

Determination of Embedded Length and General

Condition of Utility Poles Using Non-Destructive

Testing Methods

By **Amir Zad**

A thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Engineering and Information Technology University of Technology Sydney

October 2013

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of candidate

Amir Zad

October 2013

Abstract

Timber utility poles play a key role for electricity distribution systems in Australia and in many other countries. There are over 5 million timber utility poles currently used in Australian energy networks which are more than 80% of total utility poles in the network. Lack of knowledge about the current condition of existing poles such as embedded length, the degree of deterioration and damage below the ground level or on top of the pole, leads to uncertainty for replacement or maintenance works. Hence, it is essential to develop a cost effective and reliable non-destructive method to ensure safety and to reduce maintenance costs.

Different Non-destructive Testing (NDT) methods such as Sonic Echo, Bending Waves and Ultraseismic methods have been used in field applications over the past decades as simple and cost-effective tools for identifying the condition and underground depth of embedded structures, such as timber poles or piles in service. Despite the wide spread use of these methods by consultants around the world, reports describing field applications have shown that the results lack both consistency and reliability. Difficulties faced in field applications are often associated with complicated and imperfect/deteriorated materials, environmental effects, interaction of soil and structure and unknown boundary conditions, which lead to a great deal of uncertainties. In order to address this problem and develop reliable methods for embedment length determination and identification of damage below ground level, an R&D program commenced in 2008 at the University of Technology Sydney in collaboration with the Electricity Network Association of Australia. The aim of this study is to investigate and future develop the current non-destructive test methods with acceptable accuracy and repeatability, whilst being cost efficient for condition assessment of timber poles and piles as a part of the main program.

To tackle the problems and evaluate effects of various factors associated with timber materials, on these NDT methods, thorough numerical investigations using Finite Element (FE) was necessary. In this study on isotropic model was used for timber material as the main object of the numerical study was to get a better understanding of wave travel in materials without any other uncertainties. The numerical evaluation will start with a free timber pole without embedment to understand the behaviour of the

timber poles under surface NDT Methods. The results will be used for benchmarking in further investigations involving structure and soil interaction and boundary conditions. The model is verified with static analysis. Then, the FE beam model is enhanced with more advanced features requiring more steps to simulate other boundary conditions. According to the results, stress wave velocity will decrease with increase in embedded length. Therefore, two different velocities, one for stress wave travelling above the soil level and one travelling inside the soil with around 20% decrease in velocity was calculated. The error of length estimation averaged between 5% and 9% depending on the boundary conditions and the reference sensor for calculations.

In order to address this problem and develop a reliable method for embedment length and identification of damage below ground level, also the bending wave method is fully investigated and verified for the potentials and limitations. The success of determining these parameters (embedded length and location of damage) mainly depends on the accuracy of measuring the bending wave velocity. However, bending wave is highly dispersive in nature and, hence, it is important to find its frequency dependent velocity. Short Kernel Method (SKM) has been used as a signal processing tool to calculate the frequency dependent velocity and also the embedded length. As there are no guidelines to select those kernel frequencies, different kernel frequencies were selected based on the results of FFT and then applying the SKM method. As a result of the bending wave velocity investigation, the appropriate kernel frequency is identified to be between 600 to 800 Hz. The results are verified using Bernoulli-Euler Beam theory and Timoshenko beam theory. Based on the length estimation, the kernel frequency of between 650 Hz to 800 Hz will result in less than 8% error in embedded length estimation.

Furthermore, the Ultraseimic method is also applied on the results of timber modelling. Based on the results of velocities below and above the soil, the stress wave velocity is decreased by 22% overall below the soil in comparison with stress wave velocity above the soil. Based on the Ultraseimic method, the length of the timber pole is estimated by cross correlating the first arrival and reflection waves. Ultraseiemic test applying impact at the middle was also investigated for a 12m timber pole. It was found that, impact at middle of the specimen generated two compressional waves (travelling down and reflecting at the butt) and tensile waves (travelling up and reflecting at the top). This wave interference makes the analysis complicated. In addition, impact from the middle with 45 degree angle generates the combination of horizontal and vertical forces which result in contribution of bending waves to longitudinal waves. As a result, the signal will include multiple wave modes which are required to be separated before calculation of velocity and length determination. It should be mentioned that, Timber pole is modelled as an isotropic material here and if the anisotropy of the material is included the analysis will be more complicated.

