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Abstract—The use of relative attributes for semantic under- methods. Of the unsupervised methods, the ‘topic modets' pr
standing of images and videos is a promising way to improve yide an intuitive approach for researchers; this approgph t
communication between humans and machines. However, it is jca|ly includesProbabilistic Latent Semantic Analysis (pLSA)
extremely labor- and time-consuming to de ne multiple attributes [21, [3], [4], Latent Dirichlet Allocation (LDA)[5], [6], and
for each instance in large amount of data. One option is to =i 2 ' ’ v
incorporate active learing, so that the informative sampes Diffusion Maps (DM)[7]. These methods attempt to discover
can _be act?vely dis_covered and then labeled. However, most the mixture distribution of hidden topics, each of which can
existing active-learning methods select samples one at ar® then be related to a meaningful concept, and a recent study
(serial mode), and may therefore lose ef ciency when learmig g\ gqested the use of a randomized visual vocabulary faracti

multiple attributes. In this paper, we propose a batch-mode .
active-learning method, calledDiverse Expected Gradient Active search [8]. In the supervised case, there have been attempts

Learning (DEGAL). This method integrates an informativeness tO utilize local patch information or image/video annatati
analysis and a diversity analysis to form a diverse batch of to explore a visual vocabulary. For example, Vogel et al. [9]

queries. Specically, the informativeness analysis empls the constructed a vocabulary with explicit semantic meanings b
expected pairwise gradient length as a measure of informa- labeling certain semantic concepts (esly, rocks, sarjdto

tiveness, while the diversity analysis forces a constrainbn the hi i tch. H th licability of thi
proposeddiverse gradient angleSince simultaneous optimization each local image paich. mowever, the applicabiliity o 1S

of these two parts is intractable, we utilize a two-step proedure approach is limited due to the large labeling cost when
to obtain the diverse batch of queries. A heuristic method is allocating each patch. Ji et al. [10] proposed the use of the

also introduced to suppress imbalanced multi-class distbiutions.  Hidden Markov Random Field (HMRFRhodel to integrate

Empirical evaluations of three different databases demortgate both local visual features and semantic labels to guide vo-

he effecti f ci f th h. . . PR,

the effectiveness and e C'encyo_ the pro'_OOSEd_ approac cabulary construction. In this study, the similaritiesvietn
Index Terms—Batch Mode, Active Learning, Diverse Expected djfferent local visual features were extracted from 60,000

Gradient, Relative Attributes. labeled Flickr images, while the semantic label corretatio
were provided by WordNet. Similar to previous methods, this
|. INTRODUCTION approach still required a large number of manually provided

: . . labels to produce a general vocabulary.
Semantic understanding of scenes aims to narrow the ga : .
ather than constructing a vocabulary, the recent litegatu

between what humans and computers understand by providi

the meanings of elements in text, speech, images, or vidg? s increasing attention to visual semantic attributagh&di
(e.g. "the sky in the image is blue” and "the boy's hand in the al. [11], Lampert et al. [12], and Kumar et al. [13] have

video is waving”) in a format that is understandable to husal il proposed the use of a set of visual semantic attributes

From a practical perspective, semantic understandingishi "o describe various objects and human faces. Due to their
P PErsp ' 9 robustness to visual variations, attributes have beerieapiu

relevant in systems that organize personal and profeslsmgI erent vision tasks, including classi cation [14], [L5ecog-

information, and for this reason the approach has receiv<ﬁ:I lon [16], and retrieval [17]. These methods treat ]

much attention in the computer vision community. Howe\./e;ri,s binary values to indicate their existence. On the other

several important research challenges still exist forotegi hand, relative attributes as proposed by Parikh et al. [18],

vision tasks, including image/video classi cation, aratain, : . : L
) : : . are designed to provide a richer mode of communication and
and retrieval. Techniques to organize, annotate, andevetri . . o R
etailed access with human supervision. Due to the intrinsi

?r:%lrt]ael ;nrr?gll;td g;a:hzrf dlzgglggrj] dbzglr:g trgiezxr?:ﬁgfsnttl)aelligf/zw ré)tperties of binary and relative attributes, it is intatithat
' ey can either be user de ned (from a professional human

perfe_ctlng semantic understandmg IS an urger_1t need Ir‘rorp%rspective) or discovered from the data itself, in order to
to gain access to the content of images and videos [1].

Previous research has mainly focused on building a sema gomplement human de ciencies [16], [19]. However, thisoals
vocabulary. ie. embeddin tﬁ/e semantic informgtion iator}HSans that each object or scene has many attributes that need
visual vogélb.ulér usin egigther unsupervised or su ervisto be labeled manually. In addition, training a robust dlass

y 9 P P 89 recognizer for a real-world application requires thawsa

Xinge You is with the Department of Electronics and InforimatEngi- of samples_, and obtaining these s_amples and attributes is an
neering, Huazhong University of Science and Technologyhifein 430074, extremely time- and labor-consuming task.

China. . Semantic understanding would therefore bene t from high-

Ruxin Wang and Dacheng Tao are with the Centre for QuantumpDtan | ic | . ith icted fi d lab
tion and Intelligent Systems and the Faculty of Engineeding Information VOlUMe semantic learning with restricted time and labots;0s
Technology, University of Technology, Sydney, NSW 2007 stkalia. and progress in this area has been seen over the past two



