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SUMMARY 
In this paper, the method of small perturbations is applied to the ray and energy 
transport equations in an investigation of the effect on the propagation of seismic 
rays through a layer of fixed thickness of having weak lateral inhomogeneities 
superimposed on an unperturbed velocity field which varies with depth only. Both 
plane and spherical geometries are studied. This more fundamental approach 
highlights inadequacies of the more commonly used Hamiltonian method. In the 
course of calculations, simple expressions are also obtained for the various 
components of the propagator matrices for rays in vertically and radially heteroge- 
neous media; these are useful in the study of Gaussian beams and paraxial ray 
theory in such media and require the calculation of just two integrals along the 
unperturbed ray path. In particular, these integrals are evaluated analytically for the 
special case of weak lateral velocity inhomogeneities superimposed on a constant 
gradient of quadratic slowness. It is found that the perturbation to ray geometry 
may include a component directed along the ray at the point of observation without 
violating Fermat’s principle and that this may be neglected only when slowness does 
not vary greatly along the unperturbed ray path. Such perturbations are usually 
ignored in paraxial ray theory. Expressions are also obtained for the first-order 
corrections to traveltime, amplitude, surface slowness and polarization in such 
media; the approach used in deriving these expressions gives insight into the various 
complicating factors which need to be considered in inverse modelling problems 
involving such media. 

Key words: seismic ray theory, slight lateral variations, ray perturbation theory. 

1 INTRODUCTION 

In recent years, there has been an upsurge of interest in the 
study of seismic wave propagation in laterally varying earth 
models. This has been prompted by attempts to map 
heterogeneous structures within the Earth in greater and 
greater detail. Even with all the progress made in 
developing techniques for extracting structural information 
about the uppermost few kilometres of the Earth from 
reflection data obtained in the search for hydrocarbons, the 
need still remains for more refined methods of estimating 
the lateral velocity inhomogeneity and accounting for it 
accurately in the migration process. 

Most investigations of lateral variations within the Earth 
have used some form of perturbation to ray theory. For 
example, Aki, Christoffersson & Husebye (1977) developed 
a flexible block modelling procedure for 3-D mappings of 
seismic velocity structure using the observed traveltime 
residuals. Their method involves the determination of the 
velocity (or slowness) perturbations in individual cells; 

perturbations in the actual ray paths due to fluctuations in 
the seismic velocity field are neglected on the basis of 
Fermat’s Principle. Nolet (1987) cites many applications of 
this technique both in the study of large continental areas 
and also in the study of very local structures. 

However, there is much more information in the seismic 
record than just a list of traveltimes and currently there is 
considerable interest in using other forms of data from the 
seismic record to assist in the determination of subsurface 
structure. For example, Sutton & Moore (1987) work with 
reflection data and use both two-way traveltimes and 
stacking velocities from an unmigrated stacked section in 
their determination of subsurface structure; they allow 
lateral variations in the velocity model but handle the 
curved rays by means of straight rays with corrections 
determined from the results presented in Moore (1980) 
which are applicable to this problem where fluctuations in 
the interval velocities across the layer are not too large. Of 
course, the possibility of replacing curved rays by straight 
rays with corrections becomes particularly attractive in 
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problems involving layers of variable thickness as the layer 
boundaries are themselves curved and Moore (1989) 
outlines the principles of such a ray tracing procedure and 
its advantages over using straight rays without corrections. 

Nevertheless, the real focus of recent developments has 
been the search for a more adequate way to describe 
amplitude fluctuations in the high-frequency limit-ne that 
has no singularities at caustics, e,'c. This has given rise to the 
concept of Gaussian beams (Cerveng, Popov & PSenEik 
1982; Cervenf & PSenEik 1984) and the application of 
Maslov theory (Chapman & Drummond 1982). Madariaga 
(1984) has shown that Gaussian beam summation is an 
analytic continuation to complex values of position and 
slowness of the WKB method proposed by Chapman (1978); 
Chapman (1985) points out that the WKBJ seismogram is 
the 1-D version of the Maslov seismogram and that the 
Maslov seismogram is a special limiting case of the Gaussian 
beam method corresponding to infinite beam width. 

All these generalizations of the ray method are 
formulated in terms of the solutions to the dynamic ray 
tracing equations in association with the kinematic ray 
tracing equations. Cerveng (1985) has noted that whereas 
the ray method needs only real-valued solutions of the 
dynamic ray tracing equations, Gaussian beams need 
complex-valued solutions of these equations, but that these 
may be expressed as linear combinations of real-valued 
solutions obtained by the paraxial ray approximation. Farra 
& Madariaga (1987) go on to observe that not only is much 
of this work on Gaussian beams based on the paraxial 
approximation, but that this approximation is actually 
derived from first-order ray perturbation theory and they 
have attempted a unified approach to the study of both 
paraxial rays and perturbed rays in slightly heterogeneous 
media using the propagator formalism. Indeed, the results 
they obtain for the perturbed rays in a medium with a 
homogeneous reference model are in agreement with the 
results obtained by Moore (1980, to be referred to hereafter 
as paper I) using quite a different formalism based on the 
approach of Keller (1962) who applied the method of small 
perturbations to the ray and energy transport equations. 
However, paraxial ray theory is limited to the study of the 
transverse components of the deviation in ray geometry and 
does not fully describe the geometry of perturbed rays in a 
medium whose reference model is not homogenous. It will 
be shown in this paper that in such media, the perturbation 
to ray geometry may include a component directed along 
the ray at the point of observation without violating 
Fermat's principle and that this may be neglected onfy 
when slowness does not vary greatly along the unperturbed 
ray path. Furthermore, this tangential perturbation to ray 
geometry can affect both the amplitude and polarization 
fluctuations. 

The method of small perturbations is applied to the ray 
and energy transport equations for material in which small 
lateral variations are superimposed on any kind of depth 
variation of velocity; results are obtained in terms of the ray 
paths and amplitudes of the unperturbed rays as well as the 
structure of the heterogeneity. This more fundamental 
approach will highlight inadequacies of the more commonly 
used Hamiltonian method. Both plane and spherical 
geometries are studied and it is assumed that the trajectories 
of the rays in the unperturbed reference medium are known. 

The effect on ray geometry of weak lateral velocity 
inhomogeneities superimposed on a constant gradient in 
quadratic slowness is considered in Section 3 of this paper. 
Expressions are also obtained for the various components of 
the propagator matrices for rays in vertically and radially 
heterogeneous media; these require the calculation of just 
two integrals along the unperturbed ray path rather than the 
usual numerical solution of a system of ordinary differential 
equations. 

