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Abstract 

Sleep Apnea (SA) is a common disorder without “age-specific” that affects ap-

proximately 2% of women and 4% of men; sleep apnea is characterized by repeti-

tive cessation of breathing during sleep. The consequences of the sleep apnea in-

clude daytime sleepiness, impaired cognitive function, impaired memory, neu-

rocognitive dysfunction, and development of cardiovascular disorders, metabolic 

dysfunction, and impaired quality of life. This thesis investigates the automated 

detection and prediction of sleep apnea. Many researchers have concentrated on 

automated detection of sleep apnea, but not much comprehensive or well-ordered 

work has been done on signal and feature selection or on predicting of the sleep 

apnea.  

The objective is to find the best set of signals as input and the best set of features 

from selected signals that can be used by a machine learning approaches to study 

sleep apnea. The best set here is not only refers to a smallest set of signals with a 

good performance in sleep apnea analysis but also consideration for a set of sig-

nals that can be easily acquired from patients.   

During the course of this thesis, several algorithms were developed. These algo-

rithms can be used in sleep apnea studies or in wider machine learning areas. The 

most important contributions of this thesis can be summarized as below:  

-Developing a new signal segmentation algorithm designed specifically for sleep 

apnea by attention to its properties. This algorithm chose times windows with a 

greater probability of containing at least one sleep apnea event. After that these 

segmentations are generated, they should be reviewed by the machine learning 

approaches to be classified as sleep apnea or normal. 
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-Developing a novel Support Vector Machine (SVM)-based approach named 

Self-Advising Support Vector Machine (SA-SVM) that transfers more knowledge 

from the training phase of SVM to the test phase. This idea helps SVM to learn 

from misclassified data in training phase and use this gained knowledge, in the 

testing phase. This approach can be used in any binary classification problems and 

it shows also high impact in sleep apnea detection.  

-Developing a new parallel structure for Particle Swarm Optimisation (PSO). 

Finding the best set of input signals or the best set of features required a huge 

amount of computation power which a single PSO – or other optimisation ap-

proaches- cannot deal with, so a new hierarchical multi-master structure for paral-

lel PSO was developed in this thesis, which quickly revealed its advantages over 

previous parallel PSO structures. 

In this thesis real data has been used from Concord Repatriation General Hospi-

tal in Sydney. Obtained result shows a good performance in detection and classifi-

cation of sleep apnea. Together with detection and classification, a prediction of 

sleep apnea was also considered. The prediction stage examines some famous 

neural networks structures and demonstrated how to improve the final result by 

taking advantage of multi neural network approach. 
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Chapter 1 

Introduction 

 

In this chapter motivations for this thesis are presented, including an outlines of the 

problem to be addressed that will be expanded upon later in the literature review chap-

ter. After that the thesis questions will be stated, including the reasons for their im-

portance, followed by a chapter-by-chapter synopsis of the thesis contents. 

1.1. Why Study Sleep Apnea? 

This thesis is about studying sleep apnea detection and prediction. Sleep can be de-

fined on the basis of both the behavior of the person while asleep and related physiolog-

ical changes that occur to the waking brain's electrical rhythms in sleep. By using bio 

signals and measuring the physiological behaviour sleep can be classified into two 

states:  non rapid eye movement (NREM) and rapid eye movement (REM) sleep [1]. 

Physiological changes that occur during wakefulness and NREM and REM can also be 

classified in to many stages [1]. There are many interesting aspects in the classification 

of sleep stages and several studies have already studied this area [2-4]. 

As with studying normal sleep, the study of sleep disorders is important because they 

are common problem in a general population. As an example, a survey in 1987 [5] re-

ported that at least one symptom of disturbed sleep was present in 41% of all subjects, 

and sleep disorder is still common now [6]; for instance, Young reported that 1 daytime 

sleepiness in 5 adults in 2004[7]. 

Sleep disorders are important not only because they are so common but also because 

they have several short term and long term side effects [8]. The short term effect leads 
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to impaired attention and concentration, impaired quality of life, increased rates of ab-

senteeism with reduced productivity and accidents at work, at home, or on the road. The 

long term consequences of sleep deprivation include increased morbidity and mortality 

from increasing automobile accidents, coronary artery disease, heart failure, high blood 

pressure, obesity, type 2 diabetes mellitus, stroke and memory impairment, as well as 

depression. The long term consequences, however, remain open [1]. 

Sleep apnea is one of the most common of sleep disorders. Sleep apnea (SA) is charac-

terised by a repeated, temporary cessation of breathing during sleep [9]. Clinically, ap-

nea is defined as the complete or near-total absence of airflow for more than 10 seconds 

in adults.  

The prevalence of SA, is approximately 2% in women and 4% in men whose ages are 

between 30 and 60 years [10]. It has been reported that in individuals with SA, through-

out the night there can be 5–15 episodes per hour for mild cases, and more than 30 epi-

sodes per hour for severe cases [11].  

1.2. Thesis Motivations? 

In this section objectives and goals together with contribution of this thesis are re-

viewed.  

1.2.1. Thesis Questions 

The sleep apnea affects many people and the main motivation behind this thesis, is to 

answer the question “ by using minimum recording signals, is it possible to automatical-

ly detect sleep apnea accurately as it happen and to predict it before it happen”. 

This thesis studies the automated detection and prediction of sleep apnea with a ma-

chine learning approaches. A machine learning approaches, such as artificial neural 

networks or support vector machines have had several empirical successes [12-16], of-
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ten outperforming other learning methods in a variety of tasks. Moreover, several ma-

chine learning methods with different inputs were also investigated in the area of sleep 

apnea [17-20]. 

As such, the primary thesis question is “what is the best set of input signals and fea-

tures for studying sleep apnea?” this question will be examined to discover the best in-

put signals for detecting sleep apnea. This question cannot be separated from another 

primary question, “What is the best machine learning algorithm for studying sleep ap-

nea?” While these questions are important, all the inputs for sleep studies or all the ma-

chine learning methods cannot be considered. Therefore for detecting sleep apnea, 

common input signals will be examined to select the most important ones by using sup-

port vector machine as the classifier.   

A third question is, “Can the selected signals predict sleep apnea?". Just few studies 

investigated prediction of sleep apnea. In this thesis the same selected input signals from 

the detection phase will be used.  

1.2.2. Contributions of the Thesis 

The main contribution of the thesis is a better understanding of the detection and pre-

diction of sleep apnea; furthermore some parts of this thesis have contributed to a wider 

range of machine learning studies. All of these will be discussed in more detail in the re-

lated chapters. 

Contributions to the Understanding and Detection of Sleep Apnea 

- Proposing novel signal segmentation for sleep apnea detection and demonstrating the 

importance of signal segmentation (chapter 4). 

- Finding best signals for sleep apnea detection (chapter 4). 

- Study on predicting sleep apnea (chapter 5) 
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Contributions in a Wider Scope 

- Presenting a review on sleep apnea and literature on the machine learning approaches 

used in the sleep apnea studies (chapter 2 and 3). 

- Proposing two dimensionality reduction approaches (Chapter 4) 

- Proposing self- advising support vector machine (chapter 6) 

Proposing new structure for parallel Particle Swarm Optimization (PSO) (chapter 6) 

1.2.3. Structure of the Thesis 

In chapter 2 some general aspects of sleep apnea are introduced. Of course, every detail 

of sleep apnea cannot be considered, but this chapter gives some essential knowledge of 

sleep apnea studies for engineers. In section 2.2 different types of sleep apnea are intro-

duced followed by risk factors in section 2.3. Symptoms of sleep apnea also considered 

in section 2.4 and the cost of this disorder is mentioned in section 2.5. Different meth-

ods for diagnosing sleep apnea are reviewed in section 2.6 and the available treatments 

are reviewed in section 2.7. 

In chapter 3 the literature relating to the application of machine learning methods in 

sleep studies are reviewed, and because there is a wide range of these methods three 

most common approaches are selected. In section 3.2 the basis of support vector ma-

chines and its applications in sleep apnea are reviewed, and in section 3.3 the basic and 

most important applications of artificial neural networks are introduced. Particle Swarm 

Optimization (PSO) is presented in section 3.4. Finally some performance measure in-

dexes are reviewed in section 3.5. 

In the first part of the Chapter 4, the proposed algorithms related to detecting and 

classifying of sleep apnea are presented. Signal segmentation is considered in section 

4.2 and features generation is introduced in sections 4.3. Two approaches for dimen-
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sional reduction are presented in 4.4. Finally an algorithm for signal selection is pre-

sented in 4.5. In the second part of this chapter, different experiments about proposed 

algorithms for detection of sleep apnea are presented followed by conclusion in section 

4.7. 

Prediction of sleep apnea is studied in the next chapter, Chapter 5. This chapter starts 

by a short introduction about previous works in section 5.1. Then prediction based on 

the multi Artificial Neural Networks (ANNs) included the proposed linear and non-

linear multi ANNs are considered in sections 5.2. Different experiments are examined in 

section 5.3 for sleep apnea prediction. Finally, conclusions and summarised are given in 

section 5.4. 

Chapter 6 generalized the two proposed algorithms to be used in other areas. In this 

chapter more information and experiments about the proposed algorithm to improve the 

support vector machine is introduced in section 6.2. This approach attempts to transfer 

more knowledge from the training phase to the testing phase. Furthermore, details of the 

proposed parallel structure for a particle swarm optimization approach together with 

general benchmarks are presented in section 6.3.  

The last chapter, chapter 7, is related to the outcomes of this thesis followed by topics 

for future works.  

1.2.4. Publications Resulting from the Thesis 

Results of these investigations have been published in a number of papers, these peer 

reviewed publications including 3 Journals, 2 Lecture Notes in Computer Science 

(LNCS) chapters, and 6 international conferences. 
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Chapter 2 

An overview on sleep apnea 

 

2.1.   Introduction 

This chapter reviews different aspects of sleep apnea. It also presents general infor-

mation about this syndrome as well as some information on the costs of sleep apnea, in-

cluding diagnosing and methods of treatment. This review does not aim at listing what 

have already been published, however it aims at providing general details and concepts 

about the definitions and related issues of the sleep apnea syndrome.    

2.2. Sleep Apnea  

This section introduced one of the most important aspects of the sleep syndrome that is 

called sleep apnea (or sleep apnoea in British English). This is not a new topic, because 

it was first mentioned in 1837 [21]. Sleep apnea (SA) is characterised by a repeated, 

temporary cessation of breathing to the lungs during sleep [9]. Clinically, apnea is de-

fined as the complete or near-total absence of airflow for more than 10 seconds in 

adults. Any decline in breathing signals becomes significant once the amplitude of these 

signals is reduced by at least around 75% with respect to normal respiration, and occurs 

for a period of 10 seconds or longer [22]. A hypopnea is an event of less intensity; it is 

defined as a reduction in baseline of the breathing signal amplitude around 30–50%, al-

so lasting 10 seconds in adults [22]. 
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In general, when a person becomes awake, except for temporary closures during swal-

lowing and speaking, the upper airway remains open, permitting airflow to the lungs 

[23]. During sleep, the throat lumen may be physically obstructed several times [24] and 

lead to SA.  

The prevalence of SA, is approximately 2% in women and 4% in men whose ages are 

between 30 and 60 years [10]. It has been reported that in individuals with SA, through-

out the night there can be 5–15 episodes per hour for mild cases, and more than 30 epi-

sodes per hour for severe cases [11]. SA can be categorised as obstructive, central, and 

mixed [25].  

2.2.1. Obstructive Sleep Apnea (OSA) 

 Obstructive apnea is the most frequent class of apnea. OSA is recognised by the pres-

ence of thoracic and abdominal efforts for continuing breathing while air flow com-

pletely stops. In purely obstructive apnea the upper airway closes naturally during inspi-

ration, while subsequent efforts to breathe with the airway closed become larger and 

larger until either the effort or abnormal blood gases cause the person to wake up. When 

the airway opens, breathing resumes and blood gases are restored to normal, and the 

person falls asleep again, setting off another cycle. In obstructive apnea, movement of 

the chest wall can be observed but flow or nasal pressure tracing has flat tops in inspira-

tion, Figure 2.1 shows a sample of OSA. The oxygen saturation curve is asymmetrical, 

with a slow decline and quick recovery, while the period of the apnea cycle is variable 

with the existence of snoring [26].  
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Figure 2.1: polysomnography of an obstructive apnea [27] 

 

2.2.2. Central Sleep Apnea (CSA) 

Patients with central apnea have wide open airways even when relaxed in sleep. In 

these cases periodic breathing results from an unstable negative feedback control system 

with a combination of high loop gain and a long delay between sensing a blood gas ab-

normality and compensating for it by adjusting ventilation. In central apnea,  breathing 

effort can not be seen, oxygen saturation has a sinusoidal curve, and the periods of ap-

nea cycles are constant and snoring is often absent [26], Figure 2.2 shows a sample of 

CSA. 

2.2.3. Mixed Sleep Apnea (MSA) 

This class of SA is a combination of the two previous ones and is defined by a central 

respiratory pause followed by an obstructive ventilator effort in a relatively short period 

of time. In this case the breathing control system is more sensitive to changes in oxygen 

or carbon dioxide so that obstructed efforts to breathe are greater and when the airway 

opens, ventilation is higher. Therefore, arterial carbon dioxide falls below normal before 

the person falls asleep. If it falls below the apneic threshold (the level at which breath-
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ing stops in a sleeping person), respiratory efforts will be absent in the first part of the 

apnea until carbon dioxide rises above the threshold. Mixed apnea thus shows that peri-

odic breathing in sleep is governed by an interaction between the behaviour of the upper 

airway and the characteristics of the chemoreceptor negative feedback control system 

[26]. 

 

Figure 2.2: polysomnography of a central apnea [27] 

The pathophysiologic mechanism which causes respiratory disturbance is the main dif-

ference between these categories. CSA involves dysfunction of the ventilator control in 

the central nervous system (loss of ventilator effort); in OSA upper airway obstruction 

is most frequently related to abnormal anatomy and/or abnormal control of the muscles 

that maintain the patency of the upper airway [28]. Although they are considered physi-

ologically distinct, there is some overlap between the central and obstructive events. For 

example, some apneas may initially be central, with no evidence of inspiratory effort 

and after a variable period, respiratory effort commences, but the apnea continues be-

cause the upper airway collapses during the central component of the apnea. These 

events are referred to as mixed apneas. Furthermore, some patients with a central sleep 

apnea also have clinical features like snoring that are more typical of obstructive sleep 

apnea [29]. 
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2.3. Risk Factors 

Sin et.al [30] showed in their study that the risk factors of OSA and CSA are different 

and these risk factors are also different between men and women. Based on this study, 

atrial fibrillation is a risk factor for CSA but not for OSA, whereas hypocapnia is a risk 

factor for CSA in both sexes. This study also indicated that the single most important 

risk factor for OSA in men was increasing Body Mass Index (BMI), and the most im-

portant risk factor for OSA in females was increasing age. Conversely, increasing age 

was not a risk factor for OSA in men, nor was increasing BMI a risk factor for OSA in 

women. 

The majority of OSA cases were obese and obesity is the main known risk factor for 

OSA [31-34]. Beside genetics, the sleep apnea syndrome has a strong familial tendency 

[35-37]. Various anatomical factors can result in physical obstruction of the airways 

[38] such as enlarged tonsils [39], enlarged uvula [40], increased tongue size [41] and 

abnormal craniofacial morphology [42]. These respiratory disorders may lead to hypox-

ia and hypercapnia, which can trigger arousal from sleep by increasing ventilator drive 

[43, 44]. Ageing is a factor that leads to conflicting opinions. Some works show a high-

er prevalence of OSA in older people [45, 46] in general, whereas Young et.al in their 

study showed that the prevalence of SA increases with age, with a 2- to 3-fold higher 

prevalence in patients aged over 65 [47]. However, some studies also showed that the 

respiratory disturbance index (RDI), the total number of apneas divided by the hours of 

sleep, depended on the BMI and was independent of age [48]. The effect of gender is 

another topic that has been analysed in several works [49-54]. These studies showed 

that OSA occurs more in males, and males with OSA were more likely to have symp-
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toms of snoring [55, 56], while females with OSA had more symptoms of depression or 

morning headache [55, 57]. The effect of alcohol and smoking on sleep apnea was also 

considered in several works [58-64]. It was also noticed that men with a neck circum-

ference of more than 17 inches, or 16 inches in women, can be a potential factor [65, 

66]. 

2.4. Symptoms 

 Excessive daytime sleepiness is the most common complaint resulting from sleep ap-

nea, with clinical features being a strong feeling of abnormal tiredness during the day, 

and  reduced wake fullness and vigilance [67]. Anyhow the severity of sleepiness does 

not necessarily depend on the severity of sleep apnea, for example Engleman et al. [68] 

showed that a patient with an apnea-hyponea index (AHI) of 5-15 per hours of sleep 

may complain of severe daytime sleepiness but patients with more severe OSA may un-

der report their sleepiness. Another symptom of sleep apnea is snoring [69], but snoring 

as a sole symptom is not a good predictor of OSA [70], although the absence of snoring 

makes the probability of OSA less likely [71]. The sleep Heart Health Study showed 

that snoring is associated with daytime sleepiness and can be independent of the AHI in 

middle aged and older adults [72]. Another symptom is heart failure, although com-

pounding factors such as obesity, hypertension, and coronary heart disease make this re-

lationship uncertain and an independent correlation remains unproven[73]. Also some 

other symptoms can be mentioned such as morning headaches, a limited attention span, 

memory loss, poor judgment, personality changes, and lethargy [74]. These symptoms 

can significantly decrease the quality of life and increase the risk of accidents [75, 76]. 

Finally, it should be noted that women and men generally have the same symptoms [55]. 
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2.5. Costs of Sleep Apnea 

It is difficult to speak about costs in the context of health care because the direct and 

indirect costs for individual patients and for society should be considered, and it is also 

more difficult to calculate economic parameters such as the cost-effectiveness ratios, 

cost-benefit ratios, and so on, because of the inherent difficulty of computing the utility 

of healthy or unhealthy people. In spite of these difficulties, several works analysing 

general health economics have been published, and also for specific diseases such as 

sleep apnea. 

To compute the direct and indirect costs sleep apnea for patients, their family and rela-

tives, and also for society, both in the undiagnosed phase as well as the diagnosing and 

treating phase should be considered.    

Direct costs consist of payment to the physician, drugs and hospital admission. Indi-

rect costs include absence from work, reduction in earning capacity, and accidents relat-

ed to illness, etc. Kapur et al. [77] calculated the indirect cost of undiagnosed sleep ap-

nea in the USA as 3.4 billion USD per year in 1992. Findley and Suratt in 2001 calcu-

lated that treating 500 sleep apnea patients for 3 years would prevent 180 serious crash-

es (105 with the driver at fault) and 36 injuries. This would save about 369, 000 USD in 

direct property damage and medical expenses, and 648 000 USD in lost wages, legal 

expenses, and the administrative costs of insurance companies and government. And the 

total savings for treating 500 patients for 3 years would exceed 1, 000, 000 USD [78]. It 

should be noted that treating 500 patients for 3 years would cost roughly less than 

600,000 USD [79].  
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If direct medical costs is considered, a common Continuous Positive Airway Pressure 

(CPAP) device with a 5 year life span costs around 865 USD for 5 years (173 USD per 

year)[79]. Total direct medical costs in 2003 were in the range of 350 USD [80] in the 

USA per year. It should be noted that the cost of treating sleep apnea, unlike many other 

diseases, is independent of its level of severity [79].   

Gamez et al. [81]considered home monitoring with hospital monitoring. This work 

showed that a home monitoring diagnostic test is 101.34 EURO less than polysomnog-

raphy at a hospital, and patient satisfaction is significantly higher. They used the same 

sensors in home or hospital monitoring to ensure that the difference in result is only be-

cause of the geographical places. Moreover, another work by the American academy on 

sleep medicine compares polysomnography with home polygraphy and found that home 

polygraphy was around 32.30 EURO cheaper than polysomnography [82]. 

Finally, because untreated sleep apnea can increase the risk of morbidity and mortality, 

its treatment can result in significant short term and lifetime cost savings. For example, 

the chance of an SA patient staying in hospital is 1.6-fold [83] more than normal people, 

and OSA patients used approximately twice as many health care services as non-OSA 

patients [84]. 

2.6. Diagnostic  

Unfortunately, because of a person‟s lack of awareness, sleep apnea may go undiag-

nosed for years [85, 86]. Indeed, a patient is often recognised their spouse, roommate, or 

family member who has witnessed the periods of apnea alternating with arousals, ac-

companied by loud snoring [69, 87]. Therefore, patients reporting symptoms of SA 

should be referred to a sleep centre for an overnight study where a polysomnograph is 

used. This is an integrated device comprising EEG, EMG, EOG, ECG, oxygen satura-
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tion [88], airflow through the mouth and nose, thoracic and abdominal respiration 

measurement units, thoracic breathing movements, and the position of the body during 

sleep [11]. The respiratory disturbance index (RDI) and apnea-hyponea index (AHI), 

which holds the sum of apneas, hypopneas and respiratory arousals per hour during 

sleep have been standardised from overnight sleep studies. The RDI value is used to di-

agnose and grade the severity of sleep apnea, and the AHI is used to assess the severity 

of apnea according to the Chicago criteria. Based on the Chicago criteria,  an AHI<5 is 

referred to as normal, an AHI =5–15 means mild, an AHI=15–30 corresponds to moder-

ate, and an AHI >30 is referred to as severe (The Report of an American Academy of 

Sleep Medicine Task Force, 1999 [22]).   

Sleep experts generally make their decisions based on the degree of AHI, such that 

[26]: 

- If the AHI is less than 10 and the patient lacks important sleepiness or another 

problem is attributable to sleep apnea, then no further investigation and treatment for 

sleep apnea is needed. It should be noted that recommendations for weight loss or 

treatments for snoring may be desirable. 

- If the AHI is less than 10 but the patient has important daytime symptoms, then 

their history of other causes or symptoms (e.g., sleep deprivation, insomnia, medication, 

and narcolepsy) should be examined and home monitoring should be considered togeth-

er with polysomnography, and a test of daytime alertness or sleepiness, if available. 

- If the AHI is above 10 and below 30 and the patient has no important daytime 

symptoms or comorbidity, then no further investigation and no treatment for OSA are 

needed. But recommendations for weight loss or treatment for snoring may be desirable. 
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- If the AHI is above 10 and below 30 and the patient has important daytime symptoms, 

then a trial with an auto-adjusting CPAP should be offered. If that succeeds, recommend 

CPAP and if it fails technically, consider titration during polysomnograms (PSG) in the 

laboratory. If the patient cannot tolerate CPAP, consider a conservative treatment such as 

a dental appliance, or surgery. If it succeeds technically but the patient does not find it 

valuable and has relatively mild symptoms, recommend conservative treatment or a den-

tal appliance. If it succeeds technically but the patient has an important degree of sleepi-

ness that does not improve, investigate for other causes of sleepiness with PSG. 

- If the AHI is above 30, a trial with CPAP is recommended even if the patient 

does not report symptoms, and otherwise follows the same plan as for AHI between 10 

and 30. If the patient is very overweight or has severe hypoxemia on the portable moni-

tor, arterial blood gases should be checked and titration of CPAP during polysomnogra-

phy is preferable. If the patient has severe symptoms or complications with sleep apnea 

and all else fails, consider a tracheostomy. 

- It should be noted that the diagnostic methods are not limited to use of bio signals, be-

cause some studies use chemical biomarkers [89] or [90, 91]. Also, some non-electric 

signals were used in some papers such as the sound of breathing and/or snoring [92-

104]; blood pressure [105-107]; airflow signal [108, 109]; pupil size [110]; videos from 

physical activities [111-114]; tracheal sound [115] and breathing signals (nasal flow, 

thorax movement, and abdomen movement) [116, 117]. 

Previously we mentioned to relation between thoracic and abdominal movements, and 

air flow with sleep apnea. In the rest of this section a study of various significant bio 

signals which were used in different studies as the main input in diagnosing sleep apnea 

is presented.  
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2.6.1. Oxygen Saturation 

Oxygen saturation (SO2) or dissolved oxygen (DO) is one of the relative measures of 

the amount of oxygen that is dissolved or carried in a given medium. Oxygen saturation 

measures the percentage of hemoglobin binding sites in the bloodstream occupied by 

oxygen. There are several indexes related to SO2, such as SaO2 which is characterised 

by arterial oxyhemoglobin saturation measured by an arterial blood gas, while SpO2 

which is characterised by arterial oxyhemoglobin saturation that measures non-

invasively by pulse oximetry. Generally, there is a decrease in the oxygen saturation 

level [118, 119].  

SaO2: The lack of airflow during apneic periods can lead to recurrent episodes of hy-

poxemia that can be detected on oximetry as fluctuations in the SaO2 records [120]. 

There are several works that use SaO2 to diagnose sleep apnea [121-128]. 

SpO2: Sleep apnea produces a drop in SpO2 which begins approximately 10 to 30 se-

conds after the apnea has begun. Shortly after hypoventilation ceases the SpO2 should 

begin to recover. Several papers highlight the rule of SpO2 in diagnosing sleep apnea 

[129-134]. 

2.6.2. Electrooculogram (EOG) 

A measurement of the electrical activity of eye movements recorded using small metal 

discs called electrodes applied to the skin near the eyes is useful for monitoring the 

movement of eyeballs in REM and non-REM sleep. The two kinds of eye movements 

related to sleep classification are: 1) slow eye movements (SEM), rapid eye movements 

(REM), which occur during the wakefulness stage (although voluntarily) and the REM 

phase. The distinction between these two kinds of eye movements is made on the basis 

of the properties of synchrony, amplitude, and slope of the EOG signals. An analysis of 
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eye movements for each epoch was used in diagnosing and classify sleep disorders 

[135]. Some studies proposed that the apnea is longer during rapid eye movement 

(REM)[136-139] but another study reported more AHI in NREM than REM [140], 

while yet another study reported that respiratory distribution is not greatly affected by 

the sleep stage [141]. Using EOG signals to directly diagnose sleep apnea could be a 

good subject for further research; some existing studies in this area are [142-145].  

2.6.3. Photopletismography (PPG) 

PPG is an easily acquired measurement and provides a measure of the volume of tis-

sue blood where the pulsatile component of the heartbeat is measured and the peripheral 

circulation is evaluated. This measurement is tie-related to arterial vasoconstriction or 

vasodilatation generated by the autonomic nervous system (ANS) and modulated by the 

heart cycle. When an apnea occurs, sympathetic activity increases as a response to the 

obstructive event in order to reestablish respiration. This increase in sympathetic activi-

ty is associated with vasoconstriction and is possibly related to transient arousal. Vaso-

constriction is reflected in PPG by a decrease in the amplitude fluctuation signal [146, 

147]. Amplitude reduction in PPG occurs when an apnea event takes place due to 

changes in the sympathovagal balance [148, 149].  However, other physiological events 

such as movement and deep inspiratory gasp produces a  sympathetic activation and 

decrements in the PPG envelope amplitude which are unrelated to apnea [150]. There 

are several works related to the application of PPG signals in diagnosing sleep apnea 

[151-153].  

2.6.4. Electrocardiogram (ECG) 

An electrocardiogram measures the electrical activity of the heart and has a close rela-

tionship with the activity of the Autonomic Nervous System (ANS). An ECG has many 



 

 

 

 20 

 

advantages, in that it can be easily measured in a non-invasive way and with a high sig-

nal to noise power ratio [154]. 

Sleep apnea is a respiratory event so its effects can be clearly observable within other 

peripheral systems such as the cardiovascular system. Due to this relationship, the elec-

trocardiogram (ECG) can provide very valuable information about apnea events and has 

been broadly studied for the detection of apnea. One of the most important signals 

which can be obtained from an ECG is the beat-by-beat series of the heart rate. This 

signal contains fluctuations which are commonly named the heart rate variability 

(HRV), which present frequency components between 0 and 0.5 Hz and are linked to 

the Autonomic Nervous System (ANS) function. Frequency components between 0.15 

and 0.5 Hz are generally associated with the vagal tone and are known as high frequen-

cy components (HF). Frequencies from 0.02 to 0.15 Hz are a manifestation of the acti-

vation of both parasympathetic and sympathetic systems, and are labelled low frequency 

components (LF). An increase in the LF power is generally associated with orthosym-

patic activation. Finally, frequencies between 0.0033 and 0.02 Hz contain information 

regarding slow processes such as thermoregulation [155]. The ratio between HF and LF 

spectral powers is defined as a measure of the sympatho-vagal balance [156]. During 

sleep, HRV presents specific dynamics [157] and a complexity that are characteristic of 

non-rapid eye movement sleep (NREM) and rapid eye movement (REM) sleep. The 

power spectral distribution of HRV signals shows the powers are concentrated around 

0.3 Hz during NREM sleep, in contrast to REM sleep where the high frequency compo-

nents are less peaked and the low frequency components are prevalent. However, when 

sleep apnea occurs, there is a reduction in the HRV complexity and the frequency com-

ponents appear around 0.02 Hz as a result of repeating apnea [158]. There are several 
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papers that used the ECG signal as their main input in the detection of sleep apnea [20, 

159-163]. 

2.6.5. Electromyogram (EMG) 

The Electromyogram EMG signal (also known as the myoelectric signal) is a biomed-

ical signal that measures electric currents generated in muscles during contraction, and  

represent neuromuscular activities [164]. The nervous system always controls the mus-

cle activity (contraction/relaxation). Therefore, an EMG signal is a complicated signal 

which is controlled by the nervous system and depends on the anatomical and physio-

logical properties of muscles. 

The application of EMG signals in predicting sleep apnea appeared in several works, 

and in these studies the EMG signals were mainly extracted from the chin [142, 165] or 

tongue[166, 167]. 

2.6.6. Electroencephalogram (EEG) 

An EEG signal is the record of electrical potentials generated by the cortex and deeper 

brain structures. During sleep apnea the arousals are characterised by abrupt changes in 

the EEG frequency (which is suggestive of an awakened state). The American Sleep 

Disorders Association (ASDA) has defined this arousal as “An abrupt shift in EEG fre-

quency, which may include theta, alpha, and/or frequencies greater than 16 Hz but not 

spindles”[168].  Many significant works have studied the EEG signals in sleep apnea 

[169-171].  
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2.7. Treatment 

Treatment of SA can range from conservative methods such as oral appliances [172], 

continuous positive airway pressure (CPAP)[173], to more radical approaches such as 

the surgical removal of anatomic obstructions [174-177].  

2.7.1. Continuous Positive Airway Pressure (CPAP) 

Continuous positive airway pressure (CPAP), was first used to treat obstructive sleep 

apnea patients by Professor Colin Sullivan of Sydney, Australia in 1981[178], and re-

mains the main method for treating  the obstructive sleep apnea syndrome. CPAP is a 

portable electronic device attached to a nasal mask via plastic tubing. CPAP prevents the 

upper airway from collapsing by putting a positive pressure in the pharynx during sleep. 

CPAP is a highly effective therapy, but it is not curative and the patients should use the 

CPAP mask regularly to significantly decrease the sleep fragmentation. 

CPAP devices can be classified in different ways. For example, they can be classified 

based on their mechanism as: (1) automatic CPAP (A-CPAP) devices which automati-

cally adjust pressure. (2) Fixed continuous positive airway pressure (F-CPAP) which re-

quires an in-laboratory titration procedure to determine the effective pressure level 

(Peff) [179]. It should be noted that some studies argue there is no significant difference 

between these methods [180], while others argue that A-CPAP has a better compliance, 

better satisfaction, or increased patient preference [181]. Automatic CPAP also can be 

classified as flow-based (f-APAP) and vibration-based (v-APAP) machines. Flow-based 

auto-CPAP (f-APAP), works primarily by measuring the instant flow limitation at the 

mask with the aid of a pneumotachograph and vibration-based auto-CPAP (v-APAP), 

uses a pressure transducer to monitor the airway by vibration pattern [182]. Also, by at-
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tention to different pressure sources CPAPs can be classified as Bubble CPAP and Venti-

lator CPAP [183]. The pressure generator for Bubble CPAP is a water bottle and a gas 

source is the generator for Ventilator CPAP. In some papers it appears that the pressure 

relief is a continuous positive airway pressure (PR-APAP) which is a recent innovation 

that attempts to overcome some disadvantages of CPAP by incorporating a reduction in 

airway pressure at the end of inspiration [184-187]. 

2.7.2.        Oral Appliances 

Oral appliances (OAs) are used to correct upper airway obstruction. OAs are now 

widely prescribed for the treatment of snoring and mild to moderate obstructive sleep 

apnea, both as primary therapy and as an alternative for patients who are unwilling or 

unable to tolerate CPAP. There are variety of synonyms for OAs and rather than oral, 

they may be called intra-oral, dental, or mandibular; and rather than being called an ap-

pliance, they may be called a device, splint, or prosthesis [188]. 

Dental appliances can be classified into three classes. One type of device is designed 

to reposition the tongue in a more forward position (tongue retaining device)[189]. This 

type of appliance increases the posterior airway space by holding the tongue away from 

the posterior pharyngeal wall. A second type of device positions the mandible forward, 

these are the nocturnal airway-patency appliance (NAPA)[190], the Snore Guard (Den-

tal Sleep Disorder Prevention, Inc.)[191], Herbst [192, 193] and mandibular repositioner 

[194-196]. The basis for this second OA was based on the fact that the tongue is at-

tached to the genial tubercles of the mandible, so positioning the mandible forward 

moves the tongue forward. Finally, the third type of dental device is designed to lift the 

soft palate or reposition the uvula [197]. These devices are used to reduce the vibration 

of the soft palate that causes snoring.  
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2.7.3. Invasive Methods 

Generally there are two classes of invasive methods; the first is based on operation, and 

the second uses invasive micro stimulator.  

Kuhlo et al. described the first surgical treatment for OSA in 1969  [198]. This treat-

ment effectively eliminated OSA but it was poorly tolerated by patients. Fujita et al. 

[199] introduced the uvulopalatopharyngoplasty (UPPP) for OSA in 1981. After that, 

many modifications and variations of this technique were used, most of which are based 

on an operation on the tongue [200].  

The first attempts to electrically stimulate the upper airway muscles were made in 

1978 by Guilleminault et al. [142], but their efforts were considered to be a failure. Miki 

et al. reported their experience with genioglossus intramuscular stimulation [201] after 

which several attempts were made to activate the muscles of the tongue electrically to 

maintain airway patency. Transcutaneous stimulation of the tongue is technically awk-

ward [202]. Intra-lingual stimulation of the tongue via percutaneous wires inserted deep 

and inferior to the frenulum produced only modest reductions in OSA episodes [203]. 

Similar wires inserted into the anterolateral tongue via a sub-mental approach produced 

inconsistent changes in the diameter of the airways of normal, awake volunteers [204]. 

