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Abstract

This paper presents a contractive coprime factor model reduction approach for
discrete-time uncertain systems of LFT form with norm bounded structured un-
certainty. A systematic approach is proposed for coprime factorization and con-
tractive coprime factorization of the underlying uncertain systems. The proposed
coprime factor approach overcomes the robust stability restriction on the underly-
ing systems which is required in the balanced truncation approach. Our method
is based on the use of LMIs to construct the desired reduced dimension uncertain
system model. Closed-loop robustness is discussed under additive coprime factor
perturbations.

Keywords: Model reduction; Uncertain systems; Discrete-time systems;
Coprime factorization

1. Introduction

This paper addresses the coprime factorization (CF) and model reduction prob-
lems for discrete-time uncertain systems which are possibly robustly unstable.
The uncertain systems under consideration are described interms of linear frac-
tional transformations (LFTs) [1] with structured norm bounded uncertainty.

Model reduction has been an active research area in the control society since
1960s. A large number of model reduction methods have appeared in the litera-
ture, among which one of the most commonly applied methods for stable linear
time invariant (LTI) systems is the balanced truncation method [2] with guaran-
teed error bounds [3, 4]. For unstable LTI systems, a coprimefactor approach [5]
is proposed to avoid the stability issues. Discrete-time related topics can be found,
for example, in [6, 7] and the references therein.
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Model reduction problems for uncertain systems have attracted much atten-
tion in recent years; see, for example, LFT systems [8, 9, 10,11, 12, 13], gain
scheduling [14, 15], linear parameter-varying systems [16, 17, 18, 19], linear
time-varying systems [20, 21], nonlinear systems [22], linear parameter depen-
dent (LPD) systems [23], and related approximation, truncation and simplification
problems [24, 25]. The balanced truncation method forrobustly stableuncertain
systems is studied in [8, 9, 26] within the LFT framework. Concerning those un-
certain systems which may berobustly unstable, a coprime factorization based
approach is proposed in [12], which extends coprime factor approach [5] for LTI
systems to the underlying uncertain systems. However, no indication is given in
[12] on the contractiveness of the resulting coprime factors. This motivates the
question as to whether a contractive CF can be obtained for uncertain systems.
Contractive CF, as an alternative to normalized CF, has properties similar to nor-
malized CF. In the meanwhile, it enables us to take advantageof linear matrix
inequality (LMI) techniques, providing more flexibility toaccommodate structure
constraints including topological structures and uncertainty structures, and thus
can be effectively solved by available softwares. Particularly for discrete-time un-
certain systems, contractive CF is motivated by the following two observations.
Firstly, for discrete-time LTI systems, applying balancedtruncation to normalized
coprime factors of original systems would result in contractive coprime factors of
reduced systems, rather than normalized ones as in continuous cases. Therefore, it
is not necessary to consider normalized CF in the first place in balanced truncation
approaches. Secondly, in the presence of uncertainty, it isvery difficult to obtain
normalized coprime factors for the underlying systems because the corresponding
Riccati equations are hard to solve and most probably lead toinfeasible solutions.

In this paper, the coprime factor model reduction problem studied in [12] is
revisited. The study of this problem is based on the results in [12] and the au-
thor’s previous work on uncertain systems [26, 10, 13, 23]. In [26, 10, 23], model
reduction problems for two classes of continuous uncertainsystems are studied.
By introducing generalized controllability and observability Gramians, balanced
truncation and balanced LQG truncation model reduction approaches are inves-
tigated. In this paper, following the idea of balanced LQG truncation, instead
of just balancing the solutions to the control/filter Riccati inequalities, coprime
factors are constructed based on Riccati inequalities. Theadvantage of coprime
factor model reduction over balanced LQG truncation is thatcoprime factor model
reduction can provide quantitative robust stability margin which will be discussed
in Section 5. In [13], coprime factor model reduction for a class of continuous-
time uncertain systems is investigated. In this paper the method is extended to
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discrete uncertain systems. It should be emphasized here that this extension is
not trivial because of the significant difference between continuous and discrete
systems especially in the presence of uncertainty. The contribution of this paper,
compared to the results of [12], is three folds. Firstly, we eliminate the full col-
umn rank restriction on the B-matrix in [12], providing a more general solution to
constructing coprime factorization for uncertain systems. Secondly, a systematic
approach to obtain the coprime factorization for the underlying uncertain systems
is presented based on the use of LMIs. A sufficient and necessary condition to
ensure the feasibility of the derived LMI is also specified. Contractiveness is sub-
sequently accomplished by choosing a specific feedback gain, which extends the
similar LTI results to the uncertain systems under consideration. This enables us
to apply balanced truncation [8, 9] to the resulting contractive coprime factors to
obtain the reduced-order uncertain systems. It is shown that the resulting reduced
coprime factors are contractive as well. Thirdly, closed-loop robustness is dis-
cussed for the reduced uncertain system under model reduction error on coprime
factors. A sufficient condition is presented to guarantee the closed-loop stabil-
ity when the original model is replaced by the reduced model.This robustness
property could potentially contribute to the analysis of gap metric for uncertain
systems which will be the topic of future research. Althoughin this paper we only
focus on the uncertain systems, the results can be readily applied to multidimen-
sional systems by replacing the uncertainty variables withfrequency parameters.
A preliminary version of this work appeared in [27].

