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Abstract

Frontier detection is a key step in many robot ex-
ploration algorithms. The more quickly frontiers
can be detected, the more efficiently and rapidly
exploration can be completed. This paper pro-
poses a new frontier detection algorithm called
Expanding Wavefront Frontier Detection (EWFD),
which uses the frontier cells from the previous
timestep as a starting point for detecting the fron-
tiers in the current timestep. As an alternative to
simply comparing against the naive frontier de-
tection approach of evaluating all cells in a map,
a new benchmark algorithm for frontier detection
is also presented, called Naive Active Area fron-
tier detection, which operates in bounded constant
time. EWFD and NaiveAA are evaluated in sim-
ulations and the results compared against existing
state-of-the-art frontier detection algorithms, such
as Wavefront Frontier Detection and Incremental-
Wavefront Frontier Detection.

1 Introduction
Since the seminal work by Yamauchi on frontier-based ex-
ploration [Yamauchi, 1997], frontiers have been used exten-
sively as part of robot exploration to great effect with sin-
gle robots [Yamauchi et al., 1998; Freda and Oriolo, 2005;
Digor et al., 2010; Wettach and Berns, 2010; Mobarhani
et al., 2011] and with teams of multiple robots [Yamauchi,
1998; Faigl and Kulich, 2013; Burgard et al., 2000; Reid et
al., 2013]. In some approaches, frontiers are treated as path
planning goals, and in other approaches, frontiers are used
as a component of more complex strategies, for example in
[Shade and Newman, 2011] where frontiers are used as sinks
in a potential-field. Detecting frontiers is therefore a key op-
eration, and it is important that it be performed as quickly as
possible so that exploration can be more efficient.

Frontiers are defined as free-space cells in an occupancy
grid that have at least one unknown cell as a neighbour [Ya-
mauchi, 1997; Freda and Oriolo, 2005; Shade and Newman,

2011], though some work defines them as unknown cells that
have at least one free-space neighbour [Keidar and Kaminka,
2012; 2014]. This paper assumes the first definition.

The naive method for detecting frontiers is to evaluate each
cell in the map in turn by checking its neighbours. Another
approach is Wavefront Frontier Detection (WFD) [Keidar and
Kaminka, 2012; 2014], which consists of running a Breadth
First Search (BFS) on the map, beginning at the robot’s loca-
tion, and rippling outwards through free-space until unknown
space is encountered. This approach has the advantage of
only evaluating a subset of the entire map at any time, though
this subset becomes the entire map as exploration progresses.

Fast Frontier Detection (FFD) [Keidar and Kaminka, 2012;
2014] involves only evaluating the cells in each individual
scan, particularly the edges of the scan range, along which
any new frontier must necessarily lie. A bounding box is built
around the scanned area, and cells that were frontiers in this
bounding box before the scan are checked to see if they are
no longer frontiers at the current time step. This approach
is faster than WFD, but requires that frontier detection take
place after every scan. These calculations may be wasteful
for exploration strategies in which many scans are taken be-
fore the robot recalculates frontiers to decide where to move
next. FFD is also less likely to correctly detect frontiers at
the maximum range of the sensor. Divergence in laser points
at extreme ranges means that Bresenham’s line algorithm1,
used by FFD to determine the contour evaluated for poten-
tial frontiers, will cut across unknown space and not cover all
cells that should be detected as frontiers. This makes imple-
mentation more complex and restricts the applicability of the
strategy to specific sensor ranges and footprints.

Incremental WFD (WFD-INC), and the variant
Incremental-Parallel WFD (WFD-IP) [Keidar and Kaminka,
2014] combine the bounding box concept from FFD to WFD,
resulting in faster running time.

This paper presents two algorithms for detecting frontiers.
The first novel approach is called Expanding Wavefront Fron-
tier Detection (EWFD) which is suitable for scenarios where
single or multiple scans might occur before the exploration

1A method for line tesselation.



strategy requires updated frontier information. The other
novel algorithm, called Naive Active Area frontier detection
(NaiveAA) is presented to be used as a more useful bench-
mark than the simple naive frontier detection algorithm. Both
algorithms are analysed and their performances compared
theoretically and in simulations with prior state of the art
frontier detection methods.