2 PERTURBATION TO SEISMIC R A Y  
GEOMETRY RESULTING FROM SLIGHT 
LATERAL VARIATIONS IN VELOCITY 

A ray x(s) propagating through an isotopic elastic medium 
whose velocity field is given by a ( x )  = u - ' ( x )  satisfies the 
equation 

(.") = vu, 
d r d r  

where s denotes arclength along the ray from some 
reference point, and x denotes the position vector of a point 
on the ray relative to the origin of the coordinate system. 

It is convenient to express the equation more succinctly as 

g(x, x, a)  = 0 (2) 
where 

(3) 

and . denotes differentiation with respect to arclength along 
the ray. 

We now consider the propagation of seismic rays through 
a medium those velocity field deviates only slightly from the 
depth-varying field ao(x3)  = u0'(x3)  where x3 denotes either 
the vertical coordinate of position in plane geometry or 1x1 
in spherical geometry. In this case, we represent the 
slowness field by 

(4) 
where E is a small parameter measuring the deviation of the 
medium from its unperturbed state. 

The standard approach (see Farra & Madariaga 1987) has 
been to use Hamilton's method. However, although a 
simple form of the Hamiltonian, 

H = f(p * p - u2),  

is obtained when the parameter along the ray is 

this parametrization of the ray is not appropriate for use in a 
perturbation analysis problem because the scale length of 
this parameter varies with position. On the other hand, it is 
not easy to find an expression for the Hamiltonian when 
arclength is the parameter along the ray. Therefore, we take 
a more fundamental approach. 

The ray x($; E )  in such a medium is found (cf. paper I) by 
determining its derivatives with respect to E at E = 0 and 

 at U
niversity of T

echnology, Sydney on D
ecem

ber 15, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Seismic ray theory 215 

That is, the curvature of the ray xo(s) is governed by the 
variation in uo across the wavefront of the disturbance in the 
neighbourhood of each point on the ray path. 

In spherical geometry, we take the vector product of 
equation (7) with xo and integrate to obtain 

then representing x by means of its Taylor series in E :  

x(s; E )  = x"(s) + E X E ( S )  + O(E2) .  (6) 
The geometry of both unperturbed ray and first-order 
correction to the ray path are illustrated in Fig. 1. 

Setting E = O  in equations (2) and (4) gives the usual 
equations for the ray in the unperturbed medium, subject to 
appropriate initial and boundary conditions: 

ds (7) 

Thus, the zeroth-order solution xo(s) has the same geometry 
as the ray leaving the same reference point in the same 
direction in the unperturbed depth-varying medium. In 
plane geometry, the first two equations of (7) are readily 
integrated to give 

dx' 
u,,(x'J 2 = p i ,  constants, i = 1,2.  

ds 
Without loss of generality, it is possible to set p 2  = 0; that is, 
to choose a particular orientation of the Cartesian 
coordinate axes so that the zeroth-order solution is confined 
to the plane x2 = 0. Writing p for p , ,  we obtain the 
following expression for the vector tangent to the ray from 
equation (8): 

(8) 

= [sin e(s), 0, cos O(s)], (9) 

where 8 denotes the angle between the direction of the ray 
and the vertical axis. 

Generalizing the notation of equation (8) we may define 
the vector 

dx' 
ds 

p"= u,-= [ p ,  0,  vu;<xp> -p ' ] .  

Equation (9) is, in fact a statement of Snell's law in the 
vertically stratified medium. Furthermore from the Frenet 
formulae and equation (7) we see that xo(s) is a torsionless 
ray of curvature ( V T  In u,(xS)1 where the transverse gradient 
operator is defined to be 

I '/ 
1 ,'> X0(S) + E X I ( S )  
,G/ I-- 

0 
Figure 1. Diagram showing first-order correction to the unper- 
turbed ray path. The position vectors of typical points on these rays 
are indicated. 

(12) 
dxo 
ds udx0 x - = p, a constant vector, 

that is, the unperturbed ray is again confined to a single 
plane. This fact may be used in choosing the orientation of 
the spherical polar coordinates (r,  8, 9 )  so that the plane of 
the unperturbed ray is simply 9 = +o, a constant. Indeed, 
without loss of generality we may take G O = O .  The 
properties of this coordinate system are outlined in 
Appendix B. Tke normal to the plane of the unperturbed 
ray is given by #, a constant vector. Now, 

where 

dxo 
e = - (0) 

ds yo = x0(o), 

and vo is the angle between yo and e. 
Thus 

e = sin y,6(0) + cos V$(O) 

and more generally 

where ro = Jxo). 
Equation (14) is a statement of Snell's law in the 

spherically symmetric medium. Furthermore, writing 
xo(s) = ro(s)i(s) and using equation (B-4) gives an 
alternative representation of dxo/ds: 

where 
along the ray. 

unperturbed ray. 

denotes differentiation with respect to arclength 

Thus we are able to obtain expressions for b and io on the 

We now rewrite equation (2) in the form 

g(x, i ,  1) =go(% x, X) + &gl(x, x, X) + O ( E 2 )  = 0 (16) 

where x is given by equation ( 6 ) ,  go is given by equation (3) 
with u(x )  replaced by ~ 0 ( ~ 3 ) ,  and g, is given by equation (3) 
with U ( X )  replaced by f i ( ~ ) ~ o ( ~ 3 ) .  

Differentiating equation (2) with respect to E and setting 
E = 0 gives 
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that is, where 

d 

= u,vTf,(xo). (18) 

Of course, it is possible to simplify equation (18) utilizing 
the fact that the unperturbed velocity field varies only with 
depth xg and contains no lateral variations. 

Since we are studying the geometry of the ray which 
passes through the reference point ~ ‘ ( 0 )  in a particular 
direction dxo/dr(0), the appropriate initial conditions to use 
with equation (18) are 

x b ( 0 ) = O  and - (O)=O.  

However, in some applications, it might be desirable to 
perform the calculations of x E  in several stages. Therefore, 
equation (18) is solved in Appendices A and C subject to 
non-zero initial conditions. This equation is also, in essence, 
the equation which needs to be solved in order to determine 
the ‘propagators’ for the unperturbed ray. These ‘propaga- 
tors’ describe how small variations in the initial position and 
direction of the ray are propagated along the ray and thus 
they contain information on the variation in the ray field 
across the wavefront in the vertically varying velocity field in 
the vicinity of the particular ray of interest. Equation (18) 
with fl = 0 effectively becomes the equation for paraxial rays 
in for the unperturbed medium. In this context, E should be 
interpreted as a small parameter measuring the variation in 
the initial conditions rather than its usual meaning of 
measuring the deviation of the medium from its unperturbed 
state. Indeed, equation (18) with fi = 0 can be expressed in a 
form similar to that proposed by Farra & Madariaga (1987) 
for the numerical calculation of the paraxial rays, viz. 

