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ABSTRACT

TIME-DELAY SYSTEMS: STABILITY, SLIDING MODE CONTROL

AND STATE ESTIMATION

by

That Dinh Nguyen

Time delays and external disturbances are unavoidable in many practical control

systems such as robotic manipulators, aircraft, manufacturing and process control

systems and it is often a source of instability or oscillation. This thesis is concerned

with the stability, sliding mode control and state estimation problems of time-delay

systems. Throughout the thesis, the Lyapunov-Krasovskii (L-K) method, in con-

junction with the Linear Matrix Inequality (LMI) techniques is mainly used for

analysis and design.

Firstly, a brief survey on recent developments of the L-K method for stability

analysis, discrete-time sliding mode control design and linear functional observer

design of time-delay systems, is presented. Then, the problem of exponential stabil-

ity is addressed for a class of linear discrete-time systems with interval time-varying

delay. Some improved delay-dependent stability conditions of linear discrete-time

systems with interval time-varying delay are derived in terms of linear matrix in-

equalities.

Secondly, the problem of reachable set bounding, essential information for the

control design, is tackled for linear systems with time-varying delay and bounded

disturbances. Indeed, minimisation of the reachable set bound can generally result

in a controller with a larger gain to achieve better performance for the uncertain

dynamical system under control. Based on the L-K method, combined with the delay

decomposition approach, sufficient conditions for the existence of ellipsoid-based

bounds of reachable sets of a class of linear systems with interval time-varying delay



and bounded disturbances, are derived in terms of matrix inequalities. To obtain a

smaller bound, a new idea is proposed to minimise the projection distances of the

ellipsoids on axes, with respect to various convergence rates, instead of minimising

its radius with a single exponential rate. Therefore, the smallest possible bound can

be obtained from the intersection of these ellipsoids.

This study also addresses the problem of robust sliding mode control for a class

of linear discrete-time systems with time-varying delay and unmatched external dis-

turbances. By using the L-K method, in combination with the delay decomposition

technique and the reciprocally convex approach, new LMI-based conditions for the

existence of a stable sliding surface are derived. These conditions can deal with the

effects of time-varying delay and unmatched external disturbances while guaran-

teeing that all the state trajectories of the reduced-order system are exponentially

convergent to a ball with a minimised radius. Robust discrete-time quasi-sliding

mode control scheme is then proposed to drive the state trajectories of the closed-

loop system towards the prescribed sliding surface in a finite time and maintain it

there after subsequent time.

Finally, the state estimation problem is studied for the challenging case when

both the system’s output and input are subject to time delays. By using the in-

formation of the multiple delayed output and delayed input, a new minimal order

observer is first proposed to estimate a linear state functional of the system. The

existence conditions for such an observer are given to guarantee that the estimated

state converges exponentially within an ε-bound of the original state. Based on the

L-K method, sufficient conditions for ε-convergence of the observer error, are derived

in terms of matrix inequalities. Design algorithms are introduced to illustrate the

merit of the proposed approach.

From theoretical as well as practical perspectives, the obtained results in this

thesis are beneficial to a broad range of applications in robotic manipulators, airport

navigation, manufacturing, process control and in networked systems.



Acknowledgements

This thesis could not have been completed without the enormous support of numer-

ous people. I would like to acknowledge all those people who have made contribution

to the completion of my thesis.

First of all, I would like to express my sincere thanks to my PhD supervisor, Asso-

ciate Professor Quang Ha, for his guidance, advice, encouragement and support in

the course of my doctoral work. Regular meetings in his research group and friendly

discussions during lunch time at the University of Technology, Sydney (UTS) helped

me reaffirm my research direction. In addition, I would like to deeply acknowledge

Mrs Hoa Nguyen for numerous discussions related to my study.

Special thanks to Associate Professor Hieu Trinh, Associate Professor Phan Thanh

Nam and Dr Le Van Hien who not only helped me to extend my research horizon,

but also rigorously corrected my errors, from which I have made accountable im-

provements.

I would like to take this opportunity to gratefully acknowledge the Faculty of En-

gineering and Information Technology, University of Technology, Sydney and the

Vietnam International Education Development (VIED) for the financial support of

my research and study at UTS.

My brothers and sisters including Nguyen Dinh Manh, Nguyen Dinh Tuong, Nguyen

Dinh Tha, Anna Russell, Pham Thi Thu Hang and several friends whose concerns

and support have helped me overcome obstacles and concentrate on my study, are

acknowledged. I greatly appreciate their friendship and assistance.



vi

Most importantly, my thesis could not have been completed without the encour-

agement and support from my family. I would like to dedicate my thesis to my

parents, Nguyen Dinh Muoi, Nguyen Thi Nhi, Pham Van Sam, Vu Thi Thanh To

and my beloved wife, Pham Thi Thu Trang and daughter, Nguyen Pham Nhu Thao,

who have been a source of care, love, support and strength during my graduate study.

That Dinh Nguyen

Sydney, Australia, 2014.



