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S U M M A R Y  
The  total Green’s function for two-point boundary-value problems can be related to 
the  propagator for initial-value problems. A very simple expression for the  Green’s 
function is obtained when the  unperturbed medium may be  described by material 
with a constant gradient in quadratic slowness. T h e  derivation requires a correct 
understanding of assumptions made in the  propagator solution. Expressions are also 
obtained for Green’s function in multilayered media. 
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1 INTRODUCTION 

In recent years, ray-perturbation theory has found 
application in many areas of seismology. Farra & Madariaga 
(1987) have used ray-perturbation theory to show that 
essentially the same equations describe both the first-order 
corrections to ray geometry resulting from small fluctuations 
in the velocity field and the corrections to ray geometry 
resulting from small changes to the initial conditions when 
there are no fluctuations in the velocity field (paraxial ray 
tracing). Farra (1992) has shown that the ray-bending 
method (Julian & Gubbins 1977) is also a particular 
application of first-order perturbation theory and is not 
intrinsically more complicated than the paraxial shooting 
method. In that paper expressions are given for the solution 
to the problem in terms of the propagators appropriate to 
media without interfaces and transformation matrices which 
ensure that the boundary conditions are satisfied at the 
various interfaces crossed by the ray. These are combined to 
form a composite propagator for the problem. Snieder & 
Sambridge (1992) have also studied the use of ray- 
perturbation theory in two-point ray tracing. Moore (1993) 
has shown that the total Green’s function for the two-point 
boundary-value problems studied in Snieder & Sambridge 
(1992) can be related to the propagator for initial-value 
problems. In Moore (1993), analytical expressions were 
obtained for both propagator and total Green’s function for 
the special case in which the ray parameter is taken to be arc 
length on the unperturbed ray. In this case, the constraints 
on the perturbation have a simple geometric interpretation. 
However, the principles used in that derivation do not 
depend on the choice of ray parameter and so may be 
applied to other parametrizations of the ray. In this paper, 
we study the implications for another choice of the ray 

parameter-specifically a parameter which allows the 
propagators to be expressed very simply although imposing 
constraints on the ray perturbation that are geometrically far 
less intuitive. 

2 CHOICE OF RAY PARAMETERS 

Moore (1993) like Snieder & Sambridge (1992) incorporated 
the corrections for differences in arclength in perturbed and 
unperturbed media at every instant along the ray path and 
used so, the arclength on the unperturbed ray, as the ray 
parameter. This means that the equation for the first-order 
perturbation to the ray must be solved subject to the 
constraint 

or equivalently, 

where u ~ ,  = uo(x) is the unperturbed slowness field of the 
material, EX‘ denotes the first-order perturbation to the ray 
trajectory x0 and . denotes differentiation with respect to s~,. 

Moore (1993) gave an analytical solution to the problem 
when weak lateral inhomogeneities are superimposed on an 
unperturbed velocity field which varies with depth only. 
Both plane and spherical geometries were studied. This 
choice of parametrization means that the ray perturbation is 
required to lie in the surface s,,=constant which has the 
simple geometric interpretation that it is the plane 
perpendicular to the ray at the point of evaluation. (This is 
clear from the constraint given in eq. l a  above,) 
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On the other hand, Moore (1991) also studied the 
problem for weak lateral inhomogeneities superimposed on 
an unperturbed velocity field which varies with depth only, 
but solved the equation for the first-order perturbation to  
the ray subject to the constraint 

i' . $1 = 0. 

This constraint arises from a requirement that 3s/as,,  equals 
unity to first order in small quantities. 

In other words, the constraint was imposed to  ensure that 
the one parameter would measure arclength on both 
perturbed (s) and unperturbed (so) rays (to first order). It 
follows that the ray perturbation found in the analytical 
solution of Moore (1991) was required to  lie in the surface 
s =constant, which is the surface composed of all points 
lying a fixed distance from the source when distance is 
measured along the (curved) ray path joining the source t o  
these points. Such surfaces can have quite complex shapes. 

Another analytical solution to  the problem is obtained 
when the parameter dw =ds /u  is used (ds denotes the 
element of arclength on the ray and u denotes the local 
slowness of the material). It is well known that a very simple 
form of the solution occurs in this case when the 
unperturbed medium may be described by material with a 
constant gradient in quadratic slowness. However, implicit 
in the derivation of this result is the assumption that dw/dw, ,  
equals unity to  first order in small quantities, that is, that the 
parameters on perturbed (w) and unperturbed (wo) rays 
have the same scale length (to first order). This means that 
we choose to use the same parameter on both perturbed and 
unperturbed rays. Consequently, the perturbation to  the ray 
xE describes the correction to  the endpoint of the ray within 
the surface w = const. The corresponding constraint on the 
solution in this case is 

(2)  

(3) 

where ' denotes differentiation with respect to  arclengths s(,, 
as before, and AuZ denotes the local perturbation in 
quadratic slowness. 