2 DRAFT

years. For instance, Parkash et al's [20] and Biswas et aR) We extend serial-mode active learning based on gradient
[21] adopted an active learning framework to select the $ampength to the batch-mode case. To measure the diversity of a
(known as the query in the active learning eld) that was query set, thdiverse Gradient Anglés de ned, based on the
most uncertain to the attribute learner. Instead of simpxpected gradient direction. By imposing a constraint an th
demanding the label for the image, the learner conveyed #sgular differences between queries in the set, we prove tha
current belief about the image to the oracle and demandbe satis ed queries can result in different model paramsete
a response and explanation in return, the image classi éfghey are separately added to the training set.
simultaneously bene ted from this feedback process. Harev 3) The proposed active learning method suffers from a multi-
in each iteration of active learning, the learner only seléc class imbalance issue, which might result in poor perforrean
the most uncertain query to be labeled, i.e., only one quasy w\e therefore design a heuristic method by introducing a
chosen, and therefore many iterations were required tchredmmlance constraint to suppress the imbalanced multi-class
stability. Rather than selecting the samples importanthe tdistributions.
classi cation task, Xu et al. [22] studied the issue of dawgd We perform empirical evaluations on three datasets eqdippe
which semantics (i.e., attributes) are pivotal. By de ningvith relative attributes and demonstrate that our methaed pe
a data-drivenCategory-Attribute Matrix they automatically forms favorably compared to other batch-mode active learn-
designed discriminative attributes in a principled way anidg and random-sampling baseline methods. Our approach is
in doing so avoided the use of large-scale, but redundasitnilar to [31]; however, our study differs in that we handle
attribute sets. Similarly, Choi et al. [23] proposed a novéhe diversity analysis in the gradient space, rather thaa in
joint optimization framework in which the attribute learne projected feature space characterized by a kernel.
category recognizer, and sample selector were simultafieou The remainder of this paper is organized as follows. Section
optimized. To ensure discrimination, they learned aliilabes 11 provides the background to the relative attributes mpds!
from the data in order to identify which unlabeled sample wagell as a detailed analysis from an active learning perspect
critical to the category boundaries and, in this way, both tHhn Section Ill, we introduce our approach, followed by an
attribute learner and category recognizer were trained orpatline of the experimental results demonstrating theiehcy
relatively small set. As well as the attribute-related warther of our strategy in Section IV. Finally, we summarize our
active learning methods have also been proposed to imprawethod and brie y discuss future research directions.
image/video semantic tasks [24], [25], [26].

Incorporating the active learning framework to solve the Il. PRELIMINARY
above problem is clearly effective. Active learning evédisa  The content of the relative attributes model is briey re-
the informativeness of unlabeled instances so that moaeg-infviewed in this section, before providing a detailed analydi
mative instances are more likely to be queried [27]. Howevehe model that inspired our proposed algorithm.
as in Parkash et al. [20], most active learning approaches
serially select queries, i.e., they are selected one at a ti®. Relative Attributes

[27]. The time required to induce a semantic model can Attribute-based vision tasks, such as image classi cation

be slow or EXpensive, especially yvhen_ multiple annotatogs, 4 object recognition, are an embedded mapping that can be
work on different labeling workstations in a network at th%ecomposed as follows [32];

same time, which is the case in attributes learning. Under

these conditionsbatch-modeactive learning, which allows H = L(S()

the learner to select queries in groups, is more suitable for S : RII AM (1)
serial labelling environments. By picking up several gegri L - AM 1 L

during one iteration, batch-mode active learning resuliess

iterations and faster convergence. where S is composed ofM individual attribute learners

Here we aim to improve the training ef ciency of a typef bin (X)ghi=; , each learnehy, (x) maps a raw feature 2 R?
of semantics learning, namely the recently proposed velatito the correspondingn-th attributea, of AM, L maps a
attributes method. We present a novel batch-mode act&emantic attribute poira 2 AM to a class label 2 L. RY,
learning approach calle®iverse Expected Gradient ActiveA™ , andL denote thei-dimensional real-value space, thie-
Learning(DEGAL), which addresses the following two objecdimensional attribute space, and the label space, resphcti
tives: to collect batches of the most informative queries] a  The relative attributes model, which differs from the binar
2) to enforce the selected queries to be diverse with respecgttributes model, may provide a promising method to deeply
each other in the training procedure. Our main contribstio@xploit human cognizance and build a wider information
include: bridge between humans and machines. This model encodes
1) Inspired by [28] and [29], we use the expected pairwiggach image with the strength of different attributes witspect
gradient length as the informativeness measure. The missother images, and can be modeled as follows [18].
informative query should provide a large number of confgsin Suppose a set of training imagesare represented by raw
pairwise relationships and cause a large change on the md@ature vectoréx 2 R%g!, and a set of attributefsay ; :::; aw g
parameters. To show that this is reasonable, we demonstraie following, we denote the raw features b, x?, x%, x2, where

equwalence between this strategy and Tongs W'dely awepﬁ?e subscripts andj are the indexes of pairs i@y and SmJ resjpectively,
result [30]. and the superscripts and 2 reveal the relative order.
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Fig. 1. Ranking Direction. For a certain attribute, samdleg, 3, and 4 are
sorted in increasing order according to the strength of #tibute. Under
SVM conditions,w is the optimal ranking direction on which the cumulative - —
margin between all adjacent samples are maximized.

are accordingly de ned. Then, for each attributg,, two
kinds of image pair modesD,, and Sy, are constructed
by comparing the corresponding attribute in two imagesig. 2. Decomposition of RankSVM-with-Sim. Symbol "o” deee the

- 1.y 2)iyl 24 i ; ; transformed samples Sy, while "+ and "-” indicate those inOm.
om .f (X7 i ).JX' i(' g is the ordered image pair mpde’Optlmlzatlon on problem (5) results iwkSSYM | and problem (6) leads to
indicating that |mage<i has a stronger strength On attributy COE | Thus, the overall solutiowR? can be expressed as a combination
am than imagex?, while Sy, = f(x xz)Jxl x g is the ofw'—SSVM andwﬁ]OE .Obviously, if the sample closest to the hyper-plane

un-ordered image pa|r mode, denotmg that |max¢ehas a (solid line) belongs t&n , it has no optimization bene t for the current model
parameters. Samples that could result in a signi cant changhe direction