While this paper focuses on model reduction problems, its results related to co-
prime factorization of uncertain systems could be used in many branches of robust
control problems, for example, analysis of gap metric [28] for uncertain systems,
robust controller design using coprime factorization [29]and Youla parametriza-
tion [30], to list a few. Future work will be carried on to apply the results of this
paper to other relevant control problems.

Notation The notation is quite standard.Rm×n andCm×n denote the set of real and
complex,m×n matrices, andHm denotes the set of Hermitianm×m matrices.
Let lm andlm

2 be the space of all the sequences and square summable sequences in
Rm respectively. LetL (lm) denote the space of all linear operators mapping from
lm to lm, andL (lm

2 ) denote the space of all linear bounded operators mapping

from lm
2 to lm

2 . The gain of an operator∆ in L (lm
2 ) is given by‖∆‖= sup

z∈lm2 ,z6=0

‖∆z‖
‖z‖ ,

and the adjoint operator of∆ is denoted as∆∗ if ∆ is linear, and if∆ = ∆∗, ∆ < 0
means thatx∗∆x< 0 for anyx 6= 0 in Rm. We also useM∗ to denote the complex
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conjugate transpose of a complex matrixM. FM(·)∗ and(·)∗MF denoteFMF∗

andF∗MF respectively for a Hermitian matrixM.

2. Problem Formulation

We consider the uncertainty structure

∆c∆c∆c = {diag(δ1Ih1, · · · ,δkIhk) : δi ∈ L (l2),δi causal,‖δi‖ ≤ 1},

and the following uncertain system:

G∆ :







[

z
y

]

=

[

A B
C D

][

ξ
u

]

,

ξ = ∆z, ∆ ∈∆c∆c∆c,
(1)

whereu(t)∈ Rm is thecontrol input, z(t)∈ Rh is theuncertainty output, y(t)∈ Rl

is the measured outputand ξ(t) ∈ Rh is the uncertainty input; hereh = h1 +
· · ·+hk. Similar to the typical setting for one-dimensional discrete-time uncertain
systems, we defineδ1 = z−1, the time shift operator, and otherδ ,

i sare regarded as
uncertainties.

Let the nominal system be denoted byG =

[

A B
C D

]

. Then, the uncertain

system (1) is defined by an LFT representation as follows. Forany bounded
linear operator∆ ∈ L (lh

2) such thatI −A∆ is non-singular, defineFu(G,∆) :=
D +C∆(I − A∆)−1B. In what follows, robust stability, stabilizability and de-
tectability of the uncertain system (1) are defined.

Definition 1 (Robust Stability [12]). The uncertain system(1) is said to bero-
bustly stable, or equivalently,(A,∆c∆c∆c) is said to berobustly stable, if (I −A∆)−1

exists inL (lh
2) and is causal, for all∆ ∈∆c∆c∆c.

Definition 2. The uncertain system(1) is said to berobustly stabilizableif there
exists a matrix F , such that(A+BF,∆c∆c∆c) is robustly stable. Similarly, the sys-
tem(1) is said to berobustly detectableif the dual of the system(1) is robustly
stabilizable.

The following lemma from [12] states a necessary and sufficient condition
for robust stability. This lemma is given in terms of the positive commutant set
corresponding to∆c∆c∆c defined as

PΘPΘPΘ = {diag(Θ1, · · · ,Θk) : Θi ∈ Hhi ,Θi > 0}. (2)
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Lemma 3. (see [12, Proposition 3 and Remark 4]) The system(1) is robustly
stable if and only if there exists P∈PΘPΘPΘ, such that

APA∗−P< 0. (3)

3. Balanced Truncation

In this section we briefly review the balanced truncation model reduction tech-
nique for the uncertain system (1) presented in [8, 9]. It is assumed in this sec-
tion that the uncertain system (1) is robustly stable. Similar to the LTI balanced
truncation approach [2, 3, 4], this robust stability assumption is essential for the
balanced truncation of the uncertain system (1), and guarantees the existence of
the solutionsS,P∈PΘPΘPΘ to following Lyapunov inequalities,

ASA∗−S+BB∗ < 0, (4)

A∗PA−P+C∗C< 0. (5)

Theorem 4. [12, Remark 4] The following statements are equivalent:

(i) The uncertain system(1) is robustly stable.

