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Model-aided State Estimation for Quadrotor Micro Air Vehicles amidst
Wind Disturbances*

Dinuka Abeywardena,1 Zhan Wang,2 Gamini Dissanayake,1 Steven L. Waslander,3 Sarath Kodagoda1

Abstract— This paper extends the recently developed Model-
Aided Visual-Inertial Fusion (MA-VIF) technique for quadrotor
Micro Air Vehicles (MAV) to deal with wind disturbances.
The wind effects are explicitly modelled in the quadrotor
dynamic equations excluding the unobservable wind velocity
component. This is achieved by a nonlinear observability of
the dynamic system with wind effects. We show that using
the developed model, the vehicle pose and two components
of the wind velocity vector can be simultaneously estimated
with a monocular camera and an inertial measurement unit.
We also show that the MA-VIF is reasonably tolerant to
wind disturbances, even without explicit modelling of wind
effects and explain the reasons for this behaviour. Experimental
results using a Vicon motion capture system are presented
to demonstrate the effectiveness of the proposed method and
validate our claims.

I. INTRODUCTION

Quadrotor Micro Air Vehicles (MAV) have attracted a
considerable interest in the recent past due to their versatility
and simple construction. Employing autonomous quadrotor
MAVs to perform routine or hazardous tasks in urban and
indoor environments is already a much discussed and re-
searched topic. One of the key obstacles that still needs to be
overcome to achieve such an objective is the problem of pose
estimation. Though established solutions such as Inertial
Navigation Systems (INS) combining Inertial Measurement
Units (IMU) and GPS exist for outdoor operation, it is well
known that these are not suitable for urban or indoor envi-
ronments where the quality of GPS measurements degrade
substantially. Other sensor modalities can be employed to
replace GPS in an INS and this has been the focus of
a recent string research usually categorized as “sensing in
GPS-denied environments”. One promising option is a sensor
suite consisting of an IMU and a monocular camera. This
is commonly known as Visual-Inertial Fusion (VIF) and has
emerged as a promising alternative to INS in the MAV state
estimation problem.

This paper analyses and extends a novel VIF formulation
for quadrotor MAVs, introduced in our previous work [1].
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Termed “Model-Aided Visual-Inertial Fusion” (MA-VIF),
this approach employs quadrotor MAV dynamic equations
in the state estimator design resulting in improved state
estimation accuracy and consistency. The dynamic model
used in [1] is only valid when the quadrotor is operating
in an environment with no wind. While this is generally
the case for spacious indoor environments, for most other
indoor and outdoor urban environments, wind disturbances
are significant and must be taken into account. As the main
contribution in this paper, we show that the MA-VIF can be
extended to incorporate the effect of wind on the quadrotor
motion while simultaneously estimating those components of
wind that affect the quadrotor MAV. We employ a rigorous
theoretical analysis as well as real world experiments to
illustrate the validity of this claim.

As a secondary contribution we present the reason why
the MA-VIF approach as it is in [1] has the capability of
coping with slowly varying wind disturbances, albeit with
reduced estimation accuracy and over-confident estimates.
Through a careful analysis of the process and measurement
equations and experimental results, we show that when wind
disturbances are not explicitly modelled, the MA-VIF tends
to adjust the accelerometer biases in an attempt to reconcile
the sensor measurements with its incomplete description of
the vehicle dynamics.

II. RELATED WORK

Visual-inertial fusion with a monocular camera has been
a much researched topic in the recent past. A tutorial level
introduction to VIF along with a summary of applications
can be found in [2]. Conventionally VIF algorithms are
platform agnostic because they do not make use of platform
specific dynamics equations in the filter design. With such a
formulation, non-zero accelerations of the camera-IMU rig
are a necessary condition for full observability [3].

Martin and Salaun [4] were the first to suggest the possibil-
ity of employing the quadrotor dynamic model for improved
state estimation. In our previous work [5], we have designed
and evaluated IMU based, model-aided state estimators for
quadrotors. MA-VIF design presented in [1] extended this by
incorporating a monocular camera into the state estimator.
There we showed that, in contrast to the conventional VIF
algorithms, this formulation is fully observable even when
the quadrotor is travelling at a constant velocity. However,
MA-VIF design there was based on the assumption that the
quadrotor is operating in an enclosed environment with no
wind. Here we analyse the case when this assumption is
violated.



