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Abstract—The Internet of Things is a vision that broadens
the scope of the internet by incorporating physical objects to
identify themselves to the participating entities. This innovative
concept enables a physical device to represent itself in the digital
world. There are a lot of speculations and future forecasts
about the Internet of Things devices. However, most of them
are vendor specific and lack a unified standard, which renders
their seamless integration and interoperable operations. Another
major concern is the lack of security features in these devices and
their corresponding products. Most of them are resource-starved
and unable to support computationally complex and resource
consuming secure algorithms. In this paper, we have proposed
a lightweight mutual authentication scheme which validates the
identities of the participating devices before engaging them in
communication for the resource observation. Our scheme incurs
less connection overhead and provides a robust defence solution
to combat various types of attacks.

Index Terms—Internet of Things (IoT), CoAP, Authentication,
Conditional Option, Resource Observation

I. INTRODUCTION

Advances in the wired, wireless, cellular and sensor net-
works have laid a solid foundation for the Internet of Things
(IoT). It is a novel paradigm which encompasses everyday
physical world objects by enabling interaction among them
via unique addressing schemes [1]. It is estimated that around
50 billion such objects will be connected to the internet by
20201. Sensors, RFID tags, smart thermostats, PDAs, smart
phones, gadgets etc. are some to mention in this context. These
devices will be empowered to sense, process and control the
physical world events and numerous phenomena of interest.
Eventually, the IoT will lead us to the Internet of Everything
(IoE), where people, data, objects and processes will be an
integral part of it. We are moving to an era where the IoT-based
internet will become ubiquitous by integrating the virtual
world of information with the physical world of objects. This
integration with the physical world will facilitate humanity
in the long run. The refrigerators will automatically order
groceries from the supermarkets which will be delivered upon
payment verification.

To realize the above vision, the industry needs to adhere
to a unified standard. Currently, each application has its
own specifications and underlying software and hardware
platforms. The devices require a scalable application layer
for the interoperable communication. Also, a common pro-
gramming model is required which will enable the developers
to focus only on the application development rather than the
hassle of worrying about the underlying platform [2]. The
IoT comprises energy-starved sensor nodes at its core which
are equipped with relatively small amount of memory; hence,
the application code needs to run on the cloud and only the
firmware and the network stack need to be nested at the core of
each embedded device. Running applications on the cloud will
serve two major purposes: the availability of ample memory

1http://www.cisco.com/web/solutions/trends/iot/indepth.html

space on the nodes and developing applications irrespective of
the underlying hardware architecture.

Integrating everyday objects in the internet is not a straight-
forward process. Security is one obvious challenging task
faced by the IoT as each object has its own features and
requirements. First, the identity of each person, object and
system connected with the internet needs to be established. In
the absence of identity the intruders will gain access to the
network and conduct security breaches. The consequences of
these breaches vary from one application to another. These
security threats are diverse in nature which ranges from dis-
abling home security system to conveying false health readings
to the practitioners and activating false fire alarms are some
to mention in this context.

Despite all these security threats, most of the IoT products
available in the market lack secure identities. As a result, we
are about to use products which are vulnerable to various
types of security breaches. These products will lead us to
a new era of cybercrimes rather than improving our lives.
As a result, the IoT will more likely become the Internet of
Vulnerabilities (IoV). Recently, Proofpoint Inc.2 a leading se-
curity firm uncovered cyber attack involving physical objects.
This is considered as the first major security breach in the
world of IoT. Over a period of less than two weeks, 750, 000
malicious emails were transmitted from more than 100, 000
devices. Interestingly, more than 25 percent of those devices
were the physical objects including television, refrigerator and
other house hold appliances. It was by far the simplest of
attacks as misconfiguration and using default passwords were
sufficient to compromise these physical objects. Hence, the IoT
faces diverse challenges of thing-bots along with the traditional
botnets.

In this paper, we have proposed a lightweight secure authen-
tication algorithm which verifies the identities of the clients
and servers participating in the network. We have chosen
Constrained Application Protocol (CoAP) as the underlying
application layer protocol for enabling communication among
various physical objects.