(ii) The LMI (4) admits a solution S∈PΘPΘPΘ.

(iii) The LMI (5) admits a solution P∈PΘPΘPΘ.

Definition 5. An uncertain system of the form(1) is said to bebalancedif it has
solutions to(4) and (5) which are identical diagonal matrices.

We summarize the proposed model reduction algorithm as follows.

Procedure 6(Balanced Truncation).

1. Solve the LMIs(4)and(5) to obtain S=diag(S1, · · · ,Sk)∈PΘPΘPΘ,P=diag(P1, · · · ,Pk)∈
PΘPΘPΘ.

2. Balance Si ,Pi by a transformation matrix Ti [4] such that

TiSiT
∗
i = (T−1

i )∗PiT
−1
i = Σi = diag(Σi,1,Σi,2)

= diag(γ1Ihi,1, ...,γdIhi,d,γd+1Ihi,d+1, ...,γqIhi,q). (6)

Here γ1 > ... > γd > γd+1 > ... > γq > 0 are eigenvalues of(PS)1/2 with
multiplicities vj , j = 1, ...,q respectively; hi, j ≥ 0 satisfies vj = ∑k

i=1hi, j , j =
1, ...,q and hi = ∑q

j=1hi, j , i = 1, ...,k; Σi,1 = diag(γ1Ihi,1, ...,γdIhi,d), Σi,2 =

diag(γd+1Ihi,d+1, ...,γqIhi,q).
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3. Write the transformed nominal system of(1) asḠ=

[

Ā B̄
C̄ D

]

, whereĀ=

TAT−1, B̄ = TB, C̄ = CT−1, T = diag(T1, · · · ,Tk). The sub-matrices of∆
andḠ corresponding to the matrixΣi,2, i = 1, ...,k are truncated to obtain
the reduced dimension uncertain system asG r∆ = Fu(Gr ,∆r), where Gr =
[

Ār B̄r

C̄r D

]

, ∆r = diag(δ1Ih̃1
, · · · ,δkIh̃k

); hereh̃i = ∑d
j=1hi, j , i = 1, ...,k.

Theorem 7. Consider the uncertain system(1) and suppose that the reduced di-
mension uncertain systemG r∆ is obtained as described in Procedure 6. ThenG r∆
is also balanced and robustly stable. Furthermore,

sup
∆∈∆∆∆c

‖G∆ −G r∆‖ ≤ 2(γd+1+ · · ·+ γq). (7)

4. Contractive Coprime Factor Model Reduction for Uncertain Systems

As introduced in the last section, the balanced truncation technique requires
the underlying uncertain systems to be robustly stable. Forthose uncertain sys-
tems which may be robustly unstable, one of the common approaches is coprime
factorization approach. Coprime factorization of uncertain systems is explored
in [12] for discrete-time systems, [13] for continuous-time system and [31] for
parameter-dependent systems, and a model reduction algorithm based on coprime
factorization is given in [12]. However, no indication is given in [12, 31] on the
contractiveness of the obtained coprime factors. The balanced LQG truncation for
uncertain systems is presented in [10]. It is shown in [32, 33] that the balanced
LQG approach and coprime factor model reduction approach lead to identical re-
duced models in the continuous-time LTI cases. Inspired by these facts, in this
section we follow the ideas in [10] to construct a contractive coprime factoriza-
tion for uncertain systems of the form (1) and derive the corresponding model
reduction algorithm.

4.1. Coprime Factorization of Uncertain Systems

Suppose that the uncertain system (1) is robustly stabilizable and robustly de-
tectable, as stated in Def. 2. Consider the following LQG control and filter Riccati
inequalities for the uncertain system (1),

A∗WA−W+C∗C− (A∗WB+C∗D)(I +D∗D+B∗WB)−1(·)∗ < 0, (8)

AVA∗−V +BB∗− (AVC∗+BD∗)(I +DD∗+CVC∗)−1(·)∗ < 0, (9)
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in the variablesW ∈PΘPΘPΘ,V ∈PΘPΘPΘ.
Note that the above Riccati inequalities have the same form as those LQG

control and filter Riccati equations in the discrete-time LTI cases [34, 35, 36]; see
also [7, 37] for continuous-time cases. In these references, it is shown that the
solutions to the LQG control and filter Riccati equations canbe used for coprime
factorization of the underlying LTI systems. In what follows, we will show that,
similar to the LTI cases, the solutions of (8) and (9) can alsobe used to construct
the coprime factors and contractive coprime factors of our uncertain systems (1).