This study also presents the results of Sonic Echo, Impulse Response, Bending Wave and Ultraseimic methods, investigated for determining the stress wave velocity and embedded length of poles with different testing conditions in the structural laboratories at UTS and in the field at Mason Park (NSW) and Horsham (Victoria).

According to the laboratory results, the coefficient of variation of velocity estimation of timber pole is relatively higher than steel beam and timber beam due to uncertainties in timber material such as anisotropy of timber material, stress direction in regards to grain angle of timber, location of a sensor relative to other sensors in regards to the annual growth ring orientation and existence of knots or any imperfections in timber. Choosing the reflection peak for length determination is one of the main parts of these methods and this could be affected by geotechnical conditions. Based on the results, the stress wave velocity will decrease inside the soil and a reduction factor is required to be applied to stress wave velocity above the soil to obtain the stress wave velocity below the soil. This reduction factor varies depending on the different testing/boundary conditions as well as the soil depth. In SE method, the scatter of the average error for the pole specimen, associated with different tests, ranged between 1% and 20% for all cases except layer 6 with 26% using sensor 1 for calculations. By using sensor 2 for estimation of the length, the average error becomes less than 9% for all cases except for layer 7 with 32%. However, more uncertainties are involved in terms of length calculation using sensors 3 and 4 located 1.5m and 2m from the impact location in comparison with using sensors 1 and 2 for calculations.

The phase velocity is calculated for each kernel frequency under different pull out testing conditions. Also based on the results of bending wave method, the kernel frequency between of 400-800 Hz was identified for use in SKM method for phase velocity calculations. Using the SKM to estimate the length of the pole with Bending Wave method for a 5m timber pole under different pull out conditions shows the

percentage of error for all boundary conditions to be between -10.5% and 0%. If the kernel frequency above 600Hz is selected, the average error for length estimation becomes less than 5% for most boundary conditions.

Also Ultraseismic method was considered for stress wave velocity estimation of timber poles impacted at the top. According to the results, using sensors close to impact location (up to 2-3m) will result in good estimation of the velocity calculations. However, these will not necessarily lead to accurate estimations. According to the results, the average error in length determination for timber poles under different pull out conditions which is more relevant to timber poles in-service is less than 18%. According to the results for Ultraseismic method using impact at the top in Horsham, the stress wave velocities were calculated with relatively good accuracy.

By considering relatively good and damaged poles in Horsham, it was found that the severe termite damage can be identified by the irregular patterns of FFT from impacted timber pole. This can be used to classify which timber poles are required to be replaced in the field.

Acknowledgements

This PhD project could not have been possible without the support provided by numerous people. In particular, the author would like to express his appreciation and gratitude to his principal supervisor, Associate Professor Jianchun Li for his outstanding guidance, encouragement, wisdom and caring support provided throughout this project. Utmost gratitude is also forwarded to Prof. Bijan Samali who had given the author invaluable advice, encouragement and assistance through the course of his study and in preparation of his thesis. Special thanks for prof. Keith Crews for providing the opportunity for collaboration of industrial partner (Energy Australia) for this study. I wish to sincerely thank Dr. Fook Choon Choi for his encouragement, help and support and especially for his exceptional personality and source of inspiration as a role model for my professional and personal development. The author also gratefully acknowledges the financial assistance provided by the University of Technology Sydney and Centre for Built Infrastructure Research (CBIR) of the Faculty of Engineering, UTS and Energy Australia an industrial partner.

Furthermore, the author would like to thank the Structures Laboratory staff for their help in the experimental and field work. Special thanks must also go to Rami Haddad, David Hooper, David Dicker, Peter Brown and Richard Turnell. I wish to sincerely thank for the members of timber pole project; Dr. Ulrike Dackermann, Saad, Bahram and Ning. To friends and/or colleagues at UTS, the author wishes to express his gratitude. Special thanks must go to Behnam, Ali, Nassim, Mohsen, Muhammad and others who shared their time and friendship with the author

The administrative and the support staff at UTS Faculty of Engineering and IT, Phyllis Agius, Craig Shuard, Van Lee and the IT support team for performing an excellent job in keeping the show running.