A surgically implanted system developed in collaboration with Medtronic targeted se-

lected branches of the hypoglossal nerve and triggered stimulation from an implanted 

sub-sternal pressure sensor [205]. Few works also used electrical stimulation of the hy-

poglossal nerve [206, 207]. 
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2.8. Summary 

In this chapter the definition and basic concepts related to sleep apnea have been re-

viewed, with the aim being to provide a general knowledge of sleep apnea for engineer-

ing researchers. It is impossible to mention and review all the literature available in an 

area as wide as sleep apnea, but the most important areas were reviewed and studies in 

this field. As well as a definition of sleep apnea, some information about diagnosing, 

treatment methods, and economical aspect of this area were also given. 
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Chapter 3 

 Methodology Review 

 

3.1. Introduction 

In previous sections sleep apnea and related topics such as the symptoms, cost, treat-

ment and etc., were introduced, and the scope of the project was reviewed. In this sec-

tion some popular approaches and methods used in the machine learning phase of the 

project with their previous applications in sleep apnea studies will be reviewed.  

It should be stated that parallel computing has not been used to study sleep apnea, but 

parallel PSO will be introduced in this section. 

3.2. Support Vector Machine 

In this section most important aspects about support vector machines are reviewed. 

3.2.1. Introduction 

The support vector machine (SVM) is a powerful classification method proposed by 

Vapnik in 1995[208] since then different types of SVM have been proposed. While this 

method basically discriminated between two classes, it can still be used for multi class 

problems. SVM can find a good decision boundary between two classes, where the 

margin between the decision boundary and both classes have been maximised. Consider 

a binary classification, using a training set of 𝑁 samples 

(𝒙 , 𝑦 ), … , (𝒙 , 𝑦 ),… , (𝒙 , 𝑦 ) ∈ ℛ
 × *±1+, where 𝒙  is the input vector correspond-

ing to the 𝑖   sample that is labelled by 𝑦  depending on its class. SVM aims at separat-
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ing the binary labeled training data with a hyper-plane that is at maximum distance from 

them. This is known as the maximum margin hyperplane. Figure 3.1 shows the basic 

idea of the SVM, graphically. The pair ( ,  ) defines the hyperplane with the 

tion   , 𝒙      . This hyperplane can separate the train data linearly if 

𝑦 ( . 𝒙   ) ≥ 1 , 𝑖  1,… ,𝑁          (3.1) 

The distance of each training data 𝒙  from the hyperplane is given by 

𝑑  
 . 𝒙   

‖ ‖
,                                             (3.2) 

and combining inequality (3.1) and (3.2), for all 𝒙  will result in 

𝑦 𝑑 ≥
1

‖ ‖
.                                                    (3.3)   

Therefore, 
 

‖ ‖
 is the lower bound of the distance between the training data 𝒙  and the 

separating hyperplane. The maximum margin of the hyperplane can be considered as the 

solution to the problem of maximising the 
 

‖ ‖
 subject to the constraint (3.1), or by solv-

ing the following problem 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑧  
1

2
 .                                                    (3.4) 

𝑠. 𝑡.               𝑦 ( . 𝒙   ) ≥ 1 , 𝑖  1,… ,𝑁.                

Consider (𝛼 , 𝛼 , … , 𝛼 ) as the 𝑁 non-negative Lagrange multipliers associated with 

the constraints (3.1), and without considering a few steps, the resulting decision func-

tion is given by [209], 

𝑓(𝒙)  𝑠𝑖𝑔𝑛 (∑ 𝑦 𝛼  𝒙, 𝒙    

    

),                         (3.5) 

Note that the non-zero 𝛼  is those for which the constraints (3.1) are satisfied by the 

equality sign. This has an important consequence. Since most of 𝛼  is usually zero the 
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vector   is a linear combination of a relatively small percentage of the training data 𝒙 . 

These points are called Support Vectors (SV) because they are the closest points to the 

separating hyperplane and the only points needed to determine the hyperplane. Support 

Vectors are the training patterns that lie on the boundaries of the margin. In reality, SVM 

only uses a small subset of the training samples SVs for the classification. 

 

 

 

 

 

 

 

 

Figure 3.1: Basic ideas of support vector machines 

 

There is also another type of support vectors that consists of the training data that are 

beyond their corresponding margins. These support vectors are regarded as misclassi-

fied data [210]. 

If the training data are not linearly separable, the problem of searching for a separating 

hyperplane is meaningless (there may be no separating hyperplane to start with).  Fortu-

nately, the previous analysis can be generalised by introducing 𝑁 non-negative variables 

(𝝃 , 𝝃 , … , 𝝃 ) such that, 

𝑦 ( . 𝒙   ) ≥ 1 − 𝝃  , 𝑖  1, … ,𝑁.          (3.6) 

margin 

support vectors 
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The purpose of the variables 𝝃  is to enable a small number of misclassified points. If 

the data 𝒙  satisfies inequality (3.1), then, 𝝃  is zero and (3.6) reduces to (3.1). Instead, if 

the data 𝒙  does not satisfy inequality (3.1), the extra term -𝝃  is added to the right hand 

side of (3.1) to obtain inequality (3.6).  

It should be noted that by introducing this tolerance parameter actually some training 

data were ignored in order to have a linearly separating hyperplane. The generalised 

separating hyperplane is then regarded as the solution to, 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑧  
1

2
 .  𝐶∑𝝃 

 

   

                                                   (3.7) 

𝑠. 𝑡.               𝑦 ( . 𝒙   ) ≥ 1 − 𝝃 , 𝑖  1,… ,𝑁.                

The purpose of the 𝐶 ∑ 𝝃 
 
   , is to keep the number of misclassified points under con-

trol. Note that this term leads to a more robust solution. The penalty parameter 𝐶 can be 

regarded as a regularisation parameter. The above problem tends to maximise the mini-

mum distance 1/w for small C, and minimise the number of misclassified points for 

large C. For intermediate values of C the solution of the problem (3.7) trades errors for a 

larger margin. In this case, the decision function is given by, 

𝑓(𝒙)  𝑠𝑖𝑔𝑛 (∑ 𝑦 𝛼  𝒙, 𝒙    

    

),                         (3.8) 

 ≤ 𝛼 ≤ 𝐶,         𝑖  1,… ,𝑁                     

In order to use the SVM to produce non-linear decision functions, the training data is 

projected to a higher dimensional inner product space 𝐹, called feature space, using a 

non-linear map 𝜙(𝒙): ℛ → ℛ . The optimal linear hyperplane is computed in the fea-

ture space. Nevertheless, by using kernels it is possible to make all the necessary opera-

tions in the input space by using 𝑘(𝒙 , 𝒙 )   𝜙(𝑥 ), 𝜙(𝑥  )   as 𝑘(𝒙 , 𝒙 ) is an inner 
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product in the feature space. The decision function can be written in terms of these ker-

nels as follows: 

𝑓(𝒙)  𝑠𝑖𝑔𝑛 (∑ 𝑦 𝛼 𝑘(𝒙, 𝒙 )   

    

).                         (3.9) 

Also, the decision value for each 𝒙 of the test set which can get a negative or positive 

value depends on the position of the 𝒙 and the hyperplane, which is defined as equation 

(3.10). 

 (𝒙)  ∑ 𝑦 𝛼 𝑘(𝒙, 𝒙 )   

    

          (3.1 ). 

There are 3 common kernel functions in SVM: 

Polynomial kernel：             𝐾(𝑥 𝑥 )  (𝑥 𝑥  1)
  

RBF kernel ：                      𝐾(𝑥 𝑥 )  𝑒
  |     |

 

 

Sigmoid kernel：                𝐾(𝑥 𝑥 )  𝑡𝑎𝑛(𝛾𝑥 
 𝑥  𝑐) 

Here 𝑞, 𝛾, 𝑐 are kernel parameters.  

3.2.2. Application of SVM based Systems in Sleep Apnea Studies 

For the first application of SVM in sleep apnea work of Cho et al. in 2005 should be 

considered [211]. In this study a single channel EEG was used with SVM to detect sleep 

apnea events. The mean value from the signal used to make the zero-mean distribution 

of the signal that was above or below a specified range (-150 ~ +150uV), and a band-

pass filter, filtered the signal from 0.5 to 50 Hz. To estimate the changes of power spec-

trum in time, a spectrogram with 257 points (1.285 seconds) and a Hanning window 

was calculated every 60 seconds. The result of the time-frequency analysis was then 

used to evaluate the six frequency bands by adding all the values of each band: 0-0.5Hz 
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(gamma), 0.5-4Hz (delta), 4-8Hz (theta), 8-12Hz (alpha), 12-16Hz (sigma), 16- 30Hz 

(beta). Next, the mean values computed for each band per one second and the median 

filter, were applied to the mean values to obtain a smoother signal. The alpha and beta 

power, and the ratio between the current alpha or beta power and their average of them 

during the previous ten seconds, were including the ratio between the sigma and alpha 

plus beta power, which could suggest the presence of sleep spindles, and the mean fre-

quency of the signal at every second, were selected as features. For classification RBF 

kernel and c=10 are selected. The results showed sensitivity equal to 75.26% and speci-

ficity equal to 93.08%. Übeyli et. al. also used single EEG with a least squares support 

vector machine LS-SVM  [212]. The EEG signals (pre and during hypopnoea) from 

three electrodes (C3, C4 and O2) were considered as a classification problem with the 

Auto regression (AR) coefficients. The features defining the EEG signals were comput-

ed by the Burg AR method. The extracted features were used as inputs of the LS-SVM. 

This approach could discriminate the EEG signals with very high accuracy (the total 

classification accuracy was 95.00%). 

Single ECG signal is also used with SVM for sleep apnea studies. Khandoker et al. in 

2007 [213], and also another works of Khandoker in 2009 [214]. In this study the de-

composition of wavelets at 14 levels were applied to HRV and EDR signals. In the clas-

sification phase, a leave-one-out cross-validation scheme was adopted to evaluate the 

ability of the classifier to generalize, and the hill climbing feature of the selection algo-

rithm was used to identify features that contributed the most in separating the two clas-

ses. By using a polynomial kernel the accuracy for testing a set was equal to 92.85%.   

Also Yildi et.al. in 2011 used nocturnal ECG recordings [215]. In the first stage an al-

gorithm based on Discrete Wavelet Transform (DWT) was used to analysis the ECG re-
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cordings for the detection of heart rate variability (HRV) and ECG-derived respiration 

(EDR) changes. In the second stage a Fast Fourier Transform (FFT) based power spec-

tral density (PSD) method was used for to extract features from the HRV and EDR 

changes, and 64 features were extracted. In the feature selection step, the hill climbing 

feature selection algorithm was used and 4-8 features were selected for the final stage. 

The system correctly recognised 20 out of 20 subjects with OSA and 10 out of 10 nor-

mal subjects with the least squares support vector machine (LS-SVM). By comparing 

the classification performance of the RBF and the poly and linear kernels, it can be no-

ticed that the RBF kernel performed better than the other two.  Overall, it emphasized 

that the classifier could access the best classification performance using a subset con-

sisting of a few good features. Yilmaz et al. in 2010, used a single lead ECG with SVM 

to detect sleep apnea [216]. The sampling frequency used for ECG acquisition was 200 

Hz and the band-pass filter cut-off frequency values were set at 0.5 Hz and 40 Hz. Then 

the median, inter-quartile range and the mean absolute deviation values were extracted 

as features from the RR-interval values for each epoch. In the classification k-Nearest-

Neighbor (KNN), Quadratic Discriminate Analysis (QDA) and SVM were tested. SVM 

with a mean accuracy of 87.3% performed the best. Furthermore, in 2011 Isa et.al [217], 

used an ECG to compare SVM with NN and Naïve-Bayes. This study used PCA for fea-

ture selection and concluded that SVM with an RBF kernel had the best classification 

accuracy. 

Nasal air flow was also used as a single signal in studies by Koley and Dey [218, 219]. 

They used an ensemble of three binary SVM arranged in a one-against-all strategy to 

classify the feature vector among three categories as normal, apnea, and hypopnea. They 

used The Recursive Feature Elimination (RFE) technique for feature selection and 8 
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features from 36 were selected. To detect the optimum values of SVM they used a grid 

search.  

Patangay et al. in 2007 [211] who also used ECG with heart sound and nasal flow to 

detect sleep apnea events in patients with heart failure. In preprocessing phase R waves 

detected from ECG, low pass filtering was applied on heart sounds to eliminate ambient 

noise and for the measurement of S1 heart sound. The S1 heart sound was detected and 

measured using a simple window technique. Also, the RR intervals were computed for 

each two minute interval. A spline interpolation was used for the S1 amplitude and RR 

interval to convert them into uniformly sampled event based series. All the  data were 

then separated into two training sets and tested randomly, and then an SVM with a line-

ar kernel and C=10 was applied to the training sets to determining best features, and 

those features with absolute weights > 0.1 were selected. By using the selected feature 

to classify the testing data, 85.5 % the sensitivity and 92.2% specificity were achieved. 

SVM integrated with genetic algorithms were used in study by Chen et al. in 2009 

[220]. In this study the EEG, EOG and sub-mental EMG, tibia EMG, airflow, induct-

ance plethysmorgraphy, ECG, arterial oxygen saturation and questionnaires included the 

demographic (age, gender, etc.), anthropometric (weight, height, BMI, waist and neck 

circumferences, etc.), and symptomatic (diabetes, hypertension, asthma, smoking, alco-

hol consumption, etc.). In the classification phase genetic was used to select the best 

feature and the parameter of SVM, and accuracy equal to 89%-92% was reported. A ge-

netic algorithm was also used by Hang et.al.[19] in 2012. In their study the genetic algo-

rithm was used to tune the SVM parameters, including the combined weight of three 

SVMs in the proposed ensemble system. 
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3.3. Artificial Neural Networks 

In this section different characteristics of Artificial Neural networks together with a re-

view on their application on sleep apnea study are considered. 

3.3.1. Introduction 

Artificial Neural networks (ANNs) were originally inspired by the brain‟s nervous sys-

tem and first introduced by Walter and Warren McCulloch in 1943. The basic idea be-

hind the nervous system is a simple unit, neuron, with a complex connection between 

too many other neurons, that can perform very complex tasks in a limited time [221].  

An artificial neural network is simply shown by Figure 3.2. It contains a single cell 

which takes 𝑝 inputs, and each input is multiplied by a specific weight. The output is 

found according to the sum of the weighted inputs minus a certain threshold (𝜃). The 

output of cell (𝑦) follows a step function 𝜑, and therefore the output is either one or zero 

depending on the sum of the weighted input. For simplicity the threshold value can be 

expressed as extra input with a value of 1 and a weight of 𝜃[221]. 

All other models of neural networks are basically on the same as the previous model 

but with some extension to suit more complex problems. These extensions are based on 

two factors: 

1)  Architecture (topology): the main categories of ANNs are feed-forward and feed-

backward networks. Neurons in feed-forward networks are organised into layers with 

a uni-directional connection between them, while neurons in feed-backward nets are 

connected in both directions. As a result of these connections feed-forward ANNs are 

static, which means that they produce one set of outputs while the output of feed-

backward ANNs depends on the previous state of the net. ANN may produce many 

outputs, one for each state. 
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Figure 3.2: Simple artificial neural network structure 

 

2)  Learning: the connecting weights in all types of neural networks should be tuned to 

ensure that the separation between available outputs is adequate. This is why a learn-

ing algorithm is needed to modify the weights according to a given training set. The 

learning procedure can be supervised learning, reinforced or graded learning, and un-

supervised learning. In supervised learning the patterns of the training set are given 

with their actual outputs to train the net by modifying its weights, while in unsuper-

vised learning the weights are updated according to correlated measures between data, 

without knowing the actual output. 

 For more information about the learning process and different types of ANNs please 

see [221]. Learning in neural networks is achieved by adjusting the modifiable connect-

ing weights between the units. In other words, learning in neural networks is a problem 

of finding a set of connecting weights which would enhance the ability of neural net-

works to store experiential knowledge; hence, learned knowledge can be used to 

achieve the desired response in the future. At present there are a variety of learning al-

gorithms available, which can be classified into three main classes: supervised learning, 
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reinforced or graded learning, and unsupervised learning. The Backpropagation (BP) al-

gorithm is one of the notable supervised learning algorithms. This approach basically re-

fers to an external agent such as a computer program that totally monitors the input and 

output vector pairs and adjusts the weights such that each network output matches its 

target value. Other commonly used supervised learning algorithms are Levenberg–

Marguardt and gradient descent. The training objectives can be defined as follows 

[222]: 

𝐽  
1

𝑁
∑,�̂�

 

   

(𝑖) − 𝑦(𝑖)-                             (3.11) 

where N is the number of data points, �̂� is the network prediction, and 𝑦 is the target 

value. In the Levenberg–Marguardt optimisation algorithm, the network weight adjust-

ment can be shown as follows: 

∆𝑊(𝑘  1)  −𝜂,
1

𝑁
∑

𝜕�̂�(𝑡)

𝜕𝑊(𝑘)

 

   

 (
𝜕�̂�(𝑡)

𝜕𝑊(𝑘)
)  𝛿𝐼-  .

𝜕𝐽

𝜕𝑊(𝑘)
           (3.12) 

𝑊(𝑘  1)  𝑊(𝑘)  ∆𝑊(𝑘  1)             (3.13) 

where 𝑊(𝑘) and ∆𝑊(𝑘) are the vectors of weights and weight adaptations at step 𝑘 

respectively, 𝜂 is the learning rate, 𝛿 is a parameter to control the size of the searching 

step, and 𝐼 is the identical matrix. Gradient descent is another supervised learning algo-

rithm that can be presented by the following equations: 

∆𝑊(𝑘  1)  −𝜂
𝜕𝐽

𝜕𝑊(𝑘)
 

𝑊(𝑘  1)  𝑊(𝑘)  ∆𝑊(𝑘  1)             (3.14) 

This method follows the gradient rule that the weight vector W is literately updated in 

the direction of the greatest rate of decrease of the error. Other available methods are the 
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modified gradient descent and the Gauss–Newton which can be represented respectively 

as below: 

∆𝑊(𝑘  1)  𝛼∆𝑊(𝑘) − 𝜂
𝜕𝐽

𝜕𝑊(𝑘)
 

∆𝑊(𝑘  1)  −𝜂,
1

𝑁
∑

𝜕�̂�(𝑡)

𝜕𝑊(𝑘)

 

   

 (
𝜕�̂�(𝑡)

𝜕𝑊(𝑘)
)  𝛿𝐼-  .

𝜕𝐽

𝜕𝑊(𝑘)
 

where 𝛼 is the coefficient of momentum.  The term momentum term basically leads to 

a faster convergence toward minimum without causing a divergent oscillation, but be 

aware that the Gauss–Newton method can encounter a numerical problem if the term 

∑
  ̂( )

  ( )
 
    (

  ̂( )

  ( )
) is close to singular. 

The reinforcement learning algorithm is also similar to supervised learning except that 

the desired output is not provided. Unsupervised learning however, only uses the input 

vector for network training while the network regulates its own weights without the 

benefit of knowing what particular output to assign to a given input. The Kohonen Rule 

for training on the Kohonen network is one example of unsupervised learning. 

3.3.2. Elman Neural Networks 

The Elman neural network is one kind of globally feed-forward locally recurrent net-

work model proposed by Elman [26]. It occupies a set of context nodes to store the in-

ternal states. Thus, it has certain dynamic characteristics over static neural networks, 

such as the Back-Propagation (BP) neural network and radial-basis function networks.  

Elman network consists of four layers: input layer, hidden layer, context layer, and out-

put layer. There are adjustable weights connecting every two adjacent layers. Generally, 

the Elman neural network can be considered as a special type of feed-forward neural 

network with additional memory neurons and local feedback. The distinct “local connec-
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tions” of context nodes in the Elman neural network make its output sensitive not only to 

the current input data, but also to historical input data, which is useful in time series pre-

diction. The training algorithm for the Elman neural network is similar to the back-

propagation learning algorithm, as both based on the gradient descent principle. Howev-

er, the role that the context weights as well as initial context node outputs play in the er-

ror back-propagation procedure must be taken into consideration in the derivation of this 

learning algorithm. Due to its dynamical properties, the Elman neural network has found 

numerous applications in such areas as time series prediction, system identification and 

adaptive control [27]. 

3.3.3. Cascade-Forward Neural Network Models 

Cascade-forward models are similar to feed-forward networks, but include a weight 

connection from the input to each layer and from each layer to the successive layers. 

While two-layer feed-forward networks can potentially learn virtually any input-output 

relationship, feed-forward networks with more layers might learn complex relationships 

more quickly. For example, a three layer network has connections from layer 1 to layer 

2, layer 2 to layer 3, and layer 1 to layer 3. The three-layer network also has connections 

from the input to all three layers. The additional connections might improve the speed at 

which the network learns the desired relationship. Cascade-forward artificial intelli-

gence model is similar to feed-forward back propagation neural network in using the 

back propagation algorithm for weights updating, but the main symptom of this network 

is that each layer of neurons related to all previous layer of neurons. This network is a 

Feed-Forward network with more than one hidden layer. Multiple layers of neurons 

with nonlinear transfer functions allow the network to learn more complex nonlinear re-

lationships between input and output vectors.  
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3.3.4. Multi Artificial Neural Networks  

The artificial neural network is a massive parallel-distributed processor with the capa-

bility of storing experiential knowledge and then making it available for use [223]. Arti-

ficial neural networks have been increasingly used in non-linear modelling in industry 

because the main advantage of neural network models is that they are easy to build. This 

feature is very useful when modelling complicated non-linear processes where detailed 

mechanistic models are difficult to develop [222].  

Robustness is one of the main criteria used to judge the performance of the neural 

network, where robustness refers to an inherent insensitivity to the presence of outliers 

[224]. Low robustness is basically due to an inappropriate learning of the training data 

or over fitting the training data [225] to improve learning in neural network algorithms, 

different techniques such as training with regularisation and early stopping have been 

developed [225]. Among those approaches for a general improvement of the neural 

network, the combination of multiple neural networks seems to be very effective [225]. 

Many real world problems are too large and too complex for a single monolithic system 

to solve alone and also fit the data distribution well enough. In reality there is no perfect 

model presently available to truly and consistently define the process, therefore the mul-

ti-model (consensus/aggregation) approach offers a real prospect of better simulation 

than the best model included in the combination [226]. The idea behind a combination 

is that the process inputs contain insufficient information about the outputs, while the 

neural network model is sub-optimal because it does not completely utilise the infor-

mation in the inputs. In other words, combining a set of imperfect models (networks) 

can be thought of as a way to manage the recognised limitations of individual models, 

where each is known to have errors, but then they are combined in a certain way to min-
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imise the effect of these errors [227]. Because each network can waste some of the in-

formation in the inputs because of insufficient training or approximation failures [228], 

by using the information that other models have to offer, a better prediction of the out-

put can be expected [228].  

The sufficiency of a combined model can also be proved by Shannon‟s information 

theory [228]. What can also be improved  [229] is combining three independent ANNs 

using majority voting so that each one can give the correct classification with a proba-

bility 𝜌 while the combined network can give the correct classification with a probabil-

ity of  3𝜌 − 2𝜌 . Therefore, the combined network performs better than the single 

network when  .5   𝜌   1. For successful applications of combined ANN please re-

fer to [222]. 

A. Combining of Artificial Neural Networks 

Combining classifiers to achieve higher accuracy is an important research topic that 

has the following different names in the literature: a combination of multiple classifiers 

[216, 221, 230], classifier fusion [231, 232], mixture of experts [233, 234], classifier en-

sembles [235, 236], committees of classifiers [237], consensus aggregation [238], vot-

ing pool of classifiers [239], composite classifier system [240], divide-and-conquer 

classifiers [241], etc. The paradigms of these models differ on the assumptions about 

classifier dependencies, the type of classifier outputs, the aggregation strategy (global or 

local), and the aggregation procedure, and etc. [220]. 

In general, information can be classified as pre-classification fusion and post-

classification fusion [224]. Pre-classification fusion refers to combining information 

prior to the application of any classifier or matching algorithm, and post-classification 
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fusion refers to methods that combine the information after decisions about the classifi-

ers have been obtained [224].  

Furthermore, post-classification fusion in ANN methods can be classified as modular 

and ensemble [222]. Modular methods refer to a neural network model devised on the 

basis of component networks that are trained using different data and are then combined 

to create a neural network model. Ensemble on the other hand, applies to a method 

where the component networks are redundant in the sense that each one provides a solu-

tion to the same task or task component. Each of the component networks in an ensem-

ble might reach a solution by different means but any one of them could be used in iso-

lation to provide a solution to the task. During testing, the implication is that all input 

patterns will be presented to all the component networks and the output of all the net-

works will be combined to form an ensemble output. 

Ensemble combination methods can be separated into several distinctive groups, such 

as linear, non-linear, Supra Bayesian, and stacked generalisation [222].  

B. Linear and non-linear combination  

A linear combination is the most used combination method for neural networks. In 

weighted averaging, individual network outputs are multiplied by appropriate weights 

and then combined to give the final model prediction [222]. Let us consider 𝐿 classifier 

as 𝐷  *𝐷 , 𝐷 , … , 𝐷 + for a model by 𝑘 class labels as Ω  *𝜔 , 𝜔 , … , 𝜔 +. For each 

arbitrary 𝑧 ∈ 𝑅 each classifier assigns a class label from Ω, and the output of each classi-

fier 𝐷  can be defined as 𝐷 (𝑧)  ,𝑑 
 (𝑧), 𝑑 

 (𝑧),… , 𝑑 
 (𝑧)- , where 𝑑 

 (𝑧) is the meas-

ure that classifier 𝐷  assigns to the hypothesis that 𝑧 comes from class 𝜔 . Similarly the 

outputs of the  𝐿 classifier for vector 𝑧 can be represented in a decision profile 𝐷𝑃(𝑧), 

as follows; 
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𝐷𝑃(𝑧)  

[
 
 
 
 𝑑 
 (𝑧),… , 𝑑 

 (𝑧),… , 𝑑 
 (𝑧)

…               …                 … 

𝑑 
 (𝑧),… , 𝑑 

 (𝑧),… , 𝑑 
 (𝑧)

…               …                 …

𝑑 
 (𝑧),… , 𝑑 

 (𝑧),… , 𝑑 
 (𝑧)]

 
 
 
 

 

Different types of combinations have been proposed to use this matrix to find the 

overall output for each class [242]. Among the class conscious methods, the weighted 

linear combination is the most popular. Various weighted average combiners have been 

proposed and they can be classified into three categories [243]. 

In the first category, 𝐿 weights are assigned, one per classifier. In this case the output 

for class 𝜔  is calculated as 

𝜇 (𝑧)  ∑𝑤 . 𝑑 
 
(𝑧)

 

   

 

where 𝑤  is the weight assigned to the 𝑖𝑡 classifier. In the simplest case, with simple 

averaging, L weights are equal  o 𝑤    1/𝐿. This is the most common method, but it is 

not optimal. In a more reasonable way the weight assigned to each classifier can be 

based on its estimated error rate obtained using the behaviour of the classifier [244], the 

correlation between classifiers [245] and the minimum classification error, MCE, crite-

rion [246]. 

In the second category the output for class 𝜔  is calculated as follows, where 𝑤   is the 

weight assigned to the 𝑖𝑡 classifier for class 𝜔 , 

𝜇 (𝑧)  ∑𝑤  . 𝑑 
 
(𝑧)

 

   

 

In the third category of linear combinations, the output for class 𝜔  is obtained by a 

linear combination of all elements of the decision profile DP(z) as 
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𝜇 (𝑧)  ∑∑𝑤   

 

   

. 𝑑 
 (𝑧)

 

   

 

Also Principal Component Regression (PCR) approach should be mentioned to. In the 

PCR Instead of combining the system properties on the original measured variables, the 

properties are combined on the principal component scores of the measured variables 

(which are orthogonal and thus well-conditioned) [222].  

A linear combination is simple and easy to use but only those models with a high line-

ar correlation to the output variable can be modelled by linear approaches. It is therefore 

important to develop non-linear aggregations that can combine useful ANN models re-

gardless of the nature of their relationship to the actual output [228].  

In non-linear approaches the Bayesian selective combination method [227] can be no-

ticed where, instead of using fixed combination weights, the probability of a particular 

network being the true model is used as the combined  weight for combining that net-

work. The prior probability is calculated using the sum of squared errors of individual 

networks on a sliding window that covers the most recent sampling times. A nearest 

neighbour method is used to estimate the network error for a given input data point, 

which is then used to calculate the combined weights for individuals [227]. Among the 

non-linear methods the Dempster–Shafer method seems to be the most renowned be-

cause it should deal with the uncertainty and ignorance of the classifiers [222]. The 

Dempster-Shafer theory of evidence is a tool for representing and combining measures 

of evidence. This theory is a generalisation of Bayesian reasoning and it is more flexible 

than Bayesian when our knowledge is incomplete and uncertainty and ignorance is exist 

[221]. 
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Majority voting is another popular choice among methods in the non-linear classifica-

tion. Zhang [222] implemented majority voting to improve online fault diagnosis using 

multiple neural networks. Majority voting is applied in the natural way, i.e. if there are 

more individual classifiers giving an output of 1 rather than 0, then the aggregated clas-

sifier takes the output 1 and vice versa. Since the neural network outputs take continu-

ous values between 0 and 1, majority voting cannot be implemented in its natural form. 

Here it is proposed that majority voting takes the following form: 

𝜇 (𝑧)  𝑚𝑒𝑑𝑖𝑎𝑛 *𝑑 (𝑧)+ , 𝑖  1,… , 𝑙 

The modified majority voting combination scheme proposed is of the following form: 

𝜇 (𝑧)  {
𝑚𝑒𝑑𝑖𝑎𝑛 {𝑑  ,𝑧-},   𝑖𝑓 𝑚𝑒𝑑𝑖𝑎𝑛{𝑑  ,𝑧-} ≤  .6

𝑚𝑎𝑥 {𝑑  ,𝑧-},   𝑖𝑓 𝑚𝑒𝑑𝑖𝑎𝑛{𝑑  ,𝑧-}       .6
  

where 𝐝   is the  𝐭𝐡 element of  the  𝐭𝐡 NNs. The rationale behind this combination 

scheme is when the majority of individual networks give outputs that are much larger 

than 𝟎 ( 𝟎. 𝟔), then a higher output for the combination is very likely. On the other 

hand, when most of the individual networks give outputs which are not much larger 

than 𝟎 (≤ 𝟎. 𝟔), then the median of the outputs is taken as the final output. The thresh-

old 0.6 is set based on heuristics and it is possible to fine tune this parameter based on a 

set of training and testing data [229]. 

For more information about other approaches such as Supra Bayesian, Recursive Least 

Squares (RLS), Combination Using Fuzzy Logic and etc. please refer to [247] or [222]. 

C. Training Multiple Artificial Neural Networks 

As mentioned before, there are several types of multiple neural networks but the main 

ideas are basically similar. They can be categorised based on the training methods, they 

can be classified into two major types [222]. The first category is multiple model neural 
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networks where the training data used to build the individual networks are completely 

different, so they can only be built using different inputs in different regions of opera-

tion. The idea behind this approach is to adapt different information using different in-

puts and then combine this information to obtain a better prediction. The learning algo-

rithm in each network can also be different and can be either the supervised or unsuper-

vised method. The second category is to create multiple models using the same training 

data which has been resampled or partitioned using particular algorithms. Different 

studies show that combining multiple neural networks can only be effective if the indi-

vidual networks are accurate and diverse [242]. Therefore, various techniques have been 

used to create a diverse ensemble. This section will review the two most popular algo-

rithms being used to resample or partition the training data, and they are bagging or 

bootstrap resampling, and adaboost [222].  

Bagging, (short for Bootstrap Aggregation Learning), [242] is the most commonly im-

plicit method for creating an ensemble. This approach refers to the replication of a train-

ing data set by resampling the original training data set. Therefore some of the data 

samples may occur several times, and others may not occur in the sample at all. The in-

dividual training sets are independent and the neural networks can be trained in parallel 

[222]. A training set of size N generates L new training sets, each of size N, by random-

ly drawing samples of the original training set, where the same sample may be drawn 

multiple times. Each of the new training sets is used to train exactly one neural network 

classifier. Hence, an ensemble of L individual networks is obtained from L new training 

sets, several researchers used this algorithm [248-251]. 

AdaBoost or „adaptive boosting‟ [252] proceeds in iterations, with a new network be-

ing trained at each iteration. A network is trained initially with equal emphasis on all 
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training data, and at the end of each iteration the misclassified patterns are identified 

and have their emphasis increased in a new training set, and then a new network is 

trained. After the desired numbers of networks have been trained, they are combined by 

a weighted vote, based on their training error [253]. 

Another popular algorithm is Negative Correlation Learning, for more information 

about this approach please refer to [254]. 

3.3.5. Application of Neural Network based Systems in Sleep Apnea Studies 

There are several works related to the application of ANNs in sleep apnea studies, but 

for the most important ones following works can be mentioned. 

In 2005 Fontenla-Romero et al. proposed feed-forward neural networks to classify 

sleep apnea events as obstructive, central, or mixed. The inputs of the neural network 

are the 5 detail coefficients of the first level obtained from the transformation of a dis-

crete wavelet of the thoracic effort signal. The mean classification accuracy, obtained 

over the test set was 83.78 ±1.90% [230]. 

Another work that used the neural network to detect sleep apnea was Liu et al. in 

2008, who used Pupil Size and EEG as the input [231]. They showed that modified 

adaptive resonance theory (ART) NNs [233], performs better than other structures, and 

they achieved 91% accuracy classifying subjects with OSA and controls. It should be 

noted that they published their early results by 2007 [234]. Tagluk and Sezgin also used 

EEG signals and ANN in 2011[255], in their work. The energy remaining under the del-

ta, theta, alpha, beta, and gamma frequency bands of EEG were then given as inputs to 

the classification module. For the classifier they used multi-layer perceptron neural net-

works with a bipolar sigmoid activation function and they achieved 96.15% accuracy 

for detecting apnea or normal. Tagluk was also involved in two other works in 2010 
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[256, 257] where abdominal respiration was used as the input and the features were 

generated by coefficients of a wavelet with a depth of 7 (i.e. 7 levels). To classify sleep 

apnea as central obstructive and mixed [235] the abdominal respiration signals were 

separated into spectral components using multi-resolution wavelet transforms and then 

these spectral components were applied to the inputs of the artificial neural network. 

The multi-layer neural networks model used in this study has one input layer with 16 

nodes, one hidden layer with 15 nodes, and an output layer of 3 nodes. The activation 

function used for all nodes in the hidden layer and output layer is the bipolar sigmoid 

function which is robust and highly efficient. Inputs of this ANNS are coefficients of the 

7
th

 of wavelet transfer. They reported the mean accuracy and confidence interval for 

each one of the classes as 73.42% (OSA), 94.23% (CSA) and 66.16% (MSA). Another 

study by Tagluk in 2011 [236], used EEG as the input and a neural network consisting 

of one input layer, two hidden layers, and one output layer.  

Oxygen saturation was also used as input in some studies, such as that done by Marcos 

and A´ lvarez [258] in 2012 or another study by Morillo and Gross in 2013 [259].  