(19) 
dx“ 
dr 

where 

* = ( - p z  vu, !I). 1 

vvu, 
Here q and p refer to the full 3-D displacements and 
slownesses so that, in general p#O. Of course, in ray 
centred coordinates, the matrix A relating transverse 
components of q and p is the same as that obtained by Farra 
& Madariaga (1987). 

If we let Eq(s) denote the first-order correction to position 
on the unperturbed ray and d(s) denote the first-order 
correction to direction on the unperturbed ray both resulting 
from the small changes in the initial conditions, and 
introduce a coordinate n measuring distance perpendicular 
to the unperturbed ray in the 1-3 plane (for plane 
geometry) or the plane &, = 0 in spherical geometry then it 
follows from the solution in Appendices A and C that if q(0) 
has no component along the ray, then the transverse 
components of q(s) and 6(s) (with the n-component listed 
before the 2-component) are given by 

and the submatrices P, are diagonal matrices whose 
elements depend only on the unperturbed velocity field and 
the associated geometry of the unperturbed ray as outlined 
below. Only two ray integrals need to be evaluated to 
specify Tr completely: 

and 

where 

P :  = {VZF?, for plane geometry, 
~ ( r , ~ ~ ) ~  - p 2 ,  for spherical geometry. 

Although these integrals appear to have singularities at the 
turning points of the unperturbed rays, the combination of 
terms in n(s, 0) is such that all elements of Il remain finite 
at any turning point. (This is illustrated in Section 3 for the 
case of weak lateral velocity inhomogeneities superimposed 
on constant gradient of quadratic slowness.) 
Now, the curvature of the unperturbed ray at xo(s) is 

given by 

Because p :  is r,, times the radial component of the slowness 
vector in spherical geometry, it is convenient to define the 
related quantity: 

( K ( o ) ,  for plane geometry, 

( for spherical geometry. 

Then, the submatrices in equation (21) are given by the 
following. 

Pl(s, 0) = diag [R,(s ,  O), R&, O)], (25) 
where 

f‘ 1, for plane geometry, 

- e, for spherical geometry, 
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to q,(s) and 

\ for spherical geometry. 

P3(s, 0)  = diag [R4(s, 01, R&, O)], 

where 

(0, for plane geometry, 
v =  U,(O) [m, for spherical geometry, 

0, for plane geometry, 

- i(s) - e, 
&As, 0) = uo(0) 

P4(s, 0) = diag [S&, O), U s ,  O)l, 

where 

for spherical geometry. 1, 

( 0 ,  for plane geometry, 
W =  iP$, for spherical geometry, 

u ~ ( o )  for plane geometry, 

uO(o)ro(o)fi(s) * i (O) ,  for spherical geometry. 
S,(s, 0) = 

However, the result in equation (20) does not specify q(s) 
completely as it ignores the component of q(s) directed 
along the unperturbed ray at xo(s) which has magnitude 

'3 R,(s, O)q,(O) 
P 

to q,,(s).  The full solution requires a 5 x 5 propagator as 
outlined in Appendices A and C. Nevertheless, those 
concerned only with amplitude calculations are often able to 
work exclusively with just the transverse components of q(s) 
and b(s)  (see Section 4.4). Whichever form of the ray 
propagator for the unperturbed medium with depth-varying 
velocity field is used, only two integrals need to be evaluated 
along the ray; the propagator is completely specified by the 
values of these two integrals together with local values of 
the velocity field, its gradient and the ray direction at either 
end of the ray path. 

n may be used in the two-point ray tracing problem in the 
unperturbed velocity field to obtain an estimate of the 
corrections required to the initial conditions of the 
unperturbed ray in order to obtain the endpoint of the ray at 
a particular location. For example, suppose we wish to 
estimate the change in d ( O )  required to alter the endpoint 
of the ray by an amount ~5 whilst retaining the same initial 
point. When g(s) is transverse to the ray, we may use 
equation (20) to obtain 

(27) 

(28) &) = Pl(sr O)q(O) + P2(s, O)a(O) 
with q(0) = 0. Thus 

w-0 = P;'(s, 0)5(s), (30) 

and 

Q3(s, 0 )  = 1 - L(O)S&, 0). 

This term is only negligible when the variation in uo along 
the ray path is small compared with uo itself. Furthermore, 
the result in equation (20) assumes that q(0) has no 
component along the ray either. Such a component q,(O) 
contributes 

provided Pz is non-singular. 
Of course, this is a linearized approximation to the change 

in b(0) required and its accuracy will depend on the size of 
&&)--therefore some iteration may be required. This sort 
of calculation might prove useful in the ray shooting part of 
a generalized linear inversion technique where the forward 
modelling procedure uses the unperturbed ray field with 
corrections to account for any lateral variations in the 
velocity field. However, the effect on the properties of the 
perturbed ray produced by such a small change to the 
unperturbed ray is not so simply expressed, as we shall see 
in Section 4. 

Finally, we take fl P 0 in the solution to equation (18) 
given in Appendices A and C to find expressions for the 
first-order corrections to ray geometry. For zero initial 
conditions, the transverse components of x E ( s )  are given by 

xXs) = 6 P2(s, u)VTfli[xo(u)l do, 

whilst the component of x E ( s )  directed along the 
unperturbed ray at xo(s) is 

xE(s) xo(s) = S3(s, a ) V ~ l ~ x " ( u ) ~  d a ,  (31) 
0 

where Vf = i(s) - V T .  
Neglect of this tangential component of x E  requires an 

assumption that uo does not vary greatly along the ray path. 
The component of x'(s) directed along the unperturbed 

ray is zero allowing x"(s) to be expressed completely in 
terms of the transverse ray components in the n- and x2-  
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218 B. J .  Moore 

(or @-) directions: given at equation (22). It is found that 

x'(s) = [ P,(s, ~ ) V ~ ~ [ x ~ ( o ) ]  da. 