Estimating the direction and speed of wind can be of criti-
cal importance to MAVs operating in outdoor environments.
If an estimate of the platforms ground velocity and velocity
with respect to the air stream is available, then calculating
wind velocity is trivial. Langelaan et al. [6] made use of
air speed measurements from a pitot tube and GPS based
ground velocity to directly calculate the wind velocity for a
fixed wing aircraft. Using simulations, they showed that main
source of error in estimating wind velocity is the air speed
sensor. Zachariah et al. [7] presented a wind speed estimator
suitable for a generic MAV by making use of measure-
ments from three orthogonal anemometers and a monocular
camera. There again, only simulation results were used for
validation. Moreover, anemometers are hardly suitable for
quadrotor MAVs with limited payload capabilities and low
flight speeds. Waslander and Wang [8] overcame this issue by
employing the quadrotor dynamic model to predict the MAV
speed with respect to air. Using simulations they showed that
it is possible to estimate wind velocity by only using a GPS
and an IMU. This approach is close in spirit to the work
presented here. However, to the best of our knowledge, this is
the first time where the observability of such an approach has
been analysed and the conditions for observability identified.

III. VISUAL-INERTIAL FUSION: METHODOLOGY

A. System Description

The platform under consideration is a quadrotor MAV
affixed with an IMU (consisting of a triad of orthogonal
accelerometers and gyroscopes) and a monocular camera.
The body coordinate frame {B} is assumed to be at the
center of mass of the quadrotor MAV with its bx− by plane
aligned with the propeller plane. Without loss of generality,
we assume that the camera is placed at the origin of {B}
aligned with the same. We assume that the accelerometers
are placed at the centrer of mass of the quadrotor, as is the
case with most commercially available platforms. We also
define an earth fixed inertial coordinate frame {E}, which
is defined by the position and heading of {B} at the start
of the VSLAM estimator but with it’s vertical axis aligned
with gravity. Throughout the paper we use boldface letters to
denote vectors and leading superscripts to denote coordinate
frame in which the vector is expressed. A trailing subscript
denotes individual components of the vector.

The states we wish to estimate are: the position of the
origin of {B} expressed in {E}, ep; velocity of the origin
of {B} measured in {E}, but expressed in {B}, bv; scale
of the VSLAM estimates λ; orientation of {B} with respect
to {E} expressed in Z-Y-X Euler angles, Θ = {φ, θ, ψ},
accelerometer bias βa and gyroscope bias βg . The trans-
lational and rotational dynamics of the quadrotor MAV are
governed by:

ev̇ = g +
1

m
eFA (1)

bΩ̇ = J−1( bMA − bΩ× J bΩ) (2)

where g is the gravity vector, m is the mass of the
quadrotor, Ω is the body rotational rate, FA, MA are

respectively the sum of aerodynamic forces and moments
acting on the quadrotor and J is the moment of inertia matrix
for the vehicle.

As illustrated in Fig. 1 there are two separate, but coupled,
estimators in the system that we are about to describe. First
is the monocular SLAM estimator, termed VSLAM, similar
to that detailed in [9]. We assume that, given the recent
advances in VSLAM algorithms, it is reasonable to consider
the VSLAM block as a sensor, which produces unbiased
position (up-to-scale) and orientation measurements with an
error covariance. This assumption allows us to model the
VSLAM estimates as:

hvp = λ ep+ ηp

hvo = Θ + ηo

}
(3)

where ηp,ηo are White Gaussian Noise (WGN) terms and
E[[ηpηo][ηpηo]T ] = Prr is the VSLAM pose covariance.
(E[·] denotes the expectation operator.)
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Fig. 1: Visual-inertial fusion for a quadrotor.

The second estimator which fuses VSLAM estimates and
inertial measurements is the focus of this paper. This VIF
block makes use of accelerometer and gyroscope measure-
ments which are assumed to be corrupted by a fixed, but
unknown bias and a zero mean WGN term. These measure-
ments can be modelled as:

ba = bv̇ −RTg + βa + ηa (4)
bωg = bΩ + βg + ηΘ

where R is the rotation matrix that transforms a vector from
{B} to {E}, ba and bωg are, respectively, the accelerometer
and gyroscope measurements in {B} and ηa and ηΘ are zero
mean WGN terms.