This paper serves two major purposes. First, it authenticates
the identities of the clients and server communicating with
each other. Second, it provides various resources to the clients
based on certain conditions specified in the request. Both these
objectives are necessary for a robust and efficient communi-
cation system. The IoT acts as a hub for the heterogeneous
devices having specific requirements in terms of data rate,
latency, bandwidth, security and other performance metrics.
The participating devices can easily be compromised to act
as potential intruders in order to manipulate the network
resources in an abnormal fashion. Hence, the identity of
each device either as client or server needs to be verified
in an energy-efficient manner. Upon authentication, actual
data transmission commences among the end points. Each

2http://www.proofpoint.com/about-us/press-releases/01162014.php



client specifies certain conditions based on its application
requirement for resource observation. The conditional specific
data transmission reduces the number of transmitted packets
which has a direct impact on energy consumption, computation
and bandwidth utilization of the communicating endpoints.

The paper is organized into six sections. In Section II, a brief
overview of the problem statement is provided. In Section III,
we first present our lightweight mutual authentication algo-
rithm followed by the conditional resource observation in an
IoT domain. In Section IV, we have provided the preliminary
evaluation results based on our authentication algorithm. The
related work on resource observation and authentication is
presented in section V. Finally, the paper is concluded and
the future research directions are provided in section VI.

II. PROBLEM STATEMENT

The Internet of Things incorporates devices from a very
diverse background. These devices differ from each other in
terms of their size, storage, energy consumption, computa-
tion, data rate and other performance metrics. Seamless and
interoperable communication among the devices is enabled
via sensors and actuators embedded in them. These miniature
sensors give a unique ID to each participating device in an
IoT paradigm. Sensors broaden the scope and scalability of
today’s internet by integrating them to the physical objects.
However, it requires an effort on the application developers
side because sensors are tiny, energy-starved and constrained
on computation and storage capacity. Hence, there is a trade-
off between the scalability and network resources.

Trust, privacy and security provisioning are challenging
tasks in any communication network. However in the IoT,
designing secure solutions are more difficult and complex
due to the peculiar nature of the devices. Also, sensors are
deployed at the core of the communication system, which
makes it more difficult to design computationally complex
but secure and robust algorithms. In the internet of today,
various types of attacks and their defence mechanisms are
well studied. However in the IoT domain, threats posed by
various objects are unknown until they are deployed in the
network. Hence, their dimension, scope and nature are yet to
be observed.

Figure 1 depicts a small scale IoT environment, which is
vulnerable to different types of attacks. Here, an intruder poses
threats to various types of devices and information at a given
time. Internet, sensor network and smart phone are susceptible
to this attack. Any data coming from the attached devices will
also be affected. Hence, a single intruder is capable to conduct
a large scale attack. The intruder might intercept the sensor
data, manipulate it and replays the malicious data in other
parts of the network. Also, it might inject fabricated data of
its own. In this figure, various types of objects are connected
with the internet along with personal computers. Hence, large
amount of data is at risk which might result in malfunctioning
of the whole network. Off course, the severity of this attack
depends on the intruder’s battery-power, storage, computation
and other features.

Like any other legitimate node, a malicious node also
requires an ID to participate in an IoT communication. Each
participating device needs to be validated and authenticated in
order to establish its true identity in the network. In absence
of ID validation and authentication, an attacker will always be
capable of conducting a wide range of malicious activities. An
intruder might establish multiple connections with the gateway
node of the sensor network as shown in Figure 1. This is by far
the simplest of the attacks where multiple network resources
will be seized by the malicious device. This results in denial of
services to the legitimate sensor nodes and ultimately causes

 Fig. 1. A Vulnerable IoT Architecture

scarcity of resources in the network [3]. Wireless medium
is shared among the network devices. The intruder might
block access to the network resources by continuously emitting
signals to interfere with the legitimate transmissions. This act
is known as jamming [4] and its consequences are severe in an
IoT environment as compared to wired and wireless networks
because, physical objects differ significantly from each other
in terms of various network resources.

The identity validation restricts the devices from establish-
ing multiple simultaneous connections with a given server. As
our propose authentication scheme uses CoAP-based client
and server interaction model hence, each client object is
restricted to a single connection with a given server. This
objective serves two purposes. First, CoAP is specifically
designed for energy-constrained devices; hence energy should
be utilized in an efficient manner. Second, the magnitude of
any security breach has a direct relation with the number of
established connections. However, connection restriction alone
is not sufficient to achieve a robust secure solution. Each
connection needs to be authenticated using some lightweight
encryption scheme. Off course, ID validation and authentica-
tion cannot combat all types of threats in any communication
network. However, they are still capable to tackle a subset of
malicious threats.