(In the notation of eqs 10 and 33 of Farra & Madariaga 
1989, this constraint is equivalent t o  the requirement that 
SH + A H  = 0; that is, that the sum of perturbations to  the 
Hamiltonian resulting from the variations in the ray 
trajectory ( 6 H )  and local variations in slowness (AH)  must 
vanish.) The surface w =constant is the surface composed 
of all points lying a fixed w length from the source as 
'measured' along the (curved) ray paths joining the source 
to these points. Such surfaces again can have quite complex 
shapes. Nevertheless, the extreme simplicity of the 
propagators in this case may well outweigh the drawbacks 
associated with the geometric complexities of the constraint 
on this solution, and so we investigate the relationship 
between the propagators and the total Green's function for 
the two-point boundary-value problem in this case. 

3 THEORY 

cerveny (1987) has noted that the simplest analytical 
solution for any type of inhomogeneous medium at all is 
probably the polynomial solution obtained for the case of 

constant gradient of quadratic slowness: 

u'(x) = U ;  + r - x (4) 

where r defines the gradient. In such a medium, the rays are 
given by 

P ( W )  = P ( W J  + $ r ( w  - w,) (5 )  

X(W) = X(WJ + P(w,)(w - w,) + ; r (w - WJ' 

where 

p(wJ and x(w,) are the initial conditions and 

w = w , +  - 

The expression for the ray perturbation in the surface 
w = constant is simply: 

7 0  &' b U(,(S'') . 

where 

and hu2 is the perturbation in quadratic slowness. 
Using pE rather than dxE/ds,, appears to  introduce some 

complexities into the application of these results. For 
example, Farra et al. (1989) point out a t  eq. (33b), that an 
additional correction needs t o  be applied to  p to  account for 
local fluctuation in u:. However, such corrections are 
automatically included in the results which follow. 

4 GREEN'S FUNCTION FOR 
CONTINUOUSLY VARYING MEDIA 

The method outlined in Moore (1993) for constructing a 
Green's function for the two-point problem may also be 
used in this problem. 

The Green's function solution to  the two-point boundary- 
value problem above may be written 

xE(w)  = G(w, w') V(;Au') dw' (7) c' 
where w, is the total w length of the unperturbed ray and w 
is the w length along the unperturbed ray to  the point of 
interest. 

This should be compared with the solution given in eq.  (6) 
when x'(ws) = 0 and p'(ws) = 77, a constant vector chosen to  
ensure that x'(wr) = 0, that is 

-1 wr 

wr-ws w, 

77 = - 1 (wr - w ' )  V(fAu') dw'. (8) 

It follows that 

G(w, w') = G(wS, w', w, wr)l, 
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where composite propagator; 
N 

9(w, wO)= 9(w> w N )  n [ q $ i p ( w i ?  wi-l)l (12) 
i =  1 

where N denotes the number of interfaces crossed by the 
ray. 

If the interfaces are defined by the relation f ( x )  = 0 and 
the reference medium in each layer has constant gradient in 
quadratic slowness, then the transformation matrices for a 
single interface may be written w, is the value of the ray parameter a t  the source; 

w, is the value of the ray parameter a t  the receiver; 
w is the value of the ray parameter a t  the point of interest, 

and 
w‘ is the value of the ray parameter at some intermediate 

point along the path of integration. 

H is the Heaviside function 

It is interesting to  compare the results obtained by this 
method with exact ray-tracing results. Suppose, for example 
that the unperturbed medium has a linear distribution of the 
square of slowness: 

U i ( X )  = a; + y - x 

and that the perturbed slowness distribution may be written 

u’(x) = u:(x) + Au2(x) 
where 
Au’(x) = A@’ + B y  - X. 

Such a perturbation permits an exact solution using eq. (5) 
as well as an ‘approximate’ solution using eq. (6) with 
x‘(ws) = @ and p‘(w,) given by eq. (8). It is readily shown 
that the two solutions are  identical in this case. 

In particular, it is found that 

q = - - 1  4( w r - w s ) A Y .  

However, (:) is not a combination of initial conditions 

permitted by eq. (3). Effectively, what we have done is to  
choose a combination of initial conditions that changes the 
Hamiltonian of the ray to  match the Hamiltonian required 
for the different initial direction. However, all integrations 
use the ray specified by the original Hamiltonian in the 
unperturbed medium, and the ‘correct’ solution is obtained 
despite the fact that the two rays have different 
Hamiltonians. 

