Operations-Based Knowledge Management

(OBKM) in Aircraft Engineering

By

Rafed Zawawi

A thesis submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

Faculty of Engineering & IT

University of Technology, Sydney

Australia

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Dedication

This dissertation is dedicated for my father, Abdulwahab, and my mother, Noor, who taught me that working hard will get you your dreams. Thank you for believing in me. Your love and prayers is what brought me where I am today. Also, I dedicated this dissertation to my wife, Heba. I would not be able to accomplish this research without her ultimate support, deep understanding and profound encouragement. She was always there cheering me up and stood by me through the good times and bad. Nevertheless, I would like to thank my father and mother in-low Abdulla and Khadija for their prayers, love and support during this journey. Finally, I want to dedicate it to my beloved daughter, Maya, and son, Mohammad, whose unconditional love and sweet spirits lifted and sustained me during the darkest hours.

Acknowledgements

All praise and thanks are due to Allah, the one with whose blessings and grace all good deeds can be accomplished. The long journey to finishing this dissertation would not be possible without great support and inspiration from many people along the way.

First, I would like to express my deepest gratitude to my principal supervisor Dr. Hasan Akpolat who was my mentor, inspirer and friend. Your patience, guidance, charisma and effort were essential to the birth of this thesis and my formation as a researcher. Also, I am especially indebted to my co-supervisor, Mr. Ravindra Bagia, who believed in me. Thank you for giving me the opportunity and support to become a PhD candidate. When I am in doubt and frustration, your words give me comfort and confidence there is light at the end of the tunnel.

I want to thank my engineering mentor, Eng. Elsayed Emara, who planted and championed the research idea. You supported my study and backed me up when all doors was closed. Nevertheless, I like to thank the Saudi Arabian aviation industry for being helpful and participating in my research.

Moreover, I would like to thank the Saudi Arabian government especially the cultural mission of the royal embassy of Saudi Arabia in Canberra, Australia for sponsoring my research and helping me overcame the logistic obstacles. Also, I like to thank all my friends and colleges at the Faculty of Engineering and IT of

Page | iv

the University of Technology, Sydney, Australia. My special thanks to Phyllis Agius from the Faculty of Engineering and IT for the administrative support. Finally, I want to thank all my family and friends for their understanding and kindness during this long journey.

Rafed Zawawi,

October, 2014

Abstract

Raising oil prices, intense rivalry completion, safety concerns and downward pressure on prices are some of the serious challenges facing the civil aviation industry. However, in the past decade the civil aviation industry experienced a new kind of challenge; the escalading shortage of sophisticated technical capabilities especially in the aircraft engineering fields. This was fuelled by the high job rotation, job reduction and the raising rate of retirement of the aging engineering workforce. This exposed the raising knowledge gap between the aircraft engineering experts and new hires. The need for an effective knowledge management (KM) system was evident.

Hence, the main objective of this study is to develop and validate a framework for better management of knowledge in the aircraft engineering field. The Saudi Arabian aviation industry was the domain for this research. A review of KM literature was conducted. Many of the KM initiatives seems to relate to focusing on the information technology (IT) based solutions rather than dealing with the organizations' operational issues that have diverse effect on KM implementation. Thus, Operations-Based Knowledge Management (OBKM) framework guidelines were proposed.

Also, an empirical investigation of the KM practices in the Saudi Arabian aviation industry was performed. Convergent interviews were carried out. It was discovered that level KM awareness among aircraft engineers is low. Moreover, current KM practices are modest and, where they exist, are merely incidental to everyday operations, and not due to any deliberate focus on KM.

Further development for the OBKM framework guidelines was needed. KM critical success factors (CSF) literature coding and analysis were performed to identify the theoretical OBKM framework.

To incorporate the industry experts' feedback into the framework a KM workshop was performed in the Saudi Arabian aviation industry. It was attended by 63 aircraft engineering experts. It consisted of KM seminar followed by KM focus groups. The workshop helped raising the KM awareness and, at the same time, gathering the CSF for an effective KM system from their point of view. Developing the practice-based OBKM framework was done by integrating the focus groups findings with the proposed theoretical OBKM framework. In the last stage of this study, an industry wide survey was carried out to validate the practice-based framework.

The main outcome of this study was an OBKM framework with a proposed model and implementation guidelines for the Saudi Arabian aviation industry. It will assist the aviation organization to effectively manage aircraft engineering knowledge.