Thus we may write 

The more general solution to equation (18) given in 
Appendices A and C gives insight on the significance of the 
weighting factors which multiply VTfl[xo(a)J in the 
expressions for x E  and x". It is clear from the form of 
solution that the weighting factors for the various 
components of VTfi(xo(u)] basically described the effect of a 
small change in direction of the ray at the point xo(a) as it 
would be observed at the point xo(s). Thus the integrals for 
X' and x' actually describe the cumulative effect of all the 
'deflections' produced by VTf, along the ray path. It is 
interesting to note that these 'S-factors' also occur as part of 
the definition of the corresponding 'R-factor' which 
describes the effect of a small change in the initial position 
of the ray; each time the S-factor is multiplied by 
-pL(O)/p!(O) and thus describes the deflection associated 
with the initial curvature of the ray. 

3 WEAK LATERAL VELOCITY 
INHOMOGENEITIES SUPERIMPOSED ON 
CONSTANT GRADIENT OF Q U A D R A T I C  
SLOWNESS 

As noted by Cerveng (1987), the simplest analytical solution 
for any type of inhomogeneous medium at all is probably 
the polynomial solution obtained for the case of constant 
gradient of the quadratic slowness. If the quadratic slowness 
is a linear function of the Cartesian coordinate x3: 

[u&,)I2 = A + Bxi, (33) 

then the ray tracing system (7) with appropriate initial 
conditions yields the following exact polynomial solution. 

B 
4 

~ " ( w )  = x"(wO) + p"(w,)(w - wo) + - ( W  - wo)2k, 

po( W )  = P " ( W ~ )  + - ( W  - wJk, 
B (34) 

2 

where 

Thus 

For this particular geometry of the unperturbed ray, it is 
possible to calculate analytically the ray integrals I, and I2 

(35) 

Clearly, none of these expressions becomes singular at a 
turning point of the unperturbed ray. Furthermore, it may 
be shown that the combination of terms in each element of 
ll is such that none of those elements becomes singular at 
a turning point either. To simplify the expressions for the 
various elements of ll in the case of weak lateral velocity 
inhomogeneities superimposed on constant gradient of 
quadratic slowness, it is convenient to write 

B P2 R,(s, 0) = - 
2 

Thus, all terms in II may be expressed simply in terms of the 
values of xy, uo and p! at both the beginning and end of the 
corresponding unperturbed ray path and no numerical 
integration is required beyond the calculation of w(s) .  The 
S-factors appear as the weighting factors of the various 
components of VTfl[xO(a)] in the integrals for the deviation 
in ray geometry produced by weak lateral inhomogeneities 
superimposed on the constant gradient of quadratic 
slowness; again, there are no singularities associated with 
the turning points of the unperturbed rays. 

4 PERTURBATIONS IN THE PROPERTIES 
OF THE R A Y  

We now consider rays passing through a plane or spherical 
layer of thickness h with slowness field given by equation (4) 
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and whose trajectories prior to their impinging on this layer 
are well-defined. In the absence of perturbations, it would 
be the ray through the point P on the base of the layer 
which would arrive at 0 on the surface (see Fig. 2). We 
suppose that the ray has travelled for a time r,(P) from the 
source to P and take as our reference surface the 
unperturbed wavefront of the disturbance at P, that is, 
t ( x )  = to(P). We may introduce orthogonal ray coordinates 
6, 9 on this surface (cf. Appendix D) such that P has 
coordinates to, 'lo on the surface. The associated scale 
factors and unit vectors are defined in equations (D-1). In 
view of the geometry outlined in Section 2, it would seem 
that the appropriate choice for these transverse ray 
coordinates would be to take 5 as the 2-coordinate in the 
vertically varying medium and the @-coordinate in the 
spherically symmetric medium with 17 as the n-coordinate as 
defined previously for the two types of media. 

However, as indicated in Fig. 2, it is not the ray through P 
which arrives at 0 on the surface when there are 
perturbations in the velocity field of the layer but another 
ray-say, the ray through [go + EE, + O( E'), 7, + qE + 
O(E ' ) ] .  The point at which this ray enters the layer is 
denoted by P' and, generally speaking, P' will lie on a 
different wavefront from P. In the absence of perturbations, 
this ray through P' would arrive at the surface 0'. From this 
brief consideration of Fig. 2, it is clear that the fluctuations 
in the velocity field produce corresponding variations in the 
curvilinear coordinates of points in space. Now in equations 
(9.1)-(9.5) of paper I, it was shown that the first-order 
corrections to the curvilinear coordinates of an arbitrary 
point previously described by its location ~ " ( s " .  Eo,  qo) on 
the unperturbed ray are given by E & ,  EV,  and ES, where 

s, = -es - X E ( s n j  60, 'lo), 

with the unit vectors and scale factors also evaluated at 
(so, Eo, qo). Occasionally, it is advantageous to use 
traveltime t rather than arclength s as the coordinate along 
the ray. In that case, the first-order correction to the 

x , =  0 
-7 0' 7 0 

, 
-,:' ,I 

~ 

P' P 

Figure 2. The perturbations in the velocity field of the layer cause 
the ray through P' to arrive at the surface receiver 0, rather than 
the ray through P. 

coordinate along the ray is &'tE where 

(39) 

and pa = u, dxo/a3, the slowness vector on the unperturbed 
ray with all quantities evaluated at (to, En, q,). Thus tE 

and s, differ only by the scale factor h,. In the remaining 
calculations of this section, equations (38) and (39) will be 
applied at the surface receiver location; careful considera- 
tion will also be given to the implications of the changed 
path of integration where appropriate. We now consider the 
effects of these velocity perturbations on various observable 
quantities associated with the propagation of the ray 
through the layer. 

4.1 Traveltime perturbation 

The time taken for the unperturbed ray through P to travel 
from the source to surface receiver at 0 is 

where the argument of the integrand indicates that the path 
of integration is along x"(s), the unperturbed ray path from 
P to 0. The time taken for the perturbed ray through P' to 
travel from the source to surface received at 0 is 

t' = rO(P') + [l + Ef , (X ) ]U" (X)  ds + O ( E 2 )  (41) 6::: 
where the argument of the integrand now indicates that the 
path of integration is along x(s) which is given by equation 
(6); the upper limit of integration is given by 

s ( 0 )  =s,(O) + ES,(O) + O ( E 2 ) ,  

s,(o) = -4 - xE[sO(o), Eop vOl, 

(42) 
where 

and ep denotes the direction at which the unperturbed ray 
would arrive at 0. 

In general, the path length s ( 0 )  is different from s,(O'), 
the path length to the surface along the ray P'O' when there 
are no perturbations. 