The rest of this paper is structured as follows: the details
of the NaiveAA algorithm will be presented in Section 2 and
the details and analysis of EWFD presented in Section 3; ex-
perimental setup and results are shown and discussed in Sec-
tion 4; conclusions are drawn in Section 5 and possible future
work is suggested.

2 Naive Active Area Frontier Detection
The naive method involves evaluating all cells in the map to
detect which are frontiers. If the number of cells in a map is
small, and cell evaluations are fast enough, this might be suf-
ficient for some applications. For example on a map which is
48 × 18.2 metres, if cells are 1 cm in width and length, then
there would be 8,790,600 cells. If cell evaluations take 1ms,
the Naive approach would take 2.44 hours, if cell evaluations
take 1us, then the total would be 8.79 seconds, and if cell eval-
uations take 1ns, then the total time would be 0.01 seconds.
On a 3D map which is 292 × 167 × 28 meters, the number
of cells grows to 1,365,392 million, and the time taken by the
Naive approach would be, assuming cell evaluation times of
1ns, at least 22.76 minutes. This makes the Naive approach
an unreasonable option for large or high resolution environ-
ments.

However, if the active area of each scan is considered, then
only cells in those areas (or volumes in the 3D case) can have
changed from unknown to freespace and become frontiers,
and only cells bounding the active area can have lost their
frontier status when their neighbours in the active area be-
come freespace instead of unknown. The active area of a
scan is defined as the set of cells in the map covered by the
scan’s field of view. This can be easily approximated, with-
out underestimating, through the use of a minimal rectangular
bounding box2 that contains the scan’s ray endpoints and the
sensor origin.

The naive method can therefore be restricted at any time
t to evaluating only cells in the active area, At, of any scans
taken since the last frontier detection step, and which includes
the cells immediately adjacent to the scanned areas. As each
cell is evaluated, if it is no longer a frontier, it can be re-
moved from the set of frontiers, F , whereas if it is a new
frontier, it can be added to F . This restricted version of the
naive approach is called Naive Active Area frontier detec-
tion (NaiveAA) (Algorithm 1). Depending on whether the
frontier cells need to be labelled as belonging to groups of

2In the 3D case, this would be achieved using a bounding box
defining a 3D volume.

connected cells, an additional step to the algorithm can be
included using an algorithm like Kosaraju’s series of Depth
First Searches (KOSARAJU DFS) to determine which fron-
tiers cells are connected in O(|F |) time.

Algorithm 1: Naive Active Area Frontier Detection
Input: F , At

Output: F , labelling
1 for c ∈ At do
2 if IS FREESPACE(c) then
3 if IS FRONTIER(c) then
4 F ← F ∪ c
5 else if WAS FRONTIER(c) then
6 F ← F \ c

7 labelling← KOSARAJU DFS(F )

If there are |M | cells in the map M , and α frontier detec-
tion operations take place, the naive algorithm requiresO(α×
|M |) operations over the course of exploration. NaiveAA
only requires O(α × Amax) cell evaluations, where Amax is
an upper bound on the size of the active area of any scan. If
a grid is used to store frontier cell states, then each insertion
and deletion is O(1), but if a structure like a kd-tree is used,
then each insertion and deletion occurs in time O(log|F |).

If radical changes in the map are expected, then the algo-
rithm can be made more robust by removing the if-statement
on line 2 of Algorithm 1 so that all cells are checked to see
if they are marked as frontiers when they shouldn’t be (for
example, if they change from being a freespace cell to being
an occupied cell).

3 Expanding-Wavefront Frontier Detection
The key principle of EWFD is that unless space previously
known becomes unknown, once a part of the map is defined
as inside the explored space, it never needs to be re-evaluated
as a potential frontier.