Contents

Certificate of Authorship/Originality	ii
Dedication	iii
Acknowledgements	iv
Abstract	vi
List of Tables	xvi
List of Figures	xvii
List of Publications	xviii
Chapter 1 Introduction	1
1. 1. Background of the Research	1
1.1.1 Problem Background	1
1.1.2 Research Significance	5
1.1.3 Original Contribution	6
1. 2. Research Objectives	6
1.3. Research Questions	8
1.4. Research Steps	9
1. 5. Structure of Thesis	

Chapter 2 Literature Review

2.	1.	Introduction 1	.3
2.	2.	What is Knowledge Management (KM)?1	.3
	2.2.1	1 Data, Information and Knowledge1	.4
	2.2.2	2 Knowledge Types1	.6
	2.2.3	3 Knowledge Management Definitions1	.9
	2.2.4	4 Knowledge Management Theory2	1
2.	3.	IT-based Approach versus Operations-Based Approach2	6
2.	4.	Guidelines for a Holistic Knowledge Management Framework	8
	2.4.2	1 Leadership Aspect 2	9
	2.4.2	2 Process Aspect 3	1
	2.4.3	3 People Aspect	2
2.	5.	Research Hypotheses	4
2.	6.	Summary	7

Chapter 3	Research Methodologies and Plan	38
3.1. Int	roduction	
3. 2. Sys	stematic Approach of This Study	
3.3. Re	search Design and Evolution of OBKM Framework	43
3. 4. Da	ta Collection Requirements	
3.5. Me	ethod of Developing and Testing Research Hypotheses	49
3.6. Me	ethod of Developing and Testing OBKM Framework	50
3.6.1.	Framework Recommendations and Principals	50
3.6.2.	Convergent Interviewing	51
3.6.3.	Literature Coding Analysis	51
3.6.4.	Focus Groups	54
3.6.5.	Survey	57
3.7. Su	rvey Data Analysis Methods	62
3.7.1	Hypotheses Testing	63
3.7.2	Reliability Testing	63
3.7.3	Validity Testing	65
3.8. Su	mmary	66

Chapter 4 Theoretical OBKM Framework	68
4.1 Introduction	68
4.2 KM Current Practices in Saudi Arabian Aviation Industry	68
4.3 Theoretical Guidelines for OBKM Framework	72
4.4 The Theoretical OBKM Framework	73
4.5 Elements of the Theoretical OBKM Framework	77
4.5.1 Planning and Strategy Development:	77
4.5.2 Leadership:	79
4.5.3 Monitoring and Continual Improvement:	80
4.5.4 Implementation:	
4.5.5 Guidelines and Procedure:	
4.5.6 Culture:	
4.5.7 Teamwork:	85
4.5.8 Development:	
4.6 Summary	

Chapter 5 Practice-based OBKM Framework	89
5.1 Introduction	
5.2 Focus Groups Implementation	
5.3 Practice-based OBKM Framework	94
5.4 Modified Research Hypotheses	96
5.5 Summary	

Chapter 6 Final OBKM Framework	99
6.1 Introduction	99
6.2 General Characteristics of Respondents	99
Background of the Respondents	100
6.3 Reliability Testing of Reponses	103
6.4 Testing Validity of Responses	105
6.4.1 Content Validity	105
6.4.2 Construct Validity	106
6.4.3 Criterion-Related Validity	107
6.5 Results of the OBKM Survey	108
6.5.1 Perceptual Responses to OBKM Practices	108
6.5.2 Perceptual Responses to OBKM Importance	109
6.6 Testing Research Hypotheses	110
6.7 OBKM System Implementation Guidelines	128
6.7.1 Top Management	130
6.7.2 Process Management	
6.7.3 People Management	132
6.8 Summary	133

Chapter 7 Summary and Conclusions

7. 1.	Introduction1	35
7. 2.	Brief Summary of this Research1	35
7. 3.	Research Conclusions1	41
7.4.	Limitation and Future Research Prospective1	42
7. 5.	Research Contributions1	43

Appendix 1: Convergent Interviews	152
Appendix 2: Knowledge Management Workshops (Focus Groups)	160
Appendix 3: Questionnaire	163
Appendix 4: Letter of Approval from UTS Human Research Ethics	
Committee (HREC)	174
Appendix 5: Example of Survey e-mail	175
Appendix 6: Literature Analysis (Theoretical Framework)	176
Appendix 7: Focus Groups Analysis (Practice-based Framework)	177
Appendix 8: Questionnaire Coding Sheet	180
Appendix 9: Construct Validity Testing (Factor Analysis)	189
Appendix 10: Criterion-Related Validity Testing (Multiple Regression	
Analysis)	197
Appendix 11: Questionnaire Reliability Testing	199
Appendix 12: Hypotheses Testing	203