Now, as uO(x) is a smoothly varying function of position 
and is small, 

uo(x) - u0(xO + E X E )  - uo(xO) + E X E  - VU,(X0) (43) 
and so 

s ( 0 )  

SOU'') SO(P') 
f ( " )uO(x )  ds = uo(xO) a3 

+ & f'Oix6 vu, ds + O( & 2 ) ,  (4.4) 
S O P )  

where both integrals on the right are now evaluated along 
the unperturbed ray path through P', which is different from 
the path of integration in equation (40). 

Using equation (1) and integrating by parts gives 
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as which may be simplified using equation (38) to obtain 

at all points along the ray by equations (A-17) and (C-4). 
Furthermore, by hypothesis, x"[so(P')] = 0 and so 

s ( 0 )  

S.(P') SO(P') 

f(o)uo(x) ds = / u0(xO) ds 

+ E X E b O ( O ) I  - P0[~O(O)l + O ( E 2 ) ,  (46) 

as first-order increments in the arguments of the second 
term contribute only terms O(E'). 

Now, using the notation of equation (39) in equation (46), 
we obtain from equation (41) 

t' = to[S(O), 6, s1- E t " b O ( O ) I  
r J ( 0 )  . .  

+ E uO(xO)fl(xO) ds + 0(&2), 
Jso(P) 

(47) 

as changing the path of integration in the third term of 
equation (47) contributes only terms O(e2). On the other 
hand, Taylor expansion of to [s (0) ,  8, s] about its value at 
bO(O), 50, so l  gives 

t O b O ( O ) ,  E? sl = to[so(O)7 Eo9 'lo1 

= to[so(O). 50, 'lo1 

- E X E  - Vtolso(o), So, 90 + W E 2 )  

+ E t € [ S O ( O ) ,  5 0 7  'lo]+ O(E2) .  (48) 

Therefore, 

S O ( 0 )  

t' - f = &tE + O ( E Z ) ,  t" = / u0(x0)f1(x0) ds. (49) 
so(P) 

That is, the perturbations in the traveltime are given by the 
same equation as in paper I, although the path of 
integration varies in accordance with the different 
unperturbed ray geometries. Furthermore, equation (49) is 
equivalent to the linear functional obtained by Johnson & 
Gilbert (1972) in their linearization of the inverse problem 
for traveltimes by using the concept of FrCchet 
differentiability. 

4.2 Slowness perturbations 

The direction of approach to the surface of the unperturbed 
ray through P is given by 

dxo 
d s '  

do = - (0) 

where the argument of the function denotes evaluation at 
the surface receiver 0. However, for the perturbed ray 
through P', the direction of approach to the surface is given 
by 

[d;' [d;' d (dx') 
d =  - + E  -++,- - 

3s ds 

Thus, the variation in the surface direction of approach of 
the rays resulting from the fluctuations in the seismic 
velocity field is 

dx" dxo 
d - d o =  &dB + O(E') ,  d"= - a3 - x E  - V(,). (52) 

This expression is in agreement with the corresponding 
result in paper I for the case (Y = constant, although in that 
case different notation was used because the variation in 
dxo/ds was expressed in terms of the deviation in the point 
of entry to the heterogeneous layer rather than in terms of 
surface quantities. An expression for V(dxo/ds) is derived at 
the m d  of Appendix D; using the notation (dx~/ds) , ,  for 
this quantity, it is found that there is no i-component along 
the ray and so when we contract with x', we find that the 
component of d" in the direction of do is zero. When d h l d s  
does not change significantly across the wavefront, (D-15) 
may be used in (52) to obtain 

(53) 

Otherwise, dz is increased by ( a ln  h9/3s)x2. However, 
when h, = 1 everywhere on the unperturbed ray this 
increment vanishes and the result in equation (53) still 
holds. 

Now, from a phenomenological viewpoint (cf. section 7, 
paper I) we would expect the first-order perturbation in the 
surface slowness to be given by 

where d' is given by equation (52) and all quantities are 
evaluated at the surface receiver 0. In fact, it is also 
possible to derive this result by evaluating the gradient of 
traveltime curve using the results of Section 4.1. Thus, with 
the expressions for x E  and dx"/h given in Section 2, it 
follows that the transverse components of the variation in 
surface slowness resulting from the perturbations in the 
seismic velocity field depend only on the variation of VTfl 
throughout the layer. 

_ _ _ ~  

4.3 Amplitude fluctuations 

The expression for the amplitude fluctuation is again derived 
from equation (8.9) of paper I. As before, the area of 
surface element on the wavefront is denoted by 

(55) 

In this context, it seems preferable to use t rather than s as 
the coordinate along the ray; then the amplitude is given by 
the relation 

 at U
niversity of T

echnology, Sydney on D
ecem

ber 15, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Seismic ray theory 221 

where A'( 5, '1) denotes the amplitude distribution across 
the wavefront at some reference level; and po, uo and Jo 
respectively denote the values of the density, slowness field 
and area of surface element on the wavefront at the 
reference point. 

In fact, the expression for amplitude with s as the 
coordinate along the ray would have essentially the same 
form as (56) although A'(& q) would no longer denote the 
amplitude distribution across a wavefront (t = const.) but 
across some surface in space defined by the equation 
s =constant; this seems a less natural choice. Either way, 
the derivation of the expression for fluctuation in amplitude 
resulting from perturbations in the velocity field is similar 
to that given in section 9 of paper I except that it is now 
necessary to make allowance for the fact that t, (or s,) is no 
longer zero and that h, (or h,) may vary across the 
wavefront. Neverthelsss, from equations (38) and (39) we 
have 

acp, acpo d@o 
a t  aE atl 

acpo acpo a@ 
as ae 3'1 

t&-+g&--+q&-=-XE-Vcp() ,  

s - + g' - + qE -O= - x E  - Val,. 

(57) 

Thus, the results can be stated without explicit reference to 
T€ (or 

Now on the perturbed ray, 

and thus the expression for the perturbed amplitude is 
simply 

& 
cp = (Do(&), go, qo)[ 1 --(If - v + v - xf) 

2 

+ f [fm -fz(O)l - ; [f,(P) -fi(P)lJ + 0(E2) (59) 

where 

P(X) = P O P  + Ef2(X)I, 
x; = x" - ( x E  - e,)e, = (x' - eE)e, + (x" * e,)e,, 

and 

v = V I n @ t + y  

with 

y represents the component of v resulting from the change 
in ray geometry produced by the fluctuations in the seismic 
velocity field whereas V In @; takes account of the fact that 
it is a different ray arriving at the point of observation and 
that the amplitude distribution may vary slightly across the 
wavefront. This distinction will be important in the study of 
the fluctuation in polarization for S-waves in the next 
subsection. 