2
similar strength of attributen, as imagex;. of wRA should be treated as the most informative and not necesséuite
The goal is to learM attribute rankrng functions, each ofto any plane.
which is
Fm(X) = WpX 2)

B. Active Learning Analysis

for m = 1;::;M, such that most image pairs satisfy the Even though RankSVM-with-Sim is designed to nd the
corresponding image pair modes, i.e. optimal direction in which each sample is assigned to a corre
order, it can be equivalent to a classi cation SVM on paimvis
U difference vectorgx{ x?) and(x{' x?). For attributean,
B(x/ix[) 2 Sm © wmXj = wpx} let us denoted™ = (x! x?) 2 Oy, to be assigned with a
labely™, wherey™ =1 if rp(x!) >rn(x?) andy™ = 1
L Fm(X!) <rm(xf), while d™ = (x} x}?) 2 Sy, which is
dhe difference between the un ordered image paiiSyjn For

8(x!;x?)2 Om @ w)rxt>w!x?

wherew,, 2 RY is the direction parameter ar(d’ denote
the transposition. In other words, we aim to nd the optim
projected direction on which all training samples are rank
in an accurate order in the feature space, as shown in Fig CPMPleteness, we de ne the labgl' =0 for Sp.

To deal with the above NP-hard problem, its solution can.BaS(.Ed on the above de r_ntron and trensferrmg RankSVM-
be approximated by introducing: (1) the non-negative sla&gth's'm into an unconstrained scenario, we can get
variables ; and j, and (2) a regularization term to maximizeminimize:

the margin between the closest pair's projectiormon. This Wm o 1
leads to the following optimization problem, namBdnking 1 5 @ T oo Xs T m2A
SVM with Similarity(RankSVM-with-Sijn SKkWmkz + C max(0;1 yiwndh)=+ - (W d)
1 X X i=1 j=1
minimize:  Skwp, K+ cC( 2+ 2y, (3) (4)
. . s o _ whereTo denotes the number of ordered pair<ip , andTs
subject to: - 8(X{;X{) 2 Om :WmXi  WmXi+1 i} g the number of un-ordered pairs 8. We can now make
8(x{:1 ) 2 Sm tjwm Xt wgpxf an approximate decomposition of problem (4) into two parts,
8ij:i 0, ; O namely usingleast-squares SVMLS-SVM) and constrained
optimization on the ellipse (COE):

whereC is a free parameter that allows a trade-off between

margin and training error. Rearranging the above condsain LS-SVM m|n }kw K2 + CXO max(0:1  yiw! d™)?;
we can rewrite them as: Wi mee T ’ men
8(x5;x?) 2 O tw) (xt x2) 1 q )
1.2 i T oyl ; . s
8(XjXj) 2 Sm W X[ WmXjj ot COE min (wnd™? sit: kwpk (6)
Wm

By handling the above optimization problem, we can acquire =1
M attribute ranking functionéry, ()gM_, . To further induce where is a positive scalar that constrains the minimum norm
proper active learning for this model, certain propertiesudd of wy, in COE. The above decomposition is possible because

be considered, as detailed in the next sub-section. the rst two parts of (4) form the LS-SVM, while the third
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part of (4) becomes the COE. The constraint in (6) emerg€&ken following equation 4, we de ne the objective function
from LS-SVM in (5), and it is used to avoid the solutioras

of (6) to be all zeros. In other words, if we regardas L 2

the norm of the solution of (5), the optimal solutiom,, MIGmI2e: “wn = kv;/(m k2

can be obtained by iteratively optimizing (5) and (6) until + [1 in;(Xil Xiz)]i
converged. For convenience, we provide an illustratiornaf t (x1:x2)2 O

in Fig. 2, where we assume the solutions of the two problems "X T ous
arewtSSVM andwCOF | and the solution to problem (4) is + (wm (X %)% (8)

therefore a compromise. (x}:x?)2Sm

Given this model, we need to nd the most informativeyvhere = 1=2C and[]. is the hinge loss function. If an
queries (or the queries that the learner nds most confysingstancex is added into the training set with a certain rank
and add them into the training set. In the active learningbely, the above function becomes
eld, several strategies have been proposed for SVM and Rank

mi .o _hew _— 2
SVM. In Tong's result [30] for binary SVM, the mostinforma—m"\],'mm'ze' wn = KWmk;

tive query was the one closest to the classi cation hyperpla + X L yiwk(x! x2)2

but this is not the case in a relative attributes scenamagsihe L, PEmAT A
gueries closest to the classi cation hyperplane belon&to & ’))(()20""

and cannot signi cantly affect the optimization of the péan + (Wt X))+ QWm;X);
In Donmez et al's [29] and Settles et al.'s [28] methods, the (x{x?)2Sm

query with the largest gradient length once added intoitrgin 9)
set under current model parameters was selected as the most

informative. Meanwhile, Parkash et al. [20] and Biswas et a¥here X

[21] proposed selecting samples with the most entropy or the QWm;Xx) = 1 yuw/ (xe x)2
largest entropy variation. However, the critical issudwitese (Xu %)Zom

methods is, as stated in Section I, that they are serial-mode + W (x x))?

In order to design a batch-mode strategy, our contribution (X0 5025 minu

accounts for the informativeness, while ef ciently comipgt

the diversity of different queries relative to the curreradrl. €ncodes the total loss caused by the instancand other
relevant instancegXy;Xx) 2 On ((Xy;X) 2 Sy) means that

the instancex, has a different order (same order)xo
I1l. PROPOSEDAPPROACH Let r ~y,, andr ~1®" be the gradient of the original
We next describe oubiverse Expected Gradient Activeobjective function (8) and the new objective function (9}twi
Learning (DEGAL)method, which improves on the serialf€SPect to model parametery , respectively. In most cases,
mode approach presented in the previous section. A owchdp€ uniqueness of the SVM solution can be guaranteed [34].
of the proposed method is shown in Fig. 3. The theoreticap et us assume that the unique optimal solution of function
foundation of our batch-mode active learning method is thas€®) iS W . Equationr ~, =0 holds due to the optimality.
on Settle et al. [28]. Given that the expected gradient lengthen, the change of gradient induced by instande
is a measure of sample uncertainty, our goal is to assist the (x;y) = " o~

attribute learner to actively nd a batch of informative gjigs - W({,"v X) o (10)
that possess relatively large expected gradient lengthofmy )? m’
the largest one), and simultaneously maintain diversiynfr = 2 g(XuiX;Yu);
each other. Xu
where
A. Informativeness Analysis 8(xu3;x) 2 Oms:
T .