Marcos and A´ lvarez [258] used Fourteen time-domain and frequency-domain fea-

tures to quantify the effect of SAHS on SaO2 recordings. The distribution of SaO2 val-

ues tends to reflect different properties, depending on the AHI, the mean (μ), variance 

(σ), skewness (γ), and kurtosis (δ). On the other hand, a non-linear analysis of SaO2 

signals using the approximate entropy (ApEn), central tendency measure (CTM), and 

Lempel-Ziv complexity (LZC) was performed to measure irregularity, variability, and 

complexity, respectively. Also, as frequency features they used three additional features 

derived from the PSD function: the total power of the SaO2 signal (ST), the power in 

the band between 0.010, and 0.033 Hz (SB), and the most significant frequency compo-
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nent in that band (PA). They compared multiple linear regression (MLR) and multi-

layer perceptron (MLP) neural networks and concluded that the MLP algorithm per-

formed best with an intra-class correlation coefficient (ICC) of 0.91. 

Morillo and Gross [259], used a set of 17 time domain, stochastic, frequency domain, 

and non-linear features initially computed from SpO2 recordings. They used the sequen-

tial forward selection (SFS) method and a Probabilistic ANN (PNN) classifier, and us-

ing the area under the receiver operating characteristic (ROC) curve (AUC) as a criteri-

on value. SFS consists of two main steps. First, a PNN is designed and the AUC associ-

ated to the LOOCV set is computed for each of the variables. The feature with the best 

value of AUC is selected. Second, all possible two dimensional vectors that contain the 

winner from the previous step are formed. In each case a new PNN is trained and vali-

dated, and its AUC is calculated. Again, the best one is selected. This procedure contin-

ues by forming all three dimensional vectors springing from the two-dimensional win-

ner and by selecting the best one. The algorithm finishes when the nth dimensional vec-

tor computed from the nth step does not improve the AUC of the PNN that was trained 

and validated from the winner from the previous step. This system resulted in 92.4 % 

sensitivity and 95.9 % specificity. 

The ECG signal was also used as The ECG signals were preprocessed and segmented 

to extract the P-waves, and then three P-wave features were extracted: the P-wave dura-

tion (Tp), the P-wave dispersion (Pd), and the time interval (Tpr) from the peak of the 

P-wave to the R-wave. Combinations of the three features were used as features for 

classification using ANN. In this work, sensitivity, specificity, and accuracy values for 

detecting OSA were obtained when the ANN classifier was based on the combinations 



 

 

 

 49 

 

of the features. The overall accuracy for the combinations Tp and Pd, Pd and Tpr, Tp 

and Tpr, and Tp, Pd, and Tpr was 89.9%, 76.3%, 89.9%, and 92.3%, respectively.  

Three works done by Günes et.al. [260], Chen et.al. [261] and Guijarro-Berdiñas et.al. 

[18]. Günes et.al. [260], can be considered as feature selection methods in NNs applica-

tions in the area of sleep apnea. In their study in 2010 used clinical variables such as the 

Arousals Index (ARI), the Apnea and Hypoapnea Index (AHI), SaO2 minimum value in 

stage of REM, and Percent Sleep Time (PST) in the stage of SaO2 intervals larger than 

90%, that were obtained from patient polygraph recording, and then they applied the f-

score feature selection. As a classifier they used Multi-layer perceptron artificial neural 

network and the experiments with the MLP back propagation algorithm were done in a 

MATLAB environment. While MLPANN obtained 63.41% classification accuracy on 

the diagnosis of OSAS, the combination of MLPANN and multi-class f-score feature se-

lection achieved 84.14% classification accuracy. Chen et.al.[261]  in 2011 used anthro-

pomorphic measurements (e.g., age, gender, height, weight, and BMI), systolic blood 

pressure, diastolic blood pressure, frequency of desaturation (DI3, DI4), frequency of 

paroxysmal leg movement within an hour, and questionnaire measurements (ESS, SOS), 

as inputs. They investigated the performance of PSO and GA for feature selection inte-

gration with 1-NN method. The experimental results showed that the PSO predicted bet-

ter than GA. In 2012 Guijarro-Berdiñas et.al.[18] used the nasal airflow signal, the tho-

racic effort signal, and abdominal signals and features that are generated using the sym-

let wavelet family (symlet of order: O = 7); specifically, the absolute value of the first 

16 coefficients of the level-5-detail. In the feature selection phase they used the SVM 

recursive feature elimination (SVM RFE) approach and a mixture of classifiers in the 

classification phase. The classifier trained by different sets learned to discriminate be-
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tween obstructive and central characteristics that were applied at the beginning of the 

input pattern. Thus, the classifier learned to look for common characteristics between 

the central and mixed patterns in order to distinguish them from obstructive ones. Also, 

two classifiers trained to discriminate between the obstructive and central characteristics 

applied at the ending of the input pattern. In this case the classifier will look for com-

mon properties between obstructive and mixed patterns in order to distinguish them 

from central ones. By paying attention to the experimental results, the mean test accura-

cy obtained by the selected model in 10 different 10-fold cross validations was 90.27% 

± 0.79, and the mean test accuracy obtained for each class apnea was 94.62% (obstruc-

tive), 95.47% (central) and 90.45% (mixed). 

 There are very few studies on predicting sleep apnea and of them, few used NNs. The 

pioneer work on sleep apnea prediction can be found in the paper by Bock and the paper 

by Gough in 1998  [262]. This study used heart rate, respiration force, and blood oxygen 

saturation (SaO2.), and also the  recurrent networks proposed by Elman [263]. Each of 

the three time series variables (heart rate, breathing, and blood oxygenation) were used 

as inputs for network training and testing operations. Each variable was introduced to a 

unique network node at the input layer; this network had 18 nodes in the hidden layer. 

The latest paper in this area is the work of Waxaman, Graupe and Carley in 2010 

[264]. They predicted apnea from 30 to 120 seconds in advance. They use LArge 

Memory STorage and Retrieval (LAMSTAR) neural network. LAMSTAR is a super-

vised neural network that can process a large amount of data and also provide detailed 

information about its decision making process. Input signals for this algorithm are EEG, 

heart rate variability (HRV), nasal pressure, nasal temperature, sub-mental EMG, and 

electrooculography (EOG). They trained separate LAMSTARs for each 30, 60, 90, and 
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120 second segment. Their results showed that the best prediction occurred to the next 

30 seconds and the performance was less with a longer lead time. However, most pre-

dictions up to 60 seconds in the future were correct.  

3.4. Particle Swarm Optimisation (PSO) 

In this section basic of PSO and some variety of this algorithm are presented. 

3.4.1. Single PSO 

In 1995, Kennedy and Eberhart introduced particle swarm optimization (PSO)[265]. 

PSO is a population-based stochastic optimisation technique based on the movement of 

swarms and inspired by the social behaviour of insects, animals herding, birds flocking, 

and fish schooling, where a collaborative search for food had the potential for a compu-

tational model. In comparison with other metaheurestic algorithms such as genetic algo-

rithms (GAs), PSO has less complicated operations and less defining parameters and it 

can be coded in just few lines and it is highly dependent on stochastic processes. Be-

cause of the simplicity and performance of the PSO, this algorithm has received increas-

ing attention in recent years [266, 267].  

In PSO the potential solutions of the optimisation problem are called particles, which 

is a point in the search space. Compared to genetic algorithms, PSO updates the parti-

cles by considering their internal velocity and the position obtained by the experience of 

all the particles.   

Consider a D-dimensional feature space and a PSO with 𝑀 particles, where 𝑥  

(𝑥  , 𝑥  , … , 𝑥  )
  and 𝑣  (𝑣  , 𝑣  , … , 𝑣  )

 are the position and velocity of the ith 

particle respectively  𝑖  1,2, … ,𝑀. The performance of 𝑥  is evaluated by a user de-

fined fitness function. At each iteration the particle updates its own position and velocity 
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by tracking its best solution and the global best solution discovered by all the particles 

in the swarm. 

Let 𝑝     denote the best previous position encountered by the 𝑖th particle, and 𝑔     

denote the global best position so far. By paying attention to 𝑝     and 𝑔     the 𝑖th par-

ticle updates its position and velocity according to formula (3.15) and (3.16). 

𝑣  
    𝑣  

  𝑐 𝑟 
 (𝑝    

 − 𝑥  
 )  𝑐 𝑟 

 (𝑔    
 − 𝑥  

 )         (3.15) 

𝑥  
    𝑥  

  𝑣  
                                                                           (3.16) 

Where 𝑟 
  and 𝑟 

  are random numbers in , , 1-, 𝑘 is the iteration counter and positive 

constant 𝑐  and 𝑐  are personal and social learning factors. 𝑥  
  and 𝑣  

  are the current 

position and velocity of the 𝑑th (𝑑  1,2, … , 𝐷) dimension in the 𝑘th iteration of the 

𝑖th particle, respectively.  

Later, Shi and Eberhart [268] introduced an inertia weight w, which controls the im-

pact of the previous velocity on the current velocity, by modifying Eq.(3.15) to 

𝑣  
    𝑤𝑣  

  𝑐 𝑟 
 (𝑝    

 − 𝑥  
 )  𝑐 𝑟 

 (𝑔    
 − 𝑥  

 )         (3.17) 

A suitable inertia weight 𝜔 provides a balance between global and local exploration 

and exploitation, and on average results in less iteration for finding a sufficiently opti-

mal solution. Previous studies have shown that a time-dependent weight factor often 

outperforms a fixed factor [269]. The most common functional form for this weight fac-

tor is linear, and it changes with the time step as follows: 

𝑤(𝑘)  𝑤   −
𝑤   − 𝑤   

𝑁    
𝑘             (3.18), 

where 𝑁    is the maximum number of iterations and 𝑤   and 𝑤    are often selected 

to be 0.9 and 0.4, respectively [269]. 
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The velocity 𝑣   is restricted to the ,𝑣   , 𝑣   - range. This range determines the 

resolution of the search regions between the present and target position. If  𝑣    is too 

high, the particle may fly over the good solutions. If 𝑣    is too small the particle may 

not explore beyond local solutions enough, and become trapped in a local optimum. 

The constants 𝑐  and 𝑐  represent the weights of the stochastic acceleration terms that 

pull each particle towards  𝑝     and  𝑔    . Low values allow particles to roam far from 

target regions before being tugged back, while high values result in abrupt movement 

towards, or past the target regions. Hence, the acceleration constants 𝑐  and 𝑐  are often 

set to be 2.0[270]. Pseudo code 3.1 shows a sample of the PSO algorithm.  

Pseudo code 3.1: The original Particle Swarm Optimization (PSO) 

 

1: Initialize randomly the position x and the velocity v of each particle. 

2: for i = 1 to s do 

3: Pbesti=Xi 

4: end for 

5: while the stopping criterion is not satisfied do 

6: for i = 1 to s do 

7: update position Xi using (3.15) and (3.16) 

8: calculate particle fitness f(Xi) 

9: update Pbesti, Gbest, and particles using (3.17) and (3.18) 

10: end for 

11: set iteration = iteration + 1 

12: end while 
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3.4.2. Parallel PSO 

The recent availability of cheap and fast parallel hardware has encouraged this re-

searcher towards the possibility of implementing a parallel type of meta-heuristic algo-

rithms for large scale problems. Population based algorithms such as genetic algorithms 

are good candidate for parallelisation [271]. In meta-heuristic algorithms, parallelisation 

can reduce computation time and also improve the quality of the solutions [272]. 

PSO can be parallelised by different points of view. In this section the most common 

parallel structures of PSO are introduced. Because the processes between PSO‟s are in-

dependent, this algorithm is quite suitable to being parallelised. The only dependency 

existing between the PSO processes is updating the swarm‟s velocities and positions, 

which must be shared between particles. Therefore, PSO can be implemented in parallel 

very efficiently [273].  

Parallel processing can generally be classified as pipeline processing and data parallel-

ism. Pipeline processing separates the problem into a cascade of tasks where each task 

is executed by an individual processor. Data are transmitted through each processor 

which executes a different part of the process on each of the data elements. Since the 

program is distributed over the processors in the pipeline and the data moves from one 

processor to the next, no processor can proceed until the previous processor has finished 

its task, although more than one processor might be work at same time. The data paral-

lelism method is an alternative approach which involves distributing the data to be pro-

cessed among all the processors, which then executes its procedure on each subset of 

the data [274]. 

Data parallelism is widely used for implementing meta-heuristic algorithms such as 

PSO. In this case, parallel PSO can be classified into three categories:  
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(a) Global or Master–slave PSO: This model uses a single swarm and only the fitness 

evaluations of the particles are done in parallel (in slave processors). Therefore, the na-

ture of PSO has not changed because the algorithm works with the whole population. In 

this model the parallelisation only tries to speed up the fitness computation [275]. Fig-

ure 3.3 represents a model of the master-slave structure. By paying attention to this fig-

ure, at each iteration of PSO the master sends the position of particles to the slaves, and 

then the slaves send back the fitness of the particle to the master. Therefore, only the fit-

ness computations of particles are computed in slaves and other parts of the PSO algo-

rithm are performed in the master. 

  

 

 

 

 

Figure 3.3: Master- Slave parallel PSO structure. 

(b) Migration PSO or island model (Coarse-grained): In this model several swarms are 

available, each of which is maintained by a different processor. Then, according to some 

„„migration-strategy‟‟, commonly at a given number of iterations, the particles between 

these swarms are exchanged [275]. Island PSO models are also referred in literature as 

multi PSO [276]. Island models are able to control the global information exchange by 

means of a migration strategy, but parameters such as the „„migration population‟‟ must 

be chosen well [277]. 
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Figure 3.4 shows a sample of parallel PSO with an island model structure. It should be 

noted that because of physical limitations, interaction between the swarms is not simul-

taneous. 

 

 

 

 

 

Figure 3.4: Island model PSO structure 

In this model the swarms are partitioned into sub-groups, and only those swarms in the 

same sub-group exchange their information. Interaction between swarms can be per-

formed by different communication structures such as; broadcast, star, migration and 

diffusion model. For more information about these communication models please refer 

to [278]. 

 (c) Fine-grained PSO or cellular PSO: In this structure a swarm is separated into a 

large number of very small sub-populations which are maintained by different proces-

sors. The sub-population may only be a particle. Such neighborhood restriction delays 

the exchange of information between the non-neighbour processes and increases the di-

versity in the search [275]. The use of local selection and the reproduction rules leads to 

a continuous diffusion of individuals over the population. Therefore this model is also 

called the diffusion mode [272]. As this model uses a single population which is distrib-

uted among available processors, it allows smaller population sizes than the island mod-

el. On the other hand, information is permanently exchanged through neighborhood 

Swarm 1 Swarm 2 Swarm 3 

Swarm 4 Swarm n 
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connections, which imposes more communication than the island model. It also has the 

advantage of not having to define a migration strategy [277]. 

3.5. Performance Indications 

There are various measures that can be used to evaluate the performance and assess the 

different characteristics of machine learning algorithms, although most measures focus 

on the ability of the classifier to correctly identify classes [279].  

Several methods have been used by supervised machine learning approaches to evalu-

ate the performance of learning algorithms such as measuring the quality of classifica-

tion that are based on the “confusion matrix” which records correct and incorrectly rec-

ognized examples for each class. Table 3.1 presents a confusion matrix for binary classi-

fication where tp is true positive, fp  is  false positive, fn  is  false negative, and tn  is  the 

true negative amount(s) [279].  

Evaluating the classification performance without special interest on a class is the most 

common and the most used empirical measure where accuracy does not distinguish be-

tween the numbers of correct labels of different classes: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦    
𝑡𝑝  𝑡𝑛

𝑡𝑝  𝑓𝑝  𝑡𝑛  𝑓𝑛
 

Table 3.1: Confusion matrix for a binary classification 

 
label / result  As positive As negative 

Positive tp fn 

Negative fp tn 



 

 

 

 58 

 

On the other hand, two measures that separately estimate a classifier‟s performance on 

different classes are sensitivity and specificity: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦   
𝑡𝑝

𝑡𝑝  𝑓𝑛
 ,     𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   

𝑡𝑛

𝑡𝑛  𝑓𝑝
 

The another paradigm is focus on one class, especially in bioinformatics, text classifi-

cation, information extraction, natural language processing, where the number of exam-

ples belonging to one class is often considerably lower than the overall number of ex-

amples [280]. The experimental setting is as follows: within a set of classes there is a 

class of special interest (usually positive). Other classes are either left as is – multi-class 

classification – or combined into one – binary classification. The measures of choice 

calculated on the positive class are [279]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   
𝑡𝑝

𝑡𝑝  𝑓𝑝
,    𝑟𝑒𝑐𝑎𝑙𝑙   

𝑡𝑝

𝑡𝑝  𝑓𝑛
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒   
(   1)  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙 

   (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙)
 

All three measures distinguish the correct classification of labels within different clas-

ses because they concentrate on one class (positive examples). Recall is a function of 

correctly classified examples (true positives) and its misclassified examples (false nega-

tives). Precision is a function of true positives and examples that are misclassified as 

positives (false positives). The F-score is evenly balanced when β = 1 because it favors 

precision when β > 1, and recall otherwise [2]. A broad evaluation of classifier perfor-

mance can be obtained by the ROC: 

𝑅𝑂𝐶  
𝑃(𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑃(𝑥 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
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Where 𝑃(𝑥 𝐶) represents the conditional probability that a data entry has the class la-

bel C and an ROC curve plots the classification results from the most positive to the 

most negative classification. ROC and the Area under the Curve (AUC) apply to learn-

ing with asymmetric cost functions and imbalanced data sets [280]. To obtain the full 

range of true positives and false negatives, which is why ROC is used in experimental 

sciences where it is feasible to generate a lot of data. The study of radio signals and bi-

omedical and medical science are a steady source of learning problems. Another possi-

bility of building the ROC is to change the decision threshold of an algorithm. The AUC 

defined by one run is widely known as balanced accuracy: 

  𝐶  (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)/2. 

3.6. Summary 

In this chapter the SVM, Neural networks, and PSO were reviewed as the main algo-

rithms used in automated sleep apnea studies. Also most of the important researches in 

the area of sleep apnea area by these methods were reviewed.  

In the studies related to sleep apnea based on SVM or ANNs, many different signals 

and features were used. One of the main disadvantages of previous work can be the lack 

of study on signal selection and feature selection in sleep apnea studies. Another disad-

vantage is the lack of strong feature selection in most previous researches, and many of 

these studies did not provide enough information about their experimental settings and 

parameters. 
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Chapter 4 

 Sleep Apnea Detection and Classification  

 

4.1. Introduction 

This chapter consists of two main parts; in the first part, sections 4.2 till 4.5, 

proposed algorithms for sleep apnea detection and classification will be intro-

duced. The second part, section 4.6, comprises of different experiments related to 

sleep apnea detection and classification employed by the proposed algorithms in 

the first part. Figure 4.1 shows the general process for detecting or classifying 

sleep apnea. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Process of the sleep apnea detection or classification 
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Signal acquisition: Signals from polysomnograms records which obtained from Con-

cord Repatriation General Hospital in Sydney, Australia, were used in this thesis. More 

information about the database and these signals are presented in the second part of this 

chapter, in section 4.6.1.  

Signal segmentation: Here, in this thesis, signal segmentation means dividing one-

dimensional signals into several time windows, epochs. Segmentation is so important 

since just these specified time windows will be considered in the next steps. The pro-

posed algorithm for signal segmentation is introduced in section 4.2 and related experi-

ment about the performance of this algorithm is presented in section 4.6.2. 

Feature extraction: For each segment features are extracted, or in another word gen-

erated, from signals belong to the corresponding segment. The proposed pre-processing 

and feature extraction approaches are presented in section 4.3. 

Dimensionality Reduction: In this thesis two approaches are proposed for dimension-

ality reduction as; 1- feature selection, 2- feature and training data reduction. 

For the first approach, feature selection, a PSO-SVM algorithm is proposed in section 

4.4.1, this feature selection is employed in different experiments of section 4.6. 

In the second approach, feature and training data reduction, together with reducing the 

features a subset of the training data is selected. More details of this approach are pre-

sented in section 4.4.2.  

Sleep apnea detection and classification: In this thesis sleep apnea detection means 

specifying the generated segments to sleep apnea or normal sleep by attention to the ex-

tracted features. The detected segments as sleep apnea can be classified to hypopnea, ob-

structive, central or mixed apnea in the classification phase.  
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For sleep apnea detection two paradigms are examined as; (1) normal sleep apnea de-

tection or subject dependent and (2) subject independent sleep apnea detection. 

In the first paradigm the machine learning approach trained and validated on each par-

ticipant individually. However the second paradigm detect sleep apnea event in new par-

ticipant whose signals have never been used to train the machine learning algorithm. 

More details of these paradigms are presented in section 4.6.8. 

4.2. Signal Segmentation 

Sleep apnea events last at least 10 seconds and consequently the detection of SA events 

means looking at continuous time windows and detecting them as either SA or normal 

sleep. Therefore, in the first step the input signals should be segmented to time windows, 

and then these segments can be reviewed to be considered as sleep apnea or normal 

sleep. There are at least two strategies for segmenting input signals;  

The first approach is blind segmentation where the signals are segmented from the first 

second without any further consideration. In this approach each segment is started exact-

ly from the place that previous segment is finished, therefore segments are determined 

independent to the properties and characterise of the related signals and segments cover 

whole length of signals. 

The second strategy for segmentation selects time windows that have more chance of 

containing SA events. The resulting segments in this approach are determined based on 

the properties and characterise of the related signals and some parts of the signals are not 

covered by the resulting segments. 

It should be noted that blind segmentation can reduce the final accuracy, as shown in 

Figure 4.2, where in Figure 4.2(a) a whole sleep apnea event is correctly located in one 

segment, but in 4.2 (b) the length of the sleep apnea event in each segment is less than 
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10 seconds. This means that this sleep apnea event cannot be detected because the length 

in each segment is less than 10 seconds. The blind segmentation may leads to the situa-

tions similar to Figure 4.2 (b) more than another approaches. 

In this thesis a segmentation algorithm is proposed to follow the second strategy. The 

selected length of each segment is considered as 30 seconds based on a consideration of 

state of the art in sleep disorders, especially in sleep apnea literature. These segments 

named as Reasoning Units (RUs) [281] and each RU represents an interval that has more 

chance to contain a sleep apnea event. 

 

 

 

Figure 4.2: Two samples of signal segmentation 

The proposed signal segmentation algorithm is based on the [282], with some modifi-

cation. The original algorithm [282] only used airflow for detecting sleep apnea events 

but this modified version considered three signals as input to generate RUs. The pro-

posed segmentation algorithm generates some RUs that are not overlapped. The Pseudo 

code 4.1 presented the proposed segmentation algorithm. 
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Pseudo code 4.1: The proposed segmentation algorithm 

 

1: Pre-processing: Consider three input signals and set one of them one of them as the 

main signal. Each signal is normalised to -1 and 1, and if any of the input signals are 

missed for more than 60 seconds, those time windows are labelled as not usable and 

will not considered by the algorithm anymore. 

2: Amplitude calculator: Difference between local maximum and local minimum of 10 

consequence data, one second, are computed as amplitude value (𝑣 )  for each second. 

3: Amplitude classifier: The amplitude reference value (AVREF) is computed as the 

last maximum amplitude value in the previous two minutes, if any amplitude value (𝑣 ) 

is greater than the 0.25*AVREF, it is classified as normal. Otherwise it is classified as a 

feasible event. 

4: Amplitude reviewer: The classified amplitude vectors are reviewed in this step by 

completing following steps a and b: 

(a) Because a complete respiratory cycle lasts at least 3 seconds, those normal ampli-

tude values located between feasible events that are not separated by more than 3 se-

conds are re-classified as feasible event. 

(b) The amplitude values that primarily classified as a feasible event will be classified 

as normal if their duration is less than 10 seconds. 

5: RU generation: In the first step the amplitudes of the main input signal are consid-

ered and for each amplitude value, which is labelled as an event, one RU with a length 

equal to 30 seconds is created. After generating RUs related to the first signal, feasible 

events of second and third signals are reviewed. In this step a new RU will be created 

between previous RUs only if a feasible event can be found in the amplitudes of the se-
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cond or third signals, and there is a room for the new RU between the previously made 

RUs. 

 

Therefore each RU is a time window which indicates a segment of time that we are 

more interested to have deeper analyses on them, instead of considering the whole length 

of signals. 

4.3. Feature Generation 

After signal segmentation the next step is feature generation. In this stage features are 

generated for each RU from a section of signals that belongs to the corresponding RU.  

For feature generation we cannot use the original signals since bio signals, especially 

signals related to sleep study, vary in amplitude over time. For these signals depending 

on the sleep stage, when the amplitude decreased, several false apneas could be detected, 

and on the other hand when the averaged amplitude of the signal increased, some apneas 

could be not detected [291]. To overcome this problem, the original signal in each RU 

was normalised by considering the average and variance of a sliding window that started 

from 15 seconds before and ended after 15 seconds of each 30-second RU; this means 

that 60-second sliding window is considered.  

After normalisation, wavelet packet coefficients were used to generate features for 

each of these signals. Although Fourier-based methods are standard methods for fre-

quency analysis, they are not well suited for the analysis of non-stationary signals, such 

as bio signals [283]. Therefore wavelet packet is selected in this thesis. A wavelet packet 

is a generalization of a Discrete Wavelet Transform (DWT) such that each octave fre-

quency band of the wavelet spectrum is further subdivided into finer frequency bands by 

using the two-scale relations repeatedly [283]. 
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Different wavelet family were selected for each signal based on state of the arts. The 

details of feature generation for each signal are presented as follows: 

- Airflow, Abdominal movement, Thoracic movement, SPO2 and Snore 

Daubechies wavelet packet with order 3 and 4 levels were applied to these signals and 

features were generated by applying the statistical measures from Table 4.1 to each co-

efficient at the terminal nodes of the wavelet tree [97, 284, 285], in this Table x repre-

sents coefficients of the wavelet packet. 

Table 4.1: List of statistical features 

 o (    (  ))     o   (  )   o    (   ) 

   (  )    (  )    ( ) 

        (  )     (   )     (  ) 

        ( )     o   ( )    ( ) 

  o    (  )    (  )    ( ) 

 

- EEG 

Daubechies wavelet packet with order 2 and depth 7 (7 levels) was applied. After that 

the frequency ranges of the EEG signal were broken down into Delta (below 3.5 Hz), 

Theta (4-7 Hz), Alpha (8-13 Hz), and Beta (14-30 Hz) bands [286], and finally the fol-

lowing features were used to represent the time–frequency distribution of the EEG sig-

nals [286]: 

1. Average quadratic value or Energy of wavelet packet (WP) coefficients for each of 

the sub bands, 
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2. Total Energy,  

3. Ratio of different Energy values, 

4. Average of the absolute values of the coefficients in each sub band, and 

5. Standard deviation of the coefficients in each sub band. 

Furthermore, more features were generated by applying the statistical measure of Table 

4.1 to each coefficient at the terminal nodes of the wavelet tree.  

- EOG 

To generate the features from the EOG signal, an 8-level Daubechies wavelet packet 

with an order 3 was used. After that features were generated by applying measures of 

Table 4.1 to each coefficient of the last layer. Furthermore, the normalised correlation 

coefficient between the left and right EOG signals was considered as another feature 

[287]. 

- EMG 

For the EMG signal features were generated by applying statistical measures from Ta-

ble 4.1 to the coefficients of last layer of  2-level Daubechies with the order 2 [284].  

- ECG 

Feature for ECG signals were generated by applying statistical measures from Table 

4.1 to each coefficient of the last layer of an order 3 Daubechies wavelet packet with 8 

levels [288]  

By considering this features generation procedure, 208 features were generated for each 

RU.  
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4.4. Dimensionality Reduction 

In this thesis two approaches are proposed for dimension reduction, the first one is fea-

ture selection and the second one is feature and training data selection. Output of the 

first approach is the whole training data with subset of their features and output of the 

second approach is subset of training data with subset of their features. 

Both of these two approaches are employed through PSO-SVM implementation. For 

the PSO part either a single weighted PSO proposed by Shi and Eberhart [268] or a new 

proposed parallel PSO, named Hierarchical Multi Master PSO (HMM-PSO) can be 

used. Details of the proposed parallel PSO, HMM-PSO, can be found in section 6.3. For 

the SVM part, traditional SVM or the new proposed SVM algorithm, named Self-

Advising SVM, SA-SVM, can be used. Details of the proposed SA-SVM approach can 

be found in section 6.2, this algorithm is published in International Journal of 

Knowledge-Based Systems [289].  

Presented algorithms in this section have been published in different papers such as a 

book chapter entitled “Hierarchical Parallel PSO-SVM Based Subject-Independent 

Sleep Apnea Classification” published in  Lecture Notes in Computer Science (LNCS) 

on Neural Information Processing (ICONIP) [290], and a paper entitled " A Novel Par-

tially Connected Cooperative Parallel PSO-SVM Algorithm: Study Based on Sleep Ap-

nea Detection” which is presented at IEEE World Congress on Computational Intelli-

gence [291], or another paper entitled “Self-Advising SVM for Sleep Apnea Classifica-

tion” which is presented in Workshop on New Trends of Computational Intelligence in 

Health Applications [292]. 

Details of these two approaches for data reduction are as follows; 
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4.4.1. Feature Selection 

In this thesis a PSO-SVM approach is proposed for feature selection. The main task of 

this PSO-SVM algorithm is to select a subset of features and tuning the parameters of 

SVM.  

For implementing this algorithm, samples should be divided into train, test and 

validation. The PSO-SVM algorithm used train and test sets in order to optimize the 

feature subset. Finally a completely unseen validation set is used to measure the 

generalization capability of the proposed system. As mentioned before, the PSO-SVM is 

used to select the best combination of features from the original features. In this 

approach each particle is an array with two parts. The first part is an array with two cells 

related to the SVM parameters gamma and cost and each of them can get a value 

between 2   to 2 . The second part is an array with 208 cells, related to 208 features, 

that contains weights, numbers between 0 and 1. These weights shows the importance of 

coresponding features and in each iteration features with the weight higher than a 

specified threshold, are selected to perform the detection or classification problem. 

To compute the fitness of each particle; SVM algorithm is trained by the training set 

and the selected features from the coresponding particle and the performance of the 

SVM on the test set with the corresponding feature set is considered as the fitness of that 

particle. In this thesis the F-score is used as the classification performance indexes. 

Figure 4.3 shows the flowchart of the proposed PSO-SVM for feature selection. 

The stopping condition is set to 100 iterations for the PSO and 0.5 is selected as the 

threshold to select weight corresponding to features. After finishing of this algorithm, 

the best subset of features and setting for the SVM is reported for the next step which is 

sleep apnea detection or classification.  
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Figure 4.3: Flowchart of the PSO-SVM algorithm for feature selection 

Note: Particles are generated randomly, except the first particle. For the first particle 

cells related to the features are set as 1, which means using all of the features. Therefore 

using all of the features is also considered by the algorithm. 

4.4.2. Feature and Training Data Selection 

In this thesis together with feature selection, selection of a subset of training data from 

the available training set is also proposed. This algorithm checks if as well as feature se-

lection, reducing training data can result in better performance or not. Training pattern 

reduction or instance selection has been considered in different areas previously [293-

295]. 
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The general process of this algorithm is same as the PSO-SVM algorithm for feature 

selection that described in section 4.4.1. But here each particle consisted of three arrays, 

where two arrays related to subset of features selection and SVM settings are the same 

as the 4.4.1. The third array is related to selecting a subset of training data, length of this 

array is equal to the number of the train data. Each cell in the third array can get a num-

ber between zero and one, and if the value of a cell is higher than 0.5 then the corre-

sponding training data is selected. Pseudo code 4.2 shows the proposed algorithm for 

feature and training data reduction.  

Pseudo code 4.2: The proposed algorithm for feature and training data reduction 

 

1- Specify the train, test and validation data sets 

2- Initialize the PSO.  

3- Do until the maximum number of iterations is reached { 

4. For each particle 

i. Specify the corresponding features subset, training data subset and SVM parame-

ters according to the particle. 

ii. Use the SVM with the selected training data to classify the test set. 

iii. Set the SVM‟s F-score as the fitness of the particle. 

5. Update particles  

6. Go to 3. 

7- End Do} 

8- Report the best features subset, training subset and the SVM parameters  

 



 

 

 

 72 

 

Note: Particles are generated randomly, except for two particles. For the first particle, 

cells related to the features are set as 1, which means using all of the features. For the 

second particle, cells related to the training data are set as 1, which means using all of 

the training data. Therefore using all of the training data is also considered by the algo-

rithm. 

4.5. Signal Selection 

In this thesis an algorithm utilized to rank the signals based on their importance in de-

tecting apnea events. In this algorithm different combinations between the PSG signals 

were examined. The results of this work can be useful for selecting the best subset of in-

put signals for detecting or classifying sleep apneic events. This work has been pub-

lished entitles “Signal Selection for Sleep Apnea Classification” as a book chapter in 

Lecture Notes in Computer Science (LNCS) on Neural Information Processing (AI 

2012) [296].  

In the first step, the data from all the patients were separated into the train, test, and 

validation. Train and test sets are used by algorithm to find  a subset of k signals with 

best performance and unseen validation set is used to measure the generalization capa-

bility of the selected signals. 

Three main tasks were done by PSO-SVM algorithm; 

-Searching for the best set of k signals, for k=1, 2,… ,12. 

-Searching the best subset of features for selected signals 

-Tuning of SVM‟s parameters. 

In this approach each particle is consists of two part. The first part is an array with two 

cells related to the SVM parameters gamma and cost and each of them can get a value 

between 2   to 2 . The second part an array with a length equal to 208 that contains 
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weights related to the features of each signal. These features are ordered from the first 

signal to the last one, as shown in Figure 4.4.  

 

𝑤 
 

 𝑤 
 

 …. 𝑤 
  

 … 𝑤  
 

 𝑤  
 

 …. 𝑤  
   

 

 

 

Figure 4.4: Signal selection by the proposed particle structure 

 

Where 𝑤 
 
  is the weight of the 𝑗𝑡 feature for the signal number i, and 𝑛  is number of 

features for signal i. These weights, Figure 4.4, shows the importance of the correspond-

ing features, and where in each iteration the k signals, k=1,2,…,12 with the highest aver-

age of weights are selected. After selecting the k signals with highest average, features of 

the selected signals are chosen from features with weights higher than a specified 

threshold, 0.5. 

Each particle is evaluated based on its ability to perform on the test set; F-score of this 

detection was then considered as the fitness of that particle. After 100 iterations for the 

PSO-SVM algorithm, the selected signals and their features are reported to the next step. 

In the next step the selected signals and selected feature and tuned SVM parameters are 

used by an SVM to detect the unseen validation data, and where the performance of this 

detection was reported as the performance of the selected signals.  

4.6. Experiments and Results 

In this section first of all the used database is introduced, and then different experi-

ments related to the detection and classification of sleep apnea that have been employed 

by the proposed methods in this chapter, are presented.  