3.1 EWFD Description
LetOt represent the sequences of observations made between
t−1 and t, where t−1 and t are times at which the frontier de-
tection algorithm is executed. At refers then to the combined
active area of all individual observations in Ot.

If at time 0, there is no prior known set of frontiers, then the
first call to the EWFD algorithm involves a similar approach
to WFD: a BFS is performed starting with the free-space the
robot is located in (see Algorithm 2). Adjacent free-space
cells are added to the queue. As cells adjacent to unknown
space are visited, they are labelled as frontier cells. As part of
the BFS, visited cells are marked as visited in the occupancy
grid. These labels are not removed after the BFS.

Subsequent iterations involve first finding the set of fron-
tiers Ft−1 ∩ At. These cells are marked as unvisited in the



occupancy grid and a BFS is performed starting with the set
Ft−1 ∩At in the queue, adding neighbours of unvisited free-
space cells to the queue. This enforces a search outwards,
into newly discovered free-space, and prevents reevaluation
of cells already determined not to be frontiers. As before,
when cells adjacent to unknown space are visited, they are
labelled as frontier cells. During the BFS, frontier cells in
Ft−1 ∩ At are evaluated to check whether they are still fron-
tiers.

As with NaiveAA, if frontier grouping and labelling is re-
quired, then a series of DFSs is performed on Ft to determine
which frontier cells should be grouped together.

Algorithm 2: Expanding Wavefront Frontier Detection
Input: F , At, visited, robotStartingCell
Output: F , labelling, visited

1 if Ft−1 = ∅ then
2 queue← robotStartingCell

3 else
4 queue← Ft−1 ∩At

5 while queue 6= ∅ do
6 c← POP(queue)
7 visited ← visited ∪ c
8 if IS FREESPACE(c) then
9 if IS FRONTIER(c) then

10 Ft ← Ft ∪ c
11 else if WAS FRONTIER(c) then
12 Ft ← Ft \ c
13 Ca ← GET ADJACENT CELLS(c) ∩At

14 Ca ← Ca \ visited
15 PUSH(queue,Ca)

16 labelling← KOSARAJU DFS(F )

3.2 EWFD Soundness and Completeness
An assumption of EWFD is that entropy for each cell can only
decrease over time. Given this assumption it can be proved
that EWFD is both complete, and sound.

Lemma 3.1 Suppose f is a frontier cell at t, and was not a
frontier cell at t − 1. Then EWFD will label f as a frontier
cell.

Proof At time 0, in the free-space region that the robot is
in, P free

0 , all free-space cells are connected; i.e. it is possi-
ble to start at one free-space cell, and using a sequence of
moves to adjacent cells, end at any other free-space cell in
the map. This is either because the only free-space cell is the
sensor origin, or because the robot occupies physical space,
and therefore that region, which describes the shape of a sin-
gle physical object, must be connected.

Assuming that at t − 1, all free-space cells in the robot’s
world map, P free

t−1, are connected. Let the observation at t be

denoted Ot. Let S(Ot) represent the set of cells covered by
Ot. The assumptions are that the sensor origin must sit in
P free
t−1, and that all cells seen must be visible from the sensor

origin. This results in each free-space cell in S(Ot) being
connected to the sensor origin, and therefore each free-space
cell in S(Ot) is connected (at least indirectly) to each other
free-space cell in S(Ot). Since the sensor origin must also lie
in known space, this means that each free-space cell in S(Ot)

is connected to P free
t−1. Therefore all free-space cells in P free

t

are also connected.
Let us assume a BFS is performed starting from a free-

space cell inside a known region of space. The BFS adds
the adjacent cells to free-space cells it visits to the queue,
and is not permitted to revisit cells it has already seen. Since
all free-space cells inside a region are connected, the BFS is
guaranteed to visit each free-space cell in that region. Since
all free-space cells are visited, those that are adjacent to un-
known space (i.e. frontier cells) will also be visited.

By definition, P free
t−1 is a subset of P free

t , with the frontier at
t − 1, Ft−1 being included or enclosed by the frontier at t,
Ft. Since new frontiers must be new free-space cells (based
on the assumption that a cell cannot transition from known to
unknown value), the region that needs to be evaluated for new
frontiers is P free

t \ P free
t−1 (see Figure 1).