In this section we incorporate the expected gradient length 2 Yulxu X1 YuWnm Ou X
which measures the informativeness of each unlabeled i¥(Xu;X;Yu) = if yuwp (xo x) <1
stance, into the model. This is feasible because the relativ "0 if yawp (X x) 1

attributes model can be optimized in the primal using the

gradient descent method [33]. Once a query is added into T

the training set, it will create the greatest change in th&Xu:X) 2 Sm 1 9(Xu;X;yu) = (Xu  X)Wp (Xu  X)]:
pairwise gradient length under the objective function. éHetandy is a label vector, each dimension of which indicates the

is a mathematical explanation: relative order betweer and the corresponding training sam-
First, we need to impose a general constraint on the pairwisie. Now, according to [28], we can de ne the informativesies
differences, which is of the instance as the accumulated pairwise gradient lengths,
ie.
8(x!;x?) 2 O : kxt  xZk=1; € X
(Xi:ix7) 2 Om i X, @) (i) =2 kg(xuX;ya)k (11)

8(x}x?) 2 Sy 1 kx  xPk=1: o
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. Unlabelled Pool
Informativeness i

Analysis max ¥ (x) ﬁ I

Attribute Learner
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Fig. 3. A owchart of the proposed method.

From de nitions (10) and (11) above, we know thafx;y) expanded training set will result in slow convergence to the
is the direction of gradient descent afteris added into overall optimal solution; we therefore need to diversife th
the training set. This will be used in the diversity analysiguery set. Different diversity measurements possess speci
in Section 1lI-B. Furthermore, the informativenesgx;y) properties and can result in different sets of query candida
reveals the uncertainty of the current model with respect Respite this, one particular case needs to be emphasized tha
x. The larger (X;y), the more confusing will be to the cannot be guaranteed: for any two queries in the query set, on
model. will still be selected as an informative sample if the othersw
However, one issue to consider when evaluating the infaeded into the training set and the model was updated. This is
mativeness of unlabeled instances is that an active learbecause the data used in real applications always changks, a
cannot know the true label in advance. The expectationshe updated model cannot be predicted unless the label of the
of both (x;y) and (x;y) therefore need to be calculatecadded query is known. However, according to the de nition of

over the attribute learner's current belief{yjx), that is informativeness in (13), the queries selected in eachtitera
, are always useful for updating the model.
(x)= P(yix) (xiy); (12) The theory behind our approach is that the selected queries
can greatly change the model parameters if they are used for
(x)= P(yix) (x;y): (13) training. When considering diversity, it might be expedieat
y different queries could lead the current model parameters i

The beliefP (yjx) can be estimated using Platt's method [35different directions, as shown in Fig. 4. To realize this, we
in which the posterior probabilit (yjx) is regressed using aPropose thediverse gradient angle (DGAjo measure the
sigmoid function. Then, the instance with the largest etquec diversity of candidates in a query set, a detailed desonpf
informativeness is the optimal one to be added into theitrgin Which is given below.

set. In fact,max, ( X) is equivalent to Tong's result [30], De nition 1: Suppose that instances and xx are two
which is proven in Appendix A. In our setting, we selecéandidates selected in the query set, and their associated

a batch ofK queries,X = fxg<, each of which has a expected gradient changes afex;) and ( X), respectively.
relatively large value of( x), i.e., Then, theDiverse Gradient Angldetweenx; andxy is
X
X = argmax X 14 h( xt); ( Xk)i
X ug Xi=K 4oy (%) (14) tk = arccos—( Vi ( Xi) (15)

k ( x¢)kk ( xp)k
whereU is the unlabeled set. whereh i is the inner product ankl k is L2-norm.
] ] ] Given the de nition of DGA, we know that if  is larger
B. Diversity Analysis than a specic value, say , x; and X, lead to different
The query set selected in the above section capturegligections of the gradient descent. In other words, wkeis
large amount of information to be discovered by the curreatided into the training set, the solution of (9) is quiteetiint
model, which we refer to as query candidates. However, tsthat whenxy is added, which is expected. On the other
described in Section 1I-B, each query candidate may hakeand, if  is smaller than or leans more towards 0, the
similar information to other candidates, and the effect afvo query candidates would result in a similar direction of
adding one similar query into the training set will thereforgradient descent. Obviously, in this cagg, may be useless
be the same as adding other similar queries. In this case, #fier x; is labeled as a training sample.
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Therefore8 zand > ,
KE(w, w,)k?
>s2 k( x)k?+ k( xi)k? k ( x¢)kk ( xx)k
s? min(k ( x¢)k%k ( xx)K?); (20)
and
N KE(w, w;)k>s min(k ( x¢)k;k ( xk)K): (22)
..... &;(XR) P(x:) <I>(xk) The proposition is proved. [ |
@) (b) Proposition 1 states that when DGAx is large enough,

Fig. 4. Take a quadratic form as an example. In both (a) andtfb)black the difference between the updated model parameters by

solid line indicates the objective function under the ardgitraining set, while x, and xy is proportional tomin(k ( x{)k; k ( xk)k). It is

the blue and red dotted lines denote the objective functimeuthe enlarged . .

training set withxy, and xt, respectively. Obviously, in (a), the DGA therefc_)re r_easo_nable to believe that mStam‘eﬁnd_Xk _car!

