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ABSTRACT 

Around 40% of the world’s population lives in arid and semi-arid regions where rainfall 

is low. These regions are facing challenges of declining water tables and increasing 

ground water salinity. Providing good quality drinking water for small communities in 

these areas is highly challenging. Although existing membrane technologies are able to 

produce potable quality water, issues such as high energy consumption, osmotic 

pressure constraint, brine management and large centralized designs make them 

unsuitable for application in these areas. Membrane distillation (MD), a thermal 

integrated membrane process, is a burgeoning technology with the potential to address 

and overcome these issues. As a vapour pressure operated system, MD is not restricted 

by saline feed solutions and therefore can achieve good quality distillate with minimal 

brine discharge. Furthermore, an MD system can be built as a standalone compact 

system suitable for small community application. The modest temperature requirement 

for MD operation (generally between 60ºC to 80ºC) enables the system to use 

alternative energy sources such as solar power. Despite such advantages, MD has not as 

yet been used widely in commercial applications. Several essential problems concerning 

MD process performance, namely, lower production rate, fouling propensity, energy 

efficiency and long term performance must be addressed.  

In this study, the performance of a scaled-up modified design vacuum membrane 

distillation system termed ‘vacuum multi effect membrane distillation (V-MEMD)’ was 

evaluated. A bench scale direct contact membrane distillation (DCMD) was employed 

for detailed fouling analysis. The four main sections of this work incorporate: (i) V-

MEMD operation; (ii) scaling development in MD; (iii) organic fouling development in 

MD; and (iv) pretreatment and membrane cleaning in MD. These sections present and 

explain critical aspects of MD performance in the context of drinking water production.  
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V-MEMD operation Firstly, in this study the beneficial features of a modified V-

MEMD system were highlighted. These include the internal heating and internal 

condensing which reduces heat loss and makes operation possible at modest feed 

temperatures from 45ºC to 55ºC. A semi-empirical mathematical modeling in this study 

showed that operating at these feed temperature ranges minimized the effect of 

temperature polarization (TP) to a low range of between 0.96 and 0.99. The findings of 

the V-MEMD performance analysis indicated that feed temperature and permeate 

pressure were the most influential operating parameters. Lowering the permeate 

pressure from Pp =15.0 kPa to 10.0 kPa increased the permeate flux by almost 200%, 

whereby the highest permeate flux of 13.5 L m-2 h-1 (LMH) was achieved when the 

permeate pressure was reduced to Pp =5.0 kPa. In the V-MEMD concept, vacuum 

application is essential in order to create a sustainable driving force, especially for a 

scaled up modular unit with several membrane stages. At the same time, increased feed 

temperature exponentially increased the permeate flux. A small variation of feed 

temperature from 45.0°C to 65.0°C significantly improved the permeate flux from 3.6 

LMH to 11.8 LMH.  

The V-MEMD system proved to be suitable for producing 9.4 LMH of good quality 

permeate (more than 99.5% rejection rate) with highly saline feed water (1 M of NaCl 

feed solution concentrated up to 3 M of NaCl). Only a 10-15% reduction in permeate 

flux was observed at high feed concentration. The modeling data revealed that high 

turbulent feed flow velocity of 2.2 m/s (Re = 17, 300) in the V-MEMD system 

effectively minimized concentration polarization (CP), but the recovery ratio reduced 

with increased feed flow velocity. An intermediate feed flow velocity of 1.1 m/s (Re = 

6,100) was more appropriate for balancing the effect of CP and maintaining a 

reasonable recovery ratio.  



xxxii 

 

Scaling development in MD In achieving near zero liquid discharge under thermal 

conditions, inevitably, the MD membrane would be exposed to highly concentrated 

sparingly soluble salts such as calcium sulphate (CaSO4). In this study, an evaluation of 

CaSO4 scaling development in MD operation was carried out, focusing on the role of 

hydrodynamic (flow velocity) conditions. This study found that permeate condition 

influenced CaSO4 scaling development. For instance, in the V-MEMD system, the 

CaSO4 crystal size in the membrane module increased from 62.68 μm to 522.28 μm, 

with increased permeate pressure from 10.0 kPa to 15.0 kPa. Similarly, in a DCMD 

configuration, a small change in the permeate velocity from 0.8 m/s to 1.1 m/s was 

effective in changing the scaling pattern from surface crystallization to a more dominant 

bulk crystallization, without the need to change the feed velocity while improving the 

system’s performance (i.e. increase recovery ratio, reduce pumping energy, increase 

permeate flux). Importantly, the findings of this study also revealed that the crystals 

were only loosely deposited on the membrane.  