Definition 8. Given a pair of uncertain systemsM ∆ = Fu(M,∆),N∆ = Fu(N,∆),
∆ ∈ ∆c∆c∆c, where M and N are constant matrices,(M ∆,N∆) is said to be aright
coprime factorization(RCF) ofG∆ (1) if the following conditions hold.

1. M ∆ andN∆ are robustly stable.

2. For any fixed∆ ∈∆c∆c∆c,M ∆ is invertible inL (lm) andM −1
∆ is causal.

3. For any fixed∆ ∈∆c∆c∆c, (M ∆,N∆) is right coprime, andG∆ = N∆M
−1

∆ .

Furthermore, ifM ∗
∆M ∆ +N ∗

∆ N∆ ≤ I for all ∆ ∈ ∆c∆c∆c, we say(M ∆,N∆) is a con-
tractive RCF ofG∆ (1).

Theorem 9. An uncertain systemG∆ (1) is robustly stabilizable if and only if there
exist matricesP̄∈PΘPΘPΘ and X∈ Rm×h solving the following LMI:









−P̄ P̄A∗+X∗B∗ X∗ P̄C∗+X∗D∗

⋆ −P̄ 0h×m 0h×l

⋆ ⋆ −Im 0m×l

⋆ ⋆ ⋆ −Il









< 0. (10)

Furthermore, if(P̄,X) is a feasible solution to(10), thenP̄−1 verifies(8).

Proof. (Only if part) Assume that the uncertain systemG∆ in (1) is robustly sta-
bilizable. From Definition 2 and Lemma 3, there exist matrices F andP1 ∈ PΘPΘPΘ,
such that

(A+BF)∗P1(A+BF)−P1 < 0.

Then we can apply Theorem 4 to show that there existsP∈PΘPΘPΘ such that

(A+BF)∗P(A+BF)−P+

[

C+DF
F

]∗[
C+DF

F

]

< 0. (11)
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DefineP̄= P−1, X = FP̄. Left and right multiply both sides of (11) with̄P, and
we obtain

(AP̄+BX)∗P̄−1(AP̄+BX)− P̄+

[

CP̄+DX
X

]∗[
CP̄+DX

X

]

< 0.

It is easy to derive (10) by Schur complement from the above inequality.
(If part) Suppose that(P̄,X) is a feasible solution to (10). DefiningP =

P̄−1,F = XP, it is easy to show that (10) is equivalent to (11). ThereforeG∆
is robustly stabilizable.

Now we prove that̄P−1 verifies (8). By Schur complement, (10) is equivalent
to

−P̄+X∗X+(P̄C∗+X∗D∗)(·)∗+(P̄A∗+X∗B∗)P̄−1(·)∗ < 0,

which is

−P̄+ P̄CC∗P̄+ P̄A∗P̄−1AP̄− (P̄C∗D+ P̄A∗P̄−1B)R−1(·)∗

+[X∗+(P̄C∗D+ P̄A∗P̄−1B)R−1]R(·)∗ < 0, (12)

whereR= I +D∗D+B∗P̄−1B.
Therefore, we have

P̄A∗P̄−1AP̄− P̄+ P̄CC∗P̄− (P̄C∗D+ P̄A∗P̄−1B)R−1(·)∗ < 0.

It is clear thatP̄−1 verifies (8).

Remark 10. The LMI (10) arises from the fact [38, 31] that the solution of the
LQG control inequality(8) is related to a special state feedbackH 2 problem, that
is, finding a static state feedback gain F, such that‖F l(GSF∆,F)‖H2

< γ with a

givenγ > 0, whereGSF∆ = Fu(GSF,∆), GSF =





A I B
0 0 I
C 0 D



; hereF l (·, ·) denotes

the lower LFT representation. The LMI(10) is actually obtained by substituting

A,C in (5) with A+BF,

[

C+DF
F

]

respectively, lettinḡP=P−1, X = FP̄ and then

applying the Schur complement.

Theorem 11.Given an uncertain systemG∆ (1) which is robustly stabilizable and
robustly detectable, suppose matricesP̄∈PΘPΘPΘ and X∈ Rm×h satisfy the LMI(10).
Let

F = XP̄−1, (13)
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and consider the following system

GF∆ =

[

N∆
M ∆

]

= Fu(GF ,∆), (14)

GF =





A+BF B
C+DF D

F Im



 . (15)

Then(M ∆,N∆) is an RCF of the uncertain systemG∆.

Proof. From the proof of Theorem 9, it is clear that (10) is equivalent to (11).
Thus F is robustly stabilizing. Then invoke [12, Theorem 9] to complete the
proof.