Another challenging task in an IoT communication is the
resource observation at the server. Each application has its
own requirements in terms of data acquisition and resource
observation. Some applications require periodic transmission
while other requires continuous data flow. Yet, there are other
applications which observe abrupt and sudden changes in the
resource state. Thus, the IoT needs to be configured in a way
to fulfill the requirement of each application.

The conditional resource observation is well suited to the
energy-constrained devices of an IoT environment. Each client
specifies certain conditions in the request message. Once
the condition is fulfilled at the server end, it notifies the
client about the current state of the resource. This reduces
the number of transmitted packets. Thus, enhancing network
lifetime by reducing the energy consumption along with the
network congestion

Resource observation, secure authentication and communi-
cation need to be provided at a higher standard to ensure that
the IoT devices and products are more robust and beneficial.
Delivering the data intended for one device to a different and
irrelevant device would harm the network resources in return.

III. LIGHTWEIGHT MUTUAL AUTHENTICATION SCHEME
FOR CONDITIONAL OBSERVATION OF RESOURCES

In this section, we first present a brief overview of our
authentication scheme followed by the actual data transmission
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which is based on the conditional resource observation. Here,
it is important to mention that our authentication algorithm and
CoAP protocol are not two separate protocols; but we have
added security features for the authentication in the CoAP
to make it more robust, efficient and secure against various
types of threats. Implementing two or more protocols in the
IoT domain is not a feasible and optimal solution in terms of
interoperability, scalability, resource utilization and hardware
and software complexity. In short, its a two-step process:
authentication and communication.

A. Lightweight CoAP-based Authentication Scheme
Like any communication network, preserving resources in

the IoT domain is of utmost importance supporting greater
operational cycles. Fabricating and spreading out malicious
data in the network will risk the whole network traffic flow.
Consequently, each device in the network will end up with
malicious copies of the data. Both the client and the server
have equal chances to be compromised in the network. Hence,
it is important to authenticate the identities and integrity of the
communicating parties.

As CoAP is a lightweight alternative of the HTTP protocol
for the resource constrained devices, hence simple but robust
authentication schemes need to be developed in order to
prolong the network lifetime. Here, we have proposed an
authentication algorithm in view of the above discussion. The
algorithm is simple in computation but it can be a robust alter-
native to the Datagram Transport Layer Security (DTLS) due
to its ease of implementation, infrastructure and complexity.
Both the client and server challenge each other to authenticate
themselves. The authentication mechanism completes using
four handshake messages between any client and the server.
Each message is comprised of 256 bits except the initial
handshake authentication request of the client. Hence the total
connection overhead incurred during the authentication session
is less than 1024 bits, which is well suited to the IoT-based
devices.

In this scheme, the authentication is completed using the
128-bit Advanced Encryption Standard (AES). We believe that
the 128-bit encryption is sufficient for the energy-constrained
devices participating in the IoT paradigm. Both AES-192 and
AES-256 bit encryption schemes are highly computational and
time-consuming tasks requiring sophisticated hardware and
software platforms, which is not the case with majority of
the energy-constrained objects.

Each client shares a pre-shared key, Yi of 128-bits with the
server before authentication initiation commences. Each device
has a unique ID associated with it, which enables the server to
perform a table look-up for the identity validation. The server
maintains a pool of pre-shared keys which are associated with
the unique ID of each client. Any pre-shared key, Yi is known
only to the server and the client with whom the communication
is to be established. The session initiation is validated based on
the match in the look-up table. If the client ID is not validated,
the session initiation fails. Figure 2 shows the Key-ID pairs in
the table maintained by the server.  

Device ID(i) 1 2 3 4 5 6 …… n 

Pre-shared Key  Yi Y1 Y2 Y3 Y4 Y5 Y6 …… Yn 

Fig. 2. Key-ID Pairs in the Server Table

Session initiation is only the first step in the proposed
authentication scheme. The ID matching in the table only
allows both the parties to communicate with each other for
exchanging the session key. However, the actual authentication
process is completed using four handshake messages as shown
in Figure 3. The handshake mechanism is explained below in
four simple steps.

   

Client                                                                                                                            Server 

Fig. 3. Four-way Authentication Handshake

1) Session Initiation: Each client sends a request message
to the server. This message is of the type CON having POST
method applied to it, which is used to create or update
a resource. Each message has a specific token associated
with it. The token is used for correlating the request with
a matching response. Also, each message has its own ID for
unique identification. Every client maintains and monitors a
queue of all transmitted CON messages. The CON message
is retransmitted if an acknowledgment is not received in
a prespecified duration or else, the message timeouts. The
message carries two options, the Auth and the Auth-Msg-Type.
The values of these options indicate the type of operation
performed on a resource at the server. The client request is
directed towards the resource identified by a URI as shown
in Figure 3. In this figure, /authorize is the resource at the
server. The parameters Auth=true, Auth-Msg-Type = 0 and
/authorize informs the server that the client request is for the
session initiation.