Signal 1 Signal 11 

Average 1 Average 11 

… 
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4.6.1. Database Materials 

The polysomnograms (PSG) of 30 subjects (12 women and 18 men) with ages ranging 

from 20 to 77 years and an average age of 49.4 years is used in this thesis. These data 

were provided through collaboration with Dr Leon Laks, sleep disorder specialist that 

acquired in by the Concord Repatriation General Hospital in Sydney, Australia. Each of 

these data contained 12 signals which are described in Table 4.2. 

Table 4.2: Description of database signals 

 

 Signal Signal description 

1 EEG C3-A2 Electroencephalography 

2 EEG C4-A1 Electroencephalography 

3 EEG A1-A2 Electroencephalography 

4 EOG left Electrooculography from left eye 

5 EOG right Electrooculography from right eye 

6 EMG chin Electromyography from chin muscle 

7 ECG Electrocardiography 

8 Patient flow Patient air flow  

9 Snore Snore sound 

10 Thoracic effort Thoracic effort 

11 Abdominal effort Abdominal effort 

12 SpO2 Blood oxygen saturation 

 

Figure 4.5 [297, 298], shows a basic setup for PSG recording. As it is clear from this 

figure, collecting all of these signals is inconvenience for the patient. Therefore one of 

the main objectives of this thesis is to select fewer signals and select those signals that 

are more convenience for the patient. 
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Figure 4.5: Basic polysomnograms setup [297, 298] 

 

The PSG record was scored manually and evaluated by experts with extensive experi-

ence in interpreting sleep data, and who rated the recordings used for this thesis. A total 

of 4527 apneic were found, which means an average of 150.9 events per sample. Figure 

4.6, shows distribution of apneic events in each sample.   

Figure 4.7 shows that there are a wide variety of apnea events; 3 samples with around 

300 events, and there are 13 samples with less than 100 events. From these total events, 

2042 were obstructive, 378 were central, 306 were mixed, and 1801 were hypopnea.  

By attention to these records, apneic events last between 10 and 88 seconds, with an 

average of 20.77 seconds, and Figure 4.2 shows their distribution. This figure shows the 

percentages of events with duration between 10 to 20 seconds; 20 to 40 seconds; 40 to 

60 seconds, and 60 to 90 seconds for each of the obstructive, central, mixed, and hypop-

nea events. 
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Figure 4.6: Distribution of apnoeic events 

 

 

Figure 4.7: Distribution of the duration of apneic events 
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Obstructive events usually last between 10 and 88 seconds, with an average of 19.80 

seconds, central events have duration between 10 and 51.5 seconds, with an average of 

15.65 seconds, and mixed events have duration between 10.5 and 68 seconds, with an 

average of 27.53 seconds. Hypopnea events also have durations between 10 to 79 se-

conds, with an average of 20.12 seconds.  

4.6.2. Signal Selection for Detecting Sleep Apnea  

The first step of this thesis wanted to rank the available signals by attention to their 

impact on sleep apnea detection, the proposed algorithm in this section only considered 

the performance of signals and other issues such as those signals that easily can be ob-

tained from patient, the cost of acquisition and etc. had not been considered. 

The PSO-SVM introduced in section 4.5, with 40 particles and LIBSVM are used here 

as a common library for support vector machines. This library is available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm [299] RBF kernel is also selected for LIBSVM. 

First of all RUs are generated by using airflow, abdominal and thoracic movements 

signals, it is followed by generation of the features for all of 12 signals for each RUs. 

Then each of the 30 samples is divided into 3 equal sets as, train, test, and validation, 

randomly. The first two sets were used by PSO-SVM, described in section 4.5 and the 

final accuracy and F-score are obtained by detecting the validation sets. 

Table 4.3 shows the rank of signals and the average performance of each set of signals 

for detecting the apnea events in the validation sets. It can be noticed that features of the 

right and left EOG are combined as one signal. 

Table 4.3 shows that using more signals did not necessarily lead to better accuracy. 

One reason for having less accuracy with more signals can be over training by more fea-

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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tures and therefore lower accuracy for detecting the unseen validation set. It should be 

noted that this ranking is used by the proposed feature generation method, whereas using 

other features or even another classifier can lead to a different ranking.  

Table 4.3: Signal selection for sleep apnea detection 

 Selected signals Accuracy F-score 

1 signal Snore 79.05 0.7436 

2 signals Snore  –  ECG 79.26 0.7512 

3 signals Snore – ECG – Thoracal 82.93 0.7521 

4 signals Snore – ECG –Thoracal – EMG 84.35 0.8015 

5 signals Snore – ECG –Thoracal – EMG – Abdominal 85.92 0.8062 

6 signals 
Snore – ECG –Thoracal – EMG  – Abdominal  – 

Air flow 

86.54 0.8137 

7 signals 
Snore  – ECG –Thoracal  – EMG  – Abdominal  – 

Air flow – Oxygen saturation 

85.15 0.8215 

8 signals 
Snore – ECG –Thoracal  – EMG  – Abdominal  – 

Air flow – Oxygen saturation – EEG A1-A2 

88.58 0.8452 

9 signals 

Snore  – ECG –Thoracal  – EMG  – Abdominal  – 

Air flow – Oxygen saturation – EEG A1-A2 – EEG 

C3-A2 

86.77 0.8215 

10 signals 

Snore  –  ECG –Thoracal  – EMG  – Abdominal  – 

Air flow – Oxygen saturation – EEG A1-A2 – EEG 

C3-A2 – EOG 

85.84 0.8119 

11 signals 

Snore  – ECG –Thoracal  – EMG  – Abdominal  – 

Air flow – Oxygen saturation – EEG A1-A2 – EEG 

C3-A2 – EOG – EEG C4-A1 

81.96 0.8011 
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The rest of this work will use thoracic and abdominal movements with oxygen satura-

tion as input signals. The main reasons for selecting these signals was not just consider-

ing their performance in detecting sleep apnea, but also those signals were considered 

that can be obtained easily and not get influence by the environment. This study targeted 

to improve the performance of the selected signals for studying sleep apnea by feature 

selection and using more powerful machine learning techniques in the rest of this chap-

ter. 

4.6.3. A Comparison on Signal Segmentation  

After choosing input signals such as thoracic movement, abdominal movement, and 

oxygen saturation, the proposed segmentation approach is compared with blind segmen-

tation. As described before in blind segmentation, signals were segmented from the be-

ginning point by 30-second windows.  

It should be noted again that airflow is not considered anymore in our final signals 

therefore in the proposed segmentation thoracic movement was used as the main signal, 

instead of airflow, and abdominal and oxygen saturation were used in the second level. 

Here the PSO-SVM algorithm described in section 4.4 with single PSO and traditional 

SVM is used for feature selection. Table 4.4 shows the average results of these two seg-

mentation methods with LIBSVM as the classifier for 5 independent runs. In each run 

data of each patient is divided into three parts as train, test and validation, randomly. 

Train and test sets are used by the PSO-SVM algorithm for feature selection. The report-

ed accuracy or F-score in table 4.4 are based on detection of sleep apnea events in the 

validation set. 
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Table 4.4: performance of the proposed segmentation approach and Blind segmentation 

 Proposed Segmentation Blind Segmentation 

Samples 
Number of 

RUs 
Accuracy F-score 

Number of 

RUs 
Accuracy F-score 

#1 738 94.71±1.7 0.91±0.02 825 94.78±1.1 0.90±0.03 

#2 598 94.47±2.6 0.75±0.11 881 95.16±0.5 0.71±0.08 

#3 720 89.95±2.3 0.87±0.07 882 87.82±2.6 0.84±0.13 

#4 630 97.61±0.5 0.89±0.05 812 90.38±1.7 0.86±0.06 

#5 726 96.68±1.2 0.88±0.04 836 84.99±1.1 0.80±0.10 

#6 778 90.73±3.1 0.84±0.10 842 88.63±1.3 0.78±0.04 

#7 738 97.77±0.4 0.85±0.05 886 90.43±2.2 0.72±0.13 

#8 687 92.13±2.4 0.90±0.06 860 82.39±3.5 0.81±0.04 

#9 438 95.17±1.0 0.89±0.04 492 84.63±1.4 0.83±0.02 

#10 651 97.7±1.2 0.92±0.02 725 90.72±1.2 0.81±0.06 

#11 832 97.91±1.1 0.88±0.06 930 83.38±1.7 0.79±0.01 

#12 683 95.61±1.3 0.91±0.03 850 85.23±3.1 0.80±0.06 

#13 708 92.76±2.2 0.90±0.03 798 87.47±0.2 0.81±0.04 

#14 739 91.49±1.5 0.88±0.09 826 84.49±1.0 0.81±0.06 

#15 596 86.93±1.3 0.80±0.06 869 86.77±1.1 0.77±0.05 

#16 645 95.79±0.8 0.66±0.07 895 90.57±1.3 0.72±0.04 

#17 766 92.96±2.4 0.91±0.02 888 86.78±1.2 0.88±0.07 

#18 715 97.16±0.5 0.90±0.03 822 81.05±3.4 0.83±0.03 

#19 538 96.11±1.2 0.58±0.26 823 87.00±1.7 0.58±0.08 

#20 739 92.27±2.4 0.84±0.10 865 87.89±0.03 0.83±0.05 

#21 488 97.53±0.5 0.77±0.07 842 86.94±1.0 0.73±0.03 

#22 682 96.03±1.7 0.81±0.05 832 86.69±3.6 0.79±0.02 

#23 739 96.35±1.5 0.83±0.04 860 86.51±1.3 0.80±0.10 

#24 732 96.73±0.8 0.73±0.17 920 81.58±4.2 0.72±0.04 

#25 763 91.76±2.3 0.87±0.02 840 84.14±1.8 0.84±0.09 

#26 694 95.68±0.7 0.88±0.08 852 86.77±1.8 0.81±0.12 

#27 612 95.58±1.3 0.60±0.09 777 89.99±2.1 0.73±0.02 

#28 752 96.01±1.1 0.80±0.04 813 88.24±1.4 0.75±0.05 

#29 762 96.45±1.1 0.93±0.01 857 85.50±1.1 0.82±0.01 

#30 620 97.08±1.0 0.75±0.11 788 98.24±0.7 0.80±0.15 

  

Based on these results, average F-score of the proposed approach and the blind segmen-

tation are 0.831 and 0.789, respectively. The t–test with a level of significance of α = 

0.05 shows that differences of F-score obtained by these two approaches were statistical-

ly significant, by a p-value of 0.0001. If accuracy is considered, the average accuracy of 

the proposed approach and the blind segmentation are 94.73 and 87.50, respectively, the 
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p-value for the t-test of average of accuracies is equal to 4.5 × 1    , which also shows 

that difference between accuracies of these two approach is statistically significant. 

These results and statistical analysis show that the proposed segmentation algorithm 

works significantly better than the blind segmentation.  

4.6.4. Dimensionality Reduction Approaches for Sleep Apnea Detection 

After selecting signals and the segmentation phase, features are generated by attention 

to the selected signals for each RU. In this section, different approaches for dimension 

reduction are examined.  

In the first step two approaches that proposed in section 4.4 are compared for sleep ap-

nea detection. SVM were considered as the classifier with RBF kernel and a single PSO 

with 20 particles is choosed with 𝑐  and 𝑐  set to be 2.0, the threshold for selecting a fea-

ture or training instance is set to be 0.5. Table 4.5 shows results of 5 independent runs of 

feature selection algorithm implemented by the PSO-SVM algorithm described in 4.4.1, 

and results of feature and instance selection described in section 4.4.2 together with re-

sults obtained with original data set.  

The average F-score for these approaches were as 0.7808, 0.85 and 0.8354 respective-

ly. It is very clear that using dimensionality reduction approaches can improve the result 

in compare with using the original data. To evaluate between these two dimension-

reduction approaches, the pair t-test was used, where the p value of t-test was 0.096. 

These statistical tests indicated that the results obtained by these approaches are not sta-

tistically different. Therefore we can use feature selection since it has simpler structure. 
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Table 4.5: Dimensionality Reduction Approaches 

 Original Data set Feature selection 

Feature and training instance se-

lection 

 Accuracy F-score Accuracy F-score Accuracy F-score 

#1 
78.45±2.2 0.7469±0.04 94.37±1.4 0.8324±0.03 93.14±2.5 0.8215±0.05 

#2 
80.37±2.3 0.7934±0.12 95.41±0.9 0.8628±0.07 96.39±1.6 0.8524±0.03 

#3 
79.13±3.4 0.8012±0.09 93.84±1.7 0.8514±0.03 93.48±2.7 0.8558±0.07 

#4 
81.12±1.6 0.7883±0.13 95.42±2.1 0.8496±0.03 93.28±3.1 0.8374±0.07 

#5 
80.73±3.1 0.7746±0.06 93.45±1.2 0.8538±0.06 94.15±1.6 0.8554±0.10 

 

4.6.5. Comparing Traditional SVM with SA-SVM 

While SVM is used in this thesis, some patterns were misclassified in the training 

phase. This means that even the classifier cannot classify the training data or the seen da-

ta, correctly.  During this thesis it has been found that SVM cannot classify patterns that 

were close to the misclassified data in the training. Although the labels are provided to 

the SVM, the SVM could not use all of the knowledge provided from the train phase. 

Therefore more knowledge should be used from the training phase in compare with the 

traditional SVM; this resulted in the method named Self-Advising SVM (SA-SVM). 

SA-SVM was better at classifying general binary classification [289], and here the per-

formance of the SA-SVM was examined in comparison to the traditional SVM. For 

more details of SA-SVM please refer to section 6.2. 
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Table 4.6: Classification performance of SVM and SA-SVM 

samples 

SVM SA-SVM 

Accuracy f-score Accuracy f-score 

#1 93.27±1.6 0.8975±0.03 93.27±1.6 0.8975±0.03 

#2 91.85±3.6 0.7839±0.11 91.85±3.6 0.7839±0.11 

#3 89.91±2.7 0.8839±0.06 92.53±1.8 0.9428±0.02 

#4 95.28±1.7 0.8896±0.04 95.28±1.7 0.8896±0.04 

#5 96.58±1.1 0.8749±0.06 96.58±1.1 0.8749±0.06 

#6 90.18±2.4 0.8562±0.08 91.79±2.2 0.8893±0.07 

#7 98.18±0.6 0.8372±0.11 98.18±0.6 0.8372±0.11 

#8 93.64±3.3 0.9037±0.03 93.64±3.3 0.9037±0.03 

#9 95.38±1.4 0.8971±0.07 95.38±1.4 0.8971±0.07 

#10 97.82±0.8 0.9428±0.03 98.13±0.5 0.9514±0.02 

#11 98.86±0.4 0.8863±0.05 98.86±0.4 0.8863±0.05 

#12 95.62±2.1 0.9038±0.03 94.83±1.5 0.8974±0.07 

#13 92.63±2.6 0.8957±0.03 95.29±0.9 0.9136±0.04 

#14 91.17±3.2 0.8639±0.11 91.17±3.2 0.8639±0.11 

#15 85.39±5.1 0.8283±0.12 85.39±5.1 0.8283±0.12 

#16 94.29±1.3 0.6482±0.04 95.73±1.8 0.8754±0.07 

#17 92.48±2.4 0.9027±0.02 92.48±2.4 0.9027±0.02 

#18 98.37±0.8 0.8563±0.05 98.37±0.8 0.8563±0.05 

#19 97.38±1.1 0.6892±0.09 97.38±1.1 0.6892±0.09 

#20 90.48±2.5 0.8739±0.07 94.63±0.9 0.8968±0.06 

#21 95.38±2.6 0.8138±0.12 94.73±1.3 0.8759±0.07 

#22 95.73±0.9 0.8047±0.11 96.83±1.2 0.8529±0.03 

#23 97.31±1.7 0.8569±0.09 97.31±1.7 0.8569±0.09 

#24 95.38±1.6 0.7527±0.11 96.83±0.8 0.8439±0.10 

#25 92.63±2.4 0.8839±0.07 92.63±2.4 0.8839±0.07 

#26 95.73±1.4 0.8874±0.02 97.49±0.9 0.8952±0.04 

#27 96.21±2.3 0.7382±0.05 96.21±2.3 0.7382±0.05 

#28 97.48±0.7 0.8372±0.12 97.84±0.7 0.8372±0.12 

#29 96.17±1.2 0.9472±0.02 96.17±1.2 0.9472±0.02 

#30 96.49±1.5 0.8351±0.11 96.49±1.5 0.8351±0.11 
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Table 4.6 shows the average results of 5 independent runs of these two classifiers on 30 

samples, SVM and SA-SVM, where both of these algorithms are implemented by 

LIBSVM. Here again in each experiment each sample is divided into three parts as train, 

test and validation, randomly. Train and test sets are used by the PSO-SVM algorithm 

for feature selection described in section 4.4.1. The reported accuracy and F-score in Ta-

ble 4.6 are based on detection of sleep apnea events in the validation based on using tra-

ditional SVM or the proposed SA-SVM. It should be noted that proposed segmentation 

was used with the same parameters and kernel for both approaches. 

By attention to the F-score, SVM reached an average of 0.8490 while the average F-

score of SA-SVM was 0.8706, the p value related to the t-test by a level of significance 

of α = 0.05 was 0.008, which shows the statistical significance of this difference be-

tween these two approaches. 

If the accuracies of these two classifiers are considered; SVM reached an average accu-

racy of 94.57 while the average accuracy of SA-SVM was 95.10, the p value related to 

the t-test by a level of significance of α = 0.05 was 0.006, which shows the statistical 

significance of this difference.  

As a conclusion on this experiment, obtained result and statistical analyses show that 

SA-SVM outperforms the traditional SVM for detection of sleep apnea. 

4.6.6. Comparing SA-SVM with Different Machine Learning Algorithms 

SVM was used as the classifier in this thesis because of its performance in comparison 

with other classifiers. As mentioned before, in this thesis input signals are selected to 

have minimum contact with body, in this section we will compare different algorithms 

that used same inputs as this thesis, comparing the result with result of other algorithms 



 

 

 

 85 

 

with different input signals are out of our scope. Results of the previous section 4.6.5 

show that SA-SVM is better than tradition SVM in sleep apnea detection.  Here SA-

SVM is compared with other classifiers,  

A total of 13 models are examined here using: 

-Genetic-Fuzzy approach [300] 

- Classic Fisher‟s linear discriminant (LDA)  

- Quadratic discriminant (QDA) 

- Self Advising Support Vector Machines (SA-SVM) 

- 9 configurations of an Artificial Neural Networks (ANN) [301]. 

9 different configurations of a feed-forward neural network with one hidden layer, 

trained with a scaled conjugate gradient back propagation algorithm [302] were tested. A 

different number of neurons ranging from 20 to 100 were used in the hidden layer for 

each configuration. 

PSO-SVM algorithm from section 4.4.1 is considered for feature selection. To select 

the best model and achieve a good estimation of the real F-score, these algorithms were 

run 5 independent times. The averages of accuracies and F-scores for 5 independent runs 

are presented in Table 4.7 which shows that the results of a discriminant analysis and 

genetic-fuzzy are not good compared to SA-SVM or ANNs.  
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Table 4.7: Average apnea classification by different classifier 

 Accuracy F-score 

SA-SVM 95.29±1.1 0.8724±0.02 

LDA 83.30±2.8 0.6380±0.07 

QDA 85.63±1.2 0.6957±0.14 

Genetic-Fuzzy 88.12±2.4 0.7157±0.09 

ANN (20 neurons in hid-

den layer) 

93.72±2.4 0.8131±0.11 

ANN (30 neurons in hid-

den layer) 

94.20±1.2 0.8092±0.03 

ANN (40 neurons in hid-

den layer) 

94.56±1.1 0.8032±0.05 

ANN (50 neurons in hid-

den layer) 

93.83±2.8 0.8056±0.07 

ANN (60 neurons in hid-

den layer) 

93.94±3.2 0.8026±0.01 

ANN (70 neurons in hid-

den layer) 

94.10±1.3 0.8298±0.06 

ANN (80 neurons in hid-

den layer) 

93.52±2.5 0.8138±0.08 

ANN (90 neurons in hid-

den layer) 

93.25±3.3 0.7808±0.13 

ANN (100 neurons in 

hidden layer) 

92.96±1.9 0.8157±0.1 
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By attention to results of these experiments, SA-SVM obtained an average F-score of 

0.8724 and ANN obtained its best result as an average of 0.8298 with 70 neurons in hid-

den layer. Average F-score of Genetic-Fuzzy, LDA and QLDA were 0.7157, 0.6380 and 

0.6957, respectively. The p value related to the ANOVA test by a level of significance of 

α = 0.05 was 0.0001, which shows the statistically significant difference between these 

groups. To have a more comprehensive comparison t-test was performed to compare re-

sults of SA-SVM and the ANN with 70 neurons, those models with best results, p-value 

of the t-test significance of α = 0.05 was 0.0008 which shows that f-scores of SA-SVM 

is statistically higher than f-scores achieved by the ANN with 70 neurons. Therefore it 

can be concluded that SA-SVM performed better than these algorithms. 

4.6.7. Classification of Sleep Apnea Events 

After detecting the RUs containing a sleep apnea event, these events are classified as 

hypopnea, central apnea, obstructive apnea, or mixed apnea.  Here the feature selection 

is done by the proposed PSO-SVM approach that described in section 4.4.1. The algo-

rithm was run 5 different times. RBF kernel was selected for the SVM, and single PSO 

structure was considered with 20 particles. 

Table 4.8 tabulates the number of central, obstructive, and mixed events in each of the 

validation set and training for these 5 runs. This table shows that different numbers of 

each class were in these runs. Therefore average of performance on these 5 runs can be 

considered as a good indicator for the performance of the proposed classification ap-

proach in the general form.  
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Table 4.8: Diversity of each class in different runs 

 Training Validation 

 Obstructive Central mixed Hypopnea Obstructive Central mixed Hypopnea 

#1 
635 112 102 523 655 114 121 591 

#2 
672 128 114 572 650 153 92 531 

#3 
638 139 98 518 602 121 128 542 

#4 
674 132 132 562 668 119 131 493 

#5 
648 173 104 502 636 125 72 514 

 

The average accuracies for these two approaches were as 81.19 and 88.71 respectively. 

To evaluate between these results more reliably, the pair t-test was used, where the p 

value of t-test was 0.007. These statistical tests indicated that the results obtained by the 

feature selection were much better than the results from the all data. 

Table 4.9: Sleep apnea classification accuracies 

 Full Data With feature selection 

#1 82.24±2.9 89.14±1.3 

#2 79.81±1.1 85.72±1.2 

#3 84.38±1.7 90.74±2.1 

#4 79.29±1.2 90.83±3.3 

#5 80.27±1.2 87.12±3.1 

Average 81.20 88.71 
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4.6.8. Subject Independent Sleep Apnea Detection 

This section examines subject independent sleep apnea detection. The total data from all 

of the samples were first integrated as Meta data then two experiments are considered. 

In the first experiment, the feature selection is performed by proposed PSO-SVM from 

section 4.4.1. In the second experiment, the training data and feature selection is per-

formed by the proposed PSO-SVM from section 4.4.2. Figure 4.8, represents these two 

experiments. Figure 4.8.A represents the first experiment and figure 4.8.B shows the se-

cond experiment. Therefore in the second experiment instead of the whole training data 

just a subset of it is used by SA-SVM. To overcome the impact of validation set on the 

final result 5 independent tests were examined. Same as before F-score was considered 

to measure the performance of these methods, in these experiments RBF kernel is se-

lected for the SA-SVM, with single PSO. Table 4.9, shows the F-score obtained for the-

se two experiments.  

The average F-score for these methods were, 0.8116, and 0.8447, respectively, to ob-

tain a reliable evaluation between the results of these methods; a pair t-test was used be-

tween experiment 1 and experiment 2. The p of the t-test with a level of significance of α 

= 0.05 was 0.002 which shows the results of experiment 2, feature and data selection, 

were better than the results obtained by experiment 1, which is just feature selection. It 

should be mentioned that in experiment 2, average of 12.7% of instances were removed 

by the proposed algorithm from the training set. 

Therefore, feature and training data selection outperformed just feature selection. In the 

next experiment single PSO is compared with the proposed parallel PSO, Hierarchical 

Multi Master PSO (HMM-PSO) for feature and data selection. Details of the HMM-PSO 

can be found in section 6.3. Table 4.11 mentions the F-score obtained for subject inde-
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pendent sleep apnea detection with single or parallel PSO and using the data reduction 

algorithm introduced in section 4.4.2. 

 

 

 

  

 

 

 

 

 

Figure 4.8: Subject dependent and independent sleep apnea detection 

 

The average F-score for single PSO and the proposed parallel PSO are, 0.8381, and 

0.8673, respectively. A pair t-test was used with a level of significance of α = 0.05, p 

value of this test was 0.008 which shows the results of the proposed parallel PSO were 

statistically better than the results obtained by the single PSO for feature and data reduc-

tion. 

4.7. Summary 

This chapter reviewed algorithms proposed for detecting and classifying sleep apnea. 

The detection process consisted of segmentation, feature generation, dimensionality re-
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duction and detection. After detection the apneic events can be classified to hypopnea, 

obstructive, mixed or central apnea. The main outcomes of this chapter are as follows: 

Table 4.10: F-score of subject independent sleep apnea detection 

 Experiment 1 Experiment 2 

#1 
0.8025±0.12 0.8292±0.07 

#2 
0.8172±0.12 0.8527±0.06 

#3 
0.8342±0.10 0.8473±0.10 

#4 
0.7975±0.09 0.8353±0.04 

#5 
0.8067±0.11 0.8553±0.04 

 

Table 4.11: F-score of subject independent detection with single and parallel PSO 

 Single PSO HMM-PSO 

#1 0.8178±0.11 0.8326±0.08 

#2 0.8317±0.03 0.8243±0.14 

#3 0.8026±0.14 0.8317±0.07 

#4 0.8542±0.06 0.8617±0.10 

#5 0.8274±0.12 0.8463±0.07 

 

- Segmentation: A new segmentation algorithm was proposed in this thesis. Results 

showed that the proposed segmentation method can perform better than the blind 

segmentation. Segmentation is important in studying sleep apnea because an apneic 

event is defined by its duration so if the segmentation method cannot locate at least 

few seconds of an apneic event in a segment then the classifier cannot recognise that 

segmentation as an apneic in future steps. 
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- Feature generation: In this study generating features from input signals by using 

different families of wavelet packets were considered. In the first step as many fea-

tures as possible, 208 features, were generated.  

- Dimensional reduction: Two approaches were presented in this thesis for dimen-

sional reduction. The first approach was just based on feature subset selection and 

the second one was feature and training data subset selection. Both of these algo-

rithms were implemented by PSO-SVM approach.  

- Detection: In this thesis thoracic movement, abdominal movement, and oxygen sat-

uration were used as input signals because these signals are relatively easier to ac-

quire and also these signals get less influence by surrounding factors. In the dimen-

sional reduction step, the proposed PSO-SVM approach for feature selection was se-

lected, based on its performance over the feature and training instance selection algo-

rithm. SVM was selected as the classifier and its performance was improved by pro-

posing SA-SVM approach. The average F-score of SA-SVM was 0.8706 and aver-

age accuracy was 95.10% for sleep apnea detection while SVM reached F-score of 

0.8490 and accuracy of 94.57%.  

- Subject independence detection: To have a fully automated sleep apnea detection 

system, a subject independent approach was designed to detect new samples without 

training the system on them. For this reason the proposed PSO-SVM approach was 

used for feature selection and proper training sample selection, implemented by a 

new proposed parallel PSO algorithm. Results of this section proved that feature and 

instance subset selection achieved the better result by F-score of 0.8447 and average 

accuracy of 89.13% while just feature selection resulted in F-score of 0.8116. Also 
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single PSO is compared with the proposed parallel PSO. The parallel PSO achieved 

F-score of 0.8673 versus F-score of 0.8381 for the single PSO. By attention to these 

results it is clear that using parallel structure for feature and training data reduction 

can lead to a better subject independent detection. 
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Chapter 5 

Predicting Sleep Apnea 

 

5.1. Introduction 

Predicting means providing statements without an observed outcome; such as estimat-

ing the expected value of some variable of interest at some specified future date. Pre-

dicting is sometimes known as forecasting but predicting has a more general meaning. 

Predicting sleep apnea events before they happen can be useful to prevent side effect of 

sleep apnea by using automated CPAP or even by artificially stimulating the related 

muscles.  

Prediction of individual sleep apnea events is considered in this chapter, some parts of 

this chapter have been published in peer reviewed conferences such as a work entitled 

“Comparison of Neural Networks for Prediction of Sleep Apnea” which is presented in 

“International congress on Neurotechnology, Electronics and informatics, Algarve, Portu-

gal, 2013” and another work entitled “Multi Neural Networks Investigation based Sleep 

Apnea Prediction” which is presented in “The 17th Asia Pacific Symposium of Intelligent 

and Evolutionary Systems (IES13), Seoul, Korea 2013”. 

There are several works on how predicting has been applied in different areas but there 

are few studies about predicting sleep apnea. One of the pioneer work is a paper by Da-

gum and Galper 1995 [303] who developed a time series prediction using a belief net-

works model and then used it in sleep apnea. They used a multivariate data set contain-

ing  34000 recordings, sampled at 2 Hz, of heart rates (HR), chest volumes (CV), blood 

http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Expected_value
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oxygen concentrations (SaO2), and sleep states (REM) from the time series competition 

of the Santa Fe Institute in 1991. Their results showed they could predict complex non-

linear multivariate data, although the CV prediction had more bias than HR and SaO2 

because of the rapid and erratic oscillations of the CV time series. 

For the second work in this area a paper by Bock and Gough, 1998 [304] should be re-

ferred, where they used 4.75 h of heart rates, respiration force, and blood oxygen satura-

tion (SaO2 ) collected from a chronic apnea patient and simple recurrent networks 

(SRN) proposed by Elman [305]. Each of these three time series variables (heart rate, 

breathing, and blood oxygenation) were used as inputs for network training and testing 

operations. Each variable was introduced to a unique network node at the input layer; 

this network also had 18 nodes in the hidden layer. Time-displaced predictions of respi-

ration signals were produced at each of the three network output layer nodes which were 

taken as representative of the physiologic state of the sleeping patient. They also select-

ed a back propagation [306] to learn this network. The results of this system were eval-

uated by two accepted statistics of dynamical invariance, (largest Lyapunov exponent  

[307] and correlation dimension[308]) and were found to be reasonably good, although 

the  𝜆  prediction error was 13% and the error was within 9% of the true time series val-

ue. 

Another published paper in this area was by Waxaman, Graupe and Carley in 2010 

[309] who tried to predict apnea 30 to 120 seconds in advance. They used the LArge 

Memory STorage And Retrieval (LAMSTAR) neural network [310], where LAMSTAR 

is a supervised neural network that can process large amounts of data and also provide 

detailed information about its decision making process. The input signals for this algo-

rithm were EEG, the heart rate variability (HRV), nasal pressure, nasal temperature, 
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sub-mental EMG, and electrooculography (EOG). It should be noted that LAMSTAR 

can determine the most important input signal in the predicting process. In the pre-

processing phase, data that was segmented by 30, 60, 90, and 120 seconds was normal-

ised by dividing by its mean value, after which a discrete wavelet transform was ap-

plied. After that, for each level obtained from the wavelet transformer, the amplitude, 

the timing for each of the three minima and three maxima, the ratio between the mean 

of the three maximal amplitudes and three minimal amplitudes, the root-mean-square 

(RMS) value, and the RMS value related to the original signal were computed.  

They trained separate LAMSTAR for each 30, 60, 90, and 120 seconds segments, the 

results showing that the best prediction belonged to next 30 seconds. They also obtained 

a lower performance for the longer lead time, although most of the predictions up to 60 

seconds in the future were correct. Also, the prediction of non-REM events was general-

ly better than REM events.  

 As mentioned before, there are limited works on predicting sleep apnea, but also some 

papers can be mentioned that predict biosignals related to sleep apnea which can actual-

ly be used in predicting sleep apnea indirectly. First of all, predicting nasal signals was 

considered in Hoffstein and Mateika‟s, 1994 [311]. One of the first papers that studied 

the prediction of EEG signals was Demarco  and  Tassinari  in 1977 [312], predicting 

EMG signals was also mentioned in works such as [313, 314]. 

5.2. Prediction of Sleep Apnea with Multi ANNs 

In prediction, same signals (the abdominal, thoracic movement and oxygen saturation 

signals) were used based on the decision in the previous chapter.  

The prediction with lead times such as 30, 60, 90, and 120 seconds were considered 

and for each lead time, features were generated from time segments and different time 
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segments such as 30, 60, 90, and 120 seconds were investigated, which means 16 differ-

ent experiments. The F-score was selected again as the performance measure in this 

study.  

The same features as the detection process were generated for these three signals by 

applying the statistical measures from Table 5.1 to each coefficient of the last layer of 

the 4 level Daubechies wavelet packet with an order of 3. In this Table x is coefficients 

of wavelet packet. 

Table 5.1: List of statistical features  

 o (    (  ))     o   (  )   o    (   ) 

   (  )    (  )    ( ) 

        (  )     (   )     (  ) 

        ( )     o   ( )    ( ) 

  o    (  )    (  )    ( ) 

 

Three different ANNs; Elman, cascade-forward back propagation, and feed-forward 

back propagation networks, were used to predict sleep apnea, for more information 

about these ANNs please see section 3.3. To improve the predictive performance, the 

multi neural network was investigated. For this reason post classification multi ANNs 

were examined in this study. To implement multi ANNs, both linear and nonlinear ap-

proaches were investigated.  
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5.2.1. Linear multi ANNs 

The linear weighting approach was used in this study; a weight is assigned per classi-

fier and the PSO-ANNs algorithm is used to find the optimal weights for each of the 

three neural networks.  

The output of each neural network is an array with the same length as the test set, and 

it is based on being either positive or negative; it shows that if the corresponding test da-

ta was predicted as normal or sleep apnea by that specified neural network. In the pro-

posed PSO-ANNs algorithm each particle contains three cells, and each cell represents 

the weight of one classifier. Pseudo code 5.1, shows the proposed algorithm, first of all 

samples were divided into test, train and validation. The PSO-ANNs used the train and 

test set to find the optimal weights. In each iteration of the PSO algorithm, the final out-

put for each particle is the weighted average of three individual outputs obtained, by 

considering the weights corresponding to that particle and the fitness of each particle is 

computed as the F-score of the weighted output to predict the test set. Finally, the algo-

rithm is evaluated by predicting the not seen validation set.  

Pseudo code 5.1: The proposed algorithm to find the optimal weights for ANNs 

 

1- Specify the train, test and validation data sets and train ANNs with the train set and                  

    specify the output of each ANNs for the test set. 

2- Initialize the PSO. 

3- Do until the maximum number of iterations is reached { 

4. For each particle 

i. compute the weighted average of output of ANNs by attention to the corresponding 

weight presented in particle. 
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ii. Compute the f-score of predicting the test set by the resulted average output. 

iii. Set the F-score as the fitness of the particle. 