is large, sox, andx; would lead to quite different updates of the optimalresult in quite different model parameters under this ciorali

solution. In (b), DGA ¢ is small, which means labeling, or xt would  Fyrthermorex; andxx become more diverse in relation to

possibly result in the same solution. each other wheny continues to increase. To select a batch
of queries with an expected diversity, we incorporate the

To appropriately choose the value of, the following following objective function to modify the query set:
proposition and its proof are proposed. X

D —
Proposition 1: Supposex; and xx are two instances se- X" = argma_x t
lected by (14) as informative queries, and their associated X DU 2 x
y q ’ Sit 88X Xk2X : COS iy > (22)

expected gradient changes afex;) and ( xg). If 8 3
such that the DGA « betweenx; and xi is larger than The free parameter controls the diversity of the query set,

, i.e.,, « > , the difference between the updated modgle., when the value of increases, the constraing >
parameters byx; and xx is expected to be larger thancould result in a more diverse set. However, the large value
s min(k ( x¢)k;k ( Xk)Kk), wheres is a positive scalar. of will lead to only a limited number of available queries,

Proof: To prove this proposition, we rst assunve is since only a small number of queries can satisfy the comstrai
the optimal solution of (8) andav; (or w,) is the optimal This might result in no queries being selected in subsequent
solution of (9) wherx; (or x) is added into the training set. jterations. To overcome this issue, we use an intuitive oakth
Then, to set in each iteration, which is detailed in the next sub-

We=wo owe=wos (Xgye) (16) section.
W, = W Wk =W S (Xk;Yk) a7 . ] . ]
) . C. Diverse Expected Gradient Active Learning
wherey; andyy are true labels, and is a scalar controlling _ . . .
n this section, we develop oiverse Expected Gradient

the step size in the gradient descent method. The above. L X DEGAL hod binati fth
equations hold because the step size in each iteration”gVe Learning ( Jmethod as a combination of the

proportional to the magnitude of the current gradient. T €thods P“’Pose‘?' in Sections ”,I'A gnd lII-B. By integrgtin
difference betweemw. andw. is calculated as oth the informativeness and diversity analyses, the tivera
t k

objective function becomes

Wi we = s (((Xayd  (XkiYk) X X
< . 18 X PEGAL = argmax ( x)+ "
= s tk (18) X UV Xj=K yox XtiXk2 X
where we denote w = (Xt;Yt) (Xk;Yk). Since the st 8XxuXk2X: coS g > (23)

true labels are all unknown, the expected difference should . _ _ _
be calculated over the distribution Bf(yjx;) andP (yjxx), Where the rst item provides the measurement of informative

ie., ness of the query set and the second item accumulates the set'
KE(W, W, )K2 divers_ity._ _

k t Optimization of the above problem would undoubtedly
= SZkE>g i )k produce a diverse query set. However, to the best of our
= 2k P (yejxe)P (Ykixk)( (Xe:ye) (XK yK)) K2 knowled.ge, it is i.ntra.ctable due .to the need to enumerate

VYK all possible combinations of queries in the unlabeled set to
2 X ) . 2. X . ) , achieve the optimal solution. To tackle this, we propose a
=s%(k  P(ydxt) (Xeyo)k®+k o P(ykixk) (Xk;yk)K two-step heuristic method to discover an approximate agitim
NG x 7k query set.
2h  P(yijxe) (Xe;ye);  P(ywixk) (Xk;yw)i) In each selection iteration, we rst calculate the informa-
Vi Yk tiveness of all unlabeled sampleslih and selecK ° (> K )
= 5% k( x)k?+ k( xk)k? 2k ( x¢)kk ( xx)kcos  :  most informative instances, which form the candidateGet

(19) The second step eliminates all candidateXQirthat do not
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Algorithm 1 DEGAL VAN
Input: R N . G
Optimized parametew, unlabeled seU. oo W
Output: e.0 0.0
Diverse query setX comprising K queries, and the Cl\/ \/63
updated model parametes™" . @ ®)

1. Calculate, according to (13), the informativendss;) of . ) ) ) . - .
9 ( ) E( t) Fig. 5. Multi-class imbalance. Circles indicate trainingmples, while

each sample i with w; . . . triangles denote the class center. Figure (a) illustrates goor solution
2: Collect K9 (> K ) most informative samples with aproduced by an imbalanced training set formed according tactive learning
decreasing order, to form candidate get scheme. Figure (b) shows the optimal solution if all data it labels are

. . . bserved. Indeed, once the solution is affected by imbalabbecomes even
3: Calculate, according to (15), the Diverse Gradient Angi&ore severe in the subsequent iteration and cannot beused-into a regular

between each pair of samples @ resulting the matrix case.

where[] « = ;
4: Initialize ;
5: repeat However, the multi-class imbalance problem, which is a
6: Processx; 2 Q from the most informative, to leastSevere limitation of multi-class classi cation [36], [374lso
informative: affects relative attributes performance and, as a consegue
7 Find the samples whose (W.rt. X;) violate the con- the proposed active learning scheme. In fact, in an active
straint of ; > ; learning procedure, all query selection is blind. If theedsity
8- Eliminate these samples fro@, and the correspond- of one class is large, then it is very likely to choose queries
ing rows and columns of ; belonging to this class in every iteration, leading to a®esi
9: if # of Q)>K then imbalance in the distribution of the training data. Evennf a
10: Increase = + acceptable balance between all classes of all data exists, a
11 end if random initialization of the training data would result ip@or
12: until There areK samples remaining iQ; selection of queries in the subsequent iteration and eséntu
13: X = Q; form an imbalanced training set. For an example, see Fig. 5.
14: Add X into the training set; We therefore propose to control the imbalance of the train-
15: Optimize the model parametev™" on the enlarged ing setin each iteration by rst de ning the balance constta
training set, by usingv as initialization; as follows.
16: return X = Q andw™W, De nition 2: The balance constraint denotes that the num-