5 GREEN’S FUNCTIONS FOR 
MULTILAYERED MEDIA 

Farra et al. (1989) and Farra (1992) outline a method for 
propagating perturbed and paraxial rays across interfaces 
with the aid of transformation matrices which first 
extrapolate the perturbed ray onto the interface and then 
introduce appropriate changes to  the direction of propaga- 
tion as required by Snell’s law. In this way, the formal 
solution is again given by eqs (6), but this time with a 

where 

and 
I 0  .=( ) 

Tl Tz 

where 

and denotes properties on the ‘transmitting’ side of the 
interface. 

The notation (a 1 b) represents the scalar product of the 
vectors (a] and (bl while the notation la)(b( represents a 
matrix obtained by the tensor product of the vectors (a1 and 
(b(. The elements of this matrix are given by 

More general expressions for ni and 9; are given in Farra 
(1992). In fact, the generalized propagator given at eq. (12) 
is not a true propagator as the rank of the submatrix n, is 
two rather than three. This means that the extrapolation 
procedure at interfaces introduces some ambiguity or that 
many ray perturbations may produce the same extrapolated 
deviations at  the interface. However, this does not limit the 
usefulness of the generalized propagator. 

We now wish to  find a value for r]  = p‘(ws), the change 
required in the initial direction of the ray to ensure that the 
perturbed ray reaches the required endpoint at the same 
value of the sampling parameter w as on the unperturbed 
ray. To facilitate calculations, we partition the propagator 

We then require 77 to  satisfy the equation 

0 = P,,(w,, w’) V(fAu’) dw’ + P,,(w,, w , ) ~ .  (16) l: 
If P,,(w,., ws) is non-singular, we may solve for r]  to  obtain 

W, 

r ] =  -PL;(wr, wJI P12(wr, w’) V($Au’) dw’. (17) 
W. 
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Of course, the presence of interfaces causes the expressions 
for the various components of the propagator to be far more 
complicated than before. We consider the case of a 
reference medium with homogeneous layers and suppose 
that Vf = k. In this case, 

where we have written po = p i  + pkk. 
For a single interface crossed at ray parameter w = wl , 

P12(wr, ws) = ("1 - ws)n, + ( w r -  wI)T2 

w, - w, 

0 

=[ 0 

with 

0 

w, - w, 

0 

The Green's function solution to the problem is again given 
by eq. (7). 

In this case, 

G(w,, w', W, w,) = P , ~ ( w ,  w ' ) H ( w  - w') 

- PIZ(W, w,)P;:(w,, ws)P,z(w,, w') (21) 
where PI2(w, w ' )  is given by eq. (19) if the two arguments 
correspond to points on different sides of the interface but is 
(w - w') l  otherwise. 

When the reference medium contains N homogeneous 
layers crossed at ray parameters w = wi, i = 1, N and each 
interface has normal Vf = k, 

and hi denotes the value of p; in layer i. 
In this case, the inverse is simply 

and the corresponding Green's function for the problem has 
a form similar to that given at eq. (Zl), although the formula 
used for the various factors of P I ,  will depend on how many 
interfaces lies between the two points on the unperturbed 
ray which correspond to the arguments of P12. 

Nevertheless, it is only the j = 3 components of Gjj which 
differ from the Green's function obtained at Eq. (9). Now 

where w, denotes the ray parameter at which the 
unperturbed ray crossed the last interface prior to reaching 
the point x"(w), 

GI3(Ws,  w', w, wr) = F,(w, w ' ) H ( w  - w') 

6 COMPARISON WITH EXACT 

It is instructive to consider the problem of ray propagation 
across an artificial interface in the material. That is, we may 
either use the results of Section 4 (no interface), or the 
results of Section 5, with an interface separating two layers 
of identical material. We consider the case given by eq. (10) 
with y = O  and A.a2=0. Then an analytical solution to the 
problem is also available. 

First of all, we look at the differences in the propagator 
for the problem as given by eqs (6) and (12). Again we 
suppose that the interface has normal Vf = k. In this case, 
the propagator given by eq. (12) may be written 

RAY-TRACING RESULTS 

1 I - J (wr - w,)I - (w, - wO)J 
I 

Because JN = J for all integers N ,  we find that even if we 
had introduced N artificial interfaces with normal Vf = k, 
the propagator would have essentially the same form as in 
eq. (26) namely, 

We see that B contains no information about any interface 
except the last (w = wN). Furthermore, when we ignore 
velocity perturbations in the problem and simply compare 
how the propagators given by eq. (6) and (26) propagate 
changes in the initial conditions along the ray, we find that 
when there are no interfaces, 
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Ray perturbation in layered media 1141 

whilst when there is one interface 

The expressions for xE(w, )  differ by - Jx'(w,) .  However, 
eq. (32b) of Farra (1992) overcomes this problem by 
introducing an artificial interface at  the receiver. This 
additional application of the projection matrix n has the 
effect of removing the contribution to  the ray perturbation 
from the previous interface because (I - J)J = 0. Thus eqs 
(28) and (29) give the same value for (I - J)x'(w,) but differ 
in the component directed along the unperturbed ray. This 
gives insight into the projection matrix n. This matrix has 
the effect of modifying the length of the path of integration 
to the interface without appearing to  d o  so. However, this 
extrapolation procedure only causes variations in the 
component of x'(w,) along the unperturbed ray, and not 
transverse to it, with the result that corrections at earlier 
interfaces become irrelevant once a new interface has been 
crossed. 