In the V-MEMD system, the loose deposition was attributed to the lack of hydraulic 

pressure, low feed temperature (Tf = 47.6 °C), high turbulence (Re = 5665.6, 0.9 m/s) 

and short membrane retention time (21.6 s). Increasing the feed flow velocity from 0.3 

m/s to 0.9 m/s in the V-MEMD reduced the gypsum crystal size in the membrane 

module from 339.03 μm to 62.68 μm. Likewise, in the DCMD configuration the high 

feed velocity (turbulence) played an important role in controlling the membrane surface 

crystallization. The Field Emission Scanning Electron Microscope (FE-SEM) analysis 

with EDS showed significantly higher calcium and sulphate element deposition on the 

membrane at low feed velocity (0.5 m/s) compared to the high flow velocity (2.2 m/s). 

Organic fouling development in MD Organic fouling is a ubiquitous problem in 

membrane processes. Compared to pressure driven membrane processes, the fouling 
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phenomenon in MD operation is unique due to the presence of thermal conditions on a 

hydrophobic membrane at supersaturated feed concentration levels. In depth 

understanding of the MD fouling phenomenon is crucial if MD is to be successfully 

implemented in a proto-scale. This research carried out a detailed fouling development 

analysis using Liquid Chromatography-Organic Carbon Detection (LC-OCD) to 

characterize the behavior of organic compounds under thermal MD operation. The 

findings of this research established that organic fouling in MD was influenced by the 

type of organic compound present in the feed solution, the thermal state as well as the 

physico-chemical condition of the feed solution. Based on the LC-OCD analysis of the 

feed and permeate solution and membrane foulant as well as membrane analysis 

(contact angle and SEM-EDS analysis), both the humic acid (HA) and bovine serum 

albumin (BSA) compounds showed dominant fouling tendencies while the alginic acid 

(AA) compound exhibited minimal fouling tendencies. The latter was due to its 

hydrophilic nature and negative electrostatic repulsion.  

The membrane SEM-EDS analysis showed that mainly the BSA compound was 

deposited on the membrane surface (800.6 mg/m2 organic mass per membrane area) 

compared to the HA compound (423.2 mg/m2). This was due to the hydrophobic nature 

of the BSA compound which allowed it to bond with the hydrophobic MD membrane. 

Meanwhile, the humic substances (HS) showed changes under MD thermal conditions. 

The LC-OCD analysis of the HA feed solution revealed the thermal disaggregation of 

the HS, forming low molecular weight–HS (LMW-HS) organics. Further, the cross-

section membrane SEM-EDS line analysis showed the penetration of the LMW-HS 

organics through the membrane pores, resulting in partial wetting. The findings for the 

influence of physico-chemical state of the feed solution revealed that the addition of 

salinity (NaCl) contributed to higher HS disaggregation to LMW-HS organics. This 
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resulted in severe penetration of the LMW-HS organics to the permeate side. 

Meanwhile, in the presence of inorganics Ca2+ ion that acts as a binding agent, a cake 

layer was formed on the membrane.  

Pretreatment and membrane cleaning in MD Finally, a practical application of MD 

was presented in this study by analysing the pretreatment and membrane cleaning in 

MD. In the first part of this section, the performance of two chemical-free pretreatments 

(namely, deep-bed biofilter and a submerged membrane adsorption bioreactor system 

(SMABR) was evaluated in terms of organic fouling reduction. Both these pretreatment 

systems helped to reduce HS and LMW organics as well as assimilable organic carbon 

(AOC) concentrations through adsorption and biodegradation mechanisms. In the 

second part of this section, MD performance with natural seawater was compared to 

SMABR pre-treated seawater. The natural seawater, which predominantly contains HS, 

resulted in the formation of LMW-HS organics under MD thermal conditions and pore 

penetration was observed to occur through the membrane. 

The biofouling potential of MD operation with SW was highlighted based on the AOC 

concentration of the membrane foulant and feed solution. In the meantime the SMABR 

pre-treated seawater feed solution containing low concentrations of HS and LMW 

organics, resulted in more stable permeate flux and minimal LMW-HS organics pore 

penetration. The findings established the suitability of chemical-free pretreatments to 

reduce organic fouling in MD. Additionally, the membrane cleaning by water was 

carried out to flush away the loose deposition of crystals in the V-MEMD system. 

Based on the feed solution ion mass balance, with only 2 L of DI water, most ions in the 

feed solution, specifically the Mg, Na and Cl ions, were removed. This finding 

established the effectiveness of frequent DI water flushing for the V-MEMD system 
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