To My Mum and Dad

List of Publications Based on This Research

Journal Articles

- 1. Zad, A., Li, J., Samali, B. (2013), 'Limitation of surface non-destructive tests on timber utility poles', *In preparation*
- 2. Zad, A., Li, J., Samali, B. (2013), 'Comprehensive investigation of dispersive wave on timber utility poles', *In preparation*

Book Chapters

 Zad, A., Li, J., Samali, B., & Crews, K. (2011), 'Finite element evaluation of non-destructive testing methods for embedded timber poles in service', *Incorporating Sustainable Practice in Mechanics and Structures of Materials*, Taylor & Francis Group, London, pages 909-914

Conference Papers

 Zad, A., Li, J., Crews, K. & Samali, B. (2010), 'Determination of embedment depth of timber poles and piles using non-destructive evaluation (NDE) techniques', *Proceedings of the 13th International Conference on Structural Faults + Repair*, 15-17 June 2010, Edinburgh, Scotland, Paper #TB CREWS - SFR, (published on CD).

Guidelines

 Li, J., Dackermann, U., Zad, A., Subhani, S., Samali, B. & Crews, K., 'Recommended Best Practice for Assessment of Timber Structures using Surface Stress Wave Methods', RILEM, *In press*.

Table of Contents

CHAPTER 1				
1	IN	ГRC	DUCTION	1
	1.1	Bac	kground	1
	1.2	Res	earch Scope	3
	1.3	Res	earch Objectives	4
	1.4	Sur	nmary of Contributioins	5
	1.5	Out	line of the Thesis	7
С	НАРТ	ER	2	9
2	LI	ГER	ATURE REVIEW	9
	2.1	Tin	ıber poles in Australia	9
	2.2	Тур	bes of degradation and location of timber piles and utility poles	11
	2.3	Coi	nventional methods for assessment of timber structures	12
	2.3	.1	Visual inspection method	12
	2.3	.2	Probing	13
	2.3	.3	Sounding	13
	2.3	.4	Drilling and coring	13
	2.4	No	n-destructive evaluation methods for timber structures	14
	2.5	Stre	ess wave testing based methods	15
	2.5	.1	Sonic Echo (SE) method	15
	2.5	.2	Impulse response method	16
	2.5	.3	Bending Wave method	19
	2.5	.4	Ultraseismic Method	22
	2.5	.5	Parallel Seismic (PS)	23
	2.5	.6	Borehole radar	
	2.6	Rev	view of stress wave propagation in solids	
	2.6	.1	Wave propagation in an elastic half-space	

	2.6	5.2	Longitudinal wave propagation in thin rods	
	2.6	5.3	Flexural wave propagation in thin rod	33
	2.7	Sig	nal processing for stress wave methods	
	2.7	.1	The discrete and fast Fourier transform	
	2.7	.2	Short-Kernel Method (SKM)	
	2.7	.3	Wavelet transform	41
	2.8	Fin	ite element modelling of wave propagation in cylindrical pile/pole	42
	2.9	Res	search gaps identified	44
	2.10	S	bummary	46
C	CHAPT	ΓER	3	49
3	FII	NIT	E ELEMENT MODELLING OF TIMBER POLE WITH/WITHO)UT
S	OIL E	CMB	EDMENT	
	3.1	Inti	roduction	49
	3.2	Nu	merical Modelling of timber poles	50
	3.2	2.1	Finite Element Modelling of Intact Beam	50
	3.2	2.2	Consideration of various boundary conditions	51
	3.2	2.3	Material properties and geometry	53
	3.3	Sin	nulation of wave propagation in timber pole	54
	3.3	.1	Simulation of impact loading	56
	3.3	.2	Stress wave propagation through the pole under impact load	56
	3.4	Bel	naviour of wave propagation in timber pole	57
	3.5	Eff	ect of types of impact and their location on timber pole	59
	3.6	Ap	plication of Sonic Echo/Impulse Response test on timber pole	62
	3.6	5.1	Velocity calculation	62
	3.6	5.2	Embedded length determination	65
	3.7	Ap	plication of Bending Wave Test on timber pole	66
	3.7	.1	Velocity calculation	67

