Developing a life cycle assessment model for measuring sustainable performance of buildings in China

Jiani Liu

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy

University of Technology Sydney, Australia

2014

i

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date: 7 July 2014

Acknowledgement

The PhD journey is the reward and it would not have been possible without the support of many people, to whom I offer my sincere thanks.

First and foremost, I must wholeheartedly thank Dr Grace Ding, who offers me an opportunity to study in Sydney. During the past four years, Grace keeps inspiring me with her approach in research and with her passion for it. In paper, she is my principle supervisor, in reality she did much more than that. She acts as a mentor who gives me strength and support, without which I do not know where I would be now. I would like to express my deepest gratitude and sincere appreciation to Grace for her support, guidance and encouragement during my PhD journey.

I would also like to thank my co-supervisor, Professor Bijan Samali. He is nice and helpful and helped me settle down in my faculty when I first here. He is sources of wisdom and humor and always willing to share his advice during our discussion. I also appreciate his proofreading of my thesis.

Great thanks go to University of Technology, Sydney, China Scholarship Council, Center for Building Infrastructure Research, and Faculty of Engineering and Information Technology, which offer me scholarships, funding and support my study abroad. Thanks for the design institutes, companies as well as the experts in China who offer me great support during my research data collection process.

Finally, thanks to my father Shiyu Liu and my mother Dongming Zhu who continuously gave me backing, love, and courage. Thanks to my husband Xianfeng Liu, thanks for his thoughtfulness. Thanks to all my families for their love, understanding and encouragement which support me and make me here. Thanks for my friend Ning Yan, who help me a lot and we have developed a strong friendship. I also have a special thanks to everybody who accompanies me during my PhD, especially in the place so far away from home.

Contents

Acknowledgement	ii
List of Abbreviations and Acronyms	viii
List of Figures	X
List of Tables	xii

1	Int	roductio	n	1
	1.1	Introduc	ction	1
	1.2	Backgro	bund to the research	1
	1.3	Problem	ns definition	4
	1.4	Researc	h aims and objectives	7
	1.5	Researc	h scope	10
	1.6	Researc	h methodology	11
	1.7	Signific	ance of the research	12
	1.8	Structur	e of the thesis	12
	1.9	Summa	ry	15
2	Sus	tainabili	ity and triple bottom line	17
	2.1	Introduc	ction	17
	2.2	The sus	tainability concept	17
	2.3	The trip	le bottom line of sustainability	22
		2.3.1	The concept of triple bottom line	22
		2.3.2	Comparing triple bottom line approach with impact assessment	23
	2.4	An over	view of triple bottom line for building assessment	26
		2.4.1	Environmental assessment approaches	26
		2.4.2	Economic assessment approaches	44
		2.4.3	Social assessment approach for assessing building	54
	2.5	Summa	ry	60

3	Sus	tainabl	e building and sustainable assessment	61
	3.1	Introdu	iction	61
	3.2	Impact	of building on the environment	61
	3.3	An ove	erview of sustainable building performance assessment methods	64
		3.3.1	Building performance modeling	65
		3.3.2	Sustainable building assessment tools	68
	3.4	Sustain	able building development and assessment in China	71
		3.4.1	The development of sustainable building and legal systems	71
		3.4.2	The development of sustainable building assessment tools	77
	3.5	A critic	ue of sustainable building assessment tools	90
	3.6	Summa	ary	97
4	Bui	ilding p	rocess and building life cycle performance	99
	4.1	Introdu	iction	99
	4.2	Buildir	ng phases and activities	99
	4.3	The ev	aluation of environmental, economic and social impacts	
		related	to the building process	105
		4.3.1	Inception and design phase	106
		4.3.2	Construction phase	108
		4.3.3	Operation phase	111
		4.3.4	Demolition phase	114
	4.4	Assess	ing building performance on a life cycle perspective	116
	4.5	Summa	ary	120
5	Res	search n	nethodology and data collection	121
	5.1	Introdu	iction	121
	5.2	Resear	ch methodology	121
		5.2.1	Qualitative methods	122
		5.2.2	Quantitative methods	123
		5.2.3	Mixed method strategies	125
	5.3	Data-co	ollection processes and instruments	127
	5.4	Resear	ch methods used in the construction industry	129
	5.5	Resear	ch design	133
	5.6	Summa	ary	136
6	Dat	ta analy	sis and discussions	138
	6.1	Introdu	iction	138
	6.2	Data co	ollection process	138 v