Remark 12. Compared with the coprime factorization presented in [12],the
method introduced above leads to a more general approach to constructing the
coprime factorization. Based on the control/filter Riccatiinequalities(8) and (9),
the proposed approach solves them by using LMI technique andthen constructs
coprime factors for underlying uncertain systems in a systematic manner. It is
shown in the next section that, by picking up a specific state-feedback gain F, this
approach can be extended naturally to the contractive coprime factorization for
uncertain systems. It should also be noted that the proposedmethod removes the
full rank assumption of the matrix B which is used in [12] to construct the robustly
stabilizing feedback gain F in(15)with the form F=−(B∗S−1B)−1B∗S−1A.

4.2. Contractive Coprime Factorization of Uncertain Systems
In the LTI case (without uncertainty), when seeking model reduction meth-

ods in the coprime factor description, we are particularly interested in normalized
coprime factorizations, since robustness results on closed-loop stability are avail-
able. We also note that this property is closely related to the graph metric or gap
metric [28, 39] between original models and reduced models.However, it is diffi-
cult, if not impossible, to find normalized coprime factorizations for the uncertain
systems under consideration. Thus, in this section, contractive coprime factoriza-
tions are considered for uncertain systems of the form (1). We remark here that
similar contractiveness ideas have been explored in [11, 40, 37, 13].

Theorem 13. Given a robustly stabilizable and detectable uncertain systemG∆
(1), suppose there exist matrices̄P∈PΘPΘPΘ and X∈ Rm×h solving the LMI(10). Let

R= I +DD∗+B∗P̄−1B, (16)

Fc =−R−1(B∗P̄−1A+D∗C), (17)
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and consider the following system,

G c
F∆ =

[

N c
∆
M c

∆

]

= Fu(G
c
F ,∆), (18)

Gc
F =







A+BFc BR− 1
2

C+DFc DR− 1
2

Fc R− 1
2






. (19)

Then(M c
∆ ,N

c
∆ ) is a contractive RCF of the uncertain systemG∆.

Proof. Suppose the LMI (10) has a feasible solution(P̄,X). From the proof of
Theorem 9, (10) is equivalent to (12). It is obvious thatP̄, Xc = FcP̄ also satisfy
(12), therefore satisfy the LMI (10). It follows from Theorem 11 that(M c

∆ ,N
c

∆ )

is an RCF ofG∆. Note that here(M c
∆ ,N

c
∆ ) are scaled byR− 1

2 .
To prove that(M c

∆ ,N
c

∆ ) is contractive, that is‖G c
F∆‖ ≤ 1, we show an equiv-

alent claim that‖G c
F∆‖ < β for anyβ > 1. By [41, Theorem 11.1], this claim is

equivalent to findP∈PΘPΘPΘ such that



·





∗
[

P 0
0 I

]







A+BFc BR− 1
2

(

C+DFc

Fc

)

(

DR− 1
2

R− 1
2

)






−

[

P 0
0 β2I

]

< 0, (20)

which is
[

N 11 N 12

⋆ N 22

]

< 0, (21)

where

N 11 = (A+BFc)∗P(A+BFc)−P+(Fc)∗Fc

+(C+DFc)∗(C+DFc),

N 12 = [(A+BFc)∗PB+(C+DFc)∗D+(Fc)∗]R− 1
2 ,

N 22 = R− 1
2(−β2R+ I +DD∗+B∗PB)R− 1

2 .

It is easy to verify thatP= P̄−1 satisfies (21). Indeed, substitutingP= P̄−1 into
(21), we haveN 12 = 0 andN 11 < 0 by the fact that̄P, Xc = FcP̄ also satisfy the
LMI (10) and the fact that (10) is equivalent to (11); see proof of Theorem 11.
Also,N 22 =−(β2−1)I < 0. Then (21) holds, and this completes the proof.
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Remark 14. The construction of contractive coprime factors for the underlying
uncertain systems is discussed in [11]. A two-step iteration algorithm is sug-
gested. However, the two LMIs in [11] are not jointly convex in the decision
variables, therefore there is no computationally tractable method to ascertain
its feasibility. It is shown that the proposed method in Theorem 13 provides a
tractable approach to the design of contractive coprime factors based on solving
only one LMI. In the absence of uncertainty, the above results also recover those
in the discrete-time LTI cases [34, 35, 36].

4.3. Contractive Coprime Factor Model Reduction

With the contractive RCF (18) in place, the model reduction method in [12]
can be applied to the resulting contractive RCF. The only problem left is to com-
pute the controllability and observability Gramians of thecontractive RCF (18),
as stated in the following theorem.

Theorem 15. Given that all the conditions in Theorem 13 are satisfied, thefol-
lowing statements hold.

(i) P̄−1 is a generalized observability Gramian for the uncertain systemG c
F∆

(18).

