010 International

Conference on, IEEE, Kuala Lumpur, Malaysia, pp. 384-387.

Kim, G.-H., Trimi, S. & Chung, J.-H. 2014, 'Big-data applications in the government

sector', Communications of the ACM, vol. 57, no. 3, pp. 78-85.

206

Kwok, T., Thao, N. & Linh, L. 2008, 'A Software as a Service with multi-tenancy

support for an electronic contract management application', Services

Computing, 2008. SCC '08. IEEE International Conference on, IEEE, vol. 2,

pp. 179-186.

Landy, G.K. 2008, The IT / digital legal companion: A comprehensive business guide

to software, IT, internet, media and IP law, 1st edn, Syngress, USA.

Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R. & Freeman, T. 2009, 'A

flexible attribute based access control method for grid computing', Journal of

Grid Computing, vol. 7, no. 2, pp. 169-180.

Lazarov, V. 2007, ‘Comparison of different implementations of multi-Tenant

databases’, Bachelor thesis, Technical University of Munich, Munich,

Germany.

Leavitt, N. 2010, 'Will NoSQL databases live up to their promise?', Computer, vol.

43, no. 2, pp. 12-14

Liao C.-F., Chen, K. & Chen, J.- J. 2012, 'Toward a tenant-aware query rewriting

engine for universal table schema-mapping', Cloud Computing Technology

and Science (CloudCom), 2012 IEEE 4th International Conference on, IEEE,

Taipei, Taiwan, pp. 833-838.

Lith, A. & Mattsson, J. 2010, 'Investigating storage solutions for large data', Master

thesis, Chalmers University of Technology, Goteborg, Sweden.

Liu, G. 2010, 'Research on independent SaaS platform', Information Management and

Engineering (ICIME), 2010 The 2nd IEEE International Conference on,

IEEE, Chengdu, China, pp. 110-113.

Lopes, J. 2009, ‘SaaS (software as a service) – models and infra-structures’, Master

thesis, Universidade Tecnológica de Lisboa, Portugal.

Louridas, P. 2010, 'Up in the air: Moving your applications to the cloud', IEEE

software, vol. 27, no. 4, pp. 6-11.

207

Maier, D. & Ullman, J.D. 1983, 'Maximal objects and the semantics of universal

relation databases', ACM Transactions on Database Systems, vol. 8, no. 1, pp.

1-14.

Martinez, C.G. 2012, 'Study of resource management for Multitenant Database

Systems in Cloud Computing', Master thesis, University of Colorado,

Boulder, USA.

Mateljan, V., Cisic, D. & Ogrizovic, D. 2010, 'Cloud database-as-a-service (DaaS) -

ROI', MIPRO, 2010 Proceedings of the 33rd International Convention,

Opatija, Croatia, pp. 1185-1188.

Mathew, R. & Spraetz, R. 2009, 'Test automation on a SaaS platform', Software

Testing Verification and Validation, 2009. ICST'09. International Conference

on, Denver, USA, IEEE, pp. 317-325.

Menken, I. & Blokdijk, G. 2009, Saas and web applications specialist level complete

certification kit-software as a service study guide book and online course,

Emereo Pty Ltd, UK.

Mietzner, R., Unger, T., Titze, R. & Leymann, F. 2009a, 'Combining different multi-

tenancy patterns in service-oriented applications', Enterprise Distributed

Object Computing Conference, 2009. EDOC'09. IEEE International, IEEE,

pp. 131-140.

Mietzner, R., Metzger, A., Leymann, F. & Pohl, K. 2009b, 'Variability modeling to

support customization and deployment of multi-tenant-aware Software as a

Service applications', Principles of Engineering Service Oriented Systems,

2009. PESOS 2009. ICSE Workshop on, IEEE, Vancouver, Canada, pp. 18-25.

Mohammed, S. & Fiaidhi, J. 2010, 'The Roadmap for Sharing Electronic Health

Records: The Emerging Ubiquity and Cloud Computing Trends', Future

Generation Information Technology, Springer, Jeju Island, Korea pp. 27-38.

Nitu 2009, 'Configurability in SaaS (software as a service) applications', Proceedings

of the 2nd Annual Conference on India Software Engineering Conference,

ACM, Pune, India, pp. 19-26.

208

Pritchett, D. 2008, 'Base: An acid alternative', Queue, vol. 6, no. 3, pp. 48-55.

Ratametha, T. & Veeragandam, M. 2008, 'CRM: Software as a service versus on-

premise-benefits and drawbacks', Master thesis, Lund University, Sweden.