ber of training samples in each class differ from each other
no more than .
satisfy the constraints in (22). The overBIEGAL is shown Given this de nition, we utilize a G_aussian model to sim—_
in Algorithm 1. ulate the class center of each attribute strength, which is
In the above procedure, the issue remains of how to inigiali£Stimated according to the ranking score under the current
and increase the value of Due to the unknown structure of Model parameters. In a new selection iteration, once theyque
the feature space, we cannot evaluate whabuld properly S€t X IS ob'Falned, thg active learner pre_dlcts the label of
diversify different samples. Also, when the iterationstiore  ©aCh query inX and discards those that violate the balance
for some time, the informativeness of the remainder of tfoNstraint. Note that in this step the oracle has no responsi
unlabeled samples may not be as strong as those previoffy to inform the active learner whether the predictetidh
selected, because the direction parametertends to be 'S COITect or incorrect, whlqh is reqsqnaple be_cause,_ if the
globally optimal. In this case, any xed value of would label is correct, _elther keeping or eI|m|r_1a'F|ng this sam@le
cause an empty set 6f. Here, we incorporate an explorator;ﬁXaC“y what we intend to do. If the Ie_lbel is incorrect, ratiag
trick that starts with a relatively small at initialization and thiS sample would, as expected, adjust the model parameters

then increase by if all values of  satisfy the constraints; while removing it does not harm the overall procedure, ekcep
meanwhile, mor&k samples remain iQ. for slightly affecting the rate at which the optimal solutics

reached.
. One further issue deserves consideration: if some queries

D. The Multi-class Imbalance Issue are discarded by the balance constraint in the currenttsmiec

In the relative attributes model, the task requires leayninteration, they could still be selected as queries in thet nex
a ranking direction, along which the pairs of images in thigeration, and continuing execution would likely result am
training set are ordered as correctly as possible. The imdgenite loop. To ensure that the active learner does not fall
pairs in O have different attribute strengths, while those imto this trap, we construct a backup set to store the dischrd
S are similar. From this viewpoint, this task can be cast agleries, instead of returning them into the unlabeled pool.
a multi-class classi cation scenario, where each clasllabAfter a certain number of iterations (say 20 or 30), this lgck
corresponds to a specic attribute strength, and differeset is returned to the unlabeled pool.
images with different attribute strengths belong to défer  The whole procedure for controlling the multi-class imbal-
classes. ance issue is shown in Algorithm 2.
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Algorithm 2 Multi-class Balancing Scenes
Input:
The labelled training set, unlabeled setU, and
MAX _BACKUP_ITER.
: Optimize the model parameter onL;
. Initialize the backup seB = ;;
i=1;
repeat Faces
Predict the attribute score¢x) in L usingw;
Calculate the Gaussian parameters for each class by
using the predicted scores;

o R wNR

7 (X; w"W)=DEGAL(w; U);

8: U= UnX;

9: Predict the attribute score$x) in X usingw"";

10: Estimate each query's label as the one with the highest Shoes

Gaussian probability;

11: Eliminate the queries frolX which would violate the
balance constraint if added to;

12: Store t§e discarded queries i

13: L=L X,w=w"w;

14: i=i+1;

15: if i > MAX_BACKUP_ITER then

16 ReturnB to U; Fig. 6. Example images. First row: OSR examples. Second RwbFig
17: i=1. B =" examples. Third row: Shoes examples.