(ii) The LMI
(A+BFc)S(A+BFc)∗−S+BR−1B∗ < 0 (22)

has a feasible solution S∈PΘPΘPΘ which is a generalized controllability Gramian
for the uncertain systemG c

F∆ (18).

Proof. (i) From the proof of Theorem 13,N 11 < 0 in (21). This verifies that
P = P̄−1 is a generalized observability Gramian for the uncertain systemG c

F∆
(18).

(ii) SinceG c
F∆ is robustly stable, invoking Theorem 4, it is straightforward

that the LMI (22) is feasible, andS is a generalized controllability Gramian for
G c

F∆.

The above theorem provides a numerical way to compute generalized Grami-
ansP = P̄−1 andS for the contractive RCF(M c

∆ ,N
c

∆ ) of the uncertain system
G∆. We are ready to summarize the proposed coprime factor modelreduction
algorithm as follows.

Procedure 16(Coprime Factor Model Reduction).
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1. Solve the LMI(10) to obtain P̄. Define R as in(16), Fc as in (17) and
P= P̄−1;

2. Solve the LMI(22) to obtain S;

3. Apply Steps 2-3 in Procedure 6 to the uncertain systemG∆ (1) to obtain the
reduced dimension uncertain system asG r∆ = Fu(Gr ,∆r).

Theorem 17.Suppose that all the conditions in Theorem 13 are satisfied, and that
the reduced dimension uncertain systemG r∆ = Fu(Gr ,∆r), where Gr is obtained
as described in Procedure 16. Under the assumption thatδ ,

i s are strictly causal,
consider the following system,

G c
rF ∆ =

[

N c
r∆
M c

r∆

]

= Fu(G
c
rF ,∆), (23)

Gc
rF =







Ār + B̄rFc
r B̄rR− 1

2

C̄r +DFc
r DR− 1

2

Fc
r R− 1

2






, (24)

where Fc
r =−R−1(B̄∗ΣĀ+D∗C̄)P ∗, andP is the corresponding truncation matrix

in Procedure 16 defined asP = diag(P1, · · · ,Pk), P i = [I h̃i
0]. Then the following

statements hold.

(i) (M c
r∆,N

c
r∆) is a contractive RCF ofG r∆.

(ii)
sup
∆∈∆∆∆c

‖G c
F∆ −G

c
rF ∆‖ ≤ 2(γd+1+ · · ·+ γq). (25)

Proof. As δ ,
i s are strictly causal, the reduced-order system(M c

r∆,N
c

r∆) is well-
posed [12]. It follows the proof of [12, Theorem 11,] that(M c

r∆,N
c

r∆) is an RCF
of G r∆ and the error bound (25) holds. It only remains to prove that(M c

r∆,N
c

r∆) is
contractive.

For simplicity, here we only consider the case ofk = 1. As described in Pro-
cedure 16, letT be the transformation matrix to balanceP,SandP = [I 0] be the
corresponding truncation matrix. Then

TST∗ = (T−1)∗PT−1 = diag(Σ1,Σ2),

Ā= TAT−1 =

[

Ār Ā12

Ā21 Ā22

]

, B̄= TB=

[

B̄r

B̄2

]

,

C̄=CT−1 =
[

C̄r C̄2
]

. (26)
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Define the following matrices, partitioned accordingly with the partition in (26),

A = Ā+ B̄FcT−1 =

[

A11 A12

A21 A22

]

,B = B̄R− 1
2 =

[

B1

B2

]

,

C =

[

C̄+DFcT−1

FcT−1

]

=
[

C1 C2
]

, D =

[

DR− 1
2

R− 1
2

]

.

Note that, from the proof of Theorem 13, (20) holds forP= P̄−1. Left- and right-
multiply both sides of (20) with diag((T−1)∗, I) and diag(T−1, I), and we have

(

·
)∗
[

Σ 0
0 I

][

A B

C D

]

−

[

Σ 0
0 β2I

]

< 0. (27)

Left- and right-multiply both sides of (27) with diag(P , I) and diag(P ∗, I) to ob-
tain

(

·
)∗
[

Σ1 0
0 I

][

A11 B1

C1 D

]

−

[

Σ1 0
0 β2I

]

<−
(

·
)∗

Σ2[A21 B2]< 0. (28)

It is easy to verify thatA11,B1,C1,D are the system matrices ofGc
rF in (24).

Therefore(M c
r∆,N

c
r∆) is contractive; see the proof of Theorem 13.