		6.2.1	Questionnaire survey	139
		6.2.2	Interview	145
	6.3	Data an	alysis - questionnaire survey	146
		6.3.1	General background	147
		6.3.2	Sustainable building development in China	150
		6.3.3	Ways to improve current situation of green building	
			development in China	153
		6.3.4	Opinion about the sustainable assessment tools in China	154
		6.3.5	The most widely used sustainable assessment tools in China	156
		6.3.6	Building life cycle stages	157
		6.3.7	The pillars of sustainable impacts	160
		6.3.8	Identifying indicators for the assessment of building	
			performance	160
		6.3.9	Summary of questionnaire survey and inspiration for the	
			Interview	163
	6.4	Data an	alysis - interview	165
		6.4.1	Background of interview	165
		6.4.2	The problems of sustainable building development in China	167
		6.4.3	The current used sustainable assessment tools in China	170
		6.4.4	The stage division in building life cycle	171
		6.4.5	The assessment indicators in three pillars in different stages	173
	6.5	Summa	ry	174
7	Dev	veloping	a building sustainable score model for assessing	building
	per	formanc	ce from a life cycle perspective	176
	7.1	Introduc	ction	176
		-	tual model	176
	7.3	Indicato	ors evaluation	179
		7.3.1	Assessment details of indicators	179
		7.3.2	Indicator Evaluation	188
	7.4	Weights	s of the indicators	195
	7.5	Building	g Sustainable Score (BSS) model	200
	7.6	Summa	ry	203
8			s and model verification	204
	8.1	Introduc	ction	204
	8.2	Backgro	ound information of case studies	204
		8.2.1	Case study No 1: A low rise office building in suburban	
			industrial area	205
				vi

		8.2.2	Case study No 2: A medium rise office building in CBD	207
		8.2.3	Case study No 3: A medium rise green building in a new	
			development area	209
	8.3	Assessr	nent details of case studies	213
		8.3.1	Economic assessment - LCC approach	213
		8.3.2	Environmental assessment - The value score and LCA approach	216
		8.3.3	Social assessment - The value score approach	223
	8.4	Weighti	ing system in the BSS model	225
		8.4.1	AHP method	226
		8.4.2	Model calculation	229
	8.5	The res	ults compared with other assessment tools	237
		8.5.1	Assessing the three projects using LEED	237
		8.5.2	Assessing the three projects using ESGB	240
	8.6	The ber	nefits of BSS	241
	8.7	Summa	ry	243
9	Sur	nmary a	and Conclusions	244
		Introdu		244
	9.2	Summa	ry of research	244
	9.3	Review	of aims and objectives	245
		9.3.1	Reviewing current environmental building assessment tools	245
		9.3.2	Reviewing building processes and phases of a building	246
		9.3.3	Reviewing the environmental, economic and social impacts relat	ted
			to building processes	247
		9.3.4	Reviewing the current condition of green building design	
			and construction in China	249
		9.3.5	Reviewing the model development and verification	250
	9.4	The out	come of the BSS model	252
	9.5	Contrib	ution to knowledge	252
	9.6	Researc	ch limitations	253
	9.7	Recom	mendations for further research	254
	9.8	Conclus	sions	256
Re	feren	ice		257
Ар	pend	lices		281

List of Abbreviations and Acronyms

Acronym	Definition
AHP	Analytical Hierarchy Process
BEPAC	Building Environmental Performance Assessment Criteria
BREEAM	Building Research Establishment Environmental
	Assessment Method
BRI	Building Related Illness
BSS	Building Sustainable Score
CASSBE	Comprehensive Assessment System for Built
	Environment Efficiency
CBA	Cost-Benefit Analysis
CF	Carbon Footprint
CSR	Corporate Social Responsibility
DEP	Direct Energy Path
DGNB	Deutsche Gesellschaft für Nachhaltiges Bauen
EF	Ecological Footprint
EIA	Environmental impact assessment
EIO-LCA	Economic Input-Output LCA
EMS	Environmental Management Systems
EoL	End-of-Life
ESGB	Evaluating Standard for Green Buildings
FCA	Full Cost Accounting
FCP	Full Cost Pricing
GB Tool	Green Building Tool
GFA	Gross Floor Area
GHG	Greenhouse Gas
GOBAS	Green Olympic Building Assessment System

HLF	Health Footprint
HVAC	Heating, Ventilation and Air Conditioning
ISO	International Organization for Standardization
LCA	Life Cycle Assessment
LCA*	Life Cycle Accounting
LCC	Life Cycle Cost
LCCA	Life Cycle Cost Assessment
LEED	Leadership in Energy and Environmental Design
MFA	Material Flow Accounting
MOC	Ministry of Construction (China)
SAT	Sustainable Assessment Tool
SBS	Sick Building Syndrome
SD	Sustainable Development
SDA	Sustainable Development Ability
SDV	Sustainable Development Value
SEA	Strategic Environmental Assessment
SF	Social Footprint
SIA	Social Impact Assessment
TBL	Triple Bottom Line
TCA	Total Cost Accounting
VS	Value Score
WF	Water Footprint
WHO	World Health Organization
WLC	Whole Life Costing