IV. MODEL-AIDED VISUAL-INERTIAL FUSION

A MA-VIF formulation attempts explicitly model some of
the dynamics in equation in (1). A quadrotor MAV in-flight
is affected by three forces: gravity, thrust and aerodynamic
drag. For quadrotor MAVs with relatively stiff propeller
blades, induced drag dominates the aerodynamic drag at low
translational velocities [10]. The amount of induced drag is
proportional to the MAV translational velocity with respect
to the wind, in the propeller plane. Thus for near hover
operation FA can be approximated by:

eFA = −FT b3 − α
4∑
i=1

ωiṽ∞ (5)



where FT is the magnitude of the summation of propeller
thrust, ωi is the rotational velocity of ith propeller, α is a
positive coefficient known as rotor drag coefficient, b3 is the
unit vector along bz and ṽ∞ is the projection of ev∞ on the
propeller plane. The free stream velocity ev∞ = ev − evw
where evw is the velocity of the wind in {E}. To derive the
process equations for the MA-VIF we first combine (5) with
(1) and transform the result to {B} frame:

bv̇ ≈ RTg −
[
k1

bv∞x k1
bv∞y

FT

m

]T
(6)

where the second order terms resulting from the coordinate
transformation are neglected and k1 = α

m

∑4
i=1 ωi. The

validity of this equation for situations where there is no
wind has already been analysed in [5]. There, experimental
results show that k1 is approximately a constant, the value of
which for a specific quadrotor MAV can be approximated via
equation (6) when ground truth state estimates are available.
We make the same assumption throughout the rest of this
paper. Also, by combining equations (6) and (4), we note
that it is possible to replace FT

m by baz − βaz .
It is now possible to incorporate (6) into the state estimator

process model given that a dynamic model for wind veloc-
ity is available. However, given the complexities involved
in developing and adopting such a model, here we make
the assumption that the wind velocity is smoothly varying
in {E}. Though we employ this assumption for both the
estimator design and analysis, it will be later shown through
experiments that this proves to be adequate for coping with
real wind patterns.

With the above assumptions, it is now possible to complete
the process equation for the MA-VIF:

eṗ
bv̇

λ̇

Θ̇

β̇a
β̇g
ev̇w


=



R bv
fv + ηv
ηλ

−Ξβg − ηΘ

ηβa
ηβg
ηw


︸ ︷︷ ︸

f0

+



03×1

e3

0
03×1

03×1

03×1

03×1


︸ ︷︷ ︸

f1

baz +



03×1

03×1

0
Ξ

03×1

03×1

03×1


︸ ︷︷ ︸

f2

bωg.

(7)
where fv = RTg − k1Λ(bv − RT evw) − Γβa, e3 =[
0 0 1

]T
, ηλ,ηβa and ηβg are WGN terms and Ξ is a

matrix that converts body rotational rates to Euler rates. The
state λ was included to account for the vision measurements.
Note that we have used the gyroscope and bz accelerometer
measurements as system inputs. Also:

Λ =

1 0 0
0 1 0
0 0 0

 Γ =

0 0 0
0 0 0
0 0 1

 .
and ηv , ηw are zero mean WGN terms denoting uncertainties
in process equations due to the assumptions made previously.

It is also possible to augment the accelerometer measure-
ment equation by combining (4) with (6). This leads to:

hi =

[
bax
bay

]
= −k1Υ(bv −RT evw) + Υβa + Υηa (8)

where Υ is a matrix consisting of the first two rows of
Λ. Equations (7), (3) and (8) make up the process and
measurement models for the MA-VIF.

V. OBSERVABILITY OF VISUAL-INERTIAL FUSION

Since both process and measurement equations of the
MA-VIF are nonlinear, we resort to the ideas presented by
Hermann and Krener [11] to analyse the observability of
the MA-VIF formulation. They proposed a rank condition
test for “locally weak observability” of a non-linear sys-
tem: a system is locally weakly observable if it satisfies
the observability rank condition generically [11]. A system
described by a process equation of the form Ẋ = f0(X) +
Σfi(X)ui, i = 1 . . . l, and a measurement equation of the
form y = h(X) satisfies the observability rank condition if
any one of the possible matrices whose rows are of the form

O = {OLnfi...fjhk(x)|i, j = 0, ..., l; k = 1, ...m;n ∈ N}

is of full column rank. Here m is the number of mea-
surements. Also, OLnfihk(x) is the gradient of the nth

order Lie derivatives of hk(x) with respect to fi. Locally
weak observability is a necessary condition but not sufficient
for strict observability. However, following the approach
of [3] and many others, we assume that for most mobile
robotic navigational tasks, locally weak observability implies
that the considered system contains enough information to
perform state estimation. Experimental results presented in
sections VII serve to validate the claims made based on this
assumption.