In the ray coordinates introduced previously, it may be 

shown that 

a lnJ  
y = K(S)b + - 1. 

as 

From equation (59), it is seen that the amplitude 
fluctuations depend on both x E  and the divergence of its 
transverse components at the point of observation as well as 
the local fluctuations in the velocity and density fields at the 
points where the ray enters and leaves the scattering layer. 
From a computational point of view, it would seem that the 
easiest way to calculate V - x: would be to trace two nearby 
rays (with slight displacements in the 5 and q directions 
respectively) and compute the corresponding changes in xf 
to use in a quotient with appropriate components of the 
resulting changes in xo on the nearby rays. 

Alternatively, it may be shown that when 5 and q are the 
transverse ray coordinates outlined previously and h, = 1 
everywhere on the unperturbed ray, then 

and 

T 
V x; = I, V,Jl[xo(a)] d a  

+ Pz(V')'fi[xo(a)] da.  I 
4.4 Fluctuation in polarization (for S-waves) 

The unit vectors eSv, esH which define the orientation of the 
SV- and SH-components of the displacement field at the 
surface of the layer in the absence of perturbations in the 
velocity field may be written in the form 

- ( v .  do)do eSH = v X do esv = 
dl - (V  do)2' dl - ( v - do)2 ' 

where do is given by equation (50); and 

for plane geometry, 
for spherical geometry. 

Of course, in the ray coordinates introduced previously, 

for plane geometry, esv = a  and eSH = '' 
{0, for spherical geometry. 

However, if in equation (64) we replace do by 
d = d o +  Ed"+O(E2), we obtain the variation in the 
directions of esv and eSH which result from the fluctuations 
in the velocity field; they are respectively 

and 

where the subscript 3 denotes the v-component as before. 
Now, we suppose that in the absence of perturbations, the 
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surface S-displacement field may be expressed as 

= Eyesv + E:eSH. (66) 

Equation (65) gives the changes in the unit vectors esv and 
eSH produced by the perturbations in the velocity field; the 
corresponding fluctuations in EY and E: are related to the 
amplitude fluctuations studied in the previous subsection, 
since a0 = V(E7)’ + (E:)’. Adapting equation (59) to 
describe amplitudes of S-rays, it follows that 

El = E:[l- & ( x E  - V In E: + G,)] + O(E’),  

E2 = E ; [ l -  E(X, - V In E: + G,)] + O(’) ,  (67) 

where 

G =i{x‘ 2 ~ y + ~ . x ~ + f l ( P ) - f * ( P ) - [ f l ( O ) - f * ( O ) J ~ .  

In the perturbed medium, the components of the surface 
S-displacement field are still expressed relative to the unit 
vectors e,, esv, and eSH associated with the unperturbed ray 
geometry, that is, 

U = F,eSV + F2e.sH + he, .  (68) 

These components are related to the initial disturbance and 
the perturbed ray geometry as follows: 

where 

E: 
E t ’  

6 = xc. V In- 

The concept of Stokes’ parameters from electromagnetic 
wave theory (Newton 1966) may be used to study the 
variation in polarization. Define 

Then from equations (69): 

I =  I,,(l + 2 ~ l +  ~ 8 )  - Q 0 ~ 6  + O ( E ~ ) ,  

Q = Q,,(1 + 2 d  + ~ 6 )  - I0&6 - 2U0&m + O ( E ~ ) ,  

U = Un( 1 + 2.d + E S )  + 2Q0&m + O( e2), 

V =  Vn(I+ 2 ~ 1 +  E S )  + O(E’),  

(72)  

where the subscript denotes the values of these parameters 
in the absence of perturbations. 

I represents the square of the amplitude of the S-motion 
transverse to e, and when F, is zero, equation (72a) is 
identical to equation (59). 

The polarization of the motion is given by 

V 

P T Z ?  tan ~ ( Q O  + Q €1 = 

- - vo [l +go Qo ] +O(&’), (73) 
A (ui+Qf> 

where 

A = 1 + 2 d +  ~ 6 .  

Thus 

= EsQo tan 2Qo + 0(&2), (74) 6 
that is, the fluctuation in the polarization of S-waves 
depends on the variation in E:/E: in the vicinity of the ray 
and results from the fact that the relative amplitude 
distributions of SH- and SV-components may vary slightly 
across the wavefront. It is only when the incident S-wave is 
linearly polarized or when the ratio EYIE: is constant across 
the wavefront in the vicinity of the ray of interest in the 
unperturbed medium, that the polarization (linear, elliptic, 
etc.) is unaltered by the variations in the velocity field. Even 
slight variations in EYIE; across the wavefront in the vicinity 
of the ray of interest can produce significant changes in 
polarization when 2Q0 = n / 2  (circular polarization). 

5 CONCLUSIONS 

The effect of small arbitrary perturbations in the seismic 
velocity field of a layer of fixed thickness in which the 
unperturbed velocity field varies with depth has been 
studied for both plane and spherical geometries. Assuming 
that the trajectories of the rays in the unperturbed medium 
are known, it has been possible to derive expressions for the 
perturbations in the ray geometry which result from these 
fluctuations in the seismic velocity field. It is found that 
although dx‘lds is perpendicular to dxo/ds at each point 
along the ray, the displacement vector x E ( s )  may indeed 
have a component directed along the ray at the point of 
observation-that is, it is possible for the fluctuations in the 
seismic velocity field to cause an apparent advance or 
retardation along the ray path. Nevertheless, Fermat’s 
principle is not violated and the first-order correction to the 
traveltime again results purely from the fluctuations f , ( x )  in 
the slowness field along the unperturbed ray path. 

In the course of the calculations, simple expressions are 
also obtained for the various components of the propagator 
matrices for the unperturbed ray, that is, the ray which 
would propagate through the prescribed depth-varying 
seismic velocity field (without fluctuations). These expres- 
sions require the calculation of just two integrals along the 
unperturbed ray path and are calculated analytically for the 
special case of weak lateral velocity inhomogeneities 
superimposed on a constant gradient of quadratic slowness. 
Such a propagator formalism is widely used in the study of 
Gaussian beams and describes how small variations in the 
initial position and direction of the unperturbed ray are 
propagated along the ray; it also gives insight into the 
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significance of the weighting factors in the integral 
expressions for x E  and dx'lds. 