List of Figures

Figure 1.1	The structure of research	16
Figure 2.1	The relationship of three pillars in SD	21
Figure 2.2	The LCA framework	27
Figure 2.3	Cost accounting methods	45
Figure 2.4	The relationship among the three types of LCC	49
Figure 3.1	LEED certified projects in China by August 2011	79
Figure 3.2	Distribution of the LEED certified projects in China (2004 - 2011)	80
Figure 3.3	Number of registered projects in different LEED systems	81
Figure 3.4	Number of certified projects in different LEED systems	81
Figure 3.5	Distribution of LEED certified projects by building types	82
Figure 3.6	Registered LEED projects by provinces in 2011	83
Figure 3.7	Distribution of the ESGB certified projects	87
Figure 3.8	Distribution of ESGB certificated buildings by building types	
	and levels	88
Figure 3.9	Distribution of ESGB certified projects by provinces by 2011	90
Figure 4.1	The divisions of building phases	102
Figure 5.1	Breadth vs. depth in research	133
Figure 5.2	Research flow	137
Figure 6.1	Experience distribution	149
Figure 6.2	The current situation of sustainable building development in China	151
Figure 6.3	The projects which used sustainable assessment tools among the	
	projects they participated in	155
Figure 6.4	The most widely used SATs in China	156
Figure 6.5	The stage division	158
Figure 7.1	The conceptual model for BSS	178
Figure 7.2	The flow of AHP method	196

Figure 8.1	The location of the three cases in Guangdong Province, China	205
Figure 8.2	The general layout of case 1	206
Figure 8.3	The general plan of case 2	208
Figure 8.4	The plan of case 3	210
Figure 8.5	The LCC component of case 1, 2, and 3	216
Figure 8.6	The value score of social impacts for three cases	225
Figure 8.7	The score of different stages in three cases	234
Figure 8.8	BSS for three cases	235
Figure 8.9	The sustainable score in four stages and three pillars in three cases	236

List of Tables

Table 2.1	Comparison of various approaches in building assessment	25
Table 2.2	Summary of LCA approach for the assessment of building	
	performance	29
Table 2.3	Research on input-output framework used in EF	34
Table 2.4	Calculation units for GHG in CF	38
Table 2.5	A comparative study of the three consumer-based approaches	42
Table 2.6	Summary of different forms of economic approaches	46
Table 2.7	Life cycle cost analysis on buildings	47
Table 2.8	Comparison of three types of LCC	50
Table 2.9	Economic life of building components	51
Table 2.10	Methods to calculate the social impacts	59
Table 3.1	The key features of selected four SATs	70
Table 3.2	The development of legal system for sustainable buildings in China	73
Table 3.3	Standards and guidelines for green buildings in China	76
Table 3.4	The assessment details in Technical Assessment Handbook for	
	Ecological Residence	85
Table 3.5	Sustainable assessment tools and their applicable phases	94
Table 4.1	The stage-division of a construction project across its life cycle	
	and the major activities in each stage	104
Table 4.2	Summary of the building stages and the relevant sustainable impacts	117
Table 5.1	Summary of advantages and limitations of qualitative methods	123
Table 5.2	Summary of advantages and limitations of quantitative methods	125
Table 5.3	Characteristic of quantitative, qualitative and mixed methods	126
Table 5.4	Advantages and limitations of different data-collection processes	128
Table 5.5	Research methods used in construction industry	132
Table 6.1	The component of the participants	146