The region evaluated by the BFS in EWFD is (P free
t \

P free
t−1) ∪ (Ft−1 ∩ At). All cells, f that are a frontier cell

at t, which were not a frontier cell at t − 1 will therefore be
evaluated and appropriately labelled as frontiers.

Lemma 3.2 Suppose that c is a cell that is not a free-space
cell on the boundary between known and unknown space at
t, then it will not be marked as a frontier at t.

Proof If c is not a frontier cell at t, there are two possible
cases:

Case 1. c was not a frontier cell at t − 1. If c is free-
space, then it either has been previously evaluated by EWFD
and was not marked as a frontier, or it will be evaluated at t
and will not be marked as a frontier.

Case 2. c was a frontier cell at t− 1. If c was a frontier at
t−1, then it will be in the queue of the BFS performed at t. It
will therefore be removed as a frontier when it gets evaluated.

3.3 EWFD Algorithm Analysis
The various frontier detection algorithms can be best com-
pared by counting the number of cell evaluations required to
determine all frontier cells. Let the set of cells in the map
be M , and let each frontier detection algorithm be iterated t
times before exploration terminates. Let the number of cells
covered by the sensor at each iteration be bounded from above
by Smax.

Several data structures are assumed to exist, as part of
EWFD. There is a balanced k-d tree [Kanth and Singh, 1997;
Procopiuc et al., 2003] of frontier cells tuples, each tuple con-
tains the cell coordinates. The robot keeps a map of the envi-
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ronment as an occupancy grid. Each cell has a status, being
either free-space, obstacle, or unknown. Each cell is labelled
with its frontier status: either it is a frontier cell or it is not. It
is also labelled as visited by the BFSs or not. If it is a frontier
cell, the cell contains a pointer to the tuple in the frontier tree.

The rest of this section will step through the algorithm and
determine its order of complexity in big-O notation.

1. Finding Relevant Frontiers in Ft−1: The first step of the
EWFD algorithm involves finding the frontiers in the
current frontier list, Ft−1, that are inside the bounding
box defining the active area, At. Since the frontier cells,
Ft−1, are sorted, finding the cells bound by these values
in the balanced k-d tree will involve:

O(|Ft−1|(d−1)/d + |Ft−1 ∩At|), (1)

where d is the dimensionality of the tuples.

2. Evaluating Cells for Frontier Status: The BFS used by
EWFD starts with the set Ft−1 ∩ At in its queue. It
will evaluate all cells that have been newly marked as
free-space since the last iteration of EWFD; i.e. cells in
free-space at t, P free

t minus those that were in free-space
at t− 1, P free

t−1. Given that all cells have a constant fixed
number of adjacent cells, the BFS runs in order:

O(|P free
t \ P free

t−1|+ |Ft−1 ∩At|) (2)

3. Removing Frontiers: At any iteration, the most frontier
cells that need to be removed is the set Ft−1∩At. These
cells will need to have their status in the occupancy grid

changed, then be removed from the k-d tree of tuples. In
total, this will run in:

O(|Ft−1 ∩At| × log|Ft−1|) (3)

4. Inserting Frontiers: The largest number of cells needing
to be inserted at timestep t is |Ft \ Ft−1|, so that the
complexity of inserting is:

O(|(Ft \ Ft−1) ∩ (P free
t \ P free

t−1)| × log|Ft−1|) (4)

5. Labelling Frontiers: Using the occupancy grid to repre-
sent edges of a graph, and using the tree of frontier cells
as the list of vertices, a series of DFSs can be used to de-
termine the connected sets that frontier cells belong to.
This runs in order:

O(|Ft|) (5)

|At| is bound from above by the maximum sensor observa-
tion area,Amax, times the number of observations, ot that have
taken place since the previous call of the frontier detection al-
gorithm. Similar bounds apply to |Ft−1|∩At|, |P free

t \P
free
t−1|,

and |(Ft \ Ft−1)∩ (P free
t \ P free

t−1)|. Combining equations (1),
(2), (3), (4), and (5), the total complexity can therefore be
reduced to:

O(|Ft−1|(d−1)/d + ot × log|Ft−1|+ |Ft|) (6)

As the observation overlap increases, the minimum bound
is given by the case where observations overlap completely:

Ω(|Ft−1|(d−1)/d + log|Ft−1|+ |Ft|)
= Ω(|Ft|) (7)

Over all t steps of exploration, the sum of |P free
t \ P free

t−1|
becomes simply |Mfree|. This is therefore an intuitive lower
bound not captured by big-O notation.

If observations don’t overlap, then when EWFD is per-
formed at t, it is similar to performing o calls of EWFD,
one after each individual observation, save that the overhead
of finding previous frontiers and labelling frontier groups, is
lower. As observations overlap, it is similar to performing
EWFD for a single new observation. The best and worst case
for EWFD therefore depends on the behaviour of frontiers.
The best case is where frontiers remain a constant size, the
worst is when the set Ft increases by ot ×Amax per timestep,
so that over all exploration the lower and upper bounds of
EWFD are Ω(t) and O((

∑t
i=1 oi)

2).



1 10

20

100

0

50

100

150

(a) The robot trajectory. (b) After 50 scans.

(c) After 150 scans. (d) After 252 scans.

Figure 2: The Freiburg environment (Trajectory 1), 414 × 149 cells. a) Lines show the robot trajectory, and the dots show the
poses where scans were taken and frontiers evaluated. b, c, d) The robot is shown with a small blue circle, frontiers are marked
with green crosses, and a red arc shows the robot’s FOV.
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Figure 3: A cave environment (Trajectory 1), 305×305 cells.
The red line shows the robot trajectory, and dots show the
poses where scans were taken, and frontiers evaluated.

4 Experimental Results
Simulations were run on an Intel Core 2 Duo 3.00GHz desk-
top computer in Matlab. Simulations involved a point robot
being moved through a map and running frontier detection
using each algorithm at various intervals. Several environ-
ments were used, and the runs for each were repeated 5 times
to obtain an average and standard deviation for the running
time.

4.1 Experiment Design
The algorithms compared were the Naive approach, WFD,
WFD-INC*, NaiveAA, and EWFD. The asterisk over WFD-
INC is to denote the fact that in this paper, the algorithm was

implemented without pivot lists, and instead added and re-
moved frontiers from the same type of set structure as the
other algorithms, and Koseraju’s connectivity algorithm was
run to determine frontier grouping, as with the other frontier
detection methods. This was done so that all the algorithms
would be equally applicable in 3D.

FFD was not implemented because of some ambiguity in
the descriptions in the [Keidar and Kaminka, 2014] paper that
made some portions of the algorithm’s intended behaviour
unclear. For example, Bresenham’s line algorithm is used
to create the contour between endpoints of the sensor scan,
which will then be evaluated, but this means that the end-
points start in freespace and then potentially move through
unknown space. Therefore some cells that should be evalu-
ated as frontiers will not be. This problem seems to remain
whether the definition of frontiers is as freespace cells with
at least one unknown neighbour, or whether it is as unknown
cells with at least one freespace neighbour. Since the im-
plementation attempted by the authors might not result in a
fair representation of the algorithm, FFD, was omitted from
the list of algorithms to use as comparisons to NaiveAA and
EWFD.

It should be noted that after adding new frontiers to the
frontier set, WFD-INC and FFD both involve a step in which
all cells in the active area of the scan are checked, to see
whether they were frontiers but are not now, and should be re-
moved. This is similar to performing NaiveAA. It is therefore
expected that NaiveAA would perform similarly to WFD-
INC and FFD, but involve less computational overhead.

EWFD did not use kd-trees to store frontiers, and instead
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Figure 4: Comparison of each algorithm in the Freiburg
and cave environments summarised for all trajectories. Bars
shows the average, while the ticks show the minimum and
maximum values from the data sets.

used a matrix implementation in Matlab3, in the same fashion
as the other algorithm implementations stored their frontiers.
This meant that retrieval times for frontiers in the active area
are slower than what might be otherwise expected.