2) Server Challenge: The server retrieves the device ID
from the message payload. This enables the server to find a
matching pre-shared key associated with each client. Once a
match is found, the server responds back with an encrypted
payload using the AES algorithm. The server generates a
pseudorandom number, nonceServer and a potential session
key, Ks. Each one is of 128-bits and the nonceServer is used
only once in the entire authentication process. At this stage,
an encrypted payload is generated. First, XOR operation is
performed on Yi and Ks. Next, the result is appended with
the nonceServer, which is finally encrypted with Yi as shown
in the equation 1.

ESP = AES{Yi, (Yi YKs|nonceServer)} (1)

In this equation, ESP is the key used for encrypting the
payload generated by the server and Yi is the key with whom
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the payload can be encrypted. Here, Yi is the key used for
encrypting the payload. As it is common to both the client and
the server. The XOR operation (represented by Y) is the most
commonly used operation in the symmetric cryptography for
encryption and decryption as it yields the original information
if it is used twice to encrypt and decrypt the same message.

Next, the encrypted payload is transmitted to the client as
a challenge which needs to be decrypted in order to establish
an authentication session. The session initiation results in the
creation of a resource at the server. In this case, the resource is
the session created by the server as depicted by a temporary
session ID in the response URI. If the server is unable to
verify the ID of the client, the session is terminated and the
handshake mechanism does not proceed any further. This is
the case when the client is an attacker who wants to initiate a
session with the server.

3) Client Response and Challenge: Once a client receive
the challenge, it needs to decipher the encrypted payload
in order to retrieve the potential session key, Ks. If the
client is able to successfully decrypt the payload, it will
have the correct nonceServer and Ks. Each client uses it’s
pre-shared key, Yi to decrypt the payload. Upon successful
deciphering, the client has authenticated itself and now the
server also needs to authenticate itself. The client generates a
new encrypted payload. First, an XOR operation is performed
on nonceServer and Yi. Next, the resultant is appended with
nonceclient and encrypted with Ks as shown in equation 2.

ECP = AES{Ks, (nonceServer Y Yi|nonceClient)} (2)

Here, ECP is the encrypted payload generated by the client,
nonceClient is the pseudorandom number generated by the
client. Like nonceServer, the nonceClient is generated only
once in any specific authentication session. The value of Auth
is set to true while Auth-Msg-Type is set to 1 in order to
inform the server that the encrypted payload in the server
challenge was successfully deciphered. At this stage, Ks has
securely been transmitted to the client.

4) Server Response: Finally, the server checks the en-
crypted payload in the client challenge. Upon observing the
nonceServer in the client response, the server realizes that the
client has successfully authenticated itself. Now, the server
decrypts the payload and retrieves the nonceClient from it.
Next, it creates a payload by embedding the nonceClient in it
and appending Ks. The payload is then encrypted with Yi as
shown in equation 3.

ESP = AES{Yi, (nonceClient|Ks)} (3)

As the client has already authenticated itself, hence the status
of the resource changes to Authenticated at the server.
Next, the encrypted payload is transmitted to the client. Upon
reception, the client decrypts it and observe the nonceClient

in it, which indicates that the server has also been able to
decipher the challenge successfully. Hence, both the parties
have authenticated themselves and are authorized to exchange
the data packets. At this stage, both the client and server have
agreed upon a common session key, Ks which was securely
transmitted.

The format of the Auth and Auth-Msg-Type options is
shown in Figure 4.

No. C U N Name Format Length Default

TBD

TBD

X X - Auth empty 0 (none)

X X - Auth-Msg-Type uint 1 (none)

Fig. 4. Authentication Options Format

Both these options are critical and unsafe-to-forward. Criti-
cal or elective options are related to the endpoints while safe or

unsafe-to-forward are used in the proxy context. If an endpoint
is unable to understand a message having a critical option,
it must return a Bad Option response to the sender. It is
mandatory to understand the critical options in a message
before forwarding it to other devices. Unsafe-to-forward is
having the same meaning as critical option and is used only
in the context of the proxies. Both these options are yet to be
assigned numbers by the Internet Assigned Numbers Authority
(IANA) 3.