Raza, B., Mateen, A., Sher, M., Awais, M.M. & Hussain, T. 2010, 'Autonomic view

of query optimizers in database management systems', Software Engineering

Research, Management and Applications (SERA), 2010 Eighth ACIS

International Conference on, IEEE, pp. 3-8.

Ren, K., Wang, C. & Wang, Q. 2012, 'Security challenges for the public cloud', IEEE

Internet Computing, vol. 16, no. 1, pp. 69-73.

Sakr, S., Liu, A., Batista, D.M. & Alomari, M. 2011, 'A Survey of large scale data

management approaches in cloud environments', IEEE Communications

Surveys & Tutorials, vol. 13, no. 3, pp. 311-336.

Salesforce, 2013, 'Record-level access: Under the hood', White paper, salesforce.com,

inc.

Schiller, O., Schiller, B., Brodt, A. & Mitschang, B. 2011, 'Native support of multi-

tenancy in RDBMS for software as a service', Proceedings of the 14th

international conference on extending database technology, ACM, Uppsala,

Sweden, pp. 117-128.

Shao, Q. 2011, 'Towards effective and intelligent multi-tenancy SaaS', PhD Thesis,

Arizona State University, USA.

Shuai, Z., Shufen, Z., Xuebin, C. & Xiuzhen, H. 2010, 'Cloud computing research and

development trend', Future Networks, 2010. ICFN '10. Second International

Conference on, Sanya, China, pp. 93-97.

Simmonds, T. 2013, 'Teaching database administration in the world of big data and

small budgets', Friday 5th July 2013 University of Sunderland, Sunderland,

UK, pp. 45-51.

Stonebraker, M. 2010, 'SQL databases v. NoSQL databases', Communications of the

ACM, vol. 53, no. 4, pp. 10-11.

209

Takabi, H., Joshi, J.B. & Ahn, G.-J. 2010, 'Security and privacy challenges in cloud

computing environments', IEEE Computer and Reliability Societies, vol. 8,

no. 6, pp. 24-31.

Tweed, R. & James, G. 2010, 'A universal nosql engine, using a tried and tested

technology', White Paper, Creative Commons Attribution CC-BY.

Wang, Z.H., Guo, C.J., Gao, B., Sun, W., Zhang, Z. & An, W.H. 2008, 'A study and

performance evaluation of the multi-tenant data tier design patterns for service

oriented computing', e-Business Engineering, 2008. ICEBE'08. IEEE

International Conference on, IEEE, Xi’an, China, pp. 94-101.

Weissman, C., Dave M., Simon W. & Paul N. 2012, Multi-tenant database system,

US Patent 8280874.

Weissman, C.D. & Bobrowski, S. 2009, 'The design of the force.com multitenant

internet application development platform', Proceedings of the 2009 ACM

SIGMOD international conference on Management of data, ACM, Rhode

Island, USA, pp. 889-896.

Xia, C., Yu, G. & Tang, M. 2009, 'Efficient implement of ORM (object/relational

mapping) use in J2EE framework: Hibernate', Computational Intelligence and

Software Engineering, 2009. CiSE 2009. International Conference on, IEEE,

Wuhan, China, pp. 1-3.

Xu, D. 2010, 'Cloud computing: An emerging technology', Computer Design and

Applications (ICCDA), 2010 International Conference on, vol. 1, IEEE, pp.

V1-100-V1-4.

Zhang, L.-J., Zhang, J., Fiaidhi, J. & Chang, J.M. 2010, 'Hot topics in cloud

computing', IT professional, vol. 12, no. 5, pp. 17-19.

	Title Page
	Certificate of Authorship/Originality
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Abstract

	CHAPTER 1 Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Research Contributions
	1.4 Thesis Organisation
	1.5 Publications Related to this Thesis

	CHAPTER 2 Literature Review
	2.1 Cloud Computing and Software as a Service
	2.1.1 SaaS History
	2.1.2 SaaS Model
	2.1.3 SaaS Characteristics
	2.1.4 SaaS Maturity Model

	2.2 Multi-tenancy
	2.2.1 Multi-tenant Architecture
	2.2.2 Multi-tenant Configuration

	2.3 Multi-tenant Database Management
	2.4 Multi-tenant Database Schema Designs
	2.4.1 Private Tables
	2.4.2 Extension Tables
	2.4.3 Universal Table
	2.4.4 Pivot Tables
	2.4.5 Chunk Table
	2.4.6 Chunk Folding
	2.4.7 XML Table