5. Update particles  

6. Go to 3. 

7- End Do} 

8- Predict the validation set by the output of the multi ANNs resulted by the optimal 

weights.  

 

5.2.2. Non-Linear multi ANNs 

For the non-linear multi ANNs majority voting was considered, in the majority voting 

if more individual classifiers give an output of 1 rather than an output of 0, then the ag-

gregated classifier takes the output 1 and vice versa. Since the neural network outputs 

take continuous values between 0 and 1, median operator was used to implement major-

ity voting.  

5.3. Experiments and Results 

In this chapter different experiments regarding to the prediction of sleep apnea are dis-

cussed. 

5.3.1. Artificial Neural Networks Architectures 

Three different ANNs; Elman, cascade-forward back propagation, and feed-forward 

back propagation networks, were used to predict sleep apnea. For each of these ANNs 

the 208 generated features are set as the inputs, therefore the first layer of these ANNs 

have 208 nodes. 

For the feed-forward ANNs, the radial basis was used as the transfer functions of the 

hidden layer and the output layer, and the Log-sigmoid and pure line were used as trans-
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fer functions of the hidden layer and the output layer of the cascade-forward network. 

For the Elman networks tangent sigmoid transfer function was used for the hidden and 

output layers, scaled conjugate gradient back propagation was used as the training func-

tion for these three ANNs. The number of nodes in the hidden layer of each ANN was 

also determined by trial and error.  

As mentioned before, this study wanted to predict sleep apnea in the next 30, 60, 90, 

and 120 seconds. The prediction was based on investigating various lengths of segments 

from 30 seconds to 120 seconds. For each of these experiments a unique ANN was 

trained. 

5.3.2. Early Stopping 

Standard neural network architectures such as the fully connected multi-layer percep-

tron are prone to over fitting. While the network seemed to get better and better (the er-

ror on the training set decreased), but at some point during training it actually began to 

get worse again (the error on unseen examples increased). There are two basic ways to 

overcome the over fitting problem: reduce the number of dimensions of the parameter 

space or reduce the effective size of each dimension. The corresponding ANN tech-

niques for reducing the size of each parameter dimension such as weight decay or early 

stopping [315] were regularised. Early stopping is widely applied because it is simple to 

understand and implement and has been reported in many cases as being superior to the 

regularisation methods. Early stopping can be used either interactively, i.e. based on 

human judgment, or automatically, i.e. based on some formal stopping criterion. In this 

work, automatic stopping criteria based on the cross validation error was used, while the 

validation error was used to estimate the generalisation error [315]. 
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5.3.3. Designing Structure of Neural Networks 

As mentioned before, 16 different experiments were considered in the prediction of 

sleep apnea, including 4 different lead times, where each of them can have 4 different 

segments. To find the number of nodes in the hidden layer different numbers of nodes 

were examined, with numbers from 5 to 200 in increments of 10 nodes. Table 5.2 shows 

the best number of nodes in the hidden layer, for different settings. 

Table 5.2: Optimal number of nodes in the hidden layer  

Lead 

time 

(seconds) 

30 60 90 120 

Segments 

(Seconds) 

30 60 90 120 30 60 90 120 30 60 90 120 30 60 90 120 

Feed 

 Forward 

30 50 50 70 20 60 70 70 50 70 50 50 60 60 70 60 

Cascade 

forward 

10 20 50 30 30 50 50 70 10 50 30 60 40 20 40 10 

Elman 30 10 20 20 20 40 10 60 40 70 30 40 
30 10 20 10 

  

To find the optimal node numbers, the F-score was used as the first criteria, after that 

accuracy was considered, and in cases of different options, the structure with lowest 

node number was selected. 

5.3.4. Sleep Apnea Prediction 

After choosing the optimal structures for the three selected neural networks for all of 

the settings, they were then used to detect sleep apnea. Here the samples were divided 

into train, test and validation by random, and 5 different approaches were examined: 

three single neural networks, the linear multi ANNs of these networks, and the non-
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linear multi ANNs. The weights of the linear multi ANNs were determined by the PSO, 

as described before, and the median of classifiers was the non-linear multi ANNs.    

Tables 5.3-5.6 tabulated the average F-scores and the accuracies for 5 independent ex-

periments. 

Table 5.3: Prediction of sleep apnea with 30 seconds lead time 

 
 F-score Accuracy 

Segments (Seconds) 30 60 90 120 30 60 90 120 

Feed Forward 0.6997 0.7509 0.6914 0.7186 77.83 77.41 79.57 82.31 

Cascade forward 0.6507 0.6759 0.6925 0.6254 73.29 80.25 79.77 76.72 

Elman 0.5465 0.5786 0.6461 0.5908 81.27 84.57 85.08 84.06 

Linear multi ANNs 0.8082 0.8139 0.8296 0.7903 83.29 80.25 85.53 79.72 

Non-linear multi ANNs 0.7146 0.6853 0.7170 0.6990 70.45 75.40 72.55 78.33 

 

 

Table 5.3 indicates that the linear weight multi ANNs of neural networks achieved the 

highest F-score and accuracy, with 90-second segments for 30 seconds lead time. The 

average running time for the validation set was 1.14 seconds. 

When predicting with a lead time of 60 seconds, the linear weighted multi ANNs 

achieved the highest F-score and accuracy using 90-second segment, Table 5.4. The av-

erage running time for the validation set was 2.92 seconds. 
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Table 5.4: Prediction of sleep apnea with 60 seconds lead time 

 

 F-score Accuracy 

Segments 

 (Seconds) 

30 60 90 120 30 60 90 120 

Feed Forward 0.6600 0.5320 0.6177 0.5472 80.04 81.66 77.15 84.15 

Cascade  

forward 

0.6392 0.6553 0.6802 0.5374 72.77 70.56 84.27 77.03 

Elman 0.5380 0.5961 0.5640 0.5491 83.36 84.25 84.82 76.75 

Linear multi 

ANNs 

0.7630 0.8070 0.8172 0.8026 82.77 85.06 85.13 79.03 

Non-linear  

multi ANNs 

0.7697 0.7501 0.7418 0.7394 79.57 81.23 82.26 80.88 

 

 
Table 5.5: Prediction of sleep apnea with 90 seconds lead time 

 

 F-score Accuracy 

Segment (Seconds) 30 60 90 120 30 60 90 120 

Feed Forward 0.5466 0.5824 0.6298 0.6093 74.09 80.87 81.07 66.61 

Cascade forward 0.5973 0.6320 0.6907 0.5241 79.06 72.55 71.15 76.38 

Elman 0.5715 0.5115 0.5426 0.5161 81.99 83.95 81.02 80.55 

Linear multi ANNs 0.8105 0.8114 0.7918 0.7158 79.06 82.00 82.15 82.10 

Non-linear multi ANNs 0.7653 0.7406 0.7800 0.7656 80.77 81.91 76.32 81.49 

 

Table 5.5 shows that when predicting with a lead time of 90 seconds, the linear multi 

ANNs achieved the best F-score by using 60-second segment, but the highest accuracy 

was achieved by the Elman neural network and with the same data segment. The aver-
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age of running time for predicting of the validation set with a lead time of 90 seconds 

was 3.22 seconds. 

Table 5.6: Prediction of sleep apnea with 120 seconds lead time 

 

 F-score Accuracy 

Segment 

 (Seconds) 

30 60 90 120 30 60 90 120 

Feed  

Forward 

0.5211 0.6162 0.5464 0.5372 75.29 66.64 64.66 70.01 

Cascade 

 forward 

0.6173 0.5900 0.6112 0.5265 71.07 75.90 61.56 57.79 

Elman 0.5480 0.5564 0.6272 0.5940 76.47 78.05 76.36 69.55 

Linear multi 

ANNs 

0.7261 0.7451 0.7519 0.7457 71.07 75.90 79.07 77.79 

Non-linear 

multi ANNs 

0.7431 0.7150 0.7422 0.6959 76.88 77.63 66.93 69.91 

 

Finally, for predicting with a lead time of 120 seconds, the highest F-score and accura-

cy were achieved with a linear multi ANNs with 90-second segment. The average run-

ning time for this setting was 3.66 seconds. 

As a conclusion on this experiment, it is very clear that linear multi ANNs outperforms 

other algorithm either for F-score or accuracy of prediction.  

 5.4. Summary 

Predicting of individual sleep apnea events was studied in this chapter using three dif-

ferent artificial neural networks together with linear and non-linear multi ANNs. The 
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weights of the linear multi ANNs were optimised by PSO, and the median of these three 

networks was the non-linear multi ANNs.  

Four lead times, 30, 60, 90 and 120 seconds were studied, and instead of the fixed data 

segment, different segments from 30 seconds to 120 seconds were examined. The re-

sults showed that the linear multi ANNs achieved the highest F-score in all settings, and 

the highest accuracy, in most cases. Based on this study, the best result is achieved for 

predicting sleep apnea with 30 seconds lead time and time windows of 90-seconds with 

F-score of 0.8296. But also, the prediction of sleep apnea with a lead time of 90 seconds 

by using the linear multi ANNs and a 60-second segment can be reasonable setting by 

attention to the obtained F-score of 0.8114 and accuracy of 82.00% with running time of 

3.22 seconds, which can be reasonable for predicting with 90-second lead time.  
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Chapter 6 

Thesis Developed Techniques Generalization 

 

6.1. Introduction 

During this study it was necessary to develop several algorithms based on specific ap-

plication, such as segmentation or feature generation, and feature selection. Moreover, a 

new idea for SVM had also developed and accordingly proposed a new parallel struc-

ture for multi-PSO algorithm. Because these two algorithms can be used in many area 

of machine learning, they are introduced separately in this chapter.  

The proposed SA-SVM algorithm has been published in International Journal of 

Knowledge-Based Systems [289]and the proposed parallel PSO structure has been used 

in different papers [290, 291].  

6.2. Self-advising SVM 

There has been a progressive increase in the use of advice sets using the prior 

knowledge obtained from experts. However, there are some difficulties in how this 

knowledge can be applied and expressed in terms of the constraints. Moreover, these 

approaches include new parameters which increase the computational cost of SVM. 

However, the ensemble algorithms are iterative procedures that increase the computa-

tion cost and do not always improve the performance of the SVMs, in fact they make it 

worse [316].   
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This section presents a developed non-iterative method that extracts subsequent 

knowledge from the training phase. In the traditional SVM method the only information 

that is used in the test phase from the training phase is the hyperplane position or the 

first type of support vectors. Subsequent knowledge can be in the form of any further in-

formation derived about the first type of support vectors, such as their distribution, and 

or the knowledge extracted from the second type of support vectors. 

As a part of these thesis contributions, an aim is for generating subsequent knowledge 

from the second type of support vectors. Even with the optimised hyperplane a lot of da-

ta can be misclassified, second type of support vectors [210], were selected. This mis-

classified data can come from 2 potential sources such as outliers, or as data that has not 

been linearly separated using any of the types of kernels. Classic SVM ignores the train-

ing data that has not been separated linearly by kernels during the training phase. This 

occurs by the introduction of tolerance parameters in the objective function and con-

straints. However, if data that is similar or identical to this misclassified data appears in 

the test set, it will be classified wrongly again because the data which is close to the 

misclassified data is uncertain. This misclassification is not reasonable since it occurred 

because the available data and information in the training phase was ignored by the 

SVM algorithm. It should be noted that any method that wants to benefit from misclas-

sified data must have some control on the impact of the outlier data. Actually, if more 

samples in the proposed method that look like misclassified data were found, this ap-

proach may be able to improve the performance of the classifier. 

This proposed method focused on the ignorance of SVM from the knowledge that can 

be acquired from misclassified data by generating advice weights based on the use of 

misclassified training data, if possible, and by using these weights together with the de-
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cision values of the SVM in the test phase. These weights help the algorithm to elimi-

nate the outlier data.  

The misclassified data sets 𝑀𝐷, in the training phase, can be defined as follows: 

𝑀𝐷  ⋃𝒙  𝑦 

 

   

≠ 𝑠𝑖𝑔𝑛(∑ 𝑦 𝛼 𝑘(𝒙 , 𝒙 )   

    

)                   (6.1) 

It must be considered that on the right hand side of the equation (6.1), any SVM deci-

sion function and kernel can be used. The 𝑀𝐷 set can be null, but experimental results 

have revealed that the occurrence of misclassified data in the training phase is a com-

mon occurrence.  

For each 𝒙  of MD the neighborhood length (NL) is defined as:  

𝑁𝐿(𝒙 )  𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝒙  (  𝒙 − 𝒙   |𝑦 ≠ 𝑦 )/2.                  (6.2) 

where 𝒙  , 𝑗  1,… ,𝑁, are the training data that do not belong to the  𝑀𝐷 set. 

Note: if the training data is mapped to a higher dimension using a mapping function 

then the distance between 𝒙  and 𝒙  can be computed according to the following equa-

tion (14), with reference to the related kernel 𝑘, 

  𝜽(𝒙 ) − 𝜽(𝒙 )   (𝑘(𝒙 , 𝒙 )  𝑘(𝒙 , 𝒙 ) − 2𝑘(𝒙 , 𝒙 ) )
 . 
.           (6.3) 

Based on the findings of 𝑁𝐿, for each 𝒙  from the test set, the advised weight 

 𝑊(𝒙 , 𝑗) for 𝐽   1 o − 1  is computed as follows, 

 𝑊(𝒙 , 𝐽)  

{
 ,      

 
                     ∀𝒙 ∈ 𝑀𝐷, | 𝒙 − 𝒙  |  𝑁𝐿(𝒙 ) 𝑜𝑟  𝑀𝐷  𝑁 𝐿            

 ∑
  (𝒙 ) 

    𝒙  𝒙   
              ∃𝒙 ∈ 𝑀𝐷,   | 𝒙 − 𝒙  | ≤ 𝑁𝐿(𝒙 ) 𝑎𝑛𝑑 𝑦  𝐽                             

(6.4)    

These AWs represent how close the test data are to the misclassified data. To conclude 

the above, the self-advising SVM (SA-SVM)  [317] is as follows: 
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Training phase: 

1- Finding the hyperplane by solving problem (3.7) or the related problem, and 

this means the normal SVM training. 

2- Finding the 𝑀𝐷 set using equation (6.1). 

3- If the 𝑀𝐷 is null, go to the testing phase or else compute 𝑁𝐿 for each member 

of MD using equation (6.2). 

Testing phase: 

1- Compute  𝑊(𝒙 ,  1) and  𝑊(𝒙 , −1)for each 𝒙 , from the test set 

2- Compute (𝑥 ) as the absolute value of the SVM decision values for each 𝒙  

from the test set by using equation (10), and scale it to , ,1-. 

3- For each 𝒙  from the test set, 

If     ( 𝑊(𝑥 , ±1), (𝑥 ))  (𝑥 )  then  𝒚   𝑠𝑖𝑔𝑛 .∑ 𝑦 𝛼 𝑘(𝒙 , 𝒙 )       
/, 

this means normal SVM labeling, otherwise  𝒚   1 or −1 based on 

   ( 𝑊(𝑥 ,  1),  𝑊(𝑥 , −1)).  

Note: If the testing and training data are mapped to a higher dimension, then   𝒙 −

𝒙    in step 3 of the test phase should be computed by equation (6.3), and as mentioned 

previously, any SVM methods and kernels can be used in this algorithm. 

6.2.1. Experimental Results 

To evaluate the proposed SA-SVM, the experiment adopts 11 datasets from the UCI 

machine learning repository [318]. These databases were selected from the most com-

mon benchmarks for classification and the variety of these databases supports the vali-

dation in this study. The number of instances and the attributes of each database are 

shown in the Table 6.1. It should be noted that for a dataset with multi-class, only data 
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from two classes were selected and the data with missing values were deleted. Of 

course, applying the proposed approach for multi-class classification with extension ap-

proaches [319, 320] can be considered in future studies. 

The platform used in this experimental study is Intel Pentium V, 3.16 GHz CPU, 3.25 

GB RAM and Windows 7 which is the operating system. The proposed algorithm was 

implemented on MATLAB 7.14, and LIBSVM [321] was used for the SVM. 

For each dataset 𝐶-SVM and 𝜈 − SVM were used and then compared them with 

SA − 𝐶- SVM and 𝑆 − 𝜈 − SVM methods to see if the SA algorithm could improve 

these two types of SVM. It should be noted that because this approach is not an iterative 

method, it cannot be compared to methods such as AdaBoost or other multi ANNs ap-

proaches. In these experiments the RBF kernel was selected and the parameters were 

tuned by a grid search.  

RBF kernel were used for each dataset and the optimal parameters c and gamma were 

computed by a grid search. A full list of these parameters are presented in Table A.1.  In 

Appendix A. 

For a reliable validation 10-fold cross validation was performed for five times. Aver-

age±estandard deviations of the training accuracy with 𝐶-SVM and  ν − SVM , are 

shown in Table 6.2. It should be noticed that the training accuracy was computed as the 

accuracy of SVM in classifying the seen training data set. As Table 6.2 indicates, the 

training accuracy was less than 100% in most cases. This showed that SVM could not 

classify the entire pattern correctly, even for the seen part. This becomes more important 

when a similar pattern to the misclassified training data appears in the test set because 

these patterns in the test set will also be classified wrongly in classic SVM. However 
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SA-SVM tries to use the knowledge extracted from misclassified training data to pre-

vent a similar misclassification of test data 

Table 6.1: Datasets from the UCI repository  

 
Dataset Number of instances 

Number of at-

tributes 

1 Australian Credit Approval (Statlog ) 690 14 

2 Breast Cancer Wisconsin (Original) 683 9 

3 Contraceptive Method Choice 642 9 

4 German credit Data (Statlog) 1000 24 

5 Hayes-Roth 102 5 

6 Hepatitis 129 17 

7 Ionosphere 351 33 

8 iris 100 4 

9 Liver Disorders 345 6 

10 Spambase 4601 57 

11 Teaching Assistant Evaluation 101 5 

 

C-SVM and ν-SVM were performed with and without an SA algorithm on these da-

tasets. Table 6.3 tabulated the testing accuracy and also the percentage of improvement 

by SA-SVM compared to classic SVM.  

From Table 6.3 it is clear that in 9 datasets out of 11, SA-SVM performed better than 

traditional SVMs, while the SA algorithm improved the performance of SVM by around 

10% in iris(C-SVM) and Teaching assistant (𝝂-SVM) databases, by around 2% in 

Hayes and Spambase (𝝂-SVM) databases, and the improvements in other databases 

were around 1%. A full list of these 5 ×ten-fold validations are presented in Tables A.2 

and A.3 In Appendix A. 
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Table 6.4 summarises the means and standard of deviations of accuracies for C-SVM, 

ν-SVM, and in total with and without self-advising for 10-fold cross- validation and 5-

fold cross-validations. 

Table 6.2: Accuracy of the training phase of classic SVM 

Dataset 
 

 -SVM 

 

𝝂 −     

Australian Credit Approval (Statlog ) 82.63±0.68 90.86±0.54 

Breast Cancer Wisconsin (Original) 97.35±0.23 97.08±0.27 

Contraceptive Method Choice 77.29±0.44 85.94±0.38 

German credit Data (Statlog) 78.23±0.63 82.55±0.42 

Hayes-Roth 94.55±0.87 81.94±3.06 

Hepatitis 76.89±1.74 90.07±0.72 

Ionosphere 99.28±0.10 95.22±0.28 

iris 90.15±8.99 99.09±0.89 

Liver Disorders 77.16±0.75 83.62±0.83 

Spambase 97.23±0.07 90.63±0.17 

Teaching Assistant Evaluation 98.48±0.61 82.12±1.04 

 

Tables A.2 and A.3, in Appendix A, show that the proposed algorithm improved the 

accuracy of SVM in most datasets. Table 6.4 shows that the average improvement of the 

proposed method was higher in the 5-fold cross-validation. This could be result of the 

size of the training and test set in each run, where these sets were bigger in the 5-fold 

cross validation than the10-fold cross-validation. A bigger training and test set can in-

crease the chance of finding a similarity between misclassified patterns in the training 

set and patterns in the test set. 
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Table 6.3: Results of classification  

      

 
SVM 

 
Self-Advising SVM 

Data Set C-SVM 𝝂-SVM 
 

C-SVM 𝝂 -SVM 

Australian Credit 

Approval (Statlog ) 

83.12 

(1.06) 

85.91       

 (0.50)  

83.85       

(1.06) 

85.83     

(0.60) 

Breast Cancer Wis-

consin (Original) 

96.89       

(0.38) 

 

96.33     

 (0.54) 
 

96.92       

(0.38) 

96.36     

(0.52) 

Contraceptive Meth-

od Choice 

 

73.69       

(1.83) 

72.68      

 (1.39)  

74.60       

(1.94) 

73.71     

(1.01) 

German credit Data 

(Statlog) 

 

76.21       

(0.88) 

75.47       

 (0.64)  

76.27           

(0.82) 

75.57         

(0.62) 

Hayes-Roth 

 

78.77          

(4.27) 

76.54          

(4.82)  

80.36          

(4.21) 

78.91        

(5.22) 

Hepatitis 
69.99         

(2.80) 

66.88          

(2.65)  

69.67          

(2.77) 

67.03         

(2.76) 

Ionosphere 
94.22        

(1.15) 

93.32          

(0.85)  

94.22         

(1.15) 

93.32         

(0.85) 

iris 

 

90.06         

(9.06) 

99.79     

(0.46)  
100 

99.79         

(0.46) 

Liver Disorders 

 

73.80         

(0.75) 

70.16          

(2.20)  

74.97          

(0.98) 

71.03          

(1.91) 

Spambase 

 

93.39         

(0.38) 

90.38          

(0.26)  

93.83          

(0.44) 

92.37          

(0.23) 

Teaching Assistant 

Evaluation 

 

72.92          

(6.90) 

76.16         

(1.53)  

74.74       

(6.70) 

86.06         

(1.65) 

Average 
 

82.10 
82.15  83.58 83.63 
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Table 6.4: Summaries of the experimental results 

   10-fold validation 5-fold validation 

  
 Mean SD  Mean SD 

𝐶-SVM 

(55 runs) 

SVM  82.127 10.56  79.4664 11.47 

SA-SVM  83.614 10.66  81.6788 11.72 

Improvement  1.487   2.21  

𝜈 − SVM 

(55 runs) 

SVM  83.549 11.60  81.5014 11.79 

SA-SVM  84.912 11.17  82.6646 11.35 

Improvement  1.363   1.16  

Total                        

(110 runs) 

SVM  82.151 11.09  80.4839 11.62 

SA-SVM  83.638 10.79  82.1717 11.50 

Improvement  1.488   1.68  

 

If the 5-fold cross validation is compared to the method proposed with C-SVM, then 

the improvement is equal to 2.21% in all of the datasets and when compared with ν-

SVM it is equal to 1.68% in total. The distribution of the percentage of improvement in 

different methods and in the total is shown in Figure 6.1, (Figure 6.1.A in Total, Figure 

6.1.B: C-SVM, Figure 6.1.C: ν-SVM). This figure shows that the proposed method im-

proved the accuracies in more than 67% of experiments, half of which are greater than 

1%. It can also be noticed that 22% of these improvements are greater than 2% and 11% 

of these improvements are more than 5%. Moreover, the highest improvement was 

equal to 25%. In 30% of the experiments this algorithm had exactly the same result as 

classic SVM and in just 3.6% of the experiments, the proposed algorithm lead to a 

worse result, which was only 0.62% less accurate than traditional SVM.  

To have a more reliable and accurate validation, 11 datasets were used in this section. 

It is obvious that if a subset of these databases is selected and used for validation then a 

higher overall improvement can be achieved. Since 5 datasets were tested (Hayes-Roth, 

iris, liver disorder, spambase and teaching assistance) that achieved an overall im-
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provement of 3% by the proposed algorithm but using less datasets would not be as reli-

able.  

 

Figure 6.1: Distribution of accuracies improvements by SA-SVM  

 

For a more reliable evaluation of the results of these two methods, a pairwise t-test 

was performed. This statistical test also proved the significance of improvements to the 

classifications acquired through the proposed method. The p value for C-SVM and ν-

SVM of the t-test are 5.78 × 1    and 6.51 × 1    respectively, and by attention to all 

the runs, the p value was 7.2 × 1   , which shows statistically significance of differ-

ence between results obtained these approaches. 

For even more validation the statistical F-score (F-measure) was used as another 

measure of the performance of classification algorithms. The F-score can be interpreted 
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as the weighted average of the precision and recall, where the F-score reaches its best 

value at 1 and its worst score at 0.   

Table 6.5 tabulates the averages and standard deviations of f-scores for 10-fold and 5-

fold cross validation.  

It is also obvious from Table 6.5 that the SA-SVM was better than the SVM methods 

in the F-score. This claim was strengthened by performing the t-tests. The t-test shows 

that an average of the f-scores of SA-SVM was also significantly higher than the SVM 

results since the p-values were equal to 1.55 × 1   , 1.21 × 1    and 6. 1 × 1   , re-

spectively for C-SVM and ν-SVM in total. The full results of these 5 × 5-fold valida-

tions are presented in Tables A.4 and A.5 in Appendix A. 

Different studies have been proposed to improve the performance of SVM, but the 

primary disadvantages of these approaches are the inclusion of new parameters, in-

creased complexity of the learner model, and the difficulty of implementation in solving 

practical problems such as modeling prior knowledge. 

The self-advising SVM method proposed here, improved the performance of SVM by 

transferring more information from the training phase to the testing phase. This infor-

mation was generated by using misclassified data in the training phase. If the same data 

or similar patterns appear in the testing data, they will not be misclassified again. Exper-

imental results in this study showed an improvement in accuracy, and the F-score and 

statistical tests revealed the significance of these improvements. Our results showed that 

using the misclassified data in the training phase by the proposed method will not in-

crease overtraining. The main advantages of SA-SVM are that it can be applied through 

any of the SVMs and kernel types, and it does not need the addition of new parameters 

to the learning phase. 
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Table 6.5: Averages and standard deviations of F-score  

  10-fold validation 5-fold validation 

  Mean SD Mean SD 

𝐶-SVM 

(55 runs) 

SVM 
0.77 

 
0.15 

0.75 

 
0.15 

SA-SVM 
0.79 

 
0.15 

0.78 

 
0.15 

Improvement 0.01  0.02  

𝜈 − SVM 

(55 runs) 

SVM 
0.78 

 
0.15 

0.77 

 
0.16 

SA-SVM 
0.79 

 
0.15 

0.79 

 
0.15 

Improvement 0.01  0.01  

Total                        

(110 runs) 

SVM 
0.77 

 
0.15 

0.76 

 
0.15 

SA-SVM 
0.79 

 
0.15 

0.78 

 
0.15 

Improvement 0.0164  0.0192  

 

Implementing KNN for computing the advice weights and implementing the proposed 

approach for multi-class classification may be considered potential areas for future stud-

ies.  

6.3. Proposed Parallel Structure 

In this study, given the enormous size of the search space, a single PSO cannot perform 

well and may be result in a local optimum with low accuracy. Therefore, a new parallel 

PSO was used structure to perform better explorations and exploitations in the search 

space. 

In the traditional multi-PSO models all of the swarms are at the same level and ex-

changing information just happened based on the definition of neighbourhood. But in 

this structure, swarms were classified as „masters‟ and „slave(s)‟. Master swarms have 
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access to the best particles of other swarms but the slave swarms have no access to in-

formation of other swarms, and in reality they just provide information for others. Send-

ing information of the best local particle among the masters and from the slave(s) to the 

masters can be performed at each iteration by a specified frequency.  

In proposed hierarchical model, one of the master swarms is considered to be the cen-

tral swarm, and all of the swarms, both masters and slaves, send the local best particle to 

the central swarm. The central swarm computes the global best particle and sends it to 

the other master swarms. So all of the master swarms update their particles using the 

global best particle, but the slave swarms only use their own local best particles to update 

themselves. The Pseudo code 6.1 shows the process of the Hierarchical Multi-Master 

PSO (HMM PSO). 

Pseudo code 6.1:  the Hierarchical Multi-Master PSO (HMM PSO) 

1- Select the number of master and slave swarms, the number of particles for each sub-

warm, and also the frequency for sending the information. Select one of the master 

swarms as the central swarm.  

2- Initialize the position and velocity of each particle 

3- Do in parallel until the maximum number of iterations is reached {  

3-1-Evaluate the fitness value of each particle  

3-2-Find out the local best particle in each sub-swarm 

3-3-If meets the sending condition  

3-3-1- Send the local best particle (lp-best) from each swarm to the central swarm. 

3-3-2-Update the global best particle (Gp-best) in the central swarm. 
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3-3-3-Send the global best particle to the entire master swarms. 

3-4-End If 

3-5-Update the position of each particle in each swarm 

 4- End Do} 

5-Returning the best solution (the global best particle) of the algorithm. 

6-End. 

 

Figure 6.2 illustrates a sample of the proposed parallel structure with 4 masters and 2 

slave swarms. In this implementation, master 1 is selected as the central swarm so all the 

swarms send their local best particle to this swarm. After computing the global best 

swarm, the central swarm sends it to all the master swarms. So in this structure, the slave 

swarm provides information for other swarms but they do not benefit from each other‟s 

information. 

 

 

 

 

 

 

 

Figure 6.2: Proposed parallel structure with 2 masters and 4 slaves 
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Indeed, fast convergence is one of the disadvantages of PSO, which is heightened by 

the parallel structure. This hierarchical model tries to expand both the exploration and 

exploitation abilities of the parallel PSO, by integrating the isolated swarms and the 

linked swarms. Slave swarm(s) in this model help prevent premature convergence. PSO 

parameters for the slaves and masters can be different so these parameters can be adjust-

ed to have greater explorative abilities for the slaves and a greater local search for the 

masters. 

6.3.1. Experimental Studies 

In this section, different benchmark functions were used to test the effectiveness and ef-

ficiency of the HMM PSO algorithm. For each benchmark function, 30 independent op-

timisations were performed to collect the associated statistics for evaluation and to have 

a more robust comparison. In the experiment studies the benchmark function with di-

mensions of 10 investigations were used to measure the quality of the proposed algo-

rithm‟s solution.   

Six common benchmark problems were used: Ackley, Quartic, Rastrigin, Rosenbrock, 

Schwefel‟s problem 2.22 and Sphere. These functions are useful and common for com-

paring algorithms because they allowed us to explore the behaviour of optimisation algo-

rithms in a simple and standardised way [322].  The benchmark functions are listed be-

low: 

Ackley function (  ) 

  (𝑥)  −2   p(− .2√
1

𝑛
∑𝑥  
 

   

) − 𝑒𝑥𝑝(
1

𝑛
∑co (2𝜋𝑥 )

 

   

)  2  𝑒. 
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Quartic (𝑄 ) 

𝑄 (𝑥)  ∑𝑖𝑥 
 

 

   

 𝑟𝑎𝑛𝑑, .1). 

Rastrigin (𝑅𝑎𝑠 ) 

𝑅𝑎𝑠 (𝑥)  ∑(𝑥 
 − 1 co (2𝜋𝑥 ))

 

   

 1 ). 

Rosenbrock (𝑅 ) 

𝑅 (𝑥)  ∑1  (𝑥 
 − 𝑥   )

  (𝑥 − 1)
 .

 

   

 

Schwefel‟s problem 2.22 (𝑆𝑐 ) 

𝑆𝑐 (𝑥)  ∑ 𝑥  

 

   

 ∏ 𝑥  

 

   

. 

Sphere (𝑆 )  

𝑆 (𝑥)  ∑𝑥 
 .

 

   

 

Table 6.6 lists the dimension, n, of each function, the ranges of their search space, and 

their global minimum value. In this study asymmetric initialization is used to compare 

these algorithms as symmetric initialization can give false impressions of relative per-

formance [323]. 
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Table 6.6: Parameters of the benchmark functions 

Function n 

Minimum val-

ue Range of search 

Range of initializa-

tion 

   10 0 [−32.768, 32.768] [5, 10] 

𝑄  10 0 [-1.28, 1.28] [0.64, 1.28] 

𝑅𝑎𝑠  10 0 [−5.12, 5.12,] [2.56, 5.12] 

𝑅  10 0 [-100, 100] [15, 30] 

𝑆𝑐  10 0 [-10, 10] [5, 10] 

𝑆  10 0 [-100, 100] [50, 100] 

 

A. Experimental Results 

The performance of the new method methods was compared with COM-MCPSO, 

COL-MCPSO and MCPSO-CC [324], The maximum velocity (Vmax ) and minimum ve-

locity (Vmin ) for these algorithms were set at 1 and -1 and a fixed number of maximum 

generations 1000 was applied to these algorithms with a population size equal to 80. For 

the parallel methods, a setting of c1 = c2 = 2.05, c3 = 2.0 was considered. The inertia 

weight was also critical for the convergence behaviour of PSO in these experiments, so a 

decaying inertia weight starting at 0.9 and ending at 0.4, following Shi and Eberhart 

[325], was used. The number of slave swarms was set as 4 for COM-MCPSO, COL-

MCPSO and MCPSO-CC. All the parameters used in the slave and master swarms were 

the same as those defined above. Also the sending information frequency was set as 5 it-

erations each in the HMM PSO algorithm. 

B. Architecture Analysis 

In this section 6 swarms were used for all the algorithms, but with the HMM PSO algo-

rithm, different numbers of master and slaves swarms can be used. Therefore, for the 
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HMM PSO algorithm, a different setup with 2 masters 3 masters and 4 masters are ex-

amined in this section. For these reason 4 benchmark functions, the Ackley, Rastrigin, 

Rosenbrock, and Sphere functions were selected randomly. The best, worst, mean, and 

standard deviation of the function values found in 30 trials are as shown Table 6.7. In this 

table, the numbers in bold-face type represent the comparatively best values. Based on 

the results obtained, 2 masters and 4 slaves were selected as the best architecture for the 

HMM algorithm in the following experiments. 

Table 6.7: Analysis of different number of master swarms  

 
Number of 

Masters 
best worst average std 

Ackley 

2 19.6 19.76 19.73 0.02 

3 20 20 20 5.23E-06 

4 19.71 19.78 19.75 0.01 

Rastrigin 

2 45.76 99.50 75.59 14.36 

3 45.76 104.17 80.62 14.29 

4 45.76 117.11 83.86 16.63 

Rosenbrock 

2 11.28 159.26 49.49 37.60 

3 21.46 94.57 50.19 15.64 

4 25.02 105.38 46.33 29.99 

Sphere 

2 4.60E-31 5.97E-28 7.08E-29 1.29E-28 

3 5.98E-31 1.78E-27 2.26E-28 4.26E-28 

4 5.11E-33 2.51E-27 4.45E-28 6.31E-28 

 

The experimental results for each algorithm on each test function consisted of the best, 

worst, mean and standard deviation of the function values found in 30 runs, and they are 

listed in Table 6.8. In this table the numbers in bold-face type represent the comparative-
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ly best values, and the graphs presented in Figures 6.3–6.4 illustrate the evolution of best 

fitness found by five algorithms, averaged for 30 runs for the benchmark functions. By 

attention to the Ackley function, Figure 6.3.a, the improved searches by all algorithms 

seemed to be similar, but the HMM PSO method improved slowly in the beginning but 

eventually outperformed the other algorithms before 1000 generations. HMM PSO, 

COM-MCPSO and COL-MCPSO algorithms reached the same best fitness for this func-

tion, as shown in Figure 6.3.b Function 𝑄  is a noisy function and with it, all the algo-

rithms except the MCPSO-CC method, seemed to converge in a similar pattern, as 

shown in Figure 6.3.b. The HMM PSO method was better in obtaining the best fitness 

values, while the HMM PSO algorithm reached the best average fitness in 30 trials, but 

the average difference between these two algorithms was insignificant.  