Once the connection request is authorized, the actual data
transmission commences. Each authenticated client registers
itself with the server for the resource observation.

B. Conditional Resource Observation in Internet of Things
We have implemented our authentication scheme for the

conditional resource observation using the CoAP protocol. Our
implementation consists of four clients which conditionally
observe the temperature readings at the server. Each client
is associated with a specific application which has its own
requirements for the temperature notifications. A server Net-
duino Plus 2 board continuously monitors the temperature
readings. An air conditioner, a room heater, a tap valve and
window blinds are the four applications in our proposed
scheme. For visibility purpose, we have shown only two
applications in Figure 5.

                                                                                             

       Register           Get/temp;  Observe;  Condition 

                        14 0C   (ON) 

                                                                                                    Get/temp;  Observe;  Condition    Register 

          180C (OFF) 

 

           27.10C (OFF)                                            27.10C (ON) 

                               

 

          220C (ON)                                              220C (OFF) 

 

   

       CON; Condition: ‘_ Cancellation_’    De-Register     

De-Register         CON; Condition: ‘_ Cancellation_’       

       

Temperature Server                                  Air Conditioner Heater 

Fig. 5. Conditional Resource Observation

Each client registers itself with the server by sending a
request message. This message contains a conditional option
along with the observed option. Here, a GET method is used
in the request to retrieve the representation of a resource. The
server verifies the presence of these options in the request
message. If present, the client is registered as an observer in
the internal list maintained by the server. We have modified
the conditional option in our implementation based on each
application’s requirement. An air conditioner client requests
the server for notification whenever the state of the resource
is greater than 250C. When the temperature readings are
lower than this value, the electric heater will be notified.
The tap valve and the wall blinds have different requirements
for the notifications as compared to the heater and the air
conditioner. The server notifies the tap valve whenever the
temperature readings are greater than 350C. Upon reception
of the temperature readings, the status of the tap valve changes

3https://www.iana.org/
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from 0 (OFF) to 1 (ON) in order to water the plants in a pot.
When the temperature readings are greater than 300C, the wall
blinds are notified to turn off.

Our scheme connects four different types of physical ob-
jects in an IoT communication system. Interestingly, all these
objects perform different operations on the same resource. As
their application requirements differ from each other, hence
their mode of observation also differs. As miniature sensor
nodes are involved at the core of the communication, hence
their resource-constrained nature needs to be preserved. The
conditional resource observation enhances the battery power
of these nodes by decreasing the number of transmitted
notifications. In our scheme, the server notifies the clients
whenever certain conditions are satisfied. However, it does not
transmit any other packets as long as the condition is true.
For example in Figure 5, initially, the server notifies the room
heater with a temperature reading of 140C. As this value is
less than 250C, hence the sensor responsible for the control
of room heater turns it ON. Next, if the temperature readings
changes and they are less than 250C, the room heater will not
be notified. After all, any reading less than 250C would mean
to turn on the heater, which is not required as the heater is
already in the ON state.

If a client wants to deregister from the conditional resource
observation, it transmits a CON message to the server. In this
message, the conditional option type is set to Cancellation .
When the server observes this value, it deregisters the client
and removes it from the observer list.

For conditional resource observation, both conditional and
the observe options are mandatory in a registration request
message. The observe option registers a client for resource
observation, while the conditional option informs the server
about the notification criteria. In order to understand the
internal mechanism for the notification, it is important to have
an understanding of the conditional option format. It is 1 to
5 bytes in length [5] consisting of a 1 byte mandatory header
and 0 to 4 bytes value. It is elective and unsafe-to-forward as
shown in Figure 6.

Number Elective Unsafe Format Length Name 

18 Yes Yes uint 1-5 Byte  Conditional 

 Fig. 6. Conditional Observe Option
In conditional observation, the header plays a vital role in

specifying the criteria for the resource observation. The header
consists of three fields, a 5-bits type, 1-bit reliability flag and a
2-bit value. The type field results in 32 various combinations
for condition specifications in a request message. Till now,
only 10 condition types are known. For example, cancellation,
minimum response time, maximum response time, value <>
and periodic are some to mention in this context. Their IDs
are set in the type field of the header. Its format is shown in
Figure 7. 