Remark 18. Note that solutions to the LMIs(10) and (22), if they exist, are not
unique. In the absence of uncertainty, minimizingP̄−1 subject to(10) and mini-
mizing S subject to(22) would lead to a normalized coprime factor model reduc-
tion algorithm. A possible heuristic is to seek approximatenormalization in the
presence of structured uncertainty, that is, solve the following two semi-definite
programs (SDPs):

min trace(Z) with P̄∈PΘPΘPΘ

subject to (10) and
[

Z I
I P̄

]

> 0,
(29)

min trace(S) with S∈PΘPΘPΘ subject to (22). (30)

Also note that although the two conditions in(10) and (22) are convex (sepa-
rately), similar to the balanced truncation in the LTI case,the computation of a
solution of the LMI constraints which leads to the best reduced model introduces
a non-convex problem.
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∆N −∆M

N∆ M −1
∆

p1 p2

q

d1 d2

K

(a) Perturbed uncertain system.

p q

d H

0

0 ∆

∆N

−∆M

(b) Equivalent LFT system.

Figure 1: Feedback Interconnection for Robustness Analysis.

5. Robustness Analysis

In the last section, a coprime factor based model reduction algorithm for uncer-
tain systems with structured uncertainty has been derived.It is well known that, in
the LTI case, coprime factor model reduction is a model reduction approach in the
closed-loop sense. Specifically, for a standard feedback setup consisting of a nom-
inal plantG with normalized coprime factors(M,N) and a stabilizing controller
K, in the normalized coprime factor model reduction, if the coprime factor error

is bounded by the stability marginbG,K =

∥

∥

∥

∥

[

I
G

]

(I −KG)−1[K I ]

∥

∥

∥

∥

−1

∞
, the con-

troller stabilizing the original plant also stabilizes thereduced model. Motivated
by the above fact, this section is devoted to exploring the closed-loop robustness
of uncertain systems with structured uncertainty in the coprime factor description.

Consider an uncertain systemG∆ =N∆M
−1

∆ , whereN∆ = Fu(N,∆) andM ∆ =

Fu(M,∆) are defined in Theorem 11; hereN =

[

N11 N12

N21 N22

]

andM =

[

M11 M12

M21 M22

]

are partitioned accordingly. In order to analysis the the closed-loop robustness,
we assume that the uncertain systemG∆ is stabilized by an LTI controllerK. Now
suppose that the underlying uncertain system is replaced bythe reduced uncertain
system asG r∆ =(N∆+∆N)(M ∆+∆M)−1, where∆N =N r∆−N∆,∆M =M r∆−M ∆
are coprime factor based model reduction errors. We aim to derive the robustness
condition under whichG r∆ is stabilized byK.

The standard feedback interconnection for the perturbed uncertain systemG r∆
is plotted in Fig. 1(a). The system inside the dashed box indicatesG r∆. This
closed-loop system can be reformulated to an equivalent standard LFT configura-
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tion, as shown in Fig. 1(b), wherep= [pT
1 , p

T
2 ]

T , d = [dT
1 ,d

T
2 ]

T and

H =

[

0 0
0 N11

]

+

[

I
N12

]

(M22−KN22)
−1[[K I ] −M21+KN21

]

.

Invoking the scaled small gain theorem, we are able to define the robust sta-
bility margin as

ε̄ = sup

{

ε :

∥

∥

∥

∥

[

εI 0
0 Θ

]

H

[

I 0
0 Θ−1

]∥

∥

∥

∥

< 1,Θ ∈PΘPΘPΘ

}

,

and the following result can be easily derived.

Theorem 19. If an LTI controller K robustly stabilizesG∆ = N∆M
−1

∆ , where
(M ∆,N∆) is an RCF ofG∆, then K robustly stabilizes the reduced uncertain system

G r∆ = (N∆+∆N)(M ∆+∆M)−1 for all robustly stable
[

∆N

∆M

]

such that
∥

∥

∥

[

∆N

∆M

]∥

∥

∥
<

ε̄.

The above result provides robustness condition on closed-loop stability for un-
certain systems with underlying structured uncertainty, which extends the LTI re-
sults to uncertain system cases. Under the current coprime factor model reduction
framework, this robustness result explicitly specifies thebound on the coprime
factor reduction error such that the interconnection of thereduced plant and the
original controller is also guaranteed to be robustly stable.

Remark 20. Note that here we only consider the case where controller K isLTI.
In some situations, controller K has the structure similar to G∆, that is,K∆ =
Fu(GK,∆K) where GK is a constant matrix; for example, in the multi-dimensional
systems [9, 40], or in the LPV gain scheduling problems [14, 15]. A similar result
can still be obtained by replacing∆ with an augmented structurẽ∆ (∆⊕∆K), H
with a corresponding constant matrix in Fig. 1(b).