The set of frontiers for all algorithms was compared for
correctness to the set found by the Naive approach.

The 2D environments used were the Frieburg labs map (see
Figure 2), and a cave environment (see Figure 3) from the
Radish repository [Howard and Roy, 2003]. Several trajec-
tories were created by driving the robot through the environ-
ment. Frontiers were evaluated at regular intervals using each
algorithm. The Freiburg environment trajectory 1 involved
252 scans and frontier detection steps and the cave environ-
ment trajectory 1 involved 145 scans and frontier detection
steps.

3A k-d tree would have been very inefficient in Matlab, or have
to be run through a C++ linked library, which would make the results
ambiguous when compared to the other algorithms implemented
solely in Matlab.

0 100 200

0

2

4

C
om

pu
ta

tio
n

tim
e(

s)

Naive
WFD

WFD-INC*
NaiveAA
EWFD

(a) Freiburg trajectory 1.

0 50 100 150

0

2

4

6

8

C
om

pu
ta

tio
n

tim
e(

s)

(b) Cave trajectory 1.

Figure 5: Computation time for each algorithm at each itera-
tion.

4.2 Results
The results for all 6 trajectories over the both environments
were fairly similar, so only a few are shown here in detail.
The others are listed in the Appendix. Tables 1 and 2 show
the results from two set of experiments. The metrics pre-
sented are total computation time for detecting frontiers, the
time for labelling them, and the average time per iteration.
The number of cells evaluated is the number of times a cell
was checked to see whether it was a frontier or not. The num-
ber of cells processed is an attempt to capture the amount of
computational overhead required in dealing with more com-
plex operations than a simple iteration through a list or grid.
The number of cells processed is the number of times a cell
was “handled” by the algorithm. In the case of WFD, WFD-
INC*, EWFD, “Cells Processed” is the number of times the
algorithm had to decide whether or not a cell should go in the
queue, and in the case of the Naive, or NaiveAA algorithms,
it is the number of times the algorithm needed to decide if a
cell should be evaluated to check if it was a frontier cell. The
result for each metric for each algorithm is the average of all
runs, and the ± column records the standard deviation.

Figure 4 shows the performance of WFD, WFD-INC*,
NaiveAA, and EWFD relative to the Naive approach accord-



Table 1: Results in Freiburg map, trajectory 1.

Naive ± WFD ± WFD-INC ± NaiveAA ± EWFD ±
Detecting (s) 726.71 3.65 896.20 4.53 181.17 0.83 156.49 0.74 20.42 0.13
Labelling (s) 53.53 0.27 53.53 0.27 53.53 0.27 53.53 0.27 53.53 0.27

Total (s) 780.25 3.91 949.73 4.80 234.70 1.09 210.03 1.01 73.96 0.40
Avg. Time/Iteration 3.10 0.02 3.77 0.02 0.93 0.00 0.83 0.00 0.29 0.00

Cells Evaluated 6,991,517 - 6,991,517 - 1,292,630 - 1,428,509 - 108,247 -
Cells Processed 15,544,872 - 62,923,662 - 11,633,670 - 2,805,111 - 974,223 -

Table 2: Results in Cave map, trajectory 1.

Naive ± WFD ± WFD-INC ± NaiveAA ± EWFD ±
Detecting (s) 605.60 4.35 746.30 1.88 145.20 0.36 115.43 0.50 15.18 0.07
Labelling (s) 12.04 0.04 12.04 0.04 12.04 0.04 12.04 0.04 12.04 0.04

Total (s) 617.65 4.40 758.34 1.93 157.24 0.40 127.47 0.55 27.22 0.12
Avg. Time/Iteration 4.26 0.03 5.23 0.01 1.08 0.00 0.88 0.00 0.19 0.00

Cells Evaluated 5,864,472 - 5,864,472 - 1,046,799 - 1,062,647 - 84,016 -
Cells Processed 13,488,625 - 52,780,248 - 8,374,392 - 1,772,547 - 756,144 -

ing to the three key metrics. Each graph is a summary of the
data collected for all trajectories in that environment, where
the bar shows the average, and the ticks show the maximum
and minimum values over the set of three trajectories.