18: end if

19: until Get an expected model parameter. .
P P B. Experimental Setup

This section provides a detailed description of our basslin
and experimental settings.
IV. EXPERIMENTS Dataset Splitting: Every dataset is equally divided into two
sets, i.e.,50% of samples in the training set arD% of
A. Dataset samples in the testing set. For each trial, the samples wsed f
training are selected from the training set, either acgfival
To empirically investigate performance, we evaluate otiandomly, while the testing set is used to evaluate perfooaa
approach on three datasets: the Outdoor Scene Recognifi@selines:We include four active learning baselines and two
(OSR) dataset [38], the Public Figures Face (PubFig) datasgndomized baselines for comparison. The rst active lgayn
[13], and the Shoes from the Attribute Discovery datase}. [3%aseline is the batch mode proposed in [31]. Since this ndetho
The OSR data contains 2688 images from eight categoriesrealized by minimizing the version space of the model,
and has six attribute@natural', 'open’, 'perspective’, 'large- while maximizing the diversity measurement (which we call
objects', 'diagonal-plane’, 'close-depth'ilescribed by a 512- the Kernel-based AngléKBA)) of the query batch, we denote
dimensional GIST descriptor. For the PubFig dataset, aesubié as "MVS+KBA”". The second active learning baseline ("M-
of images was selected from the original dataset in [13]; coB+KBA”) is a combination of multi-class uncertainty sanmgji
sisting of 772 images from eight people with eleven attelut (called margin sampling(MS)) and KBA [40], [41]. The
(‘masculine-looking’, 'white', 'young', 'smiling’, 'chibby', third ("Entropy-QBC”) is an extension of query-by-comre#t
'visible-forehead', 'bushy-eyebrows', 'narrow-eyes'pointy- algorithms from the entropy viewpoint [42]. The nal active
nose', 'big-lips', 'round-face') The feature for describing facelearning baseline ("TEGL+KBA”) is an integration of EGL and
instances is a concatenation of 512-dimensional GIST fdéBA. The two randomized baselines are as follows: the rst
tures and 30-dimensional color histogram features. Thel thi(”’Random”) is where training samples are randomly selected
dataset, Shoes, is a relatively large-scale dataset théing from the training set, while the quantity in each class is the
14658 shoe images structured by ten classes and ten afribgame. The second ("RandomC”) is designed to illustrate the
(‘pointy-at-the-front', 'open’, 'bright-in-color', ‘covered-with- effect of the imbalance issue, and differs from the rst imth
ornaments', 'shiny’, 'high-at-the-heel', 'long-on-thkeg', ‘for-  all classes are randomly and equally split into two cliques.
mal', 'sporty’, ‘feminine'), and 960-dimensional GIST featuredNe randomly choos80% N samples for classes in the rst
and 30-dimensional color histogram features are alsaetlli cligue andl0% N for classes in the second clique, whére
to describe a shoe instance. These datasets cover divelemotes the total number of samples used to train the model
domains of interest, including natural scenes, human facparameter. Note that in this situation, the number of sample
and products (Fig. 6) and provide an ideal test-bed for our all the classes is not necessarily equal.
approach. Active Setting: For active learning, an initial labeled skt
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is randomly selected from the training set, and the remaindeyes, laughing can narrow the eyes. If this type of image
form the unlabeled set). Since a good initialization of a existed, the active learner's belief could be misled toward
model parameter (i.e., the model is trained on the initialarrow-eyes(see Fig. 8(e)). The Shoes dataset also has the
labeled set) is favorable for active learning, we set the lmerm same issue, such as with the local attributdigh-at-the-heel
of initial labeled samples to: 1) 32 for OSR and PubFig withlowever, for most attributedDEGAL performs well. These
four samples per class; and 2) 100 for Shoes, with ten samplesults suggest th&dEGAL can discover key information in
per class. For each iteration, we utilize a xed batch size ddarning the relative attributes models, but lacks theitgtiif
5, meaning that 5 queries are chosen each time. The angsklf-tuning when it gets into a trap.
parameter is set to =4, and to =36. Furthermore, the DEGAL is superior to the four active learning baselines in
balance constraint parameteris set at5. The in uence of most cases. It can be seen that MVS+KBA has very limited
different parameter settings can be found in Section IV-D. performance, consistent with the analysis in Section li-&,
Model training: In all experiments, problem (8) is optimizedthe samples closest to the classi cation hyperplane are not
using Joachims' method [43], and the parameers deter- necessarily the most informativ®EGAL outperforms both
mined by cross-validation. All experiments are conducted MS+KBA and Entropy-QBC, because our method intends to
times, and the performance is then averaged. nd a query that can produce a large number of uncertain
Performance evaluation: Performance is measured by thepairwise relationships, whereas the other two methodg trea
accuracy of predicted relative strength. For two test samplthe relative attributes as a multi-class problem and only
Xi andx;, the comparisomm (Xi) > rm(Xj) (or rm(Xj) < select a query uncertain to all classes. At this point, the
rm(X;j)) is correct if it is consistent with the ground truthinformation induced by one query IDEGAL is larger than
Then, the total accuracy for attribute is calculated by the that in MS+KBA and Entropy-QBC. FinallyDEGAL offers
rate of correct comparison to total comparison. an improvement over EGL+KBA by modifying the original
EGL as the expected pairwise gradient length, which is more
suitable for the relative attributes model. Furthermotes t
proposed diversity measurement in the gradient space is an
The comparative results for different relative attributes alternative to that in the primal feature space or the kézeeél
the OSR dataset, PubFig dataset and Shoes dataset are slspate.
in Fig. 7, Fig. 8 and Fig. 9, respectivelREGAL performs  The comparison oDEGAL with RandomCillustrates the
better than both the active learning baselines and the mandimportance of thebalance constraint RandomCbecomes
baselines. SurprisinglfRandomworks well in some of our extremely unstable and has limited performance due to the
experiments, and may even be comparabBESALINn some imbalanced distribution between different classes. Lofs o
cases. This phenomenon helps us to understand the meainfigrmation is very harmful to the training model, partiatly
of each attribute in each of the datasets. Prior to analws&s, for DEGAL As stated earlier, the initialization dDEGAL
de ned two types of attributes, namely the global attrilsuteinvolves only minimal information and produces signi cant
and the local attributes. Global attributes are relatedh® tuncertainty that could blind the subsequent selectiongatoe
whole image, while local attributes are determined only by and result in an imbalanced scenario that performs sinilarl
local region in the image. In the OSR dataset, all six attdbu to RandomC This also accounts for the slight turbulence on
are global because they need to be assigned by observingDf®SAL curves and the severe turbulence seenRlandomC
whole image. In this casdDEGAL always performs better The same conclusion can also be reached from the results
than Randomsince the features used are globally relatesf the experiments that test different settings ofpresented
to the attribute value. However, in the Pub g dataset, sonie Section IV-D. Therefore, by using the balance constraint
attributes are globalnfale white, young chubby andround- DEGAL can outperforrRandomC
face, while the others are localskiling visible-forehead
bushy-eyebrowsarrow-eyes pointy-noseand big-lips). The
results indicate thaDEGAL sptill works well on tr?e global D. Effects of the Parameters
attributes but exhibits some limitations on the local htttées. In this section we evaluate the effects of changing khe
One reason for this is that our method cannot localize the and parameters. Each is tested by xing the others. All
attributes to a speci c region, and without this informatjo experiments are conducted on the OSR dataset and the results
i.e., the localization, the active learner might be confuaad are averaged over all six attribute learners' performances
easily affected by the distinct features in other regiohg; t Fig. 10 shows the in uence oK on the performance of
algorithm subsequently picks up queries that lead thébatei DEGAL Overall, the different settings have similar perfor-
learner in the wrong direction. In subsequent iteratiohs, tmances and produce consistent results for the nal selestio
attribute learner performs normally until there are enoudhowever, for the middle selections, there is slight diveie
training samples, such that the localization can be reealeras shown in the enlarged box. Smaller value&ofesult in a
For example, the attributemiling can be regarded as a globabetter performance, while increasikgdecreases the accuracy
case, since a smile changes the prole of the whole fade this range, suggesting that smaller K helps the active
even though it is only related to the mouth shap&GAL learner to precisely explore the feature space, while targe
therefore works well orsmiling Taking the attributearrow- K results in redundant information in the selected query set
eyesinto consideration, even if a person has a pair of largdthough smalleiK works better, this comes at computational