	3.7	7.2	Embedded length determination	72
	3.7	7.3	Velocity calculation and length determination of filtered results	74
	3.8	Ap	plication of Ultraseismic test impact on timber pole	77
	3.8	8.1	Velocity calculation	77
	3.8	8.2	Embedded length determination	81
	3.8	8.3	Alternative impact location	82
	3.9	Pre	liminary damage identification of timber pole	84
	3.10	S	ummary	87
С	HAP	ГER	4	90
4	EX	KPEI	RIMENTAL INVESTIGATION OF TIMBER UTILITY POLES	90
	4.1	Inti	oduction	90
	4.2	Tes	t Equipment	90
	4.2	2.1	Impact hammer	90
	4.2	2.2	Accelerometers	91
	4.2	2.3	Signal Conditioning and computer	93
	4.2	2.4	Laboratory testing frame	94
	4.3	Tes	ting Scenarios	96
	4.3	3.1	Testing Procedure	96
	4.3	3.2	Test specimens	99
	4.3	3.3	Different types of testing	100
	4.3	3.4	Damage scenario induced for timber pole	103
	4.4	Tes	st set-up for Sonic Echo and Impulse Response Method	104
	4.5	Tes	st Set-Up for Bending Wave Method	108
	4.6	Co	ntrolled field tests	110
	4.7	Fie	ld tests on decommissioned utility poles	112
	4.8	Cla	ssification of damage of field utility timber poles	113
	4.9	Soi	l samples	116

4	4.10		Summary	119
CH	IAP	ГER	. 5	121
5	AN	NAL	YSIS AND DISCUSSION OF LABORATORY AND FIELD	TESTS
	12	1		
	5.1	Int	roduction	121
	5.2	So	nic Echo (SE) test	122
	5.2	2.1	Velocity calculation	
	5.2	2.2	Length Estimation	134
	5.3	Im	pulse Response (IR) test	144
	5.3	8.1	Impact at the top	144
	5.3	8.2	Impact at the middle	148
	5.4	Be	nding Wave test	149
	5.4	4.1	Application of SKM for the calculation of phase velocity	151
	5.4	1.2	Velocity calculation	153
	5.4	1.3	Length Estimation	157
	5.5	Ul	traseismic test	159
	5.5	5.1	Velocity calculation	159
	5.5	5.2	Length Estimation	172
	5.6	Ef	fects of damage scenarios on timber pole in laboratory	
	5.7	Со	ntrolled field tests	175
	5.7	7.1	Sonic Echo/Impulse response test at the middle	175
	5.7	7.2	Ultraseismic test at the middle	
	5.8	Fie	eld tests of decommissioned utility poles	
	5.8	8.1	Sonic Echo (SE) test impact at top	
	5.8	8.2	Sonic Echo/Impulse Response test impact at the middle	
	5.8	3.3	Ultraseismic test impact at the top	
	5.9	Su	mmary	

CHAPTER 6				
6	CC	DNCLUSION AND RECOMMENDATION		
6.	1	Summary		
6.	2	Concluding remarks		
6.	3	Recommendation of future study		
REF	FER	RENCES		
APP	ΈN	DIX A		
TIMBER POLE AUTOPSY				
APPENDIX B				
RESULTS OF IMPULSE RESPONSE (IR) TEST				
APP	ΈN	DIX C		
RES	RESULTS OF ULTRASEISMIC TEST			

List of Figures

Figure 2.1 Three principal axes of wood with respect to grain direction and growth	rings
(Green, Winandy et al. 1999)	11
Figure 2.2 Possible decay patterns in underground sections of utility poles (Nguyen	,
Foliente et al. 2004)	12
Figure 2.3 Schematic principle of SE testing	16
Figure 2.4 Schematic principle of IR testing	17
Figure 2.5 Schematic principle of Bending Wave testing	21
Figure 2.6 Schematic principle of Ultraseismic testing	23
Figure 2.7 Parallel Seismic setup	24
Figure 2.8 Parallel Seismic data and velocity lines	25
Figure 2.9 Borehole Radar system.	27
Figure 2.10 A thin prismatic rod with coordinate x and displacement u of a section.	31
Figure 2.11 A differential element of a thin rod undergoing transverse motion due to	э а
vertical impact	33
Figure 2.12 Dispersion relation for different theories (After Graff, 1975)	36
Figure 2.13 Kernel shifted along signal	40
Figure 2.14 Consideration of damage identification for determination of the	
underground length of a timber pole	45
Figure 3.1 The geometric properties of SOLID45 (ANSYS Inc 2011)	50
Figure 3.2 A typical set-up for the embedded timber pole	52
Figure 3.3 A typical FE model of embedded timber pole	52
Figure 3.4 The geometric properties of CONTACT178 (ANSYS Inc 2011)	53
Figure 3.5 An example of applied impact loading in the transient dynamic analysis.	56
Figure 3.6 Geometry of the model and location of the sensors placed on the timber p	pole
Figure 3.7 Velocity results in y direction under free-free condition	58
Figure 3.8 Velocity results in y direction for patch sensors with same distance under	r
free-free condition	58
Figure 3.9 Cross section of FE modelling	59
Figure 3.10 Stress wave velocity in y direction under free end condition and different	nt
loading condition by impact from the top for accelerometer 1	60