If the observability matrix O is rank deficient, then one
or more of the states are not observable. Martinelli [12]
introduced a method for identifying any unobservable modes
using the null space of O.

PROPERTY 1: g(X) is an observable mode if and only
if its gradient is orthogonal to the null space of O. This
property can be expressed by a system of partial differential
equations of the form:

n∑
i=1

wsi(X)
∂g

∂Xi
= 0 (9)

where wsi(X) is the ith component of ws which is a non-
trivial element of the null space of O.

A. MA-VIF Estimator

Observability of the MA-VIF formulation with no wind
has been analysed previously in [1]. Here we proceed to
extend that analysis to the case with non-zero wind. The
system under consideration is fully characterised by (7), (3)
and (8), with zero noise terms as they do not affect the
observability. Note that dim(X) = 19.

By considering the non-trivial Lie derivatives of the system
up to second order, we can construct the following observ-
ability matrix for the MA-VIF:

O1 =
[
OL0hvp(x) OL0hvo(x) OL0hi(x) OL1

f0hvp(x) . . .

OL1
f0hvo(x) OL1

f0hi(x) OL2
f0hvp(x)

]T
(10)





λI3 03×3
ep 03×3 03×3 03×3 03×3

03×3 03×3 03×1 I3 03×3 03×3 03×3

02×3 −k1Υ 02×1 D1 Υ 03×3 −k1ΥRT

03×3 λR R bv D2 03×3 03×3 03×3

03×3 03×3 03×1 03×3 03×3 Ξ 03×3

02×3 k2
1Υ 02×1 D3 02×3 03×3 k2

1ΥRT

03×3 −λk1RΛ D4 D5 λRΓ 03×3 λk1RΛRT


where I3 is the 3 × 3 identity matrix, 0m×n is an all zero
matrix of size m × n, Di(i = 1 . . . 5) are functions of
λ,Θ, bv,βa,

evw, with:

D4 = g − k1RΛ bv + k1RΛRT evw +RΓβa.

It can be shown that all other Lie derivatives of the consid-
ered system are either linearly dependent on the rows of O1

or are trivially zero.
Lemma 1: The matrix O1 is rank deficient. It has a column

rank of 18 when at least one of bv̇x and bv̇y is non-zero.
Proof: We proceed using block Gaussian elimination

to recover the rank of O1. The notation O1(p, q) is used to
represent the (p, q)th block, and O1(p, :) represent the pth

row block of O1.
First, given that λ > 0, we divide row block one by λ.

Also since block O1(2,4) is an identity matrix, we eliminate
all non-zero entries in O1(:, 4). Rotational transformation
matrix R is orthogonal and thus is always full rank. This
allows us to multiply O1(4, :) by (λR)−1. Ξ transforms the
body rotational rates to Euler rates and is also full rank.
Thus can we multiply O1(5, :) by Ξ−1. Next, we multiply
O1(7, :) by k1

λ ΥRT and add the result to O1(6, :) to obtain:

I3 03×3
ep 03×3 03×3 03×3 03×3

03×3 03×3 03×1 I3 03×3 03×3 03×3

02×3 −k1Υ 02×1 02×3 Υ 03×3 −k1ΥRT

03×3 I3
bv
λ 03×3 03×3 03×3 03×3

03×3 03×3 03×1 03×3 03×3 I3 03×3

02×3 02×3 D7 02×3 02×3 03×3 02×3

03×3 −λk1RΛ D4 03×3 λRΓ 03×3 λk1RΛRT


where

D7 =
k1

λ
ΥRT (g − k1RΛ bv + k1RΛRT evw +RΓβa)

=
k1

λ
Υ bv̇ =

k1

λ

[
bv̇x

bv̇y
]T

If either one of bv̇x and bv̇y is non-zero, then at least
one element of the 2 × 1 vector D7 is non-zero and we
can proceed to eliminate all remaining non-zero elements of
O1(:, 3). This results in O1(4, :) being all zero except in
column block two. Thus we can then proceed to eliminate
all remaining non-zero elements in O1(:, 2). Now consider
the following sub-matrix made up of all remaining non-zero
elements of O1(3, :) and O1(7, :).