 

Figure 6.3: Ackley function and Quartic Functions 
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Table 6.8: Results of different parallel PSO  

 COM COL CC MM 

   

 

Best 2.66E-15 2.66E-15 6.22E-15 2.66E-15 

worst 1.33E-14 3.11E-14 1.13E-13 6.22E-15 

mean 3.85E-15 1.08E-14 2.71E-14 4.44E-15 

std 2.30E-15 6.62E-15 2.38E-14 1.80E-15 

 

   

 

Best 1.01E+00 1.04E+00 1.61E+00 8.26E-01 

worst 1.85E+00 1.81E+00 2.54E+00 1.76E+00 

mean 1.47E+00 1.52E+00 2.12E+00 1.48E+00 

std 0.21 0.20 0.21 0.17 

     

 

Best 9.95E-01 1.99E+00 3.76E+01 9.95E-01 

worst 8.95E+00 2.89E+01 6.10E+01 1.19E+01 

mean 3.73E+00 7.83E+00 5.03E+01 4.38E+00 

std 1.82 5.65 6.11 2.20 

   

 

Best 1.31E-02 1.56E-01 4.35E+01 7.51E-03 

worst 1.43E+01 1.52E+01 2.42E+02 1.80E+01 

mean 5.67E+00 5.94E+00 9.90E+01 5.24E+00 

std 3.65 3.38 35.64 3.58 

     

Best 4.59E-27 1.23E-26 9.06E+00 6.91E-28 

worst 6.23E-24 3.20E-23 1.90E+01 1.16E-24 

mean 6.62E-25 4.62E-24 1.34E+01 1.60E-25 

std 1.50E-24 6.59E-24 2.70 2.90E-25 

   

Best 4.36E-32 2.75E-31 4.80E-29 2.48E-31 

worst 1.85E-28 1.60E-27 4.95E-27 4.73E-29 

mean 1.63E-29 1.61E-28 8.45E-28 5.54E-30 

std 3.34E-29 3.15E-28 1.13E-27 9.66E-30 
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Function 𝑅𝑎𝑠  , Figure 6.4.a, is a classic optimisation problem so convergence to its 

global optimum was difficult. In this problem MCPSO-CC and COL-MCPSO clearly 

performed worse than COM-MCPSO and MM PSO. In this problem the trend for HMM 

PSO was similar to COM-MCPSO until 600 generations, but after that COM-MCPSO 

performed better for 30 trials. However, according to the final results, the HMM PSO al-

gorithm obtained the best final results but HMM PSO outperformed it with the average 

results. For the 𝑅  function, Figure 6.4.b, all the algorithms except the MCPSO-CC 

method performed the same, while Table 6.13 shows that the HMM PSO algorithm ob-

tained the best and the best average of the final results. 

 

Figure 6.4:  Rastrigin and Rosenbrock Functions 

 

With regard to the simpler functions (relative to others)  

𝑆  and 𝑆𝑐 , most algorithms converged extremely fast towards the optimum point, ex-

cept the MCPSO-CC algorithm for the 𝑆𝑐 , in Figure 6.5.a. Both the COM-MCPSO 

and HMM PSO methods had a particularly fast convergence with the same trend on 𝑆 . 
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With 𝑆𝑐  , in Figure 6.5.b, the HMM PSO function outperformed the other algorithms 

in obtaining the best and average final results for 𝑆𝑐 . Function 𝑆  exhibited a pattern 

similar to that observed with function 𝑆𝑐 , except that MCPSO-CC method had per-

formed the same as the other approaches. For this function the HMM PSO algorithm 

again obtained the best average for the final results but COM-MCPSO obtained the best 

final fitness in 30 trials. 

 

Figure 6.5:    and      Functions 

 

Figures 6.6-6.7 show the multi-swarm process for the functions by the HMM PSO al-

gorithm from a single test run. These figures show that the slave swarms performed well 

not just in the initial iterations, but also when they made further progress when the mas-

ter swarm plateaued. 

Figure 6.6.a, presents the process of all swarms for the Ackley function for 1000 itera-

tions, and in Figure 6.6.b, by attention to the process between iterations 760 to 880. This 

figure shows that the master swarms helped each one to improve the fitness function. 
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Although the master swarms have equal access to the global knowledge, their processes 

are different and they help each other to improve their fitness. This shows the advantages 

that multi-master swarms have in relation to the unique master swarm. 

  

 

 

Figure 6.7.a, represent the processes of swarms in the HMM PSO algorithm for one try 

for the Rosenbrock function, while more details of the process of the swarms between 

iterations 760-880 can be found in Figure 6.7.b. This Figure also shows how coperatioon 

between all the master swarms and the slave swarms improved the fitness function.   

Also, in Figure 6.8 shows the process by which the swarms minised Schwefel‟s 

problem 2.22 function, at one try. This figure also shows how important all the slave 

swarms are, because it is obvious how one of the slave swarms had less impact at 

improving the fitness function after the first iteration, but improved the process 

dramatically after iteration 500. 

Figure: 6.6: Ackley Functions 
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In this section, a multi-master PSO has been proposed to improve the performance of 

the standard PSO. HMM PSO is a master–slave model that consists of several master 

swarms and slave swarms. The slave swarms help to amplify the diversity of particles 

and generate more promising particles for the master swarms. The master swarm uses 

both its own experience and that of the most successful particles in the slave swarms. 

The results of six benchmark functions show that the proposed method has superior fea-

tures, as evidenced by the high quality solution. In a general, an analysis of the results 

shows that the HMM PSO algorithm was highly competitive with other parallel PSOs on 

all the problems, usually surpassing its performance. The HMM PSO algorithm obtained 

the best fitness for most of functions. The only exception was for the Sphere function, for 

which COM-MCPSO seemed to fine tune its results slightly better than HMM PSO. 

Moreover, for 4 functions out of 6 the HMM PSO obtained the best average fitness in 30 

trials. It can be concluded from this summary that HMM PSO was the best algorithm in 

this study and the HMM PSO method is a highly consistent strategy in finding the opti-

mum solution compared with other methods. Also, experimental results showed the im-

Iterations 

(Log) Fitness 

Figure 6.7: Rosenbrock Function 
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portance of multi masters, although based on the results, the master swarms have access 

to the same results, but in different iterations one of them obtained a higher quality result 

which improved the whole process. When using the single master approaches, all the im-

provements should be done by just one master. 

 

 

6.4. Summary 

There are two main contributions in this study that can be used in general and not just 

in sleep apnea studies.  

The first algorithm was named self-advising SVM. Different studies have been pro-

posed to improve the performance of SVM, but the main disadvantages of these ap-

proaches are the inclusion of new parameters, increased complexity of the learner mod-

el, and the difficulty of implementation in solving practical problems such as modelling 

prior knowledge. The self-advising SVM method proposed here, improved the perfor-

Figure 6.8: Schwefel Function 
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mance of SVM by transferring more information from the training phase to the testing 

phase. This information was generated by using misclassified data in the training phase, 

so if the same data or similar patterns appear in the testing data, they will not be mis-

classified again. The experimental results in this study showed an improvement in accu-

racy, and the F-score and statistical tests revealed the significance of these improve-

ments. Our results showed that using misclassified data in the training phase by the pro-

posed method is not increasing overtraining. The main advantages of SA-SVM are that 

it can be applied through any of the SVMs and kernel types, and it does not need the 

addition of new parameters to the learning phase. 

Implementing KNN for computing the advice weights and implementing the proposed 

approach for multi-class classification may be considered potential areas for future stud-

ies. 

The second proposed algorithm was a new parallel structure for PSO. HMM PSO is a 

master–slave model that consists of several master swarm and slave swarms. The slave 

swarms help to amplify the diversity of particles and then generate more promising par-

ticles for the master swarms. The master swarm uses both its own experience and that of 

the most successful particles in the slave swarms. Experiment results on six benchmark 

functions showed that the proposed method has superior features, as shown in the high 

quality of the solution. In a general, an analysis of the results showed that the HMM 

PSO algorithm to be highly competitive with other parallel PSOs on every problem, in-

deed, usually surpassing its performance. The HMM PSO algorithm obtained the best 

fitness for most functions. The only exception being the Sphere function, for which 

COM-MCPSO seems to fine-tune its results slightly better than HMM PSO. Also for 4 

functions out of 6 HMM PSO obtained the best average fitness in 30 trials. From this 
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summary it can be concluded that HMM PSO was the best performing algorithm in this 

study and the HMM PSO method is a highly consistent strategy for finding the optimum 

solution compared to other methods. Moreover, the experimental results showed the im-

portance of multi masters, but based on the results the master swarms have access to the 

same results, and in different iterations one of them obtained a higher quality result 

which improved the whole process. When in the single master approaches, all the im-

provements should be done by just by one master. 
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Chapter 7 

Summary and Future Research 

 

7.1. Introduction 

This thesis has established an automated system for sleep apnea study based on soft 

computing approaches.  

The algorithms designed here consists of four main parts; signal segmentation, feature 

generation followed by dimensionality reduction, and machine learning methods that 

have been used for detection, classification or prediction. Many experiments have been 

conducted and several algorithms are developed that can be used in sleep studies or for 

an even wider range of applications. The conclusions of these experiments and their re-

sults are summarised as follows. 

7.2. Sleep Apnea Detection 

The first part of this thesis commenced with signal segmentation where a new signal 

segmentation based on nature of sleep apnea was proposed. This segmentation algo-

rithm tries to select time-windows with length of 30 seconds that have a chance of con-

taining a sleep apnea event by attention to the input signals. This segmentation algo-

rithm obtained a higher F-score, 0.831 than blind segmentation, 0.789. 

After segmenting the signals, features are generated for each segment by wavelet 

packet coefficients. Settings for feature generation such as wavelet families, degree and 

etc. are considered based on state of the arts, in this section 208 feature were generated 

for each segment.  



 

 

 

 134 

 

 In this thesis, different subsets of 12 signals from polysomnographic record were 

ranked based on how well they performed in sleep apnea detection. The best result was 

obtained by a subset of 8 signals; Snore – ECG –Thoracal – EMG – Abdominal – Air 

flow – Oxygen saturation – EEG A1-A2, that obtained an accuracy of 88.58%. This 

ranking was based only on how the signals performed but other criteria were considered 

in this thesis in order to select signals such as easily be obtained, and signals that are not 

influenced by the environment. By using these criteria, oxygen saturation, abdominal 

and thoracic movements signals were used as input signals in this thesis, and improving 

the performance of these signals by using more powerful machine learning approaches 

is targeted in this thesis. 

In the dimensional reduction phase, two approaches have been considered as (1) fea-

ture selection and (2) feature and training instance subset selection, for feature selection 

a PSO-SVM algorithm was proposed. In this algorithm each particle of PSO represents 

a subset of features, and SVM evaluates fitness of each particle by attention to its F-

score to detect sleep apnea. In this approach PSO was also used to tune the parameters 

of SVM, this algorithm can also be used for feature selection in other fields. And for the 

second approach selection of a subset of training data from the available training set was 

proposed. This algorithm checks if together with feature selection, reducing training da-

ta can perform better. 

After selecting the signals and features, three main problems were considered in chap-

ter 5: detecting sleep apnea, classifying sleep apnea, and subject independent detection 

of sleep apnea.  

In the detection phase, an improved version of SVM, named Self-Advising SVM was 

examined. SA-SVM achieved a better result than traditional SVM, and reached an accu-
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racy of 95.10% and an F-score of 0.8706 for detecting sleep apnea, while traditional 

SVM reached accuracy of 94.57% and F-score of 0.8490. It should be stated that the 

proposed SA-SVM approach can be used in other fields.  

Classifying a sleep apnea event to hypopnea, central apnea, obstructive apnea or 

mixed apnea was also considered in this thesis by using the PSO-SVM algorithm for 

feature selection. An RBF kernel for the SVM; and one against all strategies was select-

ed, and average accuracy of 88.71% was obtained for 5 independent runs. 

Detecting sleep apnea subject independently was also examined in this thesis. For sub-

ject independent detection, together with feature selection, instance selection from the 

training set was also examined. The results showed that reducing the training data with 

the proposed PSO-SVM algorithm can improve the final performance, such that an av-

erage F-score of 0.8447 was obtained and F-score of 0.8116 was obtained for feature se-

lection. In this experiment by attention to the huge size of the search space a new paral-

lel PSO-SVM was proposed, this parallel structure improved the F-score to 0.8673. In 

the traditional multi-PSO models, all the swarms were at the same level and exchanging 

information happened based on the definition of neighbourhood. But in this structure the 

swarms were classified in two different levels as „masters‟ and „slave(s)‟. Master swarms 

have access to the best particle of other swarms but the slave swarms have no access to 

information of the other swarms, in fact, they only provide information for others. Send-

ing information from the best local particles among the masters and from the slave(s) to 

the masters can be performed at each iteration by a specified frequency. This parallel 

PSO structure can also be used in other areas.  
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7.3. Sleep Apnea Prediction 

Predicting individual sleep apnea events was another main part of this thesis, predict-

ing apnea events can be useful to prevent side effect of these events before they happen.  

In Chapter 6 three different artificial neural networks together with linear and non-linear 

multi ANNs were used to predict sleep apnea. A PSO algorithm optimised the weights 

of the linear multi ANNs and the median of these three networks is considered as the 

non-linear multi ANNs.  

Different lead times of 30, 60, 90, and 120 seconds, were used with examining differ-

ent time windows from 30 seconds to 120 seconds. The results showed that the linear 

multi ANNs achieved the highest F-score in all settings and choosing a lead time of 90 

seconds and using 60 seconds time windows can be reasonable, which obtained an accu-

racy of 82% and an F-score equal to 0.8114. 

7.4. Future Works 

In this thesis signals from polysomnographic records were used, but acquiring signals 

and information by not connected sensors and then using this information for sleep stud-

ies can be considered as the future trend in sleep studies. Currently few works have been 

done such as [326-328] but more works will be done in this area in the near future. Also 

link of sleep apnea and other diseases such as cardiovascular diseases can be considered 

more. 

Of the methods that used in this thesis, there are a number of directions in which they 

could be extended, for example:  
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Signal segmentation can have a huge impact on the final result and while the proposed 

segmentation algorithm worked properly but it worth further investigation for a more in-

telligent segmentation algorithm for sleep apnea. 

Ranking of signals based on sleep apnea detection was considered in this thesis by at-

tention to their performance in detection. Adding more criteria and using multi criteria 

decision making algorithms such as TOPSIS [329] can be considered in future. 

In this thesis SA-SVM was proposed for binary classification, so extending this ap-

proach for multi classification problems such as the classification of sleep apnea to hy-

popnea, central apnea, obstructive apnea or mixed apnea with SA-SVM can be consid-

ered in future works.  
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Appendix A 

In this Appendix some tables from chapter 6 and related to the proposed SA-SVM al-

gorithms are presented. Full information about these tables are presented in section 6.2. 

Table A.1: Optimized parameters used for each database 

Dataset 
 

C gamma 

Australian Credit Approval (Statlog ) 

 

C-SVM 100 0.1250 

V-SVM 32 0.1250 

Breast Cancer 
C-SVM 8200 0.003 

V-SVM 32 0.5 

Contraceptive Method Choice 

 

C-SVM 32 0.002 

V-SVM 32 2 

German credit Data (Statlog) 

 

C-SVM 8200 0.003 

V-SVM 32 0.0087 

Hayes-Roth 

 

C-SVM 2050 0.1250 

V-SVM 32 0.002 

Hepatitis 

 

C-SVM 0.5 0.1250 

V-SVM 32 0.5 

Ionosphere 

 

C-SVM 2 0.1250 

V-SVM 32 0.5 

iris 

 

C-SVM 0.5 0.003 

V-SVM 0.5 0.003 

Liver Disorders 

 

C-SVM 3000 0.03 

V-SVM 32 2 

Spambase 

 

C-SVM 3000 0.1250 

V-SVM 32 0.0078 

Teaching Assistant Evaluation 
C-SVM 3000 2 

V-SVM 32 0.1250 
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Table A.2: Accuracies of the five-fold validations for C-SVM 

Dataset 
 

Run 

1st 2nd 3rd 4rd 5th 

Australian Credit  

C-SVM 75.942 63.86 67.39 69.42 69.47 

Self-Advising 77.53 69.52 71.01 74.34 72.96 

Improvement 1.59 5.66 3.62 4.92 3.48 

Breast Cancer 

C-SVM 96.18 96.92 97.06 97.50 97.06 

Self-Advising 96.33 96.92 97.06 97.65 97.06 

Improvement 0.14 0 0 0.146 0 

Contraceptive  

C-SVM 72.72 74.45 72.88 71.78 73.98 

Self-Advising 73.82 75.86 74.92 71.94 75.23 

Improvement 1.09 1.41 2.03 0.15 1.25 

German credit Data 

C-SVM 76.1 75.07 74.7 75.7 77.67 

Self-Advising 75.9 75.27 74.9 75.7 77.77 

Improvement -0.2 0.20 0.2 0 0.10 

Hayes-Roth 

C-SVM 76.47 72.27 82.17 80.39 73.26 

Self-Advising 77.45 73.26 82.17 82.35 74.25 

Improvement 0.98 0.99 0 1.96 0.99 

Hepatitis 

C-SVM 72.65 67.96 67.96 66.40 67.96 

Self-Advising 73.43 69.53 68.75 67.18 67.96 

Improvement 0.78 1.56 0.78 0.78 0 

Ionosphere 

C-SVM 94.28 95.42 96.57 93.71 94.57 

Self-Advising 94.57 95.42 96.57 93.71 94.57 

Improvement 0.28 0 0 0 0 

iris 

C-SVM 74.74 74.74 100 100 74.74 

Self-Advising 100 100 100 100 100 

Improvement 25.25 25.25 0 0 25.25 

Liver Disorders 

C-SVM 72.38 69.18 69.76 69.18 74.70 

Self-Advising 73.25 70.34 70.63 69.47 75.87 

Improvement 0.87 1.16 0.87 0.29 1.16 

Spambase 

C-SVM 92.64 93.10 93.06 93.29 92.90 

Self-Advising 93.08 93.40 93.34 93.56 93.16 

Improvement 0.43 0.30 0.28 0.26 0.26 

Teaching Assistant 

C-SVM 72.44 76 63.63 66.32 69.69 

Self-Advising 73.46 77 63.63 67.34 71.71 

Improvement 1.02 1 0 1.02 2.02 
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Table A.3: Accuracies of the five-fold validations for V-SVM 

Dataset 
  

Australian Credit 

V-SVM 86.21 84.90 85.21 84.20 87.08 

Self-Advising 86.06 84.90 85.21 84.20 87.08 

Improvement -0.14 0 0 0 0 

Breast Cancer 

V-SVM 96.33 97.36 96.18 96.48 97.50 

Self-Advising 96.48 97.65 96.18 96.48 97.50 

Improvement 0.146 0.29 0 0 0 

Contraceptive  

V-SVM 71.00 73.82 72.72 72.41 69.43 

Self-Advising 72.57 74.29 72.10 73.35 70.53 

Improvement 1.56 0.47 -0.62 0.94 1.09 

German credit  

V-SVM 76.57 74.17 74.2 74.97 75.05 

Self-Advising 76.67 74.17 74.7 74.77 75.15 

Improvement 0.10 0 0.5 -0.20 0.10 

Hayes-Roth 

 

V-SVM 73.26 76.23 77.45 82 57.84 

Self-Advising 74.25 79.20 79.41 82 61.76 

Improvement 0.99 2.97 1.96 0 3.92 

Hepatitis 

 

V-SVM 65.625 67.18 67.96 65.62 65.62 

Self-Advising 66.40 67.96 67.96 65.62 66.40 

Improvement 0.78 0.78 0 0 0.78 

Ionosphere 

 

V-SVM 93.71 95.14 95.14 93.71 92.57 

Self-Advising 93.71 95.14 95.14 93.71 92.57 

Improvement 0 0 0 0 0 

iris 

 

V-SVM 97.97 100 100 100 99 

Self-Advising 98.98 100 100 100 100 

Improvement 1.01 0 0 0 1 

Liver Disorders 

 

V-SVM 70.93 69.18 72.09 67.15 69.47 

Self-Advising 70.93 69.76 72.96 68.02 70.63 

Improvement 0 0.58 0.87 0.87 1.16 

Spambase 

 

V-SVM 90.27 89.73 89.99 90.25 89.83 

Self-Advising 91.94 91.36 91.88 91.82 91.77 

Improvement 1.67 1.63 1.89 1.56 1.93 

Teaching Assistant 

V-SVM 74.74 69.69 76.76 73.46 77 

Self-Advising 80.80 78.78 83.8 79.59 82 

Improvement 6.06 9.09 7.07 6.12 5 
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Table A.4: F-scores of the five, five-fold validations for C-SVM 

Dataset 
  

Australian Credit  

C-SVM 0.81 0.75 0.77 0.78 0.78 

Self-Advising 0.82 0.78 0.78 0.80 0.80 

Improvement 0.01 0.02 0.01 0.03 0.02 

Breast Cancer 

C-SVM 0.94 0.95 0.95 0.96 0.95 

Self-Advising 0.94 0.95 0.95 0.96 0.95 

Improvement 0.01 0 0 0.01 0 

Contraceptive  

C-SVM 0.61 0.61 0.60 0.57 0.61 

Self-Advising 0.62 0.63 0.63 0.57 0.62 

Improvement 0.01 0.02 0.03 -0.01 0.01 

German credit  

C-SVM 0.55 0.55 0.53 0.51 0.57 

Self-Advising 0.55 0.56 0.53 0.51 0.57 

Improvement -0.01 0.01 0.01 0.01 0.01 

Hayes-Roth 

C-SVM 0.76 0.74 0.82 0.81 0.73 

Self-Advising 0.76 0.74 0.82 0.82 0.74 

Improvement 0.01 0.01 0 0.01 0.01 

Hepatitis 

C-SVM 0.61 0.55 0.51 0.51 0.57 

Self-Advising 0.62 0.58 0.52 0.52 0.577 

Improvement 0.0154 0.03 0.01 0.02 0 

Ionosphere 

C-SVM 0.922 0.93 0.95 0.91 0.92 

Self-Advising 0.92 0.93 0.95 0.91 0.92 

Improvement 0.01 0 0 0 0 

iris 

C-SVM 0.65 0.65 1 1 0.65 

Self-Advising 1 1 1 1 1 

Improvement 0.34 0.34 0 0 0.34 

Liver Disorders 

C-SVM 0.77 0.74 0.74 0.75 0.80 

Self-Advising 0.78 0.75 0.75 0.75 0.80 

Improvement 0.01 0.01 0.01 0.01 0.01 

Spambase 

C-SVM 0.94 0.94 0.94 0.94 0.94 

Self-Advising 0.94 0.94 0.94 0.94 0.94 

Improvement 0.01 0.01 0.01 0.01 0.01 

Teaching Assistant  

C-SVM 0.74 0.77 0.63 0.64 0.68 

Self-Advising 0.75 0.78 0.63 0.65 0.70 

Improvement 0.01 0.01 0 0.01 0.03 

 

 



 

 

 

 142 

 

Table A.5: F-scores of the five, five-fold validations for V-SVM 

Dataset 
  

Australian Credit  

V-SVM 0.875 0.85 0.86 0.85 0.88 

Self-Advising 0.874016 0.85 0.86 0.85 0.88 

Improvement -0.01 0 0 0 0 

Breast Cancer 

V-SVM 0.94 0.96 0.94 0.94 0.96 

Self-Advising 0.94 0.96 0.94 0.94 0.96 

Improvement 0.01 0.01 0 0 0 

Contraceptive 

Method  

V-SVM 0.557 0.60 0.56 0.56 0.54 

Self-Advising 0.57 0.61 0.54 0.58 0.55 

Improvement 0.02 0.01 -0.01 0.01 0.01 

German credit  

V-SVM 0.55 0.50 0.50 0.54 0.55 

Self-Advising 0.55 0.50 0.52 0.54 0.55 

Improvement 0.01 0.01 0.01 -0.01 0.01 

Hayes-Roth 

V-SVM 0.74 0.80 0.76 0.83 0.55 

Self-Advising 0.75 0.82 0.79 0.83 0.60 

Improvement 0.01 0.02 0.02 -0.01 0.049 

Hepatitis 

V-SVM 0.57 0.61 0.60 0.59 0.56 

Self-Advising 0.59 0.62 0.60 0.59 0.58 

Improvement 0.01 0.01 0 0 0.01 

Ionosphere 

V-SVM 0.90 0.92 0.92 0.90 0.88 

Self-Advising 0.90 0.92 0.92 0.90 0.88 

Improvement 0 0 0 0 0 

iris 

V-SVM 0.97 1 1 1 0.98 

Self-Advising 0.98 1 1 1 1 

Improvement 0.01 0 0 0 0.01 

Liver Disorders 

V-SVM 0.74 0.73 0.77 0.73 0.74 

Self-Advising 0.74 0.73 0.77 0.73 0.75 

Improvement 0 0.01 0.01 0.01 0.01 

Spambase 

V-SVM 0.92 0.91 0.92 0.92 0.92 

Self-Advising 0.93 0.93 0.93 0.93 0.93 

Improvement 0.01 0.01 0.01 0.01 0.01 

Teaching Assis-

tant  

V-SVM 0.72 0.67 0.77 0.71 0.77 

Self-Advising 0.79 0.77 0.84 0.78 0.82 

Improvement 0.07 0.10 0.06 0.07 0.05 

 

 

 



 

 

 

 143 

 

References 

1. Chokroverty, S., Overview of sleep & sleep disorders. Indian Journal of Medical Research, 2010. 131(2): p. 126-140. 

2. Gath, I., C. Feuerstein, and A. Geva, unsupervised classification and adaptive definition of sleep patterns. Pattern Recognition 

Letters, 1994. 15(10): p. 977-984. 

3. Cardoso, E., A. Batista, R. Rodrigues, M. Ortigueira, C. Barbara, C. Martinho, and R. Rato, A Contribution for the Automatic 

Sleep Classification Based on the Itakura-Saito Spectral Distance, in Emerging Trends in Technological Innovation, L.M. 

CamarinhaMatos, P. Pereira, and L. Ribeiro, Editors. p. 374-381. 

4. Moser, D., P. Anderer, G. Gruber, S. Parapatics, E. Loretz, M. Boeck, G. Kloesch, E. Heller, A. Schmidt, H. Danker-Hopfe, B. 

Saletu, J. Zeitlhofer, and G. Dorffner, Sleep Classification According to AASM and Rechtschaffen & Kales: Effects on Sleep 

Scoring Parameters. Sleep, 2009. 32(2): p. 139-149. 

5. Klink, M. and S.F. Quan, Prevalence of reported sleep disturbances in a general adult-population and their relationship to 

obstractive airways diseases. Chest, 1987. 91(4): p. 540-546. 

6. Chokroverty, S., C. Sudhansu, Md, Frcp, and Facp, Approach to the Patient with Sleep Complaints, in Sleep Disorders Medicine 

(Third Edition)2009, W.B. Saunders: Philadelphia. p. 255-274. 

7. Young, T.B., Epidemiology of daytime sleepiness: Definitions, symptomatology, and prevalence. Journal of Clinical Psychiatry, 

2004. 65: p. 12-16. 

8. Chokroverty, S., C. Sudhansu, Md, Frcp, and Facp, Sleep deprivation and sleepiness, in Sleep Disorders Medicine (Third 

Edition)2009, W.B. Saunders: Philadelphia. p. 22-28. 

9. Guilleminault, C., J. van den Hoed, and M. Mitler, Overview of the sleep apnea syndromes. In: C. Guilleminault and Wc Dement, 

Editors, Sleep apnea syndromes, Alan R Liss, New York. 1978: p. 1-12. 

10. Young, T.B., M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, Occurrence of sleep-disordered breathing among middle-

aged adults in the wisconsin sleep cohort study. American Review of Respiratory Disease, 1993. 147(4): p. A233-A233. 

11. Kryger, M.H., management of obstractive sleep-apnea. Clinics in Chest Medicine, 1992. 13(3): p. 481-492. 

12. Pradhan, B., Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test 

areas in Malaysia. Environmental Earth Sciences, 2011. 63(2): p. 329-349. 

13. Balabin, R.M. and E.I. Lomakina, Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for 

analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst, 2011. 136(8): p. 

1703-1712. 

14. Espejo, P.G., S. Ventura, and F. Herrera, A Survey on the Application of Genetic Programming to Classification. Ieee 

Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2010. 40(2): p. 121-144. 

15. Maier, H.R., A. Jain, G.C. Dandy, and K.P. Sudheer, Methods used for the development of neural networks for the prediction of 

water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 2010. 

25(8): p. 891-909. 

16. Harris, T.J.R. and F. McCormick, The molecular pathology of cancer. Nature Reviews Clinical Oncology, 2010. 7(5): p. 251-265. 

17. Gubbi, J., A. Khandoker, and M. Palaniswami. Classification of obstructive and central sleep apnea using wavelet packet 

analysis of ECG signals. in Computers in Cardiology, 2009. 2009. 

18. Guijarro-Berdiñas, B., E. Hernández-Pereira, and D. Peteiro-Barral, A mixture of experts for classifying sleep apneas. Expert 

Systems with Applications, 2012. 39(8): p. 7084-7092. 

19. Hang, L.-W., H.-H. Lin, J.Y. Chiang, H.-L. Wang, and Y.-F. Chen, Diagnosis of Severe Obstructive Sleep Apnea with Model 

Designed Using Genetic Algorithm and Ensemble Support Vector Machine. Appl. Math, 2013. 7(1S): p. 227S-336S. 

20. Khandoker, A.H., J. Gubbi, and M. Palaniswami, Automated Scoring of Obstructive Sleep Apnea and Hypopnea Events Using 

Short-Term Electrocardiogram Recordings. Ieee Transactions on Information Technology in Biomedicine, 2009. 13(6): p. 1057-

1067. 

21. Dickens, C., The posthumous papers of the pickwick club (1st ed.), Chapman and Hall, London. 1837. 

22. Flemons, W.W., D. Buysse, S. Redline, A. Pack, K. Strohl, J. Wheatley, T. Young, N. Douglas, P. Levy, W. McNicholas, J. 

Fleetham, D. White, W. Schmidt-Nowarra, D. Carley, J. Romaniuk, and F. Amer Acad Sleep Med Task, Sleep-related breathing 

disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Sleep, 1999. 

22(5): p. 667-689. 

23. Shelton, R.L. and J.F. Bosma, Maintenance of pharyngeal airway. Journal of Applied Physiology, 1962. 17(2): p. 209-&. 

24. Remmers, J.E., W.J. Degroot, E.K. Sauerland, and A.M. Anch, Pathogenesis of upper airway occlusion during sleep. Journal of 

Applied Physiology, 1978. 44(6): p. 931-938. 

25. Emin Tagluk, M., M. Akin, and N. Sezgin, ClassIfIcation of sleep apnea by using wavelet transform and artificial neural 

networks. Expert Systems with Applications. 37(2): p. 1600-1607. 



 

 

 

 144 

 

26. Whitelaw, W.A. and K.R. Burgess, Diagnosis of sleep apnoea: some critical issues. Indian Journal of Medical Research, 2010. 

131(2): p. 217-229. 

27. Stearns, J.D. and T.L. Stierer, Peri-operative identification of patients at risk for obstructive sleep apnea. Seminars in Anesthesia, 

Perioperative Medicine and Pain, 2007. 26(2): p. 73-82. 

28. Banno, K. and M.H. Kryger, Sleep apnea: Clinical investigations in humans. Sleep Medicine, 2007. 8(4): p. 400-426. 

29. Ward Flemons, W. and W.T. McNicholas, Clinical prediction of the sleep apnea syndrome. Sleep Medicine Reviews, 1997. 1(1): 

p. 19-32. 

30. Sin, D.D., F. Fitzgerald, J.D. Parker, G. Newton, J.S. Floras, and T.D. Bradley, Risk factors for central and obstructive sleep 

apnea 450 men and women with congestive heart failure. American Journal of Respiratory and Critical Care Medicine, 1999. 

160(4): p. 1101-1106. 

31. Young, T., P.E. Peppard, and D.J. Gottlieb, Epidemiology of obstructive sleep apnea - A population health perspective. American 

Journal of Respiratory and Critical Care Medicine, 2002. 165(9): p. 1217-1239. 

32. Peppard, P.E., T. Young, M. Palta, J. Dempsey, and J. Skatrud, Longitudinal study of moderate weight change and sleep-

disordered breathing. Jama-Journal of the American Medical Association, 2000. 284(23): p. 3015-3021. 

33. Tishler, P.V., E.K. Larkin, M.D. Schluchter, and S. Redline, Incidence of sleep-disordered breathing in an urban adult population 

- The relative importance of risk factors in the development of sleep-disordered breathing. Jama-Journal of the American Medical 

Association, 2003. 289(17): p. 2230-2237. 

34. Romero-Corral, A., S.M. Caples, F. Lopez-Jimenez, and V.K. Somers, Interactions between obesity and obstructive sleep apnea 

implications for treatment. Chest. 137(3): p. 711-719. 

35. Guilleminault, C., M. Partinen, K. Hollman, N. Powell, and R. Stoohs, Familial aggregates in obstractive sleep-apnea syndrome. 

Chest, 1995. 107(6): p. 1545-1551. 

36. Mathur, R. and N.J. Douglas, Family studies in patients with sleep-apnea hypopnea syndrome. Annals of Internal Medicine, 1995. 

122(3): p. 174-178. 

37. Redline, S., P.V. Tishler, T.D. Tosteson, J. Williamson, K. Kump, I. Browner, V. Ferrette, and P. Krejci, The familial aggregating 

of obstractive sleep-apnea. American Journal of Respiratory and Critical Care Medicine, 1995. 151(3): p. 682-687. 

38. Schwab, R.J., M. Pasirstein, R. Pierson, A. Mackley, R. Hachadoorian, R. Arens, G. Maislin, and A.I. Pack, Identification of 

upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. American Journal 

of Respiratory and Critical Care Medicine, 2003. 168(5): p. 522-530. 

39. Shintani, T., K. Asakura, and A. Kataura, Adenotonsillar hypertrophy and skeletal morphology of children with obstructive sleep 

apnea syndrome. Acta Oto-Laryngologica, 1996: p. 222-224. 

40. Hamans, E., E.A. Van Marck, W.A. De Backer, W. Creten, and P.H. Van de Heyning, Morphometric analysis of the uvula in 

patients with sleep-related breathing disorders. European Archives of Oto-Rhino-Laryngology, 2000. 257(4): p. 232-236. 