Figure 3.11 Stress wave velocity in y direction under free end condition and different
loading condition by impact from the top for accelerometer 460
Figure 3.12 Stress wave velocity in x direction under free end condition by impact from
the top for accelerometers 4 and 13
Figure 3.13 Stress wave velocity in x direction under free end condition by impact at the
edge for accelerometers 4 and 13
Figure 3.14 Geometry of the model and location of the sensors placed on the timber
pole for Sonic Echo test
Figure 3.15 Acceleration results in y direction for patch sensors under 5 pull out
conditions
Figure 3.16 Effect of different embedded lengths for velocity calculation64
Figure 3.17 Acceleration result of 5m timber pole under 2 nd pull out condition
Figure 3.18 Acceleration result of 5m timber pole under 4 th pull out condition65
Figure 3.19 Geometry of the model and location of the sensors placed on the timber
pole for Bending Wave test
Figure 3.20 SKM coefficient plot at 410 Hz of 5 m timber pole under 1 st pull out for
sensors 1,2 and 4
Figure 3.21 SKM coefficient plot at 410 Hz of 5 m timber pole under 1 st pull out for
sensor 1
Figure 3.22 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensor 1 as a reference a) using sensor 2 as a
reflection wave, b) using sensor 3 as a reflection wave, c) using sensor 4 as a reflection
wave
Figure 3.23 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensor 2 as a reference, a) using sensor 3 as a
reflection wave, b) using sensor 4 as a reflection wave72
Figure 3.24 Embedded length determination for different kernel frequencies of 5 m
timber pole under 1 st pull out condition73
Figure 3.25 Embedded length determination for different kernel frequencies of 5 m
timber pole under 3 rd pull out condition73
Figure 3.26 Embedded length determination for different kernel frequencies of 5 m
timber pole under 8 layer soil condition

Figure 3.27 Bending wave velocity for different kernel frequencies of 5 m timber pole
under 3 rd pull out condition using filtered results
Figure 3.28 Embedded length determination for different kernel frequencies of 5 m
timber pole under 3rd pull out condition after filtering
Figure 3.29 Embedded length error for different frequencies of 12 m timber pole under
2m embedment condition using continues wave length and short kernel method76
Figure 3.30 Acceleration results for selected sensors in y direction under 3rd pull out
condition using Ultraseismic method a) arrival wave and b) reflection wave79
Figure 3.31 Acceleration results in y direction under 3 rd pull out condition using
Ultraseismic method
Figure 3.32 Acceleration results for selected sensors in y direction under 5 th pull out
condition using ultraseismic method a) arrival wave and b) reflection wave80
Figure 3.33 Acceleration results in y direction under 5th pull out condition using
Ultraseismic method
Figure 3.34 Effect of soil in stress wave velocity
Figure 3.35 Length estimation using sensors above the soil level under 3 rd pull out
condition using Ultraseismic method in 2D graph82
Figure 3.36 Geometry of the model and location of the sensors placed on the timber
pole for Ultraseismic test impacted at the middle
Figure 3.37 Acceleration-time history of 12m timber pole under 5 th pull out condition
using Ultraseismic method with impact at the middle
Figure 3.38 Velocity results for decay type 1 under three different damage scenarios;
1S, 1M and1L
Figure 3.39 Comparison of the free end test with external decay and without decay85
Figure 3.40 Side view of a damage inflicted in timber pole identical to the laboratory
case
Figure 3.41 Acceleration-time history results for intact and damaged pole of 5m timber
pole for sensor 3
Figure 3.42 Acceleration-time history results for intact and damaged pole of 5m timber
pole for sensor 6
Figure 4.1 Impact hammer (a) stiff tip, (b) soft tip91
Figure 4.2 Typical response of hammer impact