	2.5 Multi-tenant Database Query Optimizer
	2.5.1 Oracle Query Optimizer
	2.5.2 SQL Server Query Optimizer
	2.5.3 PostgreSQL Query Optimizer
	2.5.4 SalesForce Query Optimizer

	2.6 Multi-tenant Database Access Control
	2.6.1 Siebel Systems Access Control
	2.6.2 IBM DB2, Access Control
	2.6.3 Salesforce Access Control

	2.7 Big Data
	2.7.1 RDBMS and SQL
	2.7.2 NoSQL
	2.7.3 Issues in RDBMS and NoSQL

	2.8 Summary

	CHAPTER 3 Multi-tenant Database Framework Architecture
	3.1 EET Framework Overview Architecture
	3.2 EET Framework Conceptual Architecture Design
	3.2.1 Elastic Extension Tables
	3.2.2 EET Schema Handler Service
	3.2.3 EET Proxy Service
	3.2.4 EET Query Optimizer Service
	3.2.5 EET Access Control Service
	3.2.6 Data Access Object
	3.2.7 Object Relational Mapping
	3.2.8 EET APIs

	3.3 Summary

	CHAPTER 4 Multi-tenant Database Schema Design
	4.1 Elastic Extension Tables
	4.1.1 Common Tenant Tables
	4.1.2 Extension Tables
	4.1.3 Virtual Extension Tables

	4.2 Elastic Extension Tables Database Models
	4.3 An Example to Compare Multi-tenant Database Schema Designs with Elastic Extension Tables
	4.4 Performance Evaluations
	4.4.1 Experimental Data Set and Setup
	4.4.2 Experimental Result

	4.5 Summary

	CHAPTER 5 Multi-tenant Schema Handler Method
	5.1 Elastic Extension Tables Schema Handler Service
	5.1.1 Table Management
	5.1.2 Column Management
	5.1.3 Row Management
	5.1.4 Relationship Management
	5.1.5 Primary Key Management
	5.1.6 Index Management

	5.2 Sample Algorithms of Elastic Extension Tables Schema Handler Service
	5.2.1 Creating Physical and Virtual Rows Algorithm
	5.2.2 Updating Physical and Virtual Rows Algorithm
	5.2.3 Deleting Physical and Virtual Rows Algorithm

	5.3 Performance Evaluations
	5.3.1 Experimental Data Set and Setup
	5.3.2 Experimental Result

	5.4 Summary

	CHAPTER 6 Multi-tenant Database Proxy Method
	6.1 Elastic Extension Tables Proxy Service
	6.2 Elastic Extension Tables Proxy Service Algorithms
	6.2.1 Single Table Query Algorithm
	6.2.2 One-to-Many Query Algorithm
	6.2.3 Union Query Algorithm
	6.2.4 Join Query Algorithm
	6.2.5 Targeted Tables Query Algorithm

	6.3 Performance Evaluation
	6.3.1 Experimental Setup
	6.3.2 Experimental Data Set and Results

	6.4 Summary

	CHAPTER 7 Multi-tenant Query Optimizer Method
	7.1 Elastic Extension Tables Query Optimizer Service
	7.1.1 Query Access Control
	7.1.2 Index Selection
	7.1.3 Table Row Selection
	7.1.4 Statistics
	7.1.5 Multi-tenant Database
	7.1.6 Generate Query
	7.1.7 Execute Query

	7.2 Performance Evaluation
	7.2.1 Experimental Data Set and Setup
	7.2.2 Experimental Results

	7.3 Summary

	CHAPTER 8 Multi-tenant Access Control Method
	8.1 Elastic Extension Tables Access Control
	8.1.1 Access Control Tables
	8.1.2 Elastic Extension Tables Access Grants

	8.2 Columns and Rows Access Grant Algorithms
	8.2.1 Get User Roles Algorithm
	8.2.2 Get User Columns Algorithm
	8.2.3 Get User Insert Access Algorithm
	8.2.4 Get User Update Access Algorithm
	8.2.5 Get User Delete Access Algorithm
	8.2.6 Get User Query Access Algorithm

	8.3 Performance Evaluation
	8.3.1 Experimental Data Set and Setup
	8.3.2 Experimental Results

	8.4 Summary

	CHAPTER 9 Conclusions and Future Research
	9.1 Conclusions
	9.2 Future Research

	Abbreviations
	Bibliography