7 6 5 4 3 2 1 0 

Type Flag Value 

 Fig. 7. Header Format
Each client needs to register itself only once with a given

server for a resource observation. An attacker might register
itself multiple times for a resource and will be able to conduct
various types of DOS attacks. However, our authentication
scheme prevents the attackers from registering multiple times
with a given server. This is due to the fact that each server,
first validates and authenticates the identity of a device and
later on allows it for the resource registration.

IV. EXPERIMENTAL EVALUATION

In this section, we have provided the preliminary evaluation
results for our scheme. First, any client and server participating

in an IoT communication are authenticated by validating their
IDs. We have used CoAPSharp4, an open source library for au-
thentication and conditional resource observation. This library
has very basic implementation of the CoAP protocol and only
provides normal resource observation. Hence, we implemented
our authentication scheme and application specific conditional
option in it.

For the implementation, we first performed our evaluations
on the emulators, which were then verified and implemented
on the NetDuino Plus 2 boards5. A temperature sensor, Dellas
DS18206 was embedded on the NetDuino Plus 2 Board. The
NetDuino board in the role of a server provides conditional
specific resources to four different clients in our proposed
approach. Each NetDuino Plus 2 board control an application,
as discussed in the previous section. Hence, our setup consists
of a total of five boards, a server and four client NetDuino
boards.

The server and the clients authenticate each other before
establishing a conditional resource observation relationship.
Figure 8 shows a successful authentication of this interaction.
In this figure, the server key is the potential session key which
needs to be securely and successfully transmitted to each
client. Upon successful decryption, the authentication process
is completed. Here, the client key is the pre-shared secret key
associated with each client.

The thread '<No Name>' (0x2) has exited with code 0 (0x0). 
[SERVER] Started. 
[SERVER] Key: 4F9DB1949D924031-8C77BE06276ECB25 Nonce1: 2F2515012EDB8CE0-5A02705303A1544C 
Nonce2:  
[CLIENT] Key: 16BBE8D16B4C00F8-3143F1D60DA5E97D Nonce1: 2F2515012EDB8CE0-5A02705303A1544C 
Nonce2: 5E10A9012748BDDA-3FFDCFF6128F4056 
[CLIENT] Replying to server challenge... 
[SERVER] Access granted to client 16BBE8D16B4C00F8-3143F1D60DA5E97D 
[SERVER] Key: 4F9DB1949D924031-8C77BE06276ECB25 Nonce1: 2F2515012EDB8CE0-5A02705303A1544C 
Nonce2: 5E10A9012748BDDA-3FFDCFF6128F4056 

 

 

 

 

 

 

 

Fig. 8. Successful Authentication Response

Figure 9 shows an unsuccessful authentication response.
Here, the client is unable to decrypt the session key. Hence,
the client is prevented from registering with the server for
the resource observation. Failure to decrypt the session key
prevents various types of attacks in an IoT environment.

'Microsoft.SPOT.Emulator.Sample.SampleEmulator.exe' (Managed): Loaded 
'C:\Users\mian\Desktop\sources-20140528\sources\CoAPTest-Server\bin\Debug\le\CoAPTest-
Server.exe', Symbols loaded. 
The thread '<No Name>' (0x2) has exited with code 0 (0x0). 
[CLIENT] Started. 
The thread '<No Name>' (0x2) has exited with code 0 (0x0). 
[SERVER] Started. 
[SERVER] Key: 4F9DB1949D924031-8C77BE06276ECB25 Nonce1: 4BAFCDE9430E5773-24E5095A6614BF17 
Nonce2:  
[CLIENT] Key: 6619DB083FA7049A-70F225566ED3847A Nonce1: 4BAFCDE9430E5773-24E5095A6614BF17 
Nonce2: 6DFB243F1F64BE50-142C6CFE3382DAAF 
[CLIENT] Replying to server challenge... 
[CLIENT] Resource access denied. 
 

 
Fig. 9. Unsuccessful Authentication Response

In Figure 10, the status of various physical devices regis-
tered with the server for conditional resource observation is
shown.

Here, each device rely on the temperature readings of
the server. We have specified various conditions for the
notification messages to the server. Each device remains in
a particular state (ON/OFF) and switches its state once a
particular condition is satisfied. Various conditions specified
for our experimental results are already explained in the
previous section. Here, 0 represents OFF and 1 represents ON
state.

In the above figure, we have provided the preliminary
results. Currently, we are conducting extensive mathematical

4http://www.coapsharp.com/
5http://netduino.com/
6http://www.micropik.com/PDF/ds1820.pdf
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Fig. 10. Conditional Resource Observation

and experimental evaluation of our proposed scheme against
the DTLS and PKI in terms of various performance metrics
like the data rate, throughput, packet loss, latency and average
battery power consumption.