Figure 4.3 Testing accelerometers (a) piezoelectric accelerometer - model PCB 356A08,		
(b) piezoelectric accelerometer - model PCB 337A26, (c) piezoresistive accelerometer		
chip ADXL320 (d) piezoresistive accelerometer with housing92		
Figure 4.4 Accelerometers mounted to the a) steel beam and b) timber beam by screws		
Figure 4.5 Calibration of the accelerometers using a shake table93		
Figure 4.6 (a) Multi-channel signal conditioner - model PCB 483B03 and (b) DC power		
supply		
Figure 4.7 A personal computer for laboratory and field testing94		
Figure 4.8 Steel frame used as a container		
Figure 4.9 Using scaffold and scissor lift to build and access the top of the frame95		
Figure 4.10 Testing procedure: (a) setting up of equipment, (b) mounting of		
accelerometer, (c) attached bracket and accelerometers and (d) execution of the test98		
Figure 4.11 Laboratory free-free test for steel beam		
Figure 4.12 Laboratory free-free test set-up for timber beam		
Figure 4.13 a) location of the accelerometers on steel and timber beam specimens, b)		
laboratory set-up for NDT method under free-end conditions with timber pole specimen		
Figure 4.14 Test set-up of bedrock condition in laboratory101		
Figure 4.15 Filing the sand a) into the buckets and b) into the frame102		
Figure 4.16 The laboratory set-up for NDT methods under embedded conditions for a		
timber pole		
Figure 4.17 The laboratory set-up for NDT methods using pull out to simulate various		
embedment depths (timber beam specimen)103		
Figure 4.18 Side view of a typical damage inflicted in timber pole in laboratory104		
Figure 4.19 Impact bracket mounted to the side of a timber pole to provide a surface for		
longitudinal impact excitation104		
Figure 4.20 Impact bracket mounted to the side of a a) steel pole b) timber beam to		
provide a surface for longitudinal impact excitation105		
Figure 4.21 Test set-up for free-free testing of (a) and (b) laboratory testing and (c) to		
(e) field testing		
Figure 4.22 Test set-up of embedded testing in laboratory107		

Figure 4.24 Schematic test set-up of free-free BW tests for (a) laboratory testing and (b)		
field testing		
Figure 4.25 Schematic and photo of test set-up of embedded BW tests for laboratory		
testing		
Figure 4.26 Schematic and photo of test set-up of embedded BW tests for field testing.		
Figure 4.27 Location of the Mason Park (courtesy of Google Maps)110		
Figure 4.28 Location of timber poles at Mason Park		
Figure 4.29 Timber poles before installation in Mason Park111		
Figure 4.30 Timber poles after installation in Mason Park111		
Figure 4.31 Cross sections of pole No 288		
Figure 4.32 Compaction test equipment		
Figure 4.33 Filling the compaction mould with soil		
Figure 4.34 Compacted soil with mould after compaction completed118		
Figure 4.35 Compaction curve of soil sample in Mason Park		
Figure 5.1 Test set-up for (a) free-free testing and (b) embedded testing condition 123		
Figure 5.2 Velocity calculation of steel beam (free end condition)		
Figure 5.3 Velocity calculation of timber beam (free end condition)124		
Figure 5.4 Velocity calculation of timber pole (free end condition)125		
Figure 5.5 Minimum, maximum and average longitudinal wave velocity for steel beam		
Figure 5.6 Minimum, maximum and average longitudinal wave velocity for timber		
beam		
Figure 5.7 Minimum, maximum and average longitudinal wave velocity for timber pole		
Figure 5.8 The three principal axes of wood with respect to grain direction and growth		
rings (Kretschmann 2010)		
Figure 5.9 Direction of load in relation to direction of annual growth rings: 90° or		
perpendicular (R), 45°, 0° or parallel (T) (Kretschmann 2010)133		
Figure 5.10 Relationship of fibre orientation (O–O) to different axes, as shown by the		
schematic of wood specimens containing straight grain and cross grain. Specimens A		
through D have radial and tangential surfaces; E through H do not. Specimens A and E		