Contents

Certificate ii

Abstract iii

Acknowledgments v

List of Illustrations xi

Notation xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature survey 11

2.1 Stability analysis of time-delay systems . . . . . . . . . . . . . . . . . 11

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Basic stability theorems . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Time-delay Systems . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Lyapunov-Krasovskii approach . . . . . . . . . . . . . . . . . . 18

2.1.5 Bounding technique . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.6 Delay decomposition technique . . . . . . . . . . . . . . . . . 24

2.1.7 Free weighting matrix . . . . . . . . . . . . . . . . . . . . . . 25



viii

2.1.8 Descriptor system approach . . . . . . . . . . . . . . . . . . . 28

2.2 Discrete-time sliding mode control . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Sliding surface design . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Reaching law . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Linear functional observer design of time-delay systems . . . . . . . . 43

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Linear functional observers for systems with delay in the state 47

2.3.3 Linear functional observers for systems with delay in the output 50

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Exponential stability of time-delay systems 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Problem statement and preliminaries . . . . . . . . . . . . . . . . . . . 56

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Example 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Example 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Reachable set bounding 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Problem statement and preliminaries . . . . . . . . . . . . . . . . . . . 75

4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



ix

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Quasi-sliding mode control 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Problem Statement and Preliminaries . . . . . . . . . . . . . . . . . . 91

5.3 Robust quasi-sliding mode control design . . . . . . . . . . . . . . . . 93

5.3.1 Sliding function design . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Robust quasi-sliding mode controller design . . . . . . . . . . 101

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.2 Example 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Functional observer design of time-delay systems 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Problem Statement and Preliminaries . . . . . . . . . . . . . . . . . . 112

6.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Systems with both output and input delays . . . . . . . . . . 117

6.3.2 Systems with output delay and instantaneous input . . . . . . 123

6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.1 Example 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.2 Example 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.3 Example 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Conclusion 134



x

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138



List of Figures

3.1 Inverted Pendulum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 The state trajectories of x1(k) and x2(k). . . . . . . . . . . . . . . . . 72

4.1 Ellipsoidal bounds of the reachable set by ε(P, 1) and ε(P1, 1) . . . . 87

4.2 Ellipsoidal bounds of the reachable set by ε(P, 1) and ε(P2, 1) . . . . 87

4.3 An improved bound of the reachable set by

ε =
(⋂n

h=1 ε(Ph, 1)
)⋂

ε(P, 1). . . . . . . . . . . . . . . . . . . . . . . 88

5.1 State responses of the reduced-order system with unmatched

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 State responses of the closed-loop system with unmatched disturbances107

5.3 Steer angle u(k) of the truck-trailer system with unmatched

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Sliding function s(k) of the truck-trailer system with unmatched

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 State responses of the closed-loop system without external

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Steer angle u(k) of the truck-trailer system without external

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Sliding function s(k) of the truck-trailer system without external

disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xii

6.1 System responses with τ1 = 1 and τ2 = 0.9. . . . . . . . . . . . . . . . 128

6.2 Estimation error for the case τ1 = 1 and τ2 = 0.9. . . . . . . . . . . . 128

6.3 System responses with τ1 = 0 and τ2 = 1. . . . . . . . . . . . . . . . . 129

6.4 Estimation error for the case τ1 = 0 and τ2 = 1. . . . . . . . . . . . . 130

6.5 System responses of a master-slave tele-operated two-hand robot. . . 132

6.6 Estimation error of the finger speed. . . . . . . . . . . . . . . . . . . 132



Nomenclature and Notation

Throughout the thesis, capital letters denote matrices and lower-case alphabet and

Greek letters denote column vectors and scalars, respectively and the following

nomenclatures and notations are used:

- TDS: Time-delay system

- FWM: Free weighting matrix

- SMC: Sliding mode control

- VSS: Variable structure system

- CTSMC: Continuous-time sliding mode control

- DTSMC: Discrete-time sliding mode control

- QSM: Quasi-sliding mode

- QSMB: Quasi-sliding mode band

- L-K: Lyapunov-Krasovskii

- LQR: Linear quadratic regulator

- LMI: Linear matrix inequality

- LKF: Lyapunov-Krasovskii functional

- MAB: Maximum allowable bound

- PAM: Piecewise analysis method

- IQC: Integral quadratic constraint

- SISO Single input single output

- MIMO: Multi input multi output

- R: Field of real numbers

- R+: Set of non-negative reals

- Z: Set of all integer numbers

- Z+: Set of non-negative integer numbers

- Z[a, b] = Z ∩ [a, b]



xiv

- N: Set of all natural numbers

- Rn: n-dimensional space

- Rn×m: Space of all matrices of (n×m)-dimension

- C: Continuous function
- AT : Transpose of matrix A

- A−1: Inverse of matrix A

- A > B: Inequality between real vectors or matrices are understood componentwise

- In: Identity matrix of dimension n× n

- 0n: Zero matrix of dimension n× n

- (∗): in a matrix means the symmetric term

- λ(A): Set of all eigenvalues of matrix A

- λm(A): Smallest eigenvalue of matrix A

- λM(A): Largest eigenvalue of matrix A

- diag[A,B,C]: Block diagonal matrix with diagonal entries A,B,C

- ◦: the Hadamard product, i.e., (A ◦B)i,j = Ai,j.Bi,j

- ||.||: Euclidean norm of a vector or spectral norm of a matrix
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