V. RELATED WORKS

In this section, the related works from literature on authen-
tication and resource observation is provided. As our work is
specifically related to the IoT applications, hence an overview
of the underlying application layer protocol is provided first.
The protocol provides the platform for resource retrieval and
manipulation in an energy-efficient manner.

The internet of today is based on the REpresentational
State Transfer (REST) architecture using HTTP protocol [6].
The HTTP is a resource-oriented protocol requiring extensive
memory and computational capabilities. However, the devices
in an IoT environment are resource-constrained which render
their capabilities to support the HTTP protocol. To provide
RESTful services in the constrained networks, Internet Engi-
neering Task Force (IETF) has formed a special working group
known as Constrained RESTful Environments (CoRE) which
is responsible for developing the standards and lightweight
protocols [7]. The Constrained Application Protocol (CoAP)
is one such product of this working group.

The CoAP is an application layer protocol which inherits
a subset of HTTP features to suit the requirements of con-
strained networks [8]. It uses a request/response interaction
model to exchange the resources between any client and
server. Each client sends a request to the server to provide
the representation of resources. One or more resources may
reside on the server. All interactions are managed using the
Uniform Resource Identifiers (URIs) to fetch resources from
the server, which are provided in various formats to the clients.
The protocol supports four types of messages: Confirmable
(CON), Non-Confirmable (NON), Acknowledgement (ACK)
and Reset (RST). As CoAP is based on the UDP protocol,
hence messages may arrive out of order, missing or corrupted.
To provide reliability, CON message type is used in the request
which needs to be acknowledged by the recipient.

Each client sends a registration request message to the
server for resource observation using CoAP protocol [9]. The
request contains a message ID, an observe option and a GET
method for the resource retrieval. The observe option informs
the server to register the client for any future notifications.
The request message is of the type CON which needs to be
acknowledged by the server. The server registers the client and
notifies it whenever the state of the resource changes. In each
notification message, a 24-bit sequence number for the observe
option is appended which allows the client to determine the
freshness of the resource. Also, this sequence number enables
the client to reorder the notification messages. To determine
freshness of an incoming notification, each client implements

a simple logic as shown in equation 4.

(V1 < V2 and V2 − V1 < 223) Or

(V1 > V2 and V1 − V2 > 223) Or

(T2 > T1 128 seconds) (4)

Here, V 1 is the sequence number of the observe option in
a previously received response notification and, V 2 is the
sequence number of the latest notification. Assume, T1 is the
time when V 1 was received and, T2 is the time when V 2
is received. The client determines the freshness of a newly
received notification by using the logic of equation 4. The
above condition specifies that either V 2 is a larger sequence
number than V 1 or V 2 is smaller than V 1 due to the rollover
of arithmetic numbers [10]. Alternatively, if a longer time has
elapsed since V 1 and V 2 were received, we simply ignore
them and accept a new value of 128 seconds. This new value
was arbitrarily chosen to be a number sufficiently larger than
the maximum latency [8].

The drawback of normal resource observation is that the
server notifies the client whenever the state of the resource
changes. It is a burden on the energy-starved devices in an
IoT environment. Each application has its own requirements
for notification messages. An electric heater might not be
interested in temperature readings greater than 350C. How-
ever, such readings are critical for the operation of an air
conditioner. Hence, each device needs to specify its own
conditions in the request message for the transmitted notifi-
cations. Each client appends a conditional option along with
the observe option in the registration request message [5].
This combination enables the server to uniquely distinguish
the registration message as a conditional observation request.

In an IoT environment, the resources need to be observed in
a secured fashion among the trusted and authenticated devices.
In [11], the authors highlighted various security challenges
faced by an IP-based IoT network. Secure and lightweight
communication protocols need to be designed to suit the
resource-constrained nature of the physical objects. Security
provisioning in small devices is a challenging task because
resource limitation restricts to secure all layers on individual
basis. If the application layer is secured while the data link
and network layer are left unsecured, it will expose these
layers to various types of attacks, common to the internet of
today. Securing the data link and network layer at the expense
of application layer will result in inter-application vulnerable
attacks.