contain no cross grain; B, D, F, and H have spiral grain; C, D, G, and H have diagonal
grain (Kretschmann 2010)
Figure 5.11 Schematic of fibre orientation and senor location
Figure 5.12 Stress wave velocity in timber material with knots
Figure 5.13 Acceleration-time history result of a 5m timber pole under free-free and
bedrock conditions
Figure 5.14 Percentage errors for different tests estimating the length of the steel beam
for senor 1 (located on top of the specimen)
Figure 5.15 Percentage errors for different tests estimating the length of the steel beam
for sensor 2 (located 1m below the top of the specimen)138
Figure 5.16 Percentage errors for different tests estimating the length of the steel beam
for sensor 3 (located 1.5m below the top of the specimen)
Figure 5.17 Percentage errors for different tests estimating the length of the steel beam
for sensor 4 (located 2m below the top of the specimen)139
Figure 5.18 Percentage errors for different tests on the timber beam for Sensor 1(located
on top of the specimen)140
Figure 5.19 Percentage errors for different tests on the timber beam for Sensor 2
(located 1m below the top of the specimen)
Figure 5.20 Percentage errors for different tests on the timber beam for Sensor 3(located
1.5m below the top of the specimen)
Figure 5.21 Percentage errors for different tests on the timber beam for Sensor 4(located
2m below the top of the specimen)
Figure 5.22 Percentage errors for different tests on the timber pole for Sensor 1(located
on top of the specimen)142
Figure 5.23 Percentage errors for different tests on the timber pole for Sensor 2 (located
1m below the top of the specimen)
Figure 5.24 Percentage errors for different tests on the timber pole for Sensor 3(located
1.5m below the top of the specimen)
Figure 5.25 Percentage errors for different tests on the timber pole for Sensor 4(located
2m below the top of the specimen)
Figure 5.26 FRFs of different sensors of (a) free-free and (b) embedded laboratory IE
testing of a timber beam with impact from top146
Figure 5.27 Percentage errors for different tests on steel beam

Figure 5.28 Percentage errors for different tests on timber beam147
Figure 5.29 Percentage errors for different tests on timber pole148
Figure 5.30 FRFs of different sensors of (a) free-free and (b) embedded laboratory IR
testing of a timber beam with impact from the side150
Figure 5.31 Schematic test set-up of embedded BW tests for laboratory testing151
Figure 5.32 An example of Raw signals vs SKM plots at specific kernel frequency152
Figure 5.33 An example of the frequency response function (FRF) from a timber pole
under 3rd pull out condition152
Figure 5.34 SKM plot at frequency of 725 Hz: Timber pole under 3rd pull out condition
Figure 5.35 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensors 1 and 2155
Figure 5.36 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensors 1 and 3155
Figure 5.37 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensors 1 and 4156
Figure 5.38 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensors 2 and 3156
Figure 5.39 Bending wave velocity for different kernel frequencies of 5 m timber pole
under different boundary conditions using sensors 2 and 4157
Figure 5.40 Percentage errors for different kernel frequencies of the timber pole under
1 st pull out condition
Figure 5.41 Percentage errors for different kernel frequencies of the timber pole under
3 rd pull out condition
Figure 5.42 Percentage errors for different kernel frequencies of the timber pole under
5 th pull out condition
Figure 5.43 Acceleration results for all sensors in y direction under free-free condition
for 5 m steel beam using Ultraseismic method
Figure 5.44 Acceleration results for selected sensors in y direction under free-free
condition for 5 m steel beam using Ultraseismic method (sensors at 0, 1, 1.5 and 2 m
from the top)
Figure 5.45 Acceleration results for all sensors in y direction under free-free condition
for the 5 m timber beam using Ultraseismic method