List of Tables

TABLE 3.1 OBKM FRAMEWORK ELEMENTS AND A PRIORI CODES	54
TABLE 4.1 THEORETICAL FRAMEWORK ANALYSIS	76
TABLE 5.1 PRACTICE-BASED FRAMEWORK ANALYSIS	92
TABLE 6.1 INTERNAL CONSISTENCY ANALYSIS RESULTS	104
TABLE 6.2 CONSTRUCT VALIDITY ANALYSIS RESULTS	106
TABLE 6.3 MEAN PRACTICE RESULTS	109
TABLE 6.4 MEAN IMPORTANCE RESULTS	110
TABLE 6.5 COMPARISON STATISTICS FOR PRACTICE AND IMPORTANCE	112
TABLE 6.6 MEAN RESULTS OF EACH ITEM IN FACTOR 1	113
TABLE 6.7 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 1	114
TABLE 6.8 MEAN RESULTS OF EACH ITEM IN FACTOR 2	115
TABLE 6.9 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 2	116
TABLE 6.10 MEAN RESULTS OF EACH ITEM IN FACTOR 3	117
TABLE 6.11 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 3	118
TABLE 6.12 MEAN RESULTS OF EACH ITEM IN FACTOR 4	119
TABLE 6.13 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 4	120
TABLE 6.14 MEAN RESULTS OF EACH ITEM IN FACTOR 5	120
TABLE 6.15 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 5	121
TABLE 6.16 MEAN RESULTS OF EACH ITEM IN FACTOR 6	122
TABLE 6.17 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 6	123
TABLE 6.18 MEAN RESULTS OF EACH ITEM IN FACTOR 7	123
TABLE 6.19 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 7	124
TABLE 6.20 MEAN RESULTS OF EACH ITEM IN FACTOR 8	125
TABLE 6.21 PAIRWISE COMPARISON STATISTICS FOR ITEMS IN FACTOR 8	126
TABLE 6.22 CORRELATION ANALYSIS RESULTS OF OBKM SYSTEM FACTORS	127

List of Figures

FIGURE 1-1 RESEARCH OBJECTIVES	8
FIGURE 1-2 LIST OF TOOLS & METHODS USED AT EACH RESEARCH STEP	10
FIGURE 2-1 EXPLICIT AND TACIT KNOWLEDGE ICEBERG	18
FIGURE 2-2 PEOPLE, PROCESS & TECHNOLOGY MODEL ADAPTED FROM (COLLISO	N
& PARCELL 2001)	22
FIGURE 2-3 KNOWLEDGE DEVELOPMENT PROCESS ADOPTED FROM (COLLISON &	
PARCELL 2001)	24
FIGURE 2-4 KNOWLEDGE DEVELOPMENT PROCESS MAPPED USING INSTITUTIONA	L
KNOWLEDGE EVOLUTION CYCLE ADOPTED FROM (WIIG 1999) AND (COLLISC)N
& PARCELL 2001)	26
FIGURE 2-5 KNOWLEDGE MANAGEMENT APPROACHES	28
FIGURE 2-6 STRUCTURE GUIDELINES FOR OBKM FRAMEWORK	29
FIGURE 3-1 RESEARCH METHODOLOGY	41
FIGURE 3-2 OBKM FRAMEWORK EVOLUTION	44
FIGURE 3-3 CODING ANALYSIS (USED FOR THEORETICAL AND PRACTICE-BASED	
FRAMEWORKS)	53
FIGURE 4-1 THEORETICAL OBKM FRAMEWORK	74
FIGURE 5-1 PRACTICE-BASED OBKM FRAMEWORK	94
FIGURE 6-1 PARTICIPANTS POSITION IN THE ORGANIZATION	101
FIGURE 6-2 PERCENTAGE OF FAMILIARITY TO KM	102
FIGURE 6-3 YEARS OF EXPERIENCE	103
FIGURE 6-4 LEVEL OF KNOWLEDGE RETENTION AFTER AN ENGINEER LEAVES THE	Ξ
ORGANIZATION	103
FIGURE 6-5 FINAL OBKM FRAMEWORK	130

List of Publications

Conference Proceedings:

- ZAWAWI, R., AKPOLAT, H. & BAGIA, R. Managing Knowledge in Aircraft Engineering. Proceedings of the 2nd International Conference on Logistics and Transport (ICLT 2010), 2010 Queenstown, New Zealand
- ZAWAWI, R., AKPOLAT, H. & BAGIA, R. Operations-Based Knowledge Management. Proceedings of the 2nd International Conference on Industrial Engineering and Operations Management (IEOM 2011), 2011 Kuala Lumpur, Malaysia. IEOM Research Solutions Pty Ltd.
- ZAWAWI, R., AKPOLAT, H. & BAGIA, R. Managing Knowledge in Aircraft Engineering.Proceedings of The 3rd International Conference on Logistics & Transport and The 4th International Conference on Operations and Supply Chain Management on 15-17 December 2011, Kurumba Maldives Resort, Malé, Maldives
- ZAWAWI, R., AKPOLAT, H. & BAGIA, R. Managing Knowledge in Aircraft Engineering – An Operations-Based Approach. Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management (IEOM 2012), 2012 Istanbul, Turkey. IEOM Research Solutions Pty Ltd.

Journals:

 ZAWAWI, R., AKPOLAT, H. & BAGIA, R. 2010. Managing Knowledge in Aircraft Engineering. *International Journal of Business and Economics*, Vol. 2, Pages. 161-174.