The expressions for the first-order corrections to  the 
direction of approach, slowness, polarization of S-waves and 
amplitude at the point of observation on the surface are all 
found to have essentially the same form as in paper I when 
expressed in terms of xE.  However, the differences in the ray 
geometries lead to  different functional dependences on the 
various transverse derivatives of fl . Nevertheless, the 
perturbations in the surface slowness again depend only on 
the variation of VTf,  throughout the layer whilst the 
amplitude fluctuations depend also on higher derivatives of 
the fluctuation in the seismic velocity field throughout the 
layer. When the relative amplitudes of SH- and 
SV-components of the motion d o  not vary significantly 
across the wavefront in the vicinity of the ray in the 
unperturbed medium or the incident S-wave is linearly 
polarized, the only effect of the perturbation of the seismic 
velocity field on the polarization of S-waves is t o  rotate the 
principal axes of the polarization ellipse and t o  first-order, 
this rotation depends only on the change in the direction of 
the ray trajectory; the relative phase of the SH- and 
SV-components remains unchanged. However, when the 
incident S-wave has near-circular polarization, then even 
slight changes in the relative amplitudes of SH- and 
SV-components across the wavefront can produce significant 
changes in polarization. From these results it follows that 
the irregular spatial variations of surface slowness, 
amplitude and polarization for S-waves contain information 
about the structure of the seismic velocity perturbation 
which is additional to that contained in the traveltime 
residuals. The approach used in deriving these expressions 
gives insight into the various complicating factors which 
need to  be considered in inverse modelling problems 
involving such media 
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APPENDIX A: SOLUTION TO EQUATION 
(18) IN PLANE GEOMETRY 
Under different conditions, quation (18) dcscnbcs both the fmt-order comctions to ray gwmcuy 

resulting from small fluctuations in the velocity field about a vcnically-varying model and thc 

correcnons to ray geometry resulting from small changer to the initial conditions when there are no 

fluctuations in the velocity field. Thcrcfore z IS uwd rather than fi as the variable describing the 

correction to position on the ray and the equation is solved subject to non-mu initial conditions 

thus allowing the solution to both problems to bc determined simulranmurly. Spifically. our initial 

conditions will be 
z(0) = 4(0) 

and ~ ( 0 )  = No) with NO) $(o) = o (A-1) 
d z  

The condition on MO) ensuns that !!? remains a unit vector to first order in small quantities dc 

From equation (18). it is seen that the 2-component of z satisfies: 

That IS. B,(s, a) IS simply proponional to the horizontal displacement of the reference ray as the 

arclength parameter varies from u to s. 

The equation for the 3-component of z is simplified by noting that at u, vKies only with x,". 

d". = u?odr," 
d s d c  

and so the basic equation for the 3-component of z is: 

Now 

(A-4) 

(A-5) 
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dro 
dc So provided +O. equation (A-4) may be multiplied throughout by p: to obtain: 

(A-6) 

w h m  

and 

with the cutvatwe of the ray at xo(s) 

Now ppO f d.” and so from equation (A-7) we have 

Therefore, we may integrate the second integral in equation (A-10) by parts to obtain 

43 7 d a  = I,’ F(s.  0) Vz (xo(aNda+ F ( s ,  O)S, + C(s. O)q, 
a d a ,  
4 P (A-l I )  

Thc efpressions for F ( s ,  a) and G(s, 0) vanish when b(x,”) is constant at all depths. 
It is inappropriate to try and express V z  (~ ‘ (0 ) )  purely in terms of Vif, (~‘(0)) as Vrf, (~‘(0)) 

vanishes at a turning p i n t  of the unpcrmrbcd ray whilst V3, (~ ‘ (0 ) )  docs not. Instead. it is 

preferable to e x p ~ s s  both the 1- and 3 - c o m ~ e n u  in tQmE of the in-plane component perpendicular 

to the ray (the n-component). The cwdina tc  vectors arc related as follows: 

Now, from equation ( I  1) we have 

d xo 
dr -. v? (XO) = 0 (A-13) 

RJs.0) = 1 

From these expressions, it is clear that the tcrms S,(s, U) and R,(s, 0)  may only be neglected when 

udx) docs not vary greatly along the raypath; otherwise the component of z along the ray is 

significant. The Q-factors describe the effect of a small initial displacement in the direction of the 

ray and give insight into the curvature tcrms in the R-factors. 

An expression for !! may be obtained by differentiating the cxpssions for zl, z, and z, with 

respect to s: 

ds 

(A-IS) 
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APPENDIX C: SOLUTION OF EQUATION 
(18) IN SPHERICAL GEOMETRY 
As in Appendix A. z is used rather than r' as the variable describing the comcdon to position on 

the ray and our initial conditions arc: 

Z(0) = q(0) 

d z  
and ~ ( 0 )  = &O) with NO) c=O (C-I) 

where 

with 

RJS.0) = ~ I K ( s ) - K ( o ) S 4 ( s . 0 ~ 1  
P Y m  

R,(s.O) = 0 

Q.(s,O) = r(t)-X(O)S,(s,O) 

ds It is easy to verify that the tangential component of 

d xo 
equation (IS) by faking i u  scalar product with - and using equation (A-13) together with the ds 

is zero as may be proved directly from 

The condition on &O) ensures that @ remain a unit vector to fmt order small quantities ds 

Fmt of all, we consider the in-plane components of the solution. Taking the wdar product of 

d xo 
dr is perpendicular to - . This gives 

Equation (A-16) may be simplified using equations (7) and (A-5) together with the fact that 4 

varies only with depth ta give: 
Equations (7). (14) and (15) may be used to simplify the equation to obtain: 

$(&$. 21 - u t o k .  2) + d o  dxo ;i;, d z  ;i; +z d (u's,) - r ,y"i ,  - z y ; ~  = 0 

Furthermore we have: 

@ = ( 2 ,  - z.O)i(s) + (t,+ r.O)&s) + t & S )  
ds 

d (u,,'z.) - 2,%"tO = U'$, 
whilst 

That is. 

with solution 

(C-3) 

(A-17) 

d z  . 
ds Now at I = 0, the initial conditions rquired A = 0. Thus at all points along the ray. - is 

perpendicular to the direction of the unpmurbed ray. Equation (A-17) may be further integrated to 

obtain the expression for the tangential component of z given at quation (A-14). 