In all trajectories, all algorithms resulted in 100% accuracy
relative to the set of frontiers detected by the Naive strategy.

In both environments, a surprising result of these experi-
ments was that WFD was found to be slower than the Naive
approach, and WFD-INC* was found to be slower than the
NaiveAA approach. This is because of the overhead of run-
ning a BFS over the cells, and maintaining a queue.

As expected, NaiveAA was faster than Naive, allowing it to
be a good benchmark for other algorithms, like WFD-INC*
and EWFD, that are bounded by the active area of sensor
scans.

EWFD performed fastest of all algorithms, requiring less
than 10% of the time required by the Naive approach in the
Freiburg map, and less than 5% in the cave environment.
EWFD required approximately 33% the time required by
WFD-INC* in the Freiburg environment, and 20% of the time
required by WFD-INC* in the cave environment.

These results held true not only for the total time over
all exploration, but also for the computation time at each
iteration (see Figure 5). Naive and WFD initially take lit-
tle time, and gradually take more and more time as the
amount of known freespace in the map increases. WFD-
INC*, NaiveAA, and EWFD computation times did not mea-
surably increase as a function of time, varying mostly based
on the size of the active area of each scan.

5 Conclusions and Future Work
This paper presented and demonstrated two algorithms for
frontier detection. The first, Naive Active Area frontier de-
tection (NaiveAA) sets a basic benchmark for frontier de-
tection algorithms that are bound to the scanned region at
each timestep. Since there is very little computational over-

head in its implementation, it runs relatively quickly, and pro-
vides a more useful comparison for other frontier detection
approaches than the naive approach.

The second approach was Expanding Wavefront Frontier
Detection (EWFD), which was shown to be on average, faster
than the other approaches, including NaiveAA and WFD-
INC*. This was a result of performing fewer cell evaluations,
and minimising the overhead in choosing which cells to eval-
uate.

The advantage of EWFD is that it is faster on average than
other state-of-the-art approaches. Unlike WFD-INC, EWFD
is directly useable in 3D environments. EWFD is able to be
used either after every scan, or after many scans have been
taken. In order to achieve this speed however, assumptions
are made that make it unsuitable in certain circumstances:
that known cells cannot become unknown, or change state.
If either of these situations occurs, it is possible that EWFD
will not correctly identify the resulting frontier cells.

NaiveAA does not suffer from these problems however,
and has the advantages of WFD-INC* and EWFD in having
running time bounded by the size of the sensor scan.

It would be possible after each scan to detect whether a cell
changed state from known to unknown, or from occupied to
freespace, in which case the safest and fastest approach would
be to use NaiveAA, and use EWFD otherwise.

As mentioned in the experiment design, EWFD could be
expected to run faster if a kd-tree was implemented and al-
lowed for faster range searches of frontiers within the active
area.

Further experiments should be run to determine the be-
haviour of each algorithm in different scenarios. For exam-
ple, if scans take place closer together or further apart and if
scans involve more or less new information. The effects of the
increased rate of frontier detection on exploration should be
measured to determine not just how much faster exploration
can be performed as a result of faster computation times, but



also how much more efficiently (i.e. resulting in less robot
motion).
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Appendix
This section contains results from the additional trajectories
run over the two environments. Figure 6 shows the two addi-
tional trajectories used to test the algorithms in each environ-
ment. Tables 3, 5, 4, and 6 show the results, and these are part
of the data set summarised in Figure 4. The time taken at each
iteration of frontier detection by each algorithm is shown in
Figure 7 for each environment and trajectory.
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Figure 6: All 6 trajectories. Lines show the robot trajectory,
and the dots show the poses where scans were taken and fron-
tiers evaluated.
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