In Section 5, we have not included a projection matrix a t  
the endpoint of the ray as required in eq. (33c) of Farra et 
al. (1989): instead we chose to  change the initial conditions 
of the ray to  ensure that the perturbed ray arrives a t  the 
receiver with the same value of the sampling parameter w as 
on the unperturbed ray. Clearly, if such a choice of q is 
possible, then eq. (33c) of Farra et al. (1989) will 
automatically be satisfied. For the particular problem of this 
section, we find that when there are no interfaces 

whilst when there is one interface 

P'(W,) = 7 = -$[(w, - w,)l + (wI - wJJ] Ay. (31) 
These expressions differ by an amount - f ( w ,  - wJJ A y  
which represents a component in the direction of p" 
introduced to  compensate for variations in the component 
along the unperturbed ray that will result from the use of 
the projection matrix n at each interface. 

When there are no interfaces, the perturbation to  the ray 
trajectory is simply 

x ' (w)  = $(w - w,)' Ay + (W - W,)V 

AY 
= (w - w,)(w - w r ) - .  

4 

However, when there is one interface, the perturbation to  
the ray trajectory is 

Again we see the eqs (32) and (33) give the same value for 
(I - J ) x " ( w , ) ,  but differ in the component directed along the 
unperturbed ray. 

Each formulation of the problem gives a perturbation to  
the slowness vector p" which may be written 

P'(W) = P"Y) + i ( w  - 4 AY (34) 

although the expressions for p'(w,) = q differ by an amount 
-$(w, - w,)J Ay. It follows that at every point along the ray 
path, the expressions for pE in the two formulations of the 
problem, differ in the same way that the initial values q 
vary, as discussed above. 

The exact solution for the ray trajectory in the presence of 
a small gradient in quadratic slowness is the same as that 
obtained by the perturbation method without interfaces (see 
Section 4 above). It follows that the use of projection 
matrices to  handle interfaces introduces some ambiguity in 
the component of the perturbation directed along the 
unperturbed ray, but maintains the transverse components 
of the perturbation. 

7 LIMITATIONS OF RESULTS 

The use of a constant gradient in quadratic slowness to  
describe the velocity distribution in the unperturbed 
medium does impose some limitations on the generality of 
the results obtained. For example, if we consider a simple 
vertically inhomogeneous half-space z 2 0 with quadratic 
slowness given by the relation u'<z)=u,'- bz, b>D, we 
must limit the model to  depths 0 5 z 5 ui /b  because the 
velocity becomes infinite a t  z = = ui/b. Furthermore, if 
we take the point source at x = z = 0 and locate receivers 
along the x-axis with x 2 0, we find that in the 2-D problem 
there will be a shadow zone along the x-axis for 
x > x b  = 22, = 2u:/b whilst two rays will arrive at any 
receiver situated in the region 0 <x 5.1~~ (unless we further 
limit the model to  depths 0 5 z 5 fz, and restrict take-off 
angles to  lie within 45" of horizontal). Similar regions of 
shadows and multipathing will exist for a generally oriented 
gradient of the quadratic slowness in a 3-D structure. In 
such circumstances one may need to  introduce additional 
layers into the model to  permit a more appropriate 
description of the unperturbed model. Alternatively, one 
may prefer to  adapt the results of Moore (1993) to 
multilayered media so that a more general model for the 
unperturbed medium may be used. 

8 CONCLUSIONS 

Simple analytical expressions have been found for the total 
Green's function for the two-point boundary value problem 
in the context of ray-perturbation theory. These correspond 
to the special cases in which the unperturbed medium may 
be described either by a single layer of material with a 
constant gradient in quadratic slowness, or by several layers 
of homogeneous material separated by plane parallel 
interfaces. As outlined in Moore (1993), such formulations 
of the Green's function are particularly useful in 
tomographic reconstruction problems. Furthermore, even in 
the case of more complex reference media, the same 
strategy may be used to  determine the change required in 
the initial direction of the ray to  ensure that the perturbed 
ray reaches the required endpoint at the same value of the 
sampling parameter w as on the unperturbed ray (see eq. 
21). This involves the calculation of only the PI, component 
of the generalized propagator 9 along the unperturbed ray 
path joining source and receiver, and finding the inverse of a 
single rank three matrix. Given these quantities, the 
solution for the first-order correction to  the ray trajectory is 
completely determined. 
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