41. Do, K.L., H. Ferreyra, J.F. Healy, and T.M. Davidson, Does tongue size differ between patients with and without sleep-disordered 

breathing? Laryngoscope, 2000. 110(9): p. 1552-1555. 

42. Cakirer, B., M.G. Hans, G. Graham, J. Aylor, P.V. Tishler, and S. Redline, The relationship between craniofacial morphology 

and obstructive sleep apnea in whites and in African-Americans. American Journal of Respiratory and Critical Care Medicine, 

2001. 163(4): p. 947-950. 

43. Ayas, N.T., R. Brown, and S.A. Shea, Hypercapnia can induce arousal from sleep in the absence of altered respiratory 

mechanoreception. American Journal of Respiratory and Critical Care Medicine, 2000. 162(3): p. 1004-1008. 

44. Benlloch, E., P. Cordero, P. Morales, J.J. Soler, and V. Macian, Ventilatory pattern at rest and response to hypercapnic in 

patients with obstractive sleep-apnea syndrome. Respiration, 1995. 62(1): p. 4-9. 

45. Zamarron, C., F. Gude, Y. Otero, J.M. Alvarez, A. Golpe, and J.R. Rodriguez, Prevalence of sleep disordered breathing and sleep 

apnea in 50-to 70-year-old individuals - A survey. Respiration, 1999. 66(4): p. 317-322. 

46. Young, T., E. Shahar, F.J. Nieto, S. Redline, A.B. Newman, D.J. Gottlieb, J.A. Walsleben, L. Finn, P. Enright, J.M. Samet, and 

G. Sleep Heart Hlth Study Res, Predictors of sleep-disordered breathing in community-dwelling adults - The sleep heart health 

study. Archives of Internal Medicine, 2002. 162(8): p. 893-900. 

47. Young, T., J. Skatrud, and P.E. Peppard, Risk factors for obstructive sleep apnea in adults. Jama-Journal of the American Medical 

Association, 2004. 291(16): p. 2013-2016. 

48. Ancoli-Israel, S., P. Gehrman, D.F. Kripke, C. Stepnowsky, W. Mason, M. Cohen-Zion, and M. Marler, Long-term follow-up of 

sleep disordered breathing in older adults. Sleep Medicine, 2001. 2(6): p. 511-516. 

49. Young, T., M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, the occurrence of sleep-disordered breathing among middle-

aged adults. New England Journal of Medicine, 1993. 328(17): p. 1230-1235. 

50. Block, A.J., P.G. Boysen, J.W. Wynne, and L.A. Hunt, Sleep apnea, hypopnea and oxygen desaturation in normal subjects - 

strong male predominance. New England Journal of Medicine, 1979. 300(10): p. 513-517. 



 

 

 

 145 

 

51. O'Connor, C., K.S. Thornley, and P.J. Hanly, Gender differences in the polysomnographic features of obstructive sleep apnea. 

American Journal of Respiratory and Critical Care Medicine, 2000. 161(5): p. 1465-1472. 

52. Jordan, A.S. and R.D. McEvoy, Gender differences in sleep apnea: epidemiology, clinical presentation and pathogenic 

mechanisms. Sleep Medicine Reviews, 2003. 7(5): p. 377-389. 

53. Pillar, F., A. Malhotra, R. Fogel, J. Beauregard, R. Schnall, and D.P. White, Airway mechanics and ventilation in response to 

resistive loading during sleep - Influence of gender. American Journal of Respiratory and Critical Care Medicine, 2000. 162(5): p. 

1627-1632. 

54. Malhotra, A., Y.Q. Huang, R.B. Fogel, G. Pillar, J.K. Edwards, R. Kikinis, S.H. Loring, and D.P. White, The male predisposition 

to pharyngeal collapse - Importance of airway length. American Journal of Respiratory and Critical Care Medicine, 2002. 

166(10): p. 1388-1395. 

55. Young, T., R. Hutton, L. Finn, S. Badr, and M. Palta, The gender bias in sleep apnea diagnosis - Are women missed because they 

have different symptoms? Archives of Internal Medicine, 1996. 156(21): p. 2445-2451. 

56. Redline, S., K. Kump, P.V. Tishler, I. Browner, and V. Ferrette, Gender differences in sleep-disordered breathing in a 

community-based sample. American Journal of Respiratory and Critical Care Medicine, 1994. 149(3): p. 722-726. 

57. Smith, R., J. Ronald, K. Delaive, R. Walld, J. Manfreda, and M.H. Kryger, What are obstructive sleep apnea patients being 

treated for prior to this diagnosis? Chest, 2002. 121(1): p. 164-172. 

58. Teschler, H., M. BerthonJones, T. Wessendorf, H.J. Meyer, and N. Konietzko, Influence of moderate alcohol consumption on 

obstructive sleep apnoea with and without AutoSet(TM) nasal CPAP therapy. European Respiratory Journal, 1996. 9(11): p. 

2371-2377. 

59. Sahlin, C., K.A. Franklin, H. Stenlund, and E. Lindberg, Sleep in women: Normal values for sleep stages and position and the 

effect of age, obesity, sleep apnea, smoking, alcohol and hypertension. Sleep Medicine, 2009. 10(9): p. 1025-1030. 

60. Vakulin, A., S.D. Baulk, P.G. Catcheside, N.A. Antic, C.J. van den Heuvel, J. Dorrian, and R.D. McEvoy, Effects of alcohol and 

sleep restriction on simulated driving performance in untreated patients with obstructive sleep apnea. Annals of Internal 

Medicine, 2009. 151(7): p. 447-W145. 

61. Scanlan, M.F., T. Roebuck, P.J. Little, J.R. Redman, and M.T. Naughton, Effect of moderate alcohol upon obstructive sleep 

apnoea. European Respiratory Journal, 2000. 16(5): p. 909-913. 

62. Balaguer, C., A. Palou, and A. Alonso-Fernandez, Smoking and Sleep Disorders. Archivos De Bronconeumologia, 2009. 45(9): p. 

449-458. 

63. Scrima, L., M. Broudy, K.N. Nay, and M.A. Cohn, Increased severity of obstractive sleep-apnea after bedtime alcohol ingestion- 

diagnostic potential and proposed mechanism of action Sleep, 1982. 5(4): p. 318-328. 

64. Taasan, V.C., A.J. Block, P.G. Boysen, and J.W. Wynne, Alcohol increases sleep-apnea and oxygen desaturation in 

asymptomatic men. American Journal of Medicine, 1981. 71(2): p. 240-245. 

65. Davies, R.J.O., N.J. Ali, and J.R. Stradling, Neck circumference and other clinica-features in the diagnosis of the obstractive 

sleep-apnea syndrome. Thorax, 1992. 47(2): p. 101-105. 

66. Mortimore, I.L., I. Marshall, P.K. Wraith, R.J. Sellar, and N.J. Douglas, Neck and total body fat deposition in nonobese and obese 

patients with sleep apnea compared with that in control subjects. American Journal of Respiratory and Critical Care Medicine, 

1998. 157(1): p. 280-283. 

67. Sauter, Asenbaum, Popovic, Bauer, Lamm, Klösch, and Zeitlhofer, Excessive daytime sleepiness in patients suffering from 

different levels of obstructive sleep apnoea syndrome. Journal of Sleep Research, 2000. 9(3): p. 293-301. 

68. Engleman, H.M., W.S.J. Hirst, and N.J. Douglas, Under reporting of sleepiness and driving impairment in patients with sleep 

apnoea hypopnoea syndrome. Journal of Sleep Research, 1997. 6(4): p. 272-275. 

69. Hoffstein, V., Snoring, in Principles and practice of sleep medicine, M.H. Kryger, T. Roth, and D.W. C., Editors. 2000, Saunders: 

Philadelphia, PA: W.B. p. 813-826. 

70. Flemons, W.W., W.A. Whitelaw, R. Brant, and J.E. Remmers, Likelihood ratios for a sleep-apnea clinical-prediction rule. 

American Journal of Respiratory and Critical Care Medicine, 1994. 150(5): p. 1279-1285. 

71. Viner, S., J.P. Szalai, and V. Hoffstein, Are history and physical - examination a good screening- test for sleep-apnea. Annals of 

Internal Medicine, 1991. 115(5): p. 356-359. 

72. Gottlieb, D.J., Q. Yao, S. Redline, T. Ali, M.W. Mahowald, and G. Sleep Heart Hlth Study Res, Does snoring predict sleepiness 

independently of apnea and hypopnea frequency? American Journal of Respiratory and Critical Care Medicine, 2000. 162(4): p. 

1512-1517. 

73. Ferreira, S., J. Winck, P. Bettencourt, and F. Rocha-Goncalves, Heart failure and sleep apnoea: To sleep perchance to dream. 

European Journal of Heart Failure, 2006. 8(3): p. 227-236. 

74. Kales, A., R.J. Cadieux, E.O. Bixler, C.R. Soldatos, A. Velabueno, C.A. Misoul, and T.W. Locke, Severe obstractive sleep-

apnea  .1. onset, clinical course, an characteristics. Journal of Chronic Diseases, 1985. 38(5): p. 419-425. 



 

 

 

 146 

 

75. Findley, L.J., M.E. Unverzagt, and P.M. Suratt, Automobile accidents involving patients with obstractive sleep-apnea. American 

Review of Respiratory Disease, 1988. 138(2): p. 337-340. 

76. George, C.F., P.W. Nickerson, P.J. Hanly, T.W. Millar, and M.H. Kryger, Sleep-apnea patients have more automobile accidents. 

Lancet, 1987. 2(8556): p. 447-447. 

77. Kapur, V., D.K. Blough, R.E. Sandblom, R. Hert, J.B. de Maine, S.D. Sullivan, and B.M. Psaty, The medical cost of undiagnosed 

sleep apnea. Sleep, 1999. 22(6): p. 749-755. 

78. Findley, L.J. and P.M. Suratt, Serious motor vehicle crashes: the cost of untreated sleep apnoea. Thorax, 2001. 56(7): p. 505-505. 

79. Wittmann, V. and D.O. Rodenstein, Health care costs and the sleep apnea syndrome. Sleep Medicine Reviews, 2004. 8(4): p. 

269-279. 

80. Mar, J., J.R. Rueda, J. Duran-Cantolla, C. Schechter, and J. Chilcott, The cost-effectiveness of nCPAP treatment in patients with 

moderate-to-severe obstructive sleep apnoea. European Respiratory Journal, 2003. 21(3): p. 515-522. 

81. Jurado Gamez, B., J. Redel Montero, L. Munoz Cabrera, M.C. Fernandez Marin, E. Munoz Gomariz, M.A. Martin Perez, and A. 

Cosano Povedano, Cost-effectiveness and degree of satisfaction with home sleep monitoring in patients with symptoms of sleep 

apnea. Archivos De Bronconeumologia, 2007. 43(11): p. 605-610. 

82. Alvarez, M.D., J.T. Santos, J.C. Guevara, M.G. Martinez, L.R. Pascual, J.L.V. Banuelos, and A.M. Cabello, Reliability of home 

respiratory polygraphy for the diagnosis of sleep apnea-hypopnea syndrome: Analysis of costs. Archivos De Bronconeumologia, 

2008. 44(1): p. 22-28. 

83. Amer Acad Sleep, M., Cost justification for diagnosis and treatment of obstructive sleep apnea. Sleep, 2000. 23(8): p. 1017-1018. 

84. Ronald, J., K. Delaive, L. Roos, J. Manfreda, A. Bahammam, and M.H. Kryger, Health care utilization in the 10 years prior to 

diagnosis in obstructive sleep apnea syndrome patients. Sleep, 1999. 22(2): p. 225-229. 

85. Ball, E.M., R.D. Simon, A.A. Tall, M.B. Banks, G. NinoMurcia, and W.C. Dement, Diagnosis and treatment of sleep apnea 

within the community - The Walla Walla project. Archives of Internal Medicine, 1997. 157(4): p. 419-424. 

86. Kryger, M.H., L. Roos, K. Delaive, R. Walld, and J. Horrocks, Utilization of health care services in patients with severe 

obstructive sleep apnea. Sleep, 1996. 19(9): p. S111-S116. 

87. Bearpark, H., L. Elliott, R. Grunstein, S. Cullen, H. Schneider, W. Althaus, and C. Sullivan, Snoring and sleep-apnea - a 

population study in Australian men. American Journal of Respiratory and Critical Care Medicine, 1995. 151(5): p. 1459-1465. 

88. Penzel, T., J. McNames, P. de Chazal, B. Raymond, A. Murray, and G. Moody, Systematic comparison of different algorithms for 

apnoea detection based on electrocardiogram recordings. Medical & Biological Engineering & Computing, 2002. 40(4): p. 402-

407. 

89. Li, Y.X., V. Chongsuvivatwong, A. Geater, and A. Liu, Exhaled breath condensate cytokine level as a diagnostic tool for 

obstructive sleep apnea syndrome. Sleep Medicine, 2009. 10(1): p. 95-103. 

90. Heruti, R., T. Shochat, D. Tekes-Manova, I. Ashkenazi, and D. Justo, Association between erectile dysfunction and sleep 

disorders measured by self-assessment questionnaires in adult men. Journal of Sexual Medicine, 2005. 2(4): p. 543-550. 

91. Abrishami, A., A. Khajehdehi, and F. Chung, A systematic review of screening questionnaires for obstructive sleep apnea. 

Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie. 57(5): p. 423-438. 

92. Behbehani, K., F.C. Yen, J.R. Burk, E.A. Lucas, and J.R. Axe, Automatic-control of airway pressure for treatment of obstractive 

sleep-apnea. Ieee Transactions on Biomedical Engineering, 1995. 42(10): p. 1007-1016. 

93. Alshaer, H., G.R. Fernie, E. Sejdic, and T.D. Bradley. Adaptive segmentation and normalization of breathing acoustic data of 

subjects with obstructive sleep apnea. in Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International 

Conference. 2009. 

94. Sola-Soler, J., R. Jane, J.A. Fiz, and J. Morera. Automatic classification of subjects with and without Sleep Apnea through snoring 

analysis. in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. 

2007. 

95. Sola-Soler, J., R. Jane, J.A. Fiz, and J. Morera. Pitch analysis in snoring signals from simple snorers and patients with obstructive 

sleep apnea. in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the 

Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint. 2002. 

96. Abeyratne, U.R., C.K.K. Patabandi, and K. Puvanendran. Pitch-jitter analysis of snoring sounds for the diagnosis of sleep apnea. 

in Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. 

2001. 

97. Ng, A.K., K.Y. Wong, C.H. Tan, and T.S. Koh. Bispectral analysis of snore signals for obstructive sleep apnea detection. in 

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. 2007. 

98. Ghaemmaghami, H., U.R. Abeyratne, and C. Hukins. Normal probability testing of snore signals for diagnosis of obstructive 

sleep apnea. in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 

2009. 



 

 

 

 147 

 

99. Ng, A.K., T.S. Koh, E. Baey, and K. Puvanendran. Speech-like analysis of snore signals for the detection of obstructive sleep 

apnea. in Biomedical and Pharmaceutical Engineering, 2006. ICBPE 2006. International Conference on. 2006. 

100. Sola-Soler, J., R. Jane, J.A. Fiz, and J. Morera. Variability of snore parameters in time and frequency domains in snoring subjects 

with and without Obstructive Sleep Apnea. in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th 

Annual International Conference of the. 2005. 

101. Mikami, T. Detecting nonlinear properties of snoring sounds for sleep apnea diagnosis. in Bioinformatics and Biomedical 

Engineering, 2008. ICBBE 2008. The 2nd International Conference on. 2008. 

102. Sola-Soler, J., R. Jane, J.A. Fiz, and J. Morera. Spectral envelope analysis in snoring signals from simple snorers and patients 

with Obstructive Sleep Apnea. in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual 

International Conference of the IEEE. 2003. 

103. Ng, A.K. and T.S. Koh. Using psychoacoustics of snoring sounds to screen for obstructive sleep apnea. in Engineering in 

Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. 2008. 

104. Emoto, T., U.R. Abeyratne, M. Akutagawa, H. Nagashino, and Y. Kinouchi. Feature extraction for snore sound via neural 

network processing. in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of 

the IEEE. 2007. 

105. Penzel, T., R. Fricke, H.F. Becker, R. Conradt, A. Jerrentrup, and J.H. Peter, Comparison of peripheral arterial tonometry and 

invasive blood pressure in obstructive sleep apnea. Sleep, 2001. 24: p. 450. 

106. Penzel, T., K. Kesper, T. Ploch, H.F. Becker, and C. Vogelmeier. Ambulatory Recording of Sleep Apnea Using Peripheral 

Arterial Tonometry. in Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of 

the IEEE. 2004. 

107. Castiglioni, P., M.R. Bonsignore, G. Insalaco, G. Parati, and M. Di Rienzo. Signal processing procedures for the evaluation of the 

cardiovascular effects in the obstructive sleep apnea syndrome. in Computers in Cardiology 2001. 2001. 

108. Nazeran, H., A. Almas, K. Behbehani, J. Burk, and E. Lucas. A fuzzy inference system for detection of obstructive sleep apnea. in 

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. 2001. 

109. Fu-Chung, Y., K. Behbehani, E.A. Lucas, J.R. Burk, and J.R. Axe, A noninvasive technique for detecting obstructive and central 

sleep apnea. Biomedical Engineering, IEEE Transactions on, 1997. 44(12): p. 1262-1268. 

110. Derong, L., P. Zhongyu, and S.R. Lloyd, A Neural Network Method for Detection of Obstructive Sleep Apnea and Narcolepsy 

Based on Pupil Size and EEG. Neural Networks, IEEE Transactions on, 2008. 19(2): p. 308-318. 

111. Falie, D., L. David, and M. Ichim. Statistical algorithm for detection and screening sleep apnea. in Signals, Circuits and Systems, 

2009. ISSCS 2009. International Symposium on. 2009. 

112. Nishida, Y., T. Mori, T. Sato, and S. Hirai. The surrounding sensor approach - application to sleep apnea syndrome diagnosis 

based on image processing. in Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE 

International Conference on. 1999. 

113. Broadway, M., L. Matthews, and M. Kwiatkowska. A fuzzy logic approach to modeling physical activity levels of obstructive 

sleep apnea patients. in Fuzzy Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of the North American. 

2008. 

114. Ching-Wei, W. and A. Hunter. A robust pose matching algorithm for covered body analysis for sleep apnea. in BioInformatics 

and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on. 2008. 

115. Yadollahi, A. and Z. Moussavi. Apnea detection by acoustical means. in Engineering in Medicine and Biology Society, 2006. 

EMBS '06. 28th Annual International Conference of the IEEE. 2006. 

116. Al-Ashmouny, K.M., A.A. Morsy, S.F. Loza, and Ieee, Sleep apnea detection and classification using fuzzy logic: Clinical 

evaluation, in 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-

72005. p. 6132-6135. 

117. Al-Ashmouny, K.M., H.M. Hamed, A.A. Morsy, and Ieee, FPGA-based sleep apnea screening device for home monitoring. 2006 

28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-152006. 566-569. 

118. Gil, E., J. María Vergara, and P. Laguna, Detection of decreases in the amplitude fluctuation of pulse photoplethysmography 

signal as indication of obstructive sleep apnea syndrome in children. Biomedical Signal Processing and Control, 2008. 3(3): p. 

267-277. 

119. Iida, S., M. Kogo, S. Ishii, H. Kohara, and T. Matsuya, Changes of arterial oxygen saturation (SpO2) following push-back 

operation. International Journal of Oral and Maxillofacial Surgery, 1998. 27(6): p. 425-427. 

120. Epstein, L.J.E. and G.R. Dorlac, Cost-effectiveness analysis of nocturnal oximetry as a method of screening for sleep apnea-

hypopnea syndrome. Chest, 1998. 113(1): p. 97-103. 

121. Yadollahi, A. and Z. Moussavi. Acoustic obstructive sleep apnea detection. in Engineering in Medicine and Biology Society, 

2009. EMBC 2009. Annual International Conference of the IEEE. 2009. 



 

 

 

 148 

 

122. Álvarez, D., R. Hornero, M. García, F. del Campo, and C. Zamarrón, Improving diagnostic ability of blood oxygen saturation 

from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artificial Intelligence 

in Medicine, 2007. 41(1): p. 13-24. 

123. Hornero, R., D. Alvarez, D. Abasolo, C. Gomez, F. del Campo, and C. Zamarron. Approximate entropy from overnight pulse 

oximetry for the obstructive sleep apnea syndrome. in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 

27th Annual International Conference of the. 2005. 

124. Alvarez, D., R. Hornero, J.V. Marcos, F. del Campo, and M. Lopez. Obstructive Sleep Apnea Detection Using Clustering 

Classification of Nonlinear Features from Nocturnal Oximetry. in Engineering in Medicine and Biology Society, 2007. EMBS 

2007. 29th Annual International Conference of the IEEE. 2007. 

125. Victor Marcos, J., R. Hornero, D. Alvarez, F. Del Campo, C. Zamarron, and M. Lopez. Single layer network classifiers to assist 

in the detection of obstructive sleep apnea syndrome from oximetry data. in Engineering in Medicine and Biology Society, 2008. 

EMBS 2008. 30th Annual International Conference of the IEEE. 2008. 

126. Marcos, J.V., R. Hornero, D. Alvarez, F. Del Campo, and C. Zamarron. A classification algorithm based on spectral features 

from nocturnal oximetry and support vector machines to assist in the diagnosis of obstructive sleep apnea. in Engineering in 

Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009. 

127. Alvarez, D., R. Hornero, M. Garcia, F.D. Campo, C. Zamarron, and M. Lopez. Cross Approximate Entropy Analysis of Nocturnal 

Oximetry Signals in the Diagnosis of the Obstructive Sleep Apnea Syndrome. in Engineering in Medicine and Biology Society, 

2006. EMBS '06. 28th Annual International Conference of the IEEE. 2006. 

128. Lee, Y.K., M. Bister, P. Blanchfield, and Y.M. Salleh. Automated detection of obstructive apnea and hypopnea events from 

oxygen saturation signal. in Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International 

Conference of the IEEE. 2004. 

129. Nobuyuki, A., N. Yasuhiro, T. Taiki, Y. Miyae, M. Kiyoko, and H. Terumasa. Trial of measurement of sleep apnea syndrome 

with sound monitoring and SpO2 at home. in e-Health Networking, Applications and Services, 2009. Healthcom 2009. 11th 

International Conference on. 2009. 

130. Burgos, A., A. Goni, A. Illarramendi, and J. Bermudez. SAMON: Sleep apnea monitoring. in Bioinformatics and Biomedicine 

Workshop, 2009. BIBMW 2009. IEEE International Conference on. 2009. 

131. Kaimakamis, E., C. Bratsas, L. Sichletidis, C. Karvounis, and N. Maglaveras. Screening of patients with obstructive sleep Apnea 

syndrome using C4.5 algorithm based on non linear analysis of respiratory signals during sleep. in Engineering in Medicine and 

Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009. 

132. Otero, A., P. Felix, M.R. Alvarez, and C. Zamarron. Fuzzy structural algorithms to identify and characterize apnea and hypopnea 

episodes. in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. 

2008. 

133. Burgos, A., A. Goni, A. Illarramendi, and J. Bemudez, Real-time detection of apneas on a PDA. Information Technology in 

Biomedicine, IEEE Transactions on, 2009. PP(99): p. 1-1. 

134. Otero, A., C.O.S. Sorzano, P. Felix, M.R. Alvarez, and C. Zamarron. A fuzzy constraint satisfaction approach to identify and 

characterize apnea episodes. in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International 

Conference on. 2008. 

135. Escola, H., P. Gaillard, M. Jobert, and C. Tismer, Automatic detection of ocular movements during sleep with application to a 

sleep-disorders study, in Proceedings of the Annual International Conference of the Ieee Engineering in Medicine and Biology 

Society, Vol 14, Pts 1-7, J.P. Morucci, R. Plonsey, J.L. Coatrieux, and S. Laxminarayan, Editors. 1992. p. 2738-2739. 

136. Findley, L.J., S.C. Wilhoit, and P.M. Suratt, Apnea duration and hypoxemia during REM-sleep in patients with obstractive sleep-

apnea. Chest, 1985. 87(4): p. 432-436. 

137. Brownell, L.G., P. West, P. Sweatman, J.C. Acres, and M.H. Kryger, Protriptyline in obstractive sleep-apnea - a double-blind 

trial. New England Journal of Medicine, 1982. 307(17): p. 1037-1042. 

138. Smith, P.L., E.F. Haponik, R.P. Allen, and E.R. Bleecker, The effects of protriptyline in sleep-disordered breathing. American 

Review of Respiratory Disease, 1983. 127(1): p. 8-13. 

139. Orr, W.C., R.J. Martin, N.K. Imes, R.M. Rogers, and M.L. Stahl, Hypersomnolent and non-hypersomnolent patients with upper 

airway- obstraction during sleep. Chest, 1979. 75(4): p. 418-422. 

140. Siddiqui, F., A.S. Walters, D. Goldstein, M. Lahey, and H. Desai, Half of patients with obstructive sleep apnea have a higher 

NREM AHI than REM AHI. Sleep Medicine, 2006. 7(3): p. 281-285. 

141. Loadsman, J.A. and I. Wilcox, Is obstructive sleep apnoea a rapid eye movement-predominant phenomenon? British Journal of 

Anaesthesia, 2000. 85(3): p. 354-358. 

142. Guilleminault, C., M.W. Hill, F.B. Simmons, and W.C. Dement, Obstractive sleep apnea - electromyographic and fiberoptic 

studies. Experimental Neurology, 1978. 62(1): p. 48-67. 



 

 

 

 149 

 

143. Fabbri, M., F. Pizza, E. Magosso, M. Ursino, S. Contardi, F. Cirignotta, F. Provini, and P. Montagna, Automatic slow eye 

movement (SEM) detection of sleep onset in patients with obstructive sleep apnea syndrome (OSAS): Comparison between 

multiple sleep latency test (MSLT) and maintenance of wakefulness test (MWT). Sleep Medicine. 11(3): p. 253-257. 

144. Abdal, H., J.J. Pizzimenti, and C.C. Purvis, The eye in sleep apnea syndrome. Sleep Medicine, 2006. 7(2): p. 107-115. 

145. Estrada, E., H. Nazeran, P. Nava, K. Behbehani, J. Burk, E. Lucas, and Ieee, Itakura Distance: A useful similarity measure 

between EEG and EOG signals in computer-aided classification of sleep stages, in 2005 27th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society, Vols 1-72005. p. 1189-1192. 

146. Mendelson, Y., Pulse oximetry-theory and applications for noninvasive monitoring. Clinical Chemistry, 1992. 38(9): p. 1601-

1607. 

147. Nitzan, M., A. Babchenko, B. Khanokh, and D. Landau, The variability of the photoplethysmographic signal - a potential method 

for the evaluation of the autonomic nervous system. Physiological Measurement, 1998. 19(1): p. 93-102. 

148. Somers, V.K., M.E. Dyken, M.P. Clary, and F.M. Abboud, Sympathetic neural mechanisms in obstractive sleep-apnea. Journal of 

Clinical Investigation, 1995. 96(4): p. 1897-1904. 

149. Imadojemu, V.A., K. Gleeson, K.S. Gray, L.I. Sinoway, and U.A. Leuenberger, Obstructive apnea during sleep is associated with 

peripheral vasoconstriction. American Journal of Respiratory and Critical Care Medicine, 2002. 165(1): p. 61-66. 

150. Allen, J., Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007. 

28(3): p. R1-R39. 

151. Gil, E., R. Bailon, J.M. Vergara, and P. Laguna, PTT variability for discrimination of sleep apnea related decreases in the 

amplitude fluctuations of PPG signal in children. Ieee Transactions on Biomedical Engineering. 57(5): p. 1079-1088. 

152. Gil, E., M. Mendez, J.M. Vergara, S. Cerutti, A.M. Bianchi, and P. Laguna, Discrimination of Sleep-Apnea-Related Decreases in 

the Amplitude Fluctuations of PPG Signal in Children by HRV Analysis. Ieee Transactions on Biomedical Engineering, 2009. 

56(4): p. 1005-1014. 

153. Gil, E., J.M. Vergara, and P. Laguna, Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal 

as indication of obstructive sleep apnea syndrome in children. Biomedical Signal Processing and Control, 2008. 3(3): p. 267-277. 

154. Corthout, J., S. Van Huffel, M.O. Mendez, A.M. Bianchi, T. Penzel, S. Cerutti, and Ieee, Automatic screening of Obstructive 

Sleep Apnea from the ECG based on Empirical Mode Decomposition and Wavelet Analysis, in 2008 30th Annual International 

Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-82008. p. 3608-3611. 

155. Camm, A.J., M. Malik, J.T. Bigger, G. Breithardt, S. Cerutti, R.J. Cohen, P. Coumel, E.L. Fallen, H.L. Kennedy, R.E. Kleiger, F. 

Lombardi, A. Malliani, A.J. Moss, J.N. Rottman, G. Schmidt, P.J. Schwartz, and D.H. Singer, Heart rate variability. Standards of 

measurement, physiological interpretation, and clinical use. European Heart Journal, 1996. 17(3): p. 354-381. 

156. Malliani, A., The pattern of sympathovagal balance explored in the frequency domain. News in Physiological Sciences, 1999. 14: 

p. 111-117. 

157. Bonnet, M.H. and D.L. Arand, Heart rate variability: Sleep stage, time of night, and arousal influences. Electroencephalography 

and Clinical Neurophysiology, 1997. 102(5): p. 390-396. 

158. Mendez, M.O., A.M. Bianchi, M. Matteucci, S. Cerutti, and T. Penzel, Sleep Apnea Screening by Autoregressive Models From a 

Single ECG Lead. Ieee Transactions on Biomedical Engineering, 2009. 56(12): p. 2838-2850. 

159. Penzel, T., J.W. Kantelhardt, L. Grote, J.H. Peter, and A. Bunde, Comparison of detrended fluctuation analysis and spectral 

analysis for heart rate variability in sleep and sleep apnea. Ieee Transactions on Biomedical Engineering, 2003. 50(10): p. 1143-

1151. 

160. Penzel, T., J.W. Kantelhardt, H.F. Becker, J.H. Peter, and A. Bunde, Detrended fluctuation analysis and spectral analysis of heart 

rate variability for sleep stage and sleep apnea identification, in Computers in Cardiology 2003, Vol 30, A. Murray, Editor 2003. 

p. 307-310. 

161. Al-Angari, H.M. and A.V. Sahakian, Use of sample entropy approach to study heart rate variability in obstructive sleep apnea 

syndrome. Ieee Transactions on Biomedical Engineering, 2007. 54(10): p. 1900-1904. 

162. Khandoker, A.H., M. Palaniswami, and C.K. Karmakar, Support vector machines for automated recognition of obstructive sleep 

apnea syndrome from ECG recordings. Ieee Transactions on Information Technology in Biomedicine, 2009. 13(1): p. 37-48. 

163. de Chazal, P., C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, and M. O'Malley, Automated processing of the single-lead 

electrocardiogram for the detection of obstructive sleep apnoea. Biomedical Engineering, IEEE Transactions on, 2003. 50(6): p. 

686-696. 

164. Khushaba, R.N., A. Al-Ani, and A. Al-Jumaily, Orthogonal fuzzy neighborhood discriminant analysis for multifunction 

myoelectric hand control. IEEE Trans Biomed Eng. 57(6): p. 1410-9. 

165. Kurtz, D., J. Krieger, and J.C. Stierle, EMG activity of cricothyroid and chin muscles during wakefulness and sleeping in sleep 

apnea syndrome. Electroencephalography and Clinical Neurophysiology, 1978. 45(6): p. 777-784. 



 

 

 

 150 

 

166. Chua, E.C.P., D.G. McSharry, W.T. McNicholas, and M.M. Lowery. Towards a genioglossus surface EMG model of obstructive 

sleep apnea. in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 

2009. 

167. Blumen, M.B., A.P. de La Sota, M.A. Quera-Salva, B. Frachet, F. Chabolle, and F. Lofaso, Tongue mechanical characteristics 

and genioglossus muscle EMG in obstructive sleep apnoea patients. Respiratory Physiology & Neurobiology, 2004. 140(2): p. 

155-164. 

168. ASDA, EEG arousals-scoring rules and examples Sleep, 1992. 15(2): p. 174-184. 

169. Black, J.E., C. Guilleminault, I.M. Colrain, and O. Carrillo, Upper airway resistance syndrome - Central 

electroencephalographic power and changes in breathing effort. American Journal of Respiratory and Critical Care Medicine, 

2000. 162(2): p. 406-411. 

170. Redmond, S.J. and C. Heneghan, Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea. Biomedical 

Engineering, IEEE Transactions on, 2006. 53(3): p. 485-496. 

171. Sugi, T., F. Kawana, and M. Nakamura, Automatic EEG arousal detection for sleep apnea syndrome. Biomedical Signal 

Processing and Control, 2009. 4(4): p. 329-337. 

172. Schmidtnowara, W., A. Lowe, L. Wiegand, R. Cartwright, F. Perezguerra, and S. Menn, Oral appliaces for the treatment of 

snoring and obstractive sleep-apnea - a review. Sleep, 1995. 18(6): p. 501-510. 

173. Garvey, J.F. and W.T. McNicholas, Continuous positive airway pressure therapy: New generations. Indian Journal of Medical 

Research. 131(2): p. 259-266. 

174. Baptista, P.M., Surgery for obstructive sleep apnea. Anales Del Sistema Sanitario De Navarra, 2007. 30: p. 75-88. 

175. Verse, T., A. Baisch, J.T. Maurer, B.A. Stuck, and K. Hormann, Multilevel surgery for obstructive sleep apnea: Short-term 

results. Otolaryngology-Head and Neck Surgery, 2006. 134(4): p. 571-577. 

176. Burstein, F.D., S.R. Cohen, P.H. Scott, G.R. Teague, G.L. Montgomery, and A.V. Kattos, Surgical therapy for severe refractory 

sleep-apnea in infants and children- application of the airway zone concept. Plastic and Reconstructive Surgery, 1995. 96(1): p. 

34-41. 

177. Hochban, W., R. Conradt, U. Brandenburg, J. Heitmann, and J.H. Peter, Surgical maxillofacial treatment of obstructive sleep 

apnea. Plastic and Reconstructive Surgery, 1997. 99(3): p. 619-626. 

178. Sullivan, C.E., M. Berthonjones, F.G. Issa, and L. Eves, Reversal of obstractive sleep-apnea by continuos positive airway 

pressure applied through the nares. Lancet, 1981. 1(8225): p. 862-865. 

179. Boisteanu, D., R. Vasiluta, A. Cernomaz, and C. Mucenica, Home monitoring of sleep apnea treatment: benefits of intelligent 

CPAP devices. At-Equal 2009: 2009 Ecsis Symposium on Advanced Technologies for Enhanced Quality of Life: Lab-Rs and 

Artiped 2009, ed. A. Stoica, T. Arslan, T. Huntsberger, P. Botez, A.T. Erdogan, and A.O. ElRayis2009. 77-80. 