C. Results
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cost due to the need for more iterations for selections and
retraining. There is therefore a trade-off betwekn and ossr oar s
. . . . FC SN
the computational cost, which needs to be considered in the el //\'?’x/—”‘* |
implementation. '
Fig. 11 shows the effects of angular parameteDifferent g o ]
values of have almost the same performance, suggesting that ~ § oasl |
the proposed algorithm is insensitive to this parameteteNo
that this is partially due to the incremental strategy used i 084 ]
Algorithm 1, i.e., increasing by ool —x=s |l
Fig. 12 shows that parameterhas a relatively signi cant - % -x=20
. .. ——x=40
in uence on performance. =5 and = 10 have similar 0s - - - T
performance, while when = 20 the accuracy slightly Number of queries
decreases for the middle selections. Wheris set to 40, - -4

the performance signi cantly drops as the number of querie

Fisg. 12. The effects of the parameterwhen settingk =5 and
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increases, suggesting that the imbalance issue between EheComputational Complexity

classes is severe enough to negatively affect the activedea
Keeping small is therefore an effective way to control thea
imbalance of multi-class distributions.

The computational complexity of the proposed method is
nalyzed based on the cost in one iteration, which consists o
the training model parameters and active selection. Assume
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that the training set ham samples, the unlabeled pool has taken to compute the informativeness and the angle values is
samples, the batch size ks, and the attribute haslevels of O(nm?) and O(C2 ), respectively. The calculation involved
strength. Since&€?, pairs need to be considered in the trainingy multi-class balancing is of orde®(m + K). Thus, the
phase, the complexity for training is of ord&((CZ2)3) in total complexity in one iteration i©®((C2)*+ nm? + CZ +

the worst case [33]. In the active selection phase, the tinre+ K). The corresponding computational complexities of
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TABLE |

COMPARISON OFCOMPUTATIONAL COMPLEXITY maxx ()2()1 we can write ( X) by substituting (11) into (13):

Method Name | Computational Complexity (x)= P(yjx) (x;y)
DEGAL O(hm?+ CZ + m+K) X
EGL+KBA O(nm? + nm) — X P (yujx)k vk
MS+KBA O(InCZ+ nm) = YulX)Kg(Xu; X; Yu)
MVS+KBA O(nCZ + nm) o Y
Eniropy-QBC O("n) =2 (P(Lx)kgxu;x; Dk+ P( 1p0kg(xu;x; 1)k
Xu
+P (0jx)kg(xu; x; 0)k) : (24)
the different methods are shown in Table I. For clarity, wi . I .

. . o . o ue to the unit constraint in equation (7),
omit the complexity for training since it is the same for al X
approaches. Our method takes less time than other batce-mgdx) =2 PAX)1 W, Xy X))+
active learning strategies, sinmeandK are generally smaller Xu
thann. Entropy-QBC has the lowest computational complexity +P( LX)+ w, (xa X+
because it is a serial-mode method, but this method may take FPOXW.T (e X)] - (25)
more iterations to reach an expected solution. PXIWm (Xu I

De ne the above accumulation items &6x,; x):
f (Xu;%)
V. CONCLUSION SPEXL wy (o )] + PO O+ W' (X X))+
+ POjx)jwp (Xu  X)]

Incorporating an active learning scheme into semantiailear (P@jx)+ P( 1jx)+(P( 1x) P@x)w. (xu x)
ing is a promising method to efciently improve various + POX)iw.T . " 26
semantic learners, especially when faced with a large atmoun Q)W (X X)I: (26)
of internet data. In order to focus on the improvement dfhe above equality is obtained whéw,| (x, x)j 1.

relative attributes learning with limited label informati, here Note thatP (1jx) + P( 1jx) + P(0jx) = 1, and in an ideal
we present a novel batch-based active learning methoédcalkkase,P (1jx) + P( 1jx) =1 for w,] (x, x) 6 0, while
Diverse Expected Gradient Active Learning (DEGAle use P(0jx) = 1 for w, (xy, x) = 0. This is because of the
the expected gradient length as the informativeness of eaghnitions of O andS.

unlabeled sample, and illustrate its equivalence to Toregalt Without loss of generality, we assun®x,, jw,, (X,

[30]. To collect a batch of queries of reasonable diversity)j 1. Therefore, ifw, (xu X)60,
we constrain thaliverse gradient anglebetween the queries L ) ) T _
to preserve different guidance on parameter optimization(Xu:X) =1+ (P( 1x)  PLx)wWp (Xu  X): (27)

Finally, a two-step optimization is formulated that ranf@sn | this casef (x,;x) reaches a maximum whe( 1jx) =
informativeness analysis to diversity analysis. To adsitee p(1jx) = 0:5, which is exactly the same as Tong's result. On
problem of imbalanced class distribution, we exploit & $8Mpthe other hand, ifv, (x, X) =0,
method to minimize the issue using tlhalance constraint

The experimental results on three different kinds of dagasé (Xu;X) = Wy (Xu  X)j:

demonstrate that the propos&EGAL is superior to other j qar this condition, any large value bfx,:x) means that

baselines. _ o the pairwise difference, x is informative to the current
However,DEGAL still has some limitations. For example model parametew,,, since it is supposed to be located on

how to actively discover the speci c regions related to theal the classi cation hyperplane.

attributes remains open. Furthermore, the proposed méshod |n conclusion, sincé (x,;x) 0, the queryx maximizing

?<ed at the attr.ibute level. How to de ne the_ joint inf_orma— ( x) is the one which produces the greatest quantity of

tiveness of a single sample for different attributes stdeds informative pairwise differences. Adding such a query te th

to be considered, and this will be investigated in futurekwvortraining set can signi cantly improve leading the optintioa

procedure to the optimum.

(28)
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