O2 =

[
Υ −k1ΥRT

λRΓ λk1RΛRT

]
Multiplying O2(2, :) by (λR)−1 and then adding ΥO2(2, :)
to O2(1, :) and finally moving the last row of O2(2, :) to

immediately after O2(1, :) we obtain:[
I3 03×3

02×3 k1ΥRT

]
which has a column rank of 5 for any given R. Thus returning
to O1 we see that its column rank is 18.

B. Unobservable Modes

The above analysis proves that the dimension of the null
space of O1 is 1. It is easy to show that

n1 =
[
03×1; 03×1; 0; 03×1; 03×1; 03×1; Re3

]
is a basis for the said null space. It is possible to show that
g(X) = bvwz = Γ3

bvw = Γ3R
T evw is not orthogonal to

n1, where Γ3 is the third column of Γ. Thus, making use of
property 1, we can conclude that the unobservable dimension
corresponding to n1 is the bz component of wind.
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Fig. 2: Simulated VSLAM position(a) and orientation (b)
measurements. Note the scale of position measurements.

VI. ESTIMATOR DESIGN

Considering the non-linearities in the process and mea-
surement equations, we propose an Extended Kalman Filter
(EKF) based estimator for the MA-VIF. To proceed with the
estimator design, we need to remove the unobservable mode,
namely the bz component of wind velocity from the state
vector. Note that the quadrotor dynamics in (6) is indepen-
dent of this component. However, as the assumption about
slow varying wind velocity in {E} meant that wind velocity
had to be expressed in {E} in the state vector, removing
the bz component of wind velocity is not straightforward.
To achieve this, consider the sub-matrix Qw = E[ηw η

T
w ] of

the process noise matrix required for the EKF design. If we
assume that all three components of ηw are uncorrelated and
of the same magnitude, then it can be shown that Qw remains
diagonal even after a frame transformation. This shows that,
for the purpose of the estimator design, the assumption about
smoothly varying wind velocity can be made either in {E} or
{B} with equivalent results. Having expressed wind velocity
in {B}, it is now straightforward to remove the unobservable
component bv̇wz from the state vector. The resulting process
and measurement equations are then:

hi =

[
bax
bay

]
= −k1Υ(bv − bvw) + Υβa + Υηa (11)





eṗ
bv̇

λ̇

Θ̇

β̇a
β̇g
˙̃vw


=



R bv
RTg − k1Λ(bv − bvw) + Γ( ba− βa) + ηv

ηλ
Ξ( bωg − βg − ηΘ)

ηβa
ηβg
η̃w


(12)

where, ṽw = [bvwx
bvwx]T . VSLAM measurement equations

remain the same. Note that we do not make the assump-
tion that the bz component of wind velocity is zero. The
removal of the bz component of wind velocity from the
state vector is made possible by the fact that when posed in
this formulation, the process equation for bv̇ is independent
of that component. An observability analysis similar to that
carried out in section V can be employed to show that same
condition in Lemma 1 is sufficient to ensure that the system
described by (12), (11) and (3) is locally-weakly observable.
This allows us to proceed with an EKF design to estimate
X in the standard manner. We omit the details for brevity.

Additionally, it is possible to rewrite (11) by combining
βa and bvw as they both have the same process dynamics.

hi =

[
bax
bay

]
= −k1Υ bv + Υβ̃a + Υηa (13)

where β̃a = βa+k1
bvw. This implies that it is not possible

to distinguish between the effect of wind and bias by only
analysing the accelerometer measurements. Wind velocity
and accelerometer biases are only made observable as the
same replacement cannot be done in the process dynamics
for bv̇ in (12), where βax and βay do not appear. However,
in practise this implies that when the wind effects are not
explicitly modelled, as is the case in [1], it is possible for
a state estimator to account for the different between true
and predicted measurements by adjusting the accelerometer
biases. Experimental results presented in the next section
shows that this is indeed the case.

VII. EXPERIMENTS

A. Experimental Setup

The quadrotor platform used for the experiments was the
Parrot AR Drone II. It is equipped with two cameras facing
forward and downward as well as a triad of accelerometers
and gyroscopes. Accelerometer and gyroscope measurements
captured at 200Hz were timestamped on-board the MAV
and wirelessly transmitted to a ground station computer. We
collected several flight data sets by manually piloting the
AR Drone II in an environment with a Vicon motion capture
system which used to produce real-time estimates for the
vehicle states at 120Hz. An industrial grade fan situated at
one side of the Vicon capture area was used to generate
wind predominately along the x axis of {E} frame. A hand
held anemometer was used to obtain a rough measurement
of the wind speed which at the centre of the arena was about
1.5m/s.