In [12], the author has proposed RSA algorithm. The
RSA uses Public Key Infrastructure (PKI), where a pair of
public and private keys is used. PKI is a resource consuming
cryptography scheme, hence it does not suit well to the energy-
constrained nature of certain devices in an IoT environment.
In [13], the authors have proposed Server-based Certificate
Validation Protocol (SCVP). This protocol enables a client
to delegate a certificate validation to the trusted server. The
proposed approach increases the communication overhead
and does not suit well on a per-handshake basis in an IoT
communication network.

In the internet, certificate validation and PKI are the robust
and frequently used authentication schemes. However, they are
computationally complex, resource consuming and requires
proper configuration to be implemented in an IoT domain.
The implementation of key-pairs restricts many small devices
from using these schemes. As CoAP is based on the UDP
protocol, hence Datagram Transport Layer Security (DTLS)
is the obvious choice for authentication [14]. However, the
DTLS implementation with full PKI is not a resource-optimal
solution for the constrained devices. In [15], the authors have
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proposed an authentication scheme to establish a unicast com-
munication channel. The proposed approach uses the symmet-
ric encryption scheme which reduces energy consumption and
computation. The authors claim that DTLS can be configured
to develop an energy efficient authentication scheme. However,
they have not validated their claim.

In view of the above discussion, we have proposed a
lightweight scheme using a single key for the authentication
purposes. It incurs a small connection overhead and is com-
putationally simple and robust. The handshake mechanism is
used for client and server authentication. Once authenticated,
the clients register themselves for observing resources at the
server. Our scheme restricts the malicious nodes from estab-
lishing multiple connections with the server at a given time.
Each client is allowed to establish only a single connection
with the server in order to fairly utilize its limited resources.
Authentication ensures that a legitimate server transmit re-
source representation to the legitimate clients. After all, we
do not want a compromised server to transmit false readings
involving critical applications in a sensor based network.

VI. CONCLUSION

The Internet of Things (IoT) is a novel concept which
integrates physical objects in the internet. There are lots of
speculations about the future of today’s internet. The IoT
is gaining popularity among researchers in academia and
industry as well. Various manufacturers and vendors have
made optimistic future forecasts about the growth of the IoT
products. Various lightweight protocols have been developed
in order to establish communication among various physical
objects. However, in the absence of a unified standard, it’s dif-
ficult to provide seamless and an interoperable communication
among these devices. Hence, compatibility is one such issue
that needs to be addressed in order to transform speculations
to reality.

Despite all these speculations, fewer efforts have been made
to secure these products. More and more IoT products are
reaching the market but unfortunately most of them lack
secure features. As devices are having different attributes
and specifications, hence secure solutions for the internet are
not feasible for them. Although, sensors are involved at the
core of the communication system in these objects, however,
secure solutions for sensor networks are incompatible for these
physical objects due to their underlying hardware and software
platforms. In the literature, there exists little work on securing
these objects, which is mostly in the IETF RFC drafts.

In this paper, we have proposed a lightweight authentication
scheme which verifies the identities of the participating clients
and servers in a CoAP-based IoT environment. A session
key is exchanged between the communicating endpoints. Each
client maintains a session key with a given server which
guarantees that both the parties have been authenticated. Once
authentication is completed, the clients register themselves
with the server for resource observation. Each client specifies
certain conditions for the notification messages based on their
application requirements. The server notifies the clients once
those conditions are fulfilled. This reduces the number of
undesirable transmissions which enhances network lifetime
and leverages congestion.

The proposed scheme is an effective solution against eaves-
dropping, key fabrication, resource exhaustion and denial of
service attacks. However, it is not efficient against Sybil attack
[16]. But again, no secure solution in the world can combat
all types of attacks. In Sybil attack, a single malicious node
poses multiple identities to the communicating devices at a
given time. These identities are either fabricated or stolen
by disabling the legitimate nodes of the network. Hence, a

single physical device can harm multiple network resources.
In Figure 1, the intruder will be a Sybil device, if it poses
three different identities to the smart phone, internet and the
sensor network. Apart from Sybil, various other threats like
wormhole, sinkhole and selective forwarding are yet to be
explored in an IoT domain.

Despite all the speculations and future forecasts, provision-
ing of the security features will always remain a major concern
for the IoT products and devices. We should always keep in
mind the consequences of security breaches like what will
happen in the event, when our physical devices are hacked by
someone with the ability to turn off our water supply, take
the control of our cars, unlock the doors of our homes from
thousands of miles away or generate the false fire alarms.
These situations encourage security researchers to explore
further and develop solutions to combat security threats of
the future involving IoT.
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