Substituting in equation (C-2) gives: 

$[u,,$.$)+do%.$ = o  

It follows that (C-4) 

APPENDIX B: SOME PROPERTIES OF THE 
SPHERICAL POLAR COORDINATE SYSTEM 
Spherical c o - d n a a s  src related m canesian d n a a s  of position by the following relations: 

x-rs in inBws+.  y = r s i n O r i n + .  z = r w i O  (9-1) 

For the initial conditions given both in equation (19) and in equation (C-I). we obtain A = O  as 

before and we find that at all points along the ray, !!! is perpendicular to the direction of the 

unperturbed ray, that is. it lies in the wavefront at each point. 

ds 

Consequently. the associated unit vccloc~ md scale faston M: 

Next we take the scalar product of quation (18) with x0 = r& to obtain: 

These unit vcctora vuy with position and have partial derivatives: 

Now, from equation (7) and (C-4) we have 

and so equation (C-5) may be written 

In the plane of the unpmwbed my. 0 remains constant and only I and e vary with posioon on the 

ray. Consequently. 2%' 4" ( r A ) "  Noting that -+- =- 
r& u, rdr, 

it is seen that equation (C-7) docs. in fast. have essentially the same form as quation (A-6) and thc 

solution proceeds in a similar way. Rovided that to # 0. it is possible to multiply equation (C-7) w h m  denotes diffmnriation with respect 10 arclength along the ray 
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(C-8) 

Q, (s ,O)  = 1 -L (O)S , (s ,O)  

Finally, from equations (18) and (8-4) it is seen that the $-component of z satisfies the equation: 

Muluplying through the unit vectn by P and using equation (6) gives: 

and ~(0) is the curvature of the ray at ~‘(0) PI defined at quation (C-14). 

Integrating with rcspcct 10 s and taking the 6(s) component of equation (C-12). using the 

onhogonality of the unit vectors i(s) and 6(s) gives: 

z.(s) = I,’ SJs, a) 0% (xo(a) )da  + S,(s. 0)6, + R,(s.  Oh, (C-13) 

rdu) %(a) 
S,(S.O) = -- rds) do) .  :(a) where 

and R,(s. 0) = - %(O) roo) & ) ,  
P 

Equation (C-8) m y  k used in conjunction with quation (C-4) to derive an expression for the 

component of z directed along the ray: 

Thus we may Write the solution to equation (18) in sphcncal gcomeuy as: 

2 0 )  = [ P,O. a) V‘f, (xo(a))da + P&. 0)6 + P,(s. 0)q 

where 

and the 1.. 2- and 3-components refer to Components in the A-. 6- and C directions respectively. 

As in Appendix A, the components in the direction of the ray M only negligible when a(x) docs 

not vary greatly along the raypath. 

ro(s” ug(s” in a problem involving At furl sight. i t  may seem unusual to have - rather than ___ 4 3  
4 1 ro(s 1 uds 1 

sphencal symmcuy. However, in the special case = constant at all depths, we see that this 

panicular formulation does indeed cause the integral for C, to vanish and thus gives an x‘(s) which 

lies in the wavefront of he moth-order disturbance a( x‘(s). as found in paper 1. 

Equation (C-9) may bc used 10 derive M expression for z, From quauons (14) and (15) we have: 

dxo @re+ P k )  2.-  =- 
d.J rdh d z  

ds This ray co-dinate  systcm is panicularly convenient to use if expressions for - are required We 
and 50 

Once again, it is more appropriate 10 express r- and 8-components in terms of a component along 

h e  ray (the 1-component) and an in-plane component prpndicular to the ray (the n-component). 

The co-ordinate vectors M related as follows: 

(C-14) 

where 
(C- 10) 

and 

Then 

where 

with 
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APPENDIX D:  SOME PROPERTIES OF THE 
CURVILINEAR RAY GEOMETRY 

We choose a set of onhogonal cunilinur ray coo1dinates (t, q) where '1 denotes mvel-rime 

along the ray and \. q denote any onhogonal co-ordinates on the wavefront. These ray co-ordinales 

However, in the special case of rny-centrcd co-ordinates. each term in equations (D-7) is rcm. 

The quantities in the fust two equations of (D-4) arc thcmvlvcs unconsnained by equations (D-5). 

So care is nccded in handling the derivatives of the scale factors in applications. 

have associated with them uNt veclon and scale facwn defmed as follows: 
One function of the ray geometry which appears in the small permrbation analysis is he vccwr 

quantity y given by: 

with 

and 

Therefore 

Thus, 

Equations (D-4) and similar equations obtained by cyclic p u t a t i o n  of the condinate symbols 

may be used w simplify the expression to obtaix 

(D-9) 

where 

the area of surface clement on the wavcfront. 

Anothcr function of the ray geometry which is used in this paper is V 

1he phase c w a m  function A, = r, as follows: (D-3) 

a au ae. au I( ah, ag(ue.) = -e .+u-  = -e.+---e al al ag h , & t  
Now Now the orthogonality of the unit vcclon may be used in equations (D-3) to obtain: 

(D-ll) 

and. from the ray equation we have: 

~ ( u e . )  a = -- :i (ue,) = k v u  and sirmlar relations from the remaining two equations in (D-3). In fact. it may be deduced from 

the ful l  xt of relanons that each of the four expressions in equations (D4) is zero and similarly 

for cyclic permutation of the cc-ordinate symbols. 

(D-12) 

Thus, the expression for the phase curvature function is given by: 

So far, we have made no assumptions about the geometry of the co-ordinate system beyond the 

orthogonality of the cwrdinate vcclors and so the nrulu arc easily adapted to he situation when 

arclength s is the coordinate along the ray simply by replacing h, by h. in the previous equations. 

It is tntcrcsdng to we the unplications of quaaons (D-4) when we choose q as the n co-ordmate 

defined in section 2 and \ as either the 2-component (for plane gwmcuy) or the .$ component 

(for sphcrical geomcuy). Thcn we have: 

where the suffix i refen 10 the second term of each dyad and the suffix k refers to the fust term 

in each case. Equation (D-13) shows the symmetry of the dyadic A, .The expression for uV - 

differs from (D-13) by the term V u q  which rcmoves the symmetry from the dyrdic; if also remves 

all terms from the dyadic with i component in the e, direction. a significant msult: 

r3 

where as) = I Vr In 41 the curvature of the ray at xo(s) 
(D-14) 

Using these three results in the relations obtained from equation (D-4) by cyclic permutation of the 

co-ordinate symbols. we find that: In ray-ccnacd co-ordinates. this reduced further to: 

(D-6) (D-15) 

whilst the following quantities depend on the way in which e, vanes across the surface s = const. 

that IS. in a direction transverse to the ray: 

ah. = h q . -  ac. = - h e . -  ac, 
as * a  * * . + I  

(D-7) 

dx' - 
d.5 

Such an expression is adequate when 

However. in the full ray co-ordinate system. there are additional terms dependent on the rates of 

change of e, perpendicular to the cenual ray; these terms usually need to be included in order to 

docs not change significantly across the wavchont 

obtam an adequate description of V 
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