The purpose of the experiments presented here is to verify
the ability of the MA-VIF to produce accurate vehicle pose
estimates amidst wind disturbances, given the measurements
from a suitable VSLAM algorithm and an IMU. For this
reason, we chose to simulate the VSLAM algorithm using
the Vicon motion estimates. This was achieved by first sub-
sampling the Vicon position and orientation estimates at
10Hz and then scaling and adding suitable levels of noise
according to equation (3) with λ = 1/5, ηp ∈ N (0, (1/5)2)
(1 m standard deviation in metric scale) and ηo ∈ N (0, 4)
(2 degrees standard deviation). The resulting position and
orientation measurements are illustrated in Fig. 2.

B. Results

We performed two different experiments with each gath-
ered data set. First the IMU and simulated VSLAM mea-
surements were processed using a MA-VIF implementation
designed for the case of no wind, originally presented in
[1]. For ease of reference, we term this the MA-VIF-NW.
Second, the same set of data were processed by the MA-
VIF design presented here. For both experiments, position
and scale estimates are presented in Fig. 3 and 4 respectively.

First, we see that the MA-VIF is capable of quickly
recovering the scale λ thus producing accurate position and
velocity estimates in metric scale. The scale estimate closely
matches the true value. It can also be seen that the scale
estimate begins to deviate from the true value when the
both bvx, bvy are approximately zero. This agrees with the
theoretical observability results derived in section V. The
wind velocity estimates for the MA-VIF are presented in Fig.
4. Note how the wind is predominantly in the x direction
as is expected. Also note how when the quadrotor MAV
moves away from the origin along y axis, both the x and y
components of wind estimates rapidly decrease (for example
290s - 300s and 320s - 340s). This indicates that the wind
estimates are qualitatively accurate.

Focusing on the MA-VIF-NW implementation, we note
that it required careful filter tuning to obtain the results
presented here and the estimator performance was much
more sensitive to noise parameters. Considering the estimates
of MA-VIF-NW, we see that the scale estimate takes longer
to converge and as a result produce substantial errors in
position estimates. The advantage of the MA-VIF can be seen
when the estimation accuracies are quantitatively analysed.
Velocity estimation errors of both estimators presented in
Fig. 5 illustrates this fact clearly. RMS velocity estimation
errors for the MA-VIF were 0.21, 0.15 and 0.17 for the x,y,z
axes respectively and 0.38, 0.29 and 0.57 for MA-VIF-NW.
This is as expected, since the MA-VIF-NW makes use of
an incorrect model to describe the evolution of body frame
velocity, thus resulting in over-confident and less accurate
estimates.

The accelerometer bias estimates of both estimators are
presented in Fig. 6. Note the similarity in MA-VIF-NW bias
estimates for the bx, by axes and the wind velocity estimates
for the same axes for the MA-VIF. In fact, as expected,
it can be seen that the accelerometer biases of MA-VIF-
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Fig. 3: Position estimates with ground truth of MA-VIF -
(a) and MA-VIF-NW - (b). Top, middle and bottom are
respectively x, y, z axes estimates.

NW agrees closely with the values predicted for β̃a by (13).
We remark that this is also the reason why MA-VIF-NW
estimates are not substantially erroneous, despite using an
insufficient process model.
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Fig. 4: Scale estimates and MA-VIF wind velocity estimate

VIII. CONCLUSION

This paper extended the model-aided visual-inertial fusion
for quadrotor MAV state estimation by considering the
effects of wind disturbances. By explicitly modelling the
effects of wind on quadrotor MAV dynamics, we showed
that it is possible to simultaneously estimate both the vehicle
pose and two components of the wind velocity vector, only
using a monocular camera and an inertial measurement unit.
Experiments conducted in an indoor environment with light
wind disturbances illustrate that this approach also improves
the pose estimation accuracy of the MAV. In addition to
the results presented here, a quantitative analysis of the
wind velocity estimates in rapidly varying wind gusts was
performed with the use of a high-fidelity quadrotor simulator
and will be presented in a future article.
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