180. Hertegonne, K.B., J. Volna, S. Portier, R. De Pauw, G. Van Maele, and D.A. Pevernagie, Titration procedures for nasal CPAP: 

Automatic CPAP or prediction formula? Sleep Medicine, 2008. 9(7): p. 732-738. 

181. Hussain, S.F., L. Love, H. Burt, and J.A. Fleetham, A randomized trial of auto-titrating CPAP and fixed CPAP in the treatment of 

obstructive sleep apnea-hypopnea. Respiratory Medicine, 2004. 98(4): p. 330-333. 

182. Shi, H.B., L. Cheng, M. Nakayama, Y. Kakazu, M. Yin, A. Miyoshi, and S. Komune, Effective comparison of two auto-CPAP 

devices for treatment of obstructive sleep apnea based on poly somnographic evaluation. Auris Nasus Larynx, 2005. 32(3): p. 

237-241. 

183. Huang, W.-C., Y.-M. Hua, C.-M. Lee, C.-C. Chang, and Y.-S. Yuh, Comparison between bubble CPAP and ventilator-derived 

CPAP in rabbits. Pediatrics & Neonatology, 2008. 49(6): p. 223-229. 

184. Luo, Y.M., Z.H. Qiu, H.D. Wu, J. Steier, C. Jolley, N.S. Zhong, J. Moxham, and M.I. Polkey, Neural drive during continuous 

positive airway pressure (CPAP) and pressure relief CPAP. Sleep Medicine, 2009. 10(7): p. 731-738. 

185. Mulgrew, A.T., R. Cheema, J. Fleetham, C.F. Ryan, and N.T. Ayas, Efficacy and patient satisfaction with autoadjusting CPAP 

with variable expiratory pressure vs standard CPAP: a two-night randomized crossover trial. Sleep and Breathing, 2007. 11(1): 

p. 31-37. 

186. Aloia, M.S., M. Stanchina, J.T. Arnedt, A. Malhotra, and R.P. Millman, Treatment adherence and outcomes in flexible vs 

standard continuous positive airway pressure therapy. Chest, 2005. 127(6): p. 2085-2093. 

187. Nilius, G., A. Happel, U. Domanski, and K.H. Ruhle, Pressure-relief continuous positive airway pressure vs constant continuous 

positive airway pressure - A comparison of efficacy and compliance. Chest, 2006. 130(4): p. 1018-1024. 

188. Fleetham, J.A., J.L. Geoffrey, and D.S. Steven, Sleep apnea |Oral appliances, in Encyclopedia of Respiratory Medicine2006, 

Academic Press: Oxford. p. 67-70. 

189. Cartwright, R., D. Stefoski, D. Caldarelli, H. Kravitz, S. Knight, S. Lloyd, and C. Samelson, Toward a treatment logic for sleep-

apnea- the place of the tongue retaining device. Behaviour Research and Therapy, 1988. 26(2): p. 121-126. 

190. Soll, B.A. and P.T. George, Treatment of obstractive sleep-apnea with a nocturnal airway-patency. New England Journal of 

Medicine, 1985. 313(6): p. 386-387. 



 

 

 

 151 

 

191. Schmidtnowara, W.W., T.E. Meade, and M.B. Hays, Treatment of snoring and obstractive sleep-apnea with a dental orthosis. 

Chest, 1991. 99(6): p. 1378-1385. 

192. Pancherz, H., The herbst appliance - its biologic effects and clinical use. American Journal of Orthodontics and Dentofacial 

Orthopedics, 1985. 87(1): p. 1-20. 

193. Eveloff, S.E., C.L. Rosenberg, C.C. Carlisle, and R.P. Millman, Efficacy of a herbst mandibular advancement device in 

obstractive sleep-apnea. American Journal of Respiratory and Critical Care Medicine, 1994. 149(4): p. 905-909. 

194. Knudson, R.C., J.B. Meyer, and R. Montalvo, Sleep-apnea prosthesis for dentate patients. Journal of Prosthetic Dentistry, 1992. 

68(1): p. 109-111. 

195. Knudson, R.C. and J.B. Meyer, Managing obstractive sleep-apnea. Journal of the American Dental Association, 1993. 124(8): p. 

75-78. 

196. Bonham, P.E., G.F. Currier, W.C. Orr, J. Othman, and R.S. Nanda, The effect of a modified functional appliance on obstractive 

sleep-apnea. American Journal of Orthodontics and Dentofacial Orthopedics, 1988. 94(5): p. 384-392. 

197. Haze, J., Treatment of obstructive sleep apnea with the equalizer appliance. J N J Dent Assoc., 1987. 58(1): p. 34-36. 

198. Pang, K.P. and D.J. Terris, Tongue suspension suture in obstructive sleep apnea. Operative Techniques in Otolaryngology-Head 

and Neck Surgery, 2006. 17(4): p. 252-256. 

199. Fujita, S., W. Conway, F. Zorick, and T. Roth, Surgical-correction of anatomic abnormalities in obstractive sleep-apnea 

syndrome -  UVULOPALATOPHARYNGOPLASTY. Otolaryngology-Head and Neck Surgery, 1981. 89(6): p. 923-934. 

200. Samir, M., A. Adly, and M. Elshinawy, Tongue base assessment in obstructive sleep apnea. International Congress Series, 2003. 

1240: p. 753-758. 

201. Miki, H., W. Hida, T. Chonan, Y. Kikuchi, and T. Takishima, Effects of submental electrical-stimulation during sleep on upper 

airway patency in patients with obstractive sleep-apnea. American Review of Respiratory Disease, 1989. 140(5): p. 1285-1289. 

202. Edmonds, L.C., B.K. Daniels, A.W. Stanson, P.F. Sheedy, and J.W. Shepard, The effect of transcutaneous electrical-stimulation 

during wakefulness and sleep in patients with obstractive sleep-apnea. American Review of Respiratory Disease, 1992. 146(4): p. 

1030-1036. 

203. Schwartz, A.R., D.W. Eisele, A. Hari, R. Testerman, D. Erickson, and P.L. Smith, Electrical stimulation of the lingual 

musculature in obstructive sleep apnea. Journal of Applied Physiology, 1996. 81(2): p. 643-652. 

204. Mann, E.A., T. Burnett, S. Cornell, and C.L. Ludlow, The effect of neuromuscular stimulation of the genioglossus on the 

hypopharyngeal airway. Laryngoscope, 2002. 112(2): p. 351-356. 

205. Schwartz, A.R., M.L. Bennett, P.L. Smith, W. De Backer, J. Hedner, A. Boudewyns, P. Van de Heyning, H. Ejnell, W. Hochban, 

L. Knaack, T. Podszus, T. Penzel, J.H. Peter, G.S. Goding, D.J. Erickson, R. Testerman, F. Ottenhoff, and D.W. Eisele, 

Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea. Archives of Otolaryngology-Head & Neck 

Surgery, 2001. 127(10): p. 1216-1223. 

206. Yoo, P.B., D.M. Durand, and Ieee, A neural prosthesis for obstructive sleep apnea, in 2005 27th Annual International Conference 

of the IEEE Engineering in Medicine and Biology Society, Vols 1-72005. p. 5254-5256. 

207. Kezirian, E.J., A. Boudewyns, D.W. Eisele, A.R. Schwartz, P.L. Smith, P.H. Van de Heyning, and W.A. De Backer, Electrical 

stimulation of the hypoglossal nerve in the treatment of obstructive sleep apnea. Sleep Medicine Reviews. In Press, Corrected 

Proof. 

208. Vapnik, V.N., An overview of statistical learning theory. Ieee Transactions on Neural Networks, 1999. 10(5): p. 988-999. 

209. Lauer, F. and G. Bloch, Incorporating prior knowledge in support vector machines for classification: A review. Neurocomputing, 

2008. 71(7-9): p. 1578-1594. 

210. Zhan, Y.Q. and D.G. Shen, An adaptive error penalization method for training an efficient and generalized SVM. Pattern 

Recognition, 2006. 39(3): p. 342-350. 

211. Cho, S., J. Lee, H. Park, and K. Lee. Detection of arousals in patients with respiratory sleep disorders using a single channel 

EEG. in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. 

2006. IEEE. 

212. Übeyli, E.D., D. Cvetkovic, G. Holland, and I. Cosic, Analysis of sleep EEG activity during hypopnoea episodes by least squares 

support vector machine employing AR coefficients. Expert Systems with Applications, 2010. 37(6): p. 4463-4467. 

213. Khandoker, A.H., C.K. Karmakar, and M. Palaniswami. Screening obstructive sleep apnoea syndrome from electrocardiogram 

recordings using support vector machines. in Computers in Cardiology, 2007. 2007. 

214. Khandoker, A.H., C.K. Karmakar, and M. Palaniswami, Automated recognition of patients with obstructive sleep apnoea using 

wavelet-based features of electrocardiogram recordings. Computers in Biology and Medicine, 2009. 39(1): p. 88-96. 

215. Yildiz, A., M. Akın, and M. Poyraz, An expert system for automated recognition of patients with obstructive sleep apnea using 

electrocardiogram recordings. Expert Systems with Applications, 2011. 38(10): p. 12880-12890. 

216. Lam, L. and C.Y. Suen, Optimal combinations of pattern classifiers. Pattern Recognition Letters, 1995. 16(9): p. 945-954. 



 

 

 

 152 

 

217. Isa, S.M., M.I. Fanany, W. Jatmiko, and A.M. Arymurthy. Sleep Apnea Detection from ECG Signal: Analysis on Optimal 

Features, Principal Components, and Nonlinearity. in Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th 

International Conference on. 2011. 

218. Koley, B.L. and D. Dey. Selection of features for detection of Obstructive Sleep Apnea events. in India Conference (INDICON), 

2012 Annual IEEE. 2012. 

219. Koley, B.L. and D. Dey, Automatic detection of sleep apnea and hypopnea events from single channel measurement of 

respiration signal employing ensemble binary SVM classifiers. Measurement, 2013. 46(7): p. 2082-2092. 

220. Kuncheva, L.I., J.C. Bezdek, and R.P. Duin, Decision templates for multiple classifier fusion: an experimental comparison. 

Pattern Recognition, 2001. 34(2): p. 299-314. 

221. Rogova, G., Combining the results of several neural network classifiers. Neural Networks, 1994. 7(5): p. 777-781. 

222. Ahmad, Z., R. Mat Noor, and J. Zhang, Multiple neural networks modeling techniques in process control: a review. Asia‐

Pacific Journal of Chemical Engineering, 2009. 4(4): p. 403-419. 

223. Haykin, S., Neural networks: a comprehensive foundation1994: Prentice Hall PTR. 

224. Jain, A., K. Nandakumar, and A. Ross, Score normalization in multimodal biometric systems. Pattern Recognition, 2005. 38(12): 

p. 2270-2285. 

225. Ahmad, Z. and J. Zhang, Combination of multiple neural networks using data fusion techniques for enhanced nonlinear process 

modelling. Computers & Chemical Engineering, 2005. 30(2): p. 295-308. 

226. Atiya, A.F., S.M. El-Shoura, S.I. Shaheen, and M.S. El-Sherif, A comparison between neural-network forecasting techniques-

case study: river flow forecasting. Neural Networks, IEEE Transactions on, 1999. 10(2): p. 402-409. 

227. Ahmad, Z. and J. Zhang, Bayesian selective combination of multiple neural networks for improving long-range predictions in 

nonlinear process modelling. Neural Computing & Applications, 2005. 14(1): p. 78-87. 

228. Sridhar, D.V., E.B. Bartlett, and R.C. Seagrave, An information theoretic approach for combining neural network process models. 

Neural Networks, 1999. 12(6): p. 915-926. 

229. Zhang, J., Improved on-line process fault diagnosis through information fusion in multiple neural networks. Computers & 

Chemical Engineering, 2006. 30(3): p. 558-571. 

230. Woods, K., W.P. Kegelmeyer Jr, and K. Bowyer, Combination of multiple classifiers using local accuracy estimates. Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 1997. 19(4): p. 405-410. 

231. Cho, S.-B. and J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification. Systems, Man and 

Cybernetics, IEEE Transactions on, 1995. 25(2): p. 380-384. 

232. Gader, P.D., M.A. Mohamed, and J.M. Keller, Fusion of handwritten word classifiers. Pattern Recognition Letters, 1996. 17(6): 

p. 577-584. 

233. Jacobs, R.A., M.I. Jordan, S.J. Nowlan, and G.E. Hinton, Adaptive mixtures of local experts. Neural computation, 1991. 3(1): p. 

79-87. 

234. Jacobs, R.A., Methods for combining experts' probability assessments. Neural computation, 1995. 7(5): p. 867-888. 

235. Drucker, H., C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik, Boosting and other ensemble methods. Neural computation, 1994. 

6(6): p. 1289-1301. 

236. Filippi, E., M. Costa, and E. Pasero. Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern 

recognition tasks. in Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International 

Conference on. 1994. IEEE. 

237. Bishop, C.M., Neural networks for pattern recognition1995: Oxford university press. 

238. Benediktsson, J.A. and P.H. Swain, Consensus theoretic classification methods. Systems, Man and Cybernetics, IEEE 

Transactions on, 1992. 22(4): p. 688-704. 

239. Battiti, R. and A.M. Colla, Democracy in neural nets: Voting schemes for classification. Neural Networks, 1994. 7(4): p. 691-

707. 

240. Dasarathy, B.V. and B.V. Sheela, A composite classifier system design: concepts and methodology. Proceedings of the IEEE, 

1979. 67(5): p. 708-713. 

241. Chiang, C.-C. and H.-C. Fu. A divide-and-conquer methodology for modular supervised neural network design. in Neural 

Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on. 1994. IEEE. 

242. Nabavi-Kerizi, S.H., M. Abadi, and E. Kabir, A PSO-based weighting method for linear combination of neural networks. 

Computers & Electrical Engineering, 2010. 36(5): p. 886-894. 

243. Kuncheva, L.I., Combining pattern classifiers: Methods and algorithms (kuncheva, li; 2004)[book review]. Neural Networks, 

IEEE Transactions on, 2007. 18(3): p. 964-964. 

244. Liu, C.-L., Classifier combination based on confidence transformation. Pattern Recognition, 2005. 38(1): p. 11-28. 

245. Verikas, A., A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gelzinis, Soft combination of neural classifiers: A comparative 

study. Pattern Recognition Letters, 1999. 20(4): p. 429-444. 



 

 

 

 153 

 

246. Ueda, N., Optimal linear combination of neural networks for improving classification performance. Pattern Analysis and 

Machine Intelligence, IEEE Transactions on, 2000. 22(2): p. 207-215. 

247. Khotanzad, A., H. Elragal, and T.-L. Lu, Combination of artificial neural-network forecasters for prediction of natural gas 

consumption. Neural Networks, IEEE Transactions on, 2000. 11(2): p. 464-473. 

248. Chawla, N., T.E. Moore, Jr., K.W. Bowyer, L.O. Hall, C. Springer, and P. Kegelmeyer. Bagging is a small-data-set phenomenon. 

in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. 

2001. 

249. Domingos, P. Why Does Bagging Work? A Bayesian Account and its Implications. in KDD. 1997. Citeseer. 

250. Friedman, J.H. and P. Hall, On bagging and nonlinear estimation. Journal of statistical planning and inference, 2007. 137(3): p. 

669-683. 

251. Poggio, T., R. Rifkin, S. Mukherjee, and A. Rakhlin, Bagging regularizes, 2002, DTIC Document. 

252. Freund, Y. and R.E. Schapire. Experiments with a new boosting algorithm. in ICML. 1996. 

253. Brown, G., Diversity in neural network ensembles. 2004. 

254. Liu, Y., X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning. Evolutionary Computation, IEEE 

Transactions on, 2000. 4(4): p. 380-387. 

255. Emin Tagluk, M. and N. Sezgin, A new approach for estimation of obstructive sleep apnea syndrome. Expert Systems with 

Applications, 2011. 38(5): p. 5346-5351. 

256. Emin Tagluk, M., M. Akin, and N. Sezgin, Classıfıcation of sleep apnea by using wavelet transform and artificial neural 

networks. Expert Systems with Applications, 2010. 37(2): p. 1600-1607. 

257. Tagluk, M.E. and N. Sezgin, Classification of Sleep Apnea through Sub-band Energy of Abdominal Effort Signal Using Wavelets 

+ Neural Networks. Journal of Medical Systems, 2010. 34(6): p. 1111-1119. 

258. Marcos, J.V., R. Hornero, D. Alvarez, M. Aboy, and F. Del Campo, Automated prediction of the apnea-hypopnea index from 

nocturnal oximetry recordings. Biomedical Engineering, IEEE Transactions on, 2012. 59(1): p. 141-149. 

259. Morillo, D.S. and N. Gross, Probabilistic neural network approach for the detection of SAHS from overnight pulse oximetry. 

Medical & biological engineering & computing, 2013: p. 1-11. 

260. Güneş, S., K. Polat, and Ş. Yosunkaya, Multi-class f-score feature selection approach to classification of obstructive sleep apnea 

syndrome. Expert Systems with Applications, 2010. 37(2): p. 998-1004. 

261. Chen, L.-F., C.-T. Su, K.-H. Chen, and P.-C. Wang, Particle swarm optimization for feature selection with application in 

obstructive sleep apnea diagnosis. Neural Computing and Applications, 2012. 21(8): p. 2087-2096. 

262. Bock, J. and D.A. Gough, Toward prediction of physiological state signals in sleep apnea. Biomedical Engineering, IEEE 

Transactions on, 1998. 45(11): p. 1332-1341. 

263. Elman, J.L., Distributed representations, simple recurrent networks, and grammatical structure. Machine learning, 1991. 7(2-3): 

p. 195-225. 

264. Waxman, J.A., D. Graupe, and D.W. Carley, Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural 

network. American Journal of Respiratory and Critical Care Medicine, 2010. 181(7): p. 727-733. 

265. Kennedy, J. and R. Eberhart, Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural 

Networks., ed. I.P.o.t.I.I.C.o.N. Networks. Vol. 4. 1995, Perth. 

266. Rana, S., S. Jasola, and R. Kumar, A review on particle swarm optimization algorithms and their applications to data clustering. 

Artificial Intelligence Review, 2011. 35(3): p. 211-222. 

267. Thangaraj, R., M. Pant, A. Abraham, and P. Bouvry, Particle swarm optimization: Hybridization perspectives and experimental 

illustrations. Applied Mathematics and Computation, 2011. 217(12): p. 5208-5226. 

268. Shi, Y.H., R. Eberhart, and Ieee, A modified particle swarm optimizer. 1998 Ieee International Conference on Evolutionary 

Computation - Proceedings1998. 69-73. 

269. Shi, Y. and R.C. Eberhart, Parameter Selection in Particle Swarm Optimization, in Proceedings of the 7th International 

Conference on Evolutionary Programming VII1998, Springer-Verlag. 

270. Cui, S.M. and D.S. Weile, Application of a parallel particle swarm optimization scheme to the design of electomagnetic 

absorbers. Ieee Transactions on Antennas and Propagation, 2005. 53(11): p. 3616-3624. 

271. Herrera, F., M. Lozano, and C. Moraga, Hierarchical distributed genetic algorithms. International Journal of Intelligent Systems, 

1999. 14(11): p. 1099-1121. 

272. Madhuri and K. Deep. A state-of-the-art review of population-based parallel meta-heuristics. in Nature & Biologically Inspired 

Computing, 2009. NaBIC 2009. World Congress on. 2009. 

273. Kalivarapu, V., J.-L. Foo, and E. Winer, Synchronous parallelization of Particle Swarm Optimization with digital pheromones. 

Adv. Eng. Softw., 2009. 40(10): p. 975-985. 

274. Chang, J.F., S.C. Chu, J.F. Roddick, and J.S. Pan, A parallel particle swarm optimization algorithm with communication 

strategies. Journal of Information Science and Engineering, 2005. 21(4): p. 809-818. 



 

 

 

 154 

 

275. Waintraub, M., R. Schirru, and C. Pereira, Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear 

engineering problems. Progress in Nuclear Energy, 2009. 51(6-7): p. 680-688. 

276. Zhang, J. and X. Ding, A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization. Engineering Applications of 

Artificial Intelligence, 2011. 24(6): p. 958-967. 

277. Waintraub, M., R. Schirru, and C.M.N.A. Pereira, Multiprocessor modeling of parallel Particle Swarm Optimization applied to 

nuclear engineering problems. Progress in Nuclear Energy, 2009. 51(6–7): p. 680-688. 

278. Koh, B.I., A.D. George, R.T. Haftka, and B.J. Fregly, Parallel asynchronous particle swarm optimization. International Journal 

for Numerical Methods in Engineering, 2006. 67(4): p. 578-595. 

279. Sokolova, M., N. Japkowicz, and S. Szpakowicz, Beyond accuracy, F-Score and ROC: A family of discriminant measures for 

performance evaluation, in AI 2006: Advances in Artificial Intelligence, Proceedings, A. Sattar and B.H. Kang, Editors. 2006. p. 

1015-1021. 

280. Goutte, C. and E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, in 

Advances in Information Retrieval, D.E. Losada and J.M. FernandezLuna, Editors. 2005. p. 345-359. 

281. Alvarez-Estevez, D. and V. Moret-Bonillo, Fuzzy reasoning used to detect apneic events in the sleep apnea-hypopnea syndrome. 

Expert Systems with Applications, 2009. 36(4): p. 7778-7785. 

282. Hernandez-Pereira, E., B. Fernandez-Rey, M. Cabrero-Canosa, and V. Moret-Bonillo, An amplitude signal based technique for 

hypopneas detection. Procedings of the 11th Iasted International Conference on Artificial Intelligence and Soft Computing, ed. 

A.P. DelPobil2007. 127-130. 

283. Park, S.-G., H.-J. Sim, H.-J. Lee, and J.-E. Oh, Application of non-stationary signal characteristics using wavelet packet 

transformation. Journal of Mechanical Science and Technology, 2008. 22(11): p. 2122-2133. 

284. Kiatpanichagij, K. and N. Afzulpurkar, Use of supervised discretization with PCA in wavelet packet transformation-based surface 

electromyrogram classification. Biomedical Signal Processing and Control, 2009. 4(2): p. 127-138. 

285. Ng, A.K., K.Y. Wong, C.H. Tan, T.S. Koh, and Ieee, Bispectral analysis of snore signals for obstructive sleep apnea detection, in 

2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-162007. p. 6196-6199. 

286. Ebrahimi, F., M. Mikaeili, E. Estrada, H. Nazeran, and Ieee, Automatic Sleep Stage Classification Based on EEG Signals by 

Using Neural Networks and Wavelet Packet Coefficients, in 2008 30th Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society, Vols 1-82008. p. 1151-1154. 

287. Kempfner, J., G.L. Sorensen, H.B.D. Sorensen, P. Jennum, and Ieee, Automatic REM Sleep Detection Associated with Idiopathic 

REM Sleep Behavior Disorder. 2011 Annual International Conference of the Ieee Engineering in Medicine and Biology 

Society2011. 6063-6066. 

288. Gubbi, J., A. Khandoker, and M. Palaniswami, Classification of sleep apnea types using wavelet packet analysis of short-term 

ECG signals. Journal of Clinical Monitoring and Computing, 2012. 26(1): p. 1-11. 

289. Maali, Y. and A. Al-Jumaily, Self-advising support vector machine. Knowledge-Based Systems, 2013. 52: p. 214-222. 

290. Maali, Y. and A. Al-Jumaily. Hierarchical parallel PSO-SVM based subject-independent sleep apnea classification. in Neural 

Information Processing. 2012. Springer. 

291. Maali, Y. and A. Al-Jumaily. A novel partially connected cooperative parallel PSO-SVM algorithm: Study based on sleep apnea 

detection. in Evolutionary Computation (CEC), 2012 IEEE Congress on. 2012. IEEE. 

292. Maali, Y., A. Al-Jumaily, and L. Laks, Self-Advising SVM for Sleep Apnea Classification. 

293. Javed, I., M.N. Ayyaz, and W. Mehmood. Efficient Training Data Reduction for SVM based Handwritten Digits Recognition. in 

Electrical Engineering, 2007. ICEE '07. International Conference on. 2007. 

294. Wang, J., P. Neskovic, and L. Cooper, Training Data Selection for Support Vector Machines, in Advances in Natural 

Computation, L. Wang, K. Chen, and Y. Ong, Editors. 2005, Springer Berlin Heidelberg. p. 554-564. 

295. Cano, J.R., F. Herrera, and M. Lozano, On the combination of evolutionary algorithms and stratified strategies for training set 

selection in data mining. Applied Soft Computing, 2006. 6(3): p. 323-332. 

296. Maali, Y. and A. Al-Jumaily, Signal selection for sleep apnea classification, in AI 2012: Advances in Artificial Intelligence2012, 

Springer. p. 661-671. 

297. Health, N.I.o. What To Expect During a Sleep Study. Available from: https://www.nhlbi.nih.gov/health/health-

topics/topics/slpst/during.html#. 

298. Osrmedical. Polysomnography. Available from: http://www.osrmedical.com/en/division-diagnostic/polysomnographie/. 

299. Chang, C.-C. and C.-J. Lin, LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2011. 2(3): p. 1-

27. 

300. Maali, Y. and A. Al-Jumaily, Genetic Fuzzy Approach based Sleep Apnea/Hypopnea Detection. 

301. Fontenla-Romero, O., B. Guijarro-Berdinas, A. Alonso- Betanzos, and V. Moret-Bonillo, A new method for steep apnea 

classification using wavelets and feedforward neural networks. Artificial Intelligence in Medicine, 2005. 34(1): p. 65-76. 

http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/during.html
http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/during.html
http://www.osrmedical.com/en/division-diagnostic/polysomnographie/


 

 

 

 155 

 

302. Moller, M.F., A SCALED CONJUGATE-GRADIENT ALGORITHM FOR FAST SUPERVISED LEARNING. Neural Networks, 

1993. 6(4): p. 525-533. 

303. Dagum, P. and A. Galper, Time-series prediction using belief network models. International Journal of Human-Computer Studies, 

1995. 42(6): p. 617-632. 

304. Bock, J. and D.A. Gough, Toward prediction of physiological state signals in sleep apnea. Ieee Transactions on Biomedical 

Engineering, 1998. 45(11): p. 1332-1341. 

305. Elman, J.L., Distribute representations, simple recurrent networks, and gramimatical structure. Machine Learning, 1991. 7(2-3): 

p. 195-225. 

306. Werbos, P.J., Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 1990. 78(10): p. 1550-1560. 

307. Brown, R., P. Bryant, and H.D.I. Abarbanel, Computing the lyapunov spectrum of a dynamic system from an observed time-

series. Physical Review A, 1991. 43(6): p. 2787-2806. 

308. Skinner, J.E., C. Carpeggiani, C.E. Landisman, and K.W. Fulton, Correlation dimension of hertbeat intervals is reduced in 

conscious pigs by myocardial-ischemia. Circulation Research, 1991. 68(4): p. 966-976. 

309. Waxman, J.A., D. Graupe, and D.W. Carley, Automated Prediction of Apnea and Hypopnea, Using a LAMSTAR Artificial Neural 

Network. American Journal of Respiratory and Critical Care Medicine. 181(7): p. 727-733. 

310. Graupe, D. and H. Kordylewski, A large memory storage and retrieval neural network for adaptive retrieval and diagnosis. 

International Journal of Software Engineering and Knowledge Engineering, 1998. 8(1): p. 115-138. 

311. Hoffstein, V. and S. Mateika, Predicting nasal continous positive airway pressure. American Journal of Respiratory and Critical 

Care Medicine, 1994. 150(2): p. 486-488. 

312. Demarco, P. and C.A. Tassinari, Extreme somatosensory evoked-potential(ESEP) - EEG sign forcasting possible occurrence of 

seizures in children. Electroencephalography and Clinical Neurophysiology, 1977. 43(4): p. 560-561. 

313. Arslan, Y.Z., M.A. Adli, A. Akan, and M.B. Baslo, Prediction of externally applied forces to human hands using frequency 

content of surface EMG signals. Computer Methods and Programs in Biomedicine. 98(1): p. 36-44. 

314. Song, D., P. Hendrickson, V.Z. Marmarelis, J. Aguayo, J.P. He, G.E. Loeb, T.W. Berger, and Ieee, Predicting EMG with 

generalized volterra kernel model, in 2008 30th Annual International Conference of the Ieee Engineering in Medicine and 

Biology Society, Vols 1-82008. p. 201-204. 

315. Prechelt, L., Automatic early stopping using cross validation: quantifying the criteria. Neural Networks, 1998. 11(4): p. 761-767. 

316. Wang, R.H., AdaBoost for Feature Selection, Classification and Its Relation with SVM*, A Review, in International Conference 

on Solid State Devices and Materials Science, G. Lee, Editor 2012. p. 800-807. 

317. Maali, Y. and A. Al-Jumaily, Self-advising support vector machine. Knowledge-Based Systems, 2013. 52(0): p. 214-222. 

318. Frank, A. and A. Asuncion, UCI Machine Learning Repository. 

319. Kre\, U.H.-G., \#223, and el, Pairwise classification and support vector machines, in Advances in kernel methods1999, MIT 

Press. p. 255-268. 

320. Dietterich, T.G. and G. Bakiri, Solving multiclass learning problems via error-correcting output codes. J. Artif. Int. Res., 1995. 

2(1): p. 263-286. 

321. Chang, C.C. and C.J. Lin, LIBSVM: A library for support vector machines 2001. p. Available from 

http:||www.csie.ntu.edu.tw/~cjlin/libsvm. 

322. Gardner, M., A. McNabb, and K. Seppi, A speculative approach to parallelization in particle swarm optimization. Swarm 

Intelligence, 2012. 6(2): p. 77-116. 

323. Angeline, P., Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences, in 

Evolutionary Programming VII, V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, Editors. 1998, Springer Berlin 

Heidelberg. p. 601-610. 

324. Niu, B., Y.L. Zhu, X.X. He, and H. Wu, MCPSO: A multi-swarm cooperative particle swarm optimizer. Applied Mathematics 

and Computation, 2007. 185(2): p. 1050-1062. 

325. Eberhart, R.C. and S. Yuhui. Particle swarm optimization: developments, applications and resources. in Evolutionary 

Computation, 2001. Proceedings of the 2001 Congress on. 2001. 

326. Zito, D., D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. De-Rossi, SoC CMOS UWB Pulse Radar Sensor for 

Contactless Respiratory Rate Monitoring. Biomedical Circuits and Systems, IEEE Transactions on, 2011. 5(6): p. 503-510. 

327. Lai, J.C.Y., X. Ying, E. Gunawan, E.C. Chua, A. Maskooki, G. Yong Liang, L. Kay-Soon, S. Cheong Boon, and P. Chueh-Loo, 

Wireless Sensing of Human Respiratory Parameters by Low-Power Ultrawideband Impulse Radio Radar. Instrumentation and 

Measurement, IEEE Transactions on, 2011. 60(3): p. 928-938. 

328. Changzhi, L., J. Cummings, J. Lam, E. Graves, and W. Wenhsing, Radar remote monitoring of vital signs. Microwave Magazine, 

IEEE, 2009. 10(1): p. 47-56. 

329. Lai, Y.J., T.Y. Liu, and C.L. Hwang, TOPSIS FOR MODM. European Journal of Operational Research, 1994. 76(3): p. 486-500. 

 

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Title Page
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Ch. 1. Introduction
	1.1. Why Study Sleep Apnea?
	1.2. Thesis Motivations?
	1.2.1. Thesis Questions
	1.2.2. Contributions of the Thesis
	1.2.3. Structure of the Thesis
	1.2.4. Publications Resulting from the Thesis


	Ch. 2. An overview on Sleep Apnea
	2.1. Introduction
	2.2. Sleep Apnea
	2.2.1. Obstructive Sleep Apnea (OSA)
	2.2.2. Central Sleep Apnea (CSA)
	2.2.3. Mixed Sleep Apnea (MSA)

	2.3. Risk Factors
	2.4. Symptoms
	2.5. Costs of Sleep Apnea
	2.6. Diagnostic
	2.6.1. Oxygen Saturation
	2.6.2. Electrooculogram (EOG)
	2.6.3. Photopletismography (PPG)
	2.6.4. Electrocardiogram (ECG)
	2.6.5. Electromyogram (EMG)
	2.6.6. Electroencephalogram (EEG)

	2.7. Treatment
	2.7.1. Continuous Positive Airway Pressure (CPAP)
	2.7.2. Oral Appliances
	2.7.3. Invasive Methods

	2.8. Summary

	Ch. 3. Methodology Review
	3.1. Introduction
	3.2. Support Vector Machine
	3.2.1. Introduction
	3.2.2. Application of SVM based Systems in Sleep Apnea Studies

	3.3. Artificial Neural Networks
	3.3.1. Introduction
	3.3.2. Elman Neural Networks
	3.3.3. Cascade-Forward Neural Network Models
	3.3.4. Multi Artificial Neural Networks
	3.3.5. Application of Neural Network based Systems in Sleep Apnea Studies

	3.4. Particle Swarm Optimisation (PSO)
	3.4.1. Single PSO
	3.4.2. Parallel PSO

	3.5. Performance Indications
	3.6. Summary

	Ch. 4. Sleep Apnea Detection and Classification
	4.1. Introduction
	4.2. Signal Segmentation
	4.3. Feature Generation
	4.4. Dimensionality Reduction
	4.4.1. Feature Selection
	4.4.2. Feature and Training Data Selection

	4.5. Signal Selection
	4.6. Experiments and Results
	4.6.1. Database Materials
	4.6.2. Signal Selection for Detecting Sleep Apnea
	4.6.3. A Comparison on Signal Segmentation
	4.6.4. Dimensionality Reduction Approaches for Sleep Apnea Detection
	4.6.5. Comparing Traditional SVM with SA-SVM
	4.6.6. Comparing SA-SVM with Different Machine Learning Algorithms
	4.6.7. Classification of Sleep Apnea Events
	4.6.8. Subject Independent Sleep Apnea Detection

	4.7. Summary

	Ch 5. Predicting Sleep Apnea
	5.1. Introduction
	5.2. Prediction of Sleep Apnea with Multi ANNs
	5.2.1. Linear multi ANNs
	5.2.2. Non-Linear multi ANNs

	5.3. Experiments and Results
	5.3.1. Artificial Neural Networks Architectures
	5.3.2. Early Stopping
	5.3.3. Designing Structure of Neural Networks
	5.3.4. Sleep Apnea Prediction

	5.4. Summary

	Ch. 6. Thesis Developed Techniques Generalization
	6.1. Introduction
	6.2. Self-advising SVM
	6.2.1. Experimental Results

	6.3. Proposed Parallel Structure
	6.3.1. Experimental Studies

	6.4. Summary

	Ch 7. Summary and Future Research
	7.1. Introduction
	7.2. Sleep Apnea Detection
	7.3. Sleep Apnea Prediction
	7.4. Future Works

	Appendix A
	References