In the absence of uncertainty, it is well known that the stability margin char-
acterized by normalized coprime factors is closely relatedto gap metric [28]. We
remark as well that the derived robustness property in this section for uncertain
systems is only a preliminary conceptual step forward to derive a quantitative
robust stability margin in a closed-loop sense for the coprime factor model reduc-
tion approach to uncertain systems. The results could potentially contribute to the
analysis of gap metric for uncertain systems, however, a great deal of research has
yet to be done in order to be able to apply gap metric theory to problems of model
reduction to uncertain systems that address closed-loop properties in a systematic
way. The future research will focus on the new gap metric and closed-loop model
reduction theory for uncertain large-scale systems.
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6. Example

Consider the same example in [12] with

A=













0.5034 0.1768 −0.2340 −0.1406 0.5814
0.0096 0.5498 −0.0362 −0.6744 2.2496
0.0337 0.2546 0.0984 −0.4051 1.3599
−0.2709 0.1470 0.3249 0.0484 0.6356
−0.0909 0.0491 0.1075 −0.1019 0.5681













,

B=













0.3306 0.1700
0.8951 0.3442
0.5487 0.2143
0.8748 0.8821
0.5217 0.4479













,

C=

[

3.0622 −0.9986 −0.7126 6.4339 −10.4291
3.0396 −0.9913 −0.7073 5.2369 −8.4887

]

,

∆ = diag(δ1I3,δ2I2).

Solving the SDP (29), we obtain

P= P̄−1

=











96.1453 −24.7774 −30.4131 0.0000 0.0000
−24.7774 7.5136 6.4620 0.0000 0.0000
−30.4131 6.4620 12.5545 0.0000 0.0000

0.0000 0.0000 0.0000 98.5330 −163.4846
0.0000 0.0000 0.0000 −163.4846 275.9870











,

Fc =

[

1.2027 −0.1404 −0.5680 0.8741 −2.2285
−0.0957 −0.2160 −0.2979 −1.0129 1.5355

]

.

We can then construct the contractive RCF as in (18), (19) with

Mc
F =



























0.8847 0.0937 −0.4724 −0.0238 0.1057 0.1758 0.0555
1.0532 0.3498 −0.6471 −0.2406 0.7834 0.4883 0.0886
0.6731 0.1313 −0.2771 −0.1425 0.4662 0.2990 0.0560
0.6968 −0.1663 −0.4347 −0.0804 0.0406 0.4197 0.3764
0.4937 −0.1209 −0.3222 −0.0996 0.0933 0.2585 0.1829
3.0622 −0.9986 −0.7126 6.4339 −10.4291 0.0000 0.0000
3.0396 −0.9913 −0.7073 5.2369 −8.4887 0.0000 0.0000
1.2027 −0.1404 −0.5680 0.8741 −2.2285 0.5860 −0.1053
−0.0957 −0.2160 −0.2979 −1.0129 1.5355 −0.1053 0.5311



























.
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Solving the SDP (30), we obtain

S=













0.0772 0.1973 0.1214 0.0000 0.0000
0.1973 0.5222 0.3203 0.0000 0.0000
0.1214 0.3203 0.1968 0.0000 0.0000
0.0000 0.0000 0.0000 0.5599 0.3169
0.0000 0.0000 0.0000 0.3169 0.1827













.

Then the balanced Gramian is

Σ1 = diag(0.8370,0.3146,0.0268),Σ2= diag(1.1436,0.8147).

Truncating the system matrices corresponding to the last generalized Hankel
singular value inΣ1, the reduced dimension uncertain system model is defined by

Ār =









0.3830 0.0865 −0.3771 0.7548
−0.1633 0.6255 −0.0157 0.1556
−0.6731 0.5150 0.3777 −0.2194
−0.3692 0.2832 0.0094 0.2388









,

B̄r =









1.0572 0.0349
−0.2642 −0.5105
−0.6643 −1.5790
0.9864 0.0412









,

C̄r =

[

−0.2745 −0.0669 −0.6423 −0.2425
−0.2725 −0.0664 −0.5228 −0.1973

]

,

∆r = diag(δ1I2,δ2I2).

and the error bound on the coprime factors is given by

sup
∆∈∆∆∆c

‖G c
F∆(s)−G

c
rF∆(s)‖ ≤ 2×0.0268= 0.0536.

7. Conclusions

The paper considers the problem of coprime factor model reduction for a class
of discrete-time uncertain systems with structured norm bounded uncertainty. The
proposed method is applicable to the uncertain systems which may be robustly
unstable, overcoming the robust stability restriction in the balanced truncation
approach. A systematic approach is presented to construct acontractive coprime
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factor for the underlying uncertain system, based on the useof LMIs. This enables
the balanced truncation to be applied to the contractive coprime factor to obtain
the reduced uncertain system. Closed-loop robustness is analyzed under additive
coprime factor perturbations.
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