Table 6.2	Summary of general background of participants in questionnaire	
	Survey	148
Table 6.3	Age distribution by gender and professionals	149
Table 6.4	Experience distribution by professionals	150
Table 6.5	Causes for the slow development of green building in China	152
Table 6.6	The ways to improve the green building situation	154
Table 6.7	Participants who used the SA tools before by age	155
Table 6.8	Experience in SAT by occupation	156
Table 6.9	The SAT which professionals used	157
Table 6.10	Importance of assessing building performance in every single stage by	
	professional	159
Table 6.11	Indicators for assessing the buildings' environmental impacts	162
Table 6.12	Indicators for assessing the buildings' social impacts	162
Table 6.13	The component of the participants	166
Table 6.14	The assessment indicators for different stages in three pillars	174
Table 7.1	The assessment details of indicators in inception and design stage	182
Table 7.2	The assessment details of indicators in construction stage	184
Table 7.3	The assessment details of indicators in operation stage	185
Table 7.4	The assessment details of indicators in demolition stage	187
Table 7.5	Coefficient for demolition waste (kg/m^2)	195
Table 7.6	Fundamental scale for developing priority matrix	197
Table 7.7	Pair-wise comparison matrix for criterion A_1 , A_2 , A_3	197
Table 7.8	Random index (R.I.) in AHP	200
Table 8.1	Design detail of the three cases	212
Table 8.2	Summary of economic assessment for the three case studies	214
Table 8.3	The discounted cash flow of operating cost for the three projects (Υ)	215
Table 8.4	Energy consumed on site in construction stage for case 1	218
Table 8.5	The coefficient for carbon emission in demolition stage	221
Table 8.6	Summary of environmental assessment for the three case studies	223

Table 8.7	Summary of social assessment for the three case studies	224
Table 8.8	Weighting for environmental indicators in inception and design stage	228
Table 8.9	Weighting for indicators in three pillars and four stages	228
Table 8.10	Building sustainable score in inception and design stage of the three	
	cases	230
Table 8.11	Building sustainable score in construction stage of the three cases	231
Table 8.12	Building sustainable score in operation stage of the three cases	232
Table 8.13	Building sustainable score in demolition stage of the three cases	233
Table 8.14	Building sustainable score for three cases	234
Table 8.15	LEED evaluation for the three cases	238
Table 8.16	The grades for the three cases	241

List of publications during candidature

Journal paper

Liu, J., Ding, G.K. & Samali, B. 2013, 'Building Sustainable Score (BSS)—A Hybrid Process Approach for Sustainable Building Assessment in China', *Journal of Power and Energy Engineering*, Vol.1, Issue 5, pp. 58-62.

Conference paper

Liu, J., Ding, G.K. & Samali, B. 2011, 'Quantifying and assessing impacts of building processes in a triple bottom line approach', SB11 Helsinki, Helsinki, Finland, October 2011 in *World Sustainable Building Conference*, ed Huovila, Pekka, Finish Association of Civil Engineers RIL & VTT Technical Research Centre of Finland, Helsinki, Finland, pp. 554-563.

Abstract

The construction industry contributes significantly to environmental pollution. The environmental problems caused by construction range from energy and resource consumption to waste emission throughout the building life cycle. With increasing attention being paid to building sustainability performance, numerous environmental assessment tools occurred. They have been developed and used to assist planning and design of sustainable buildings, and help improve overall environmental awareness and achieve the goal of sustainability in the construction industry.

However, with critical reviews on the current tools, they are criticized as being ineffective and inefficient in addressing the building performance issues, as most of them only focus on assessing building performance on environmental criteria and the assessment does not take into consideration economic and social analysis. Sustainability is like a three-legged stool, with each leg representing areas of environment, economy and society. Any leg missing from the 'sustainability stool' will cause instability because the three components are intricately linked together. In addition, most current tools have not considered all the building phases in their assessment. As economic, social and environmental impacts associated with project development will vary at different stages throughout its life cycle, sustainable performance should be assessed and incorporated into the building process.

Since the last century, China started to realize the importance of green buildings (CSUS 2012). A national SAT called Evaluation Standards for Green Buildings (ESGB) was launched in 2006 (Ye et al. 2013), and several international tools are adopted in China for assessing building performance. However, sustainable building assessment has significant regional differences and the application of international tools in China still have shortcomings. Moreover, the ESGB is also criticized for not

sufficiently taking into consideration of economic and social issues in building life cycle assessment.

In this research, different phases of a building life cycle are identified, as well as major activities for each phase in order to investigate how they influence the environmental, economic and social impacts. Both qualitative and quantitative methods are adopted in this research. Questionnaire survey and semi-structure interviews were used for data collection. The assessment indicators are generated by the data collection.

An assessment model is established based on the results of data analysis and the literature review. It combines environmental, economic and social assessment to aid decision making. The assessment is integrated into the building life cycle, and the building performance on each stage is also indicated. The assessment details of each indicator are also discussed.

The model is tested and verified by case study. Three projects are used as case studies. The sustainable performance of the three cases in every stage of the building life cycle as well as the overall performance will be analyzed. Quantitative methods and qualitative methods are used for assessing the indicators. The results using the developed model, the Building Sustainable Score (BSS), are also compared with the LEED and ESGB for deeper discussion. The value and innovation of this model are also discussed in this research.