Figure 5.46 Acceleration results for selected sensors in y direction under free-free
condition for the 5 m timber beam using Ultraseismic method (sensors at 0, 1, 1.5 and 2
m from the top)164
Figure 5.47 Acceleration results for all sensors in y direction under free-free condition
for the 5 m timber pole using Ultraseismic method166
Figure 5.48 Acceleration results for selected sensors in y direction under free-free
condition for the 5 m timber pole using Ultraseismic method (sensors at 0, 1.5, 3 and
5m from the top)
Figure 5.49 Acceleration results for selected sensors in y direction under 1 layer soil
condition for the 5 m timber pole using Ultraseismic method (sensors at 0, 1, 1.5, 2
and 3m from the top)
Figure 5.50 Acceleration results for selected sensors in y direction under 1 layer soil
condition for the 5 m timber pole using Ultraseismic method (sensors at 0, 1.5 and 3m
from the top)
Figure 5.51 Embedded length determination of 5 m timber pole under different
boundary conditions using sensors at 0, 1.5 and 3m from the top173
Figure 5.52 Schematic set up for intact and damaged timber pole in laboratory
Figure 5.53 Acceleration results for an intact and damaged timber pole under free-free
condition for sensor 3
Figure 5.54 Acceleration results for an intact and damaged timber pole under free-free
condition for sensor 4
Figure 5.55 Test set-up of embedded testing in Mason Park
Figure 5.56 FFT result of the timber pole with 1 m of embedment
Figure 5.57 FFT result of the timber pole with 1.5 m of embedment
Figure 5.58 FFT result of the timber pole with 2 m of embedment
Figure 5.59 Velocity calculation of pole 8 with 1m embedded length
Figure 5.60 Velocity calculation of pole 14 with 1.5m embedded length
Figure 5.61 Velocity calculation of pole 1 with 2m embedded length
Figure 5.62 Percentage errors for different sensors estimating the length of the timber
pole for 1 m embedment
Figure 5.63 Percentage errors for different sensors estimating the length of the timber
pole for 1.5 m embedment

Figure 5.64 Percentage errors for different sensors estimating the length of the timber
pole for 2 m embedment
Figure 5.65 Acceleration results for all sensors in y direction under 1m embedment
using Ultraseismic method (Pole 8)
Figure 5.66 Acceleration results for all sensors in y direction under1.5m embedment
using Ultraseismic method (Pole 14)
Figure 5.67 Acceleration results for all sensors in y direction under1.5m embedment
using Ultraseismic method (Pole 1)
Figure 5.68 Percentage errors for different embedment conditions estimating the length
of the timber pole using ultraseismic method
Figure 5.69 Test set-up for free-free testing of field testing in Horsham, (a) impact from
the side, (b) impact from the end
Figure 5.70 FFT result of the timber pole under free-free condition (Pole3-293) impact
from location 3(at the top)
Figure 5.71 FFT result of the damaged timber poles under free-free condition (Pole288,
183 and 299) impact from location 3(at the top)
Figure 5.72 Acceleration-time history of timber pole under free-free condition
(Pole293) impact from location 3(at the top)
Figure 5.73 Acceleration-time history of timber pole under free-free condition
(Pole288) impact from location 3(at the top)
Figure 5.74 FFT result of the timber pole under free-free condition (Pole293) impact
from location 1(at the middle)
Figure 5.75 FFT result of the timber pole under free-free condition (Pole 288) impact
from location 1(at the middle)
Figure 5.76 Results of the timber pole under free-free condition using Ultraseismic
method (Pole293) impact from location 3(at the top)
Figure 5.77 Results of the timber pole under free-free condition using Ultraseismic
method (Pole288) impact from location 3(at the top)
Figure 6.1 a) Stable case b) Unstable case

List of Tables

Table 2.1 Estimated quantities of poles in-service throughout Australia in 2004 (Ken	ıt
2006)	9
Table 3.1 Material properties used in the FE model	54
Table 3.2 Length determination of a 5m timber pole under different embedded length	hs
using the first four sensors with Sonic Echo test	66
Table 3.3 Material properties used in guided wave solution (Subhani 2013)	78
Table 3.4 Decay pattern type 1 modelling using FE	84
Table 4.1 Field test details	112
Table 4.2 Timber pole classifications based on the existing defects at Horsham	113
Table 4.3 Defect description of different timber poles at Horsham	116
Table 5.1 The coefficient of variation of the velocity calculation for repeated tests of	2
steel beam under different conditions.	130
Table 5.2 The coefficient of variation of the velocity calculation for repeated tests of	2
timber beam under different conditions	131
Table 5.3 The coefficient of variation of the velocity calculation for repeated tests of	2
timber pole under different conditions	132
Table 5.4 Calculation of Characteristic Impedance for different materials	135
Table 5.5 Timber pole classifications based on the